1
|
|
Lu V, Zhang J, Chen G. Can nutrition interventions tackle the global insulin affordability via improving diabetes management and reducing insulin demand? Glob Health Res Policy 2022;7:13. [PMID: 35546683 DOI: 10.1186/s41256-022-00247-1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
Diabetes, a global health concern, requires insulin therapy. As insulin demand and prices rise dramatically, insulin affordability has increasingly become an issue facing patients with diabetes worldwide. To cut insulin costs, many patients ration their supply, which may have dire health consequences. This particularly affects lower-income populations, who are often forced to choose between purchasing their medications or paying for other necessities. Nutrition might be one solution for this. This commentary aims to provide comprehensive insight with historical context into intersectional components of diabetes in the global arena through analyses of insulin affordability, coupled with the critical role of nutrition intervention after searching the PubMed for relevant articles. More studies in personalized nutrition, supplementations, and dietary behaviors may develop evidence-based nutrition interventions to control diabetes. We argue that alongside price regulation, a greater focus to nutrition to address issues of food insecurity and food assistance programs may help to improve insulin affordability.
Collapse
|
2
|
|
Wang T, Tang X, Hu X, Wang J, Chen G. Reduction in the Dietary VA Status Prevents Type 2 Diabetes and Obesity in Zucker Diabetic Fatty Rats. Biomolecules 2022;12. [PMID: 35454117 DOI: 10.3390/biom12040528] [Cited by in Crossref: 3] [Cited by in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
We hypothesized that the vitamin A (VA) status regulates type 2 diabetes (T2D) development in Zucker diabetic fatty (ZDF) rats. Zucker Lean and ZDF rats at weaning were fed a VA deficient with basal fat (VAD-BF, no VA and 22.1% fat energy), VA marginal with BF (VAM-BF, 0.35 mg retinyl palmitate (RP)/kg), VA sufficient with BF (VAS-BF, 4.0 mg RP/kg), VAD with high fat (VAD-HF, 60% fat energy), VAM-HF or VAS-HF diet for 8 weeks, including an oral glucose tolerance test (OGTT) at week 7.5. The hepatic mRNA and proteins levels were determined using real-time PCR and Western blot, respectively. The VAD-BF/HF and VAM-BF/HF diets prevented peripheral hyperglycemia and attenuated obesity in ZDF rats, which occurred in the presence of the VAS-BF/HF diets. This lowered VA status reduced venous blood hyperglycemia, hyperinsulinemia and hyperlipidemia, and improved OGTT and homeostasis model assessment for insulin resistance results in ZDF rats. The expression levels of key hepatic genes for glucose and fat metabolism were regulated by VA status and dietary fat contents. An interaction between VA and HF condition was also observed. We conclude that the reduction in the dietary VA status in both BF and HF conditions prevents T2D and obesity in ZDF rats.
Collapse
|
3
|
|
Wang J, Hu X, Chen J, Wang T, Huang X, Chen G. The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits. Foods 2022;11. [PMID: 35205979 DOI: 10.3390/foods11040502] [Cited by in Crossref: 9] [Cited by in RCA: 8] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
β-carotene, a member of the carotenoid family, is a provitamin A, and can be converted into vitamin A (retinol), which plays essential roles in the regulation of physiological functions in animal bodies. Microalgae synthesize a variety of carotenoids including β-carotene and are a rich source of natural β-carotene. This has attracted the attention of researchers in academia and the biotech industry. Methods to enrich or purify β-carotene from microalgae have been investigated, and experiments to understand the biological functions of microalgae products containing β-carotene have been conducted. To better understand the use of microalgae to produce β-carotene and other carotenoids, we have searched PubMed in August 2021 for the recent studies that are focused on microalgae carotenoid content, the extraction methods to produce β-carotene from microalgae, and the bioactivities of β-carotene from microalgae. Articles published in peer-reviewed scientific journals were identified, screened, and summarized here. So far, various types and amounts of carotenoids have been identified and extracted in different types of microalgae. Diverse methods have been developed overtime to extract β-carotene efficiently and practically from microalgae for mass production. It appears that methods have been developed to simplify the steps and extract β-carotene directly and efficiently. Multiple studies have shown that extracts or whole organism of microalgae containing β-carotene have activities to promote lifespan in lab animals and reduce oxidative stress in culture cells, etc. Nevertheless, more studies are warranted to study the health benefits and functional mechanisms of β-carotene in these microalgae extracts, which may benefit human and animal health in the future.
Collapse
|
4
|
|
Chen G. The Interactions of Insulin and Vitamin A Signaling Systems for the Regulation of Hepatic Glucose and Lipid Metabolism. Cells 2021;10. [PMID: 34440929 DOI: 10.3390/cells10082160] [Cited by in Crossref: 10] [Cited by in RCA: 9] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
The pandemics of obesity and type 2 diabetes have become a concern of public health. Nutrition plays a key role in these concerns. Insulin as an anabolic hormonal was discovered exactly 100 years ago due to its activity in controlling blood glucose level. Vitamin A (VA), a lipophilic micronutrient, has been shown to regulate glucose and fat metabolism. VA's physiological roles are mainly mediated by its metabolite, retinoic acid (RA), which activates retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which are two transcription factors. The VA status and activations of RARs and RXRs by RA and synthetic agonists have shown to affect the glucose and lipid metabolism in animal models. Both insulin and RA signaling systems regulate the expression levels of genes involved in the regulation of hepatic glucose and lipid metabolism. Interactions of insulin and RA signaling systems have been observed. This review is aimed at summarizing the history of diabetes, insulin and VA signaling systems; the effects of VA status and activation of RARs and RXRs on metabolism and RAR and RXR phosphorylation; and possible interactions of insulin and RA in the regulation of hepatic genes for glucose and lipid metabolism. In addition, some future research perspectives for understanding of nutrient and hormone interactions are provided.
Collapse
|
5
|
|
Zhang Y, Wang T, Hu X, Chen G. Vitamin A and Diabetes. J Med Food 2021;24:775-85. [PMID: 33232625 DOI: 10.1089/jmf.2020.0147] [Cited by in Crossref: 12] [Cited by in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023] Open
Abstract
Recently, research data have shown that vitamin A (VA, retinol) as a micronutrient participates in the regulation of glucose and lipid metabolism. Since diabetes is a metabolic disease, it is imperative to reveal the relationship of VA and diabetes. This review was aimed to summarize the current understanding of VA and its metabolites in diabetes. Since April of 2020, the authors have searched the PubMed using key words and retrieved articles that focused on diabetes and VA or its metabolites. Based on the published data, it appears that the development of type 1 diabetes leads to reduction of blood VA level in human and animals, and increase of hepatic VA store in experimental animals. On the other hand, the mutual impacts of type 2 diabetes and VA intake and blood VA level on each other appear to be uncertain. Retinoic acid, the active metabolite of VA, has been studied extensively for the treatment of diabetic complications. The current data appear to indicate that the development of diabetes is associated with changes of VA metabolism. More carefully designed clinical and laboratory experiments are needed to reveal the impacts of diabetes on VA metabolism and the role of VA in the development and treatment of diabetes.
Collapse
|
6
|
|
Xu F, Wen Y, Hu X, Wang T, Chen G. The Potential Use of Vitamin C to Prevent Kidney Injury in Patients with COVID-19. Diseases 2021;9. [PMID: 34203409 DOI: 10.3390/diseases9030046] [Cited by in Crossref: 4] [Cited by in RCA: 3] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
The newly found SARS-CoV-2 has led to the pandemic of COVID-19, which has caused respiratory distress syndrome and even death worldwide. This has become a global public health crisis. Unfortunately, elders and subjects with comorbidities have high mortality rates. One main feature of COVID-19 is the cytokine storm, which can cause damage in cells and tissues including the kidneys. Here, we reviewed the current literature on renal impairments in patients with COVID-19 and analyzed the possible etiology and mechanisms. In addition, we investigated the potential use of vitamin C for the prevention of renal injury in those patients. It appears that vitamin C could be helpful to improve the outcomes of patients with COVID-19. Lastly, we discussed the possible protective effects of vitamin C on renal functions in COVID-19 patients with existing kidney conditions.
Collapse
|
7
|
|
Yang FC, Xu F, Wang TN, Chen GX. Roles of vitamin A in the regulation of fatty acid synthesis. World J Clin Cases 2021; 9(18): 4506-4519 [PMID: 34222419 DOI: 10.12998/wjcc.v9.i18.4506] [Cited by in CrossRef: 3] [Cited by in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/06/2023] Open
Abstract
Dietary macronutrients and micronutrients play important roles in human health. On the other hand, the excessive energy derived from food is stored in the form of triacylglycerol. A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase, fatty acid synthase, fatty acid elongases, and desaturases. As a micronutrient, vitamin A is essential for the health of humans. Recently, vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism. This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis. It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo. It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis. Future research directions are also discussed.
Collapse
|
8
|
|
Cheng H, Ge Y, Li J, Zhang Y, Huang X, Chen G. The distribution, uses, and characteristic components of gentianaceae plants in China. World J Tradit Chin Med 2021;7:287. [DOI: 10.4103/wjtcm.wjtcm_14_21] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/07/2023] Open
|
9
|
|
Goff M, Chen G. Long-term treatment with insulin and retinoic acid increased glucose utilization in L6 muscle cells via glycogenesis. Biochem Cell Biol 2020;98:683-97. [PMID: 33215509 DOI: 10.1139/bcb-2020-0131] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023] Open
Abstract
The skeletal muscle regulates glucose homeostasis. Here, the effects of vitamin A metabolites including retinoic acid (RA) alone, and in combination with insulin, on glucose utilization were investigated in rat L6 muscle cells during the differentiation process. L6 cells were treated with differentiation medium containing retinol, retinal, RA, and (or) insulin. The glucose levels and pH values in the medium were measured every 2 days. The expression levels of insulin signaling and glycogen synthesis proteins, as well as glycogen content were determined. Retinal and RA reduced the glucose content and pH levels in the medium of the L6 cells. RA acted synergistically with insulin to reduce glucose and pH levels in the medium. The RA- and insulin-mediated reduction of glucose in the medium only occurred when glucose levels were at or above 15 mmol/L. Insulin-induced phosphorylation of Akt Thr308 was further enhanced by RA treatment through the activation of retinoic acid receptor. RA acted synergistically with insulin to phosphorylate glycogen synthase kinase 3β, and dephosphorylate glycogen synthase (GS), which was associated with increases in the protein and mRNA levels of GS. Increases in glycogen content were induced by insulin, and was further enhanced in the presence of RA. We conclude that activation of the RA signaling pathway enhanced insulin-induced glucose utilization in differentiating L6 cells through increases in glycogenesis.
Collapse
|
10
|
|
Wang T, Wang J, Hu X, Huang XJ, Chen GX. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 2020; 11(3): 76-98 [PMID: 33274014 DOI: 10.4331/wjbc.v11.i3.76] [Cited by in CrossRef: 22] [Cited by in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/05/2023] Open
Abstract
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.
Collapse
|
11
|
|
Lamsen MRL, Wang T, D'Souza D, Dia V, Chen G, Zhong Q. Encapsulation of vitamin D(3) in gum arabic to enhance bioavailability and stability for beverage applications. J Food Sci 2020;85:2368-79. [PMID: 32691454 DOI: 10.1111/1750-3841.15340] [Cited by in Crossref: 19] [Cited by in RCA: 18] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023]
Abstract
Delivery of vitamin D3 (VD3 ) in foods should exhibit desirable physicochemical characteristics and improves absorption. In this study, gum arabic (GA) was investigated as a VD3 carrier to encapsulate VD3 . VD3 dissolved in 5 mL ethanol corresponding to 0.3 to 6.0% mass of GA, was blended in 5.0% w/v GA solution, followed by freeze drying. The encapsulation efficiency decreased while loading capacity increased with an increased amount of VD3 . At the highest VD3 level, the loading capacity (3.47%) was the highest, and the encapsulation efficiency (61.24%) was satisfactory, and the treatment was further studied. The magnitude of negative zeta-potential increased from 3.1 to 31.0 mV at pH 2.0 to 7.4. During the 100-day storage at 3 °C of capsules reconstituted at pH 2.0 to 7.4, the hydrodynamic diameter decreased at all pH conditions, most evident for reduction to 81.3 nm at pH 7.4, and no precipitation was observed, indicating the significance of steric repulsion on capsule stability. Bioaccessibility of VD3 in capsules (95.76%) was significantly higher than the nonencapsulated VD3 (68.98%). The in vivo pharmacokinetic study in Sprague-Dawley rats after a single-dose of 300 µg VD3 showed the area-under-curve of serum 25(OHD) level in 48 hr of the encapsulation treatment was 4.32-fold of the nonencapsulated VD3 and more than twice higher than the VD3 -GA physical mixture. During 2-week supplementation of 60 µg VD3 /d, rats receiving capsules or physical mixture had 25(OH)D levels of at least 81 ng/mL higher than that of the nonencapsulated VD3 group. The studied encapsulation system holds great potential as a value-added ingredient to supplement VD3 in beverages with a wide pH range. PRACTICAL APPLICATION: The findings of this study demonstrated the improved dispersion stability and absorption of vitamin D3 after encapsulation in gum arabic. The capsules exhibited good dispersion stability across a pH range between 2.0 and 7.4, showing potential application in beverages. Furthermore, the enhanced absorption of VD3 after encapsulation highlights the nutritional benefits of the studied encapsulation system.
Collapse
|
12
|
|
Li Q, Shi Y, Sa R, Hao J, Hu J, Xiao M, Wang C, Yan L, Qiao B, Chen G. Altered staining patterns and expression level of Engrailed-2 in benign prostatic hyperplasia and prostate Cancer predict prostatic disease progression. BMC Cancer 2020;20:555. [PMID: 32539763 DOI: 10.1186/s12885-020-07049-z] [Cited by in Crossref: 3] [Cited by in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer (PC), a common malignant tumor, is the second-leading cause of cancer death among American men. Its successful treatment greatly relies on the early diagnose. Engrailed-2 (EN2) has been confirmed being existed with a high level in the urine of PC patients. In this study, to explore the application of EN2 in PC, we detected the immunohistochemical staining difference and EN2 expression level between benign prostatic hyperplasia (BPH) and PC. METHODS We developed a monoclonal antibody against the helix 3 in EN2 and confirmed its specificity with Western blotting (WB) and immunofluorescence detecting the subcellular localization of endogenous and exogenous EN2 in three PC cell lines (LNCap, PC3, and DU145). We conducted immunohistochemical staining using this homemade antibody, and RT-PCR to detect the expression of EN2 in 25 PC and 25 BPH cases, and analyzed the correlation of EN2 expression and PC clinical staging. RESULTS The results of WB and immunofluorescence showed our homemade EN2 monoclonal antibody could specifically bind endogenous and exogenous EN2 protein in three different PC cell lines. Endogenous EN2 was generally expressed in the cytoplasm and exogenous EN2 mostly existed in the nucleus of these cell lines. Immunohistochemical staining in PC had extremely stronger signals than that in BPH, suggesting a higher EN2 expression level in PC, which was confirmed by RT-PCR. Interestingly, the stained areas in BPH tissues were mainly in nucleus and cytoplasm, while in PC tissues were mainly on cytomembrane. Moreover, the expression level of EN2 was positively correlated with the PC clinical staging. CONCLUSION Using our homemade EN2 antibody, we have found different staining patterns and expression level of EN2 in BPH and PC,which may be helpful to predict prostatic disease progression.
Collapse
|
13
|
|
Zhang Y, Fang XM, Chen GX. Clinical use of low-dose aspirin for elders and sensitive subjects. World J Clin Cases 2019; 7(20): 3168-3174 [PMID: 31667166 DOI: 10.12998/wjcc.v7.i20.3168] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Indexed: 02/05/2023] Open
Abstract
The use of low-dose aspirin (LDA) has been a common preventive measure to reduce the risk of cardiovascular events. This is attributed to aspirin’s ability to inhibit platelet activation. On the other hand, the use of LDA in human subjects has been associated with the development of gastrointestinal injuries like ulcer and bleeding, especially for those sensitive subjects such as elder human subjects. This opinion review will summarize the recent clinical reports regarding the use of LDA and the development of gastrointestinal conditions in China. Based on these reports, it seems that the use of LDA is commonly associated with gastrointestinal injuries, and stopping its use leads to recovery in elderly subjects. Therefore, we would like to suggest that gastroduodenal health and conditions should be seriously taken into consideration when LDA is recommended to the elderly, or other alternative means to reduce the risk of cardiovascular events such as nutritional interventions should be suggested.
Collapse
|
14
|
|
Kuang H, Wei CH, Wang T, Eastep J, Li Y, Chen G. Vitamin A status affects weight gain and hepatic glucose metabolism in rats fed a high-fat diet. Biochem Cell Biol 2019;97:545-53. [PMID: 30802138 DOI: 10.1139/bcb-2018-0284] [Cited by in Crossref: 9] [Cited by in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/06/2023] Open
Abstract
Whether vitamin A (VA) has a role in the development of metabolic abnormalities associated with intake of a high-fat diet (HFD) is unclear. Sprague-Dawley rats after weaning were fed an isocaloric VA sufficient HFD (VAS-HFD) or a VA deficient HFD (VAD-HFD) for 8 weeks. Body mass, food intake, liver and adipose tissue mass, and the hepatic expression levels of key proteins for metabolism were determined. VAD-HFD rats had lower body, liver, and epididymal fat mass than VAS-HFD rats. VAD-HFD rats had lower hepatic protein expression levels of cytochrome P450 26A1, glucokinase, and phosphoenolpyruvate carboxykinase than VAS-HFD rats. VAD-HFD rats had higher protein levels of glycogen synthase kinase (GSK)-3α and lower levels of GSK-3β, but not glycogen synthase, than VAS-HFD rats. VAD-HFD rats had higher hepatic levels of insulin receptor substrate-1 (IRS-1), insulin receptor β-subunit, mitogen-activated protein kinase proteins, and peroxisome proliferator-activated receptor-gamma coactivator 1α mRNA, and lower level of IRS-2 protein than VAS-HFD rats. These results indicate that in a HFD setting, VA deficiency attenuated HFD-induced obesity, and VA status altered the expression levels of proteins required for glucose metabolism and insulin signaling. We conclude that VA status contributes to the regulation of hepatic glucose and lipid metabolism in a HFD setting, and may regulate hepatic carbohydrate metabolism.
Collapse
|
15
|
|
Liu Y, Li Q, Wang H, Zhao X, Li N, Zhang H, Chen G, Liu Z. Fish oil alleviates circadian bile composition dysregulation in male mice with NAFLD. J Nutr Biochem 2019;69:53-62. [PMID: 31055233 DOI: 10.1016/j.jnutbio.2019.03.005] [Cited by in Crossref: 19] [Cited by in RCA: 18] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
Our previous studies have found that fish oil rich in ω-3 polyunsaturated fatty acids (ω-3 PUFA) protects against non-alcoholic fatty liver disease (NAFLD) in mice. This study was aimed to explore the effects of fish oil on high fat diet (HFD)-induced circadian bile composition chaos. Male C57BL/6 mice were randomly divided into three groups, a control group (CON), a HFD group and a fish oil (FO) group, which were fed a normal chow diet, a HFD, and a HFD supplemented with FO, respectively for 12 weeks. At the end of the experiment, liver tissue, blood and bile samples were processed at 12-h intervals with the first one at zeitgeber time 0 (ZT0) and the second at zeitgeber time 12 (ZT12). Metabolites in bile were determined using UPLC-QTOF-MS, screened using multivariate statistical analysis, and analyzed using KEGG database and Metaboanalyst. The expression levels of key proteins in bile acid metabolism were examined using western blot. Results of biochemical analysis and H&E staining illustrated that feeding of HFD induced NAFLD, which was ameliorated in FO group. The bile content of each group at ZT0 (CON, HFD, or FO group) was respectively higher than that at ZT12 (P<.05). The metabolic pathway analysis of differential metabolites showed that these differences were correlated with amino acid metabolism, fatty acid biosynthesis and primary bile acid synthesis at ZT0. FO supplement could modify bile composition, which was related to the influence of its ω-3 PUFA on liver metabolism. ω-3 PUFA may also regulate the circadian rhythm of bile metabolism.
Collapse
|
16
|
|
Liu W, Zhang R, Tan A, Ye B, Zhang X, Wang Y, Zou Y, Ma L, Chen G, Li R, Moore JB. Long sleep duration predicts a higher risk of obesity in adults: a meta-analysis of prospective cohort studies. J Public Health (Oxf) 2019;41:e158-68. [PMID: 30107483 DOI: 10.1093/pubmed/fdy135] [Cited by in Crossref: 17] [Cited by in RCA: 18] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The connections between long sleep duration and obesity or weight gain warrant further examination. This meta-analysis aimed to evaluate whether long sleep duration was associated with the risk of obesity, weight gain, body mass index (BMI) change or weight change in adults. METHODS PubMed, Embase, Cochrane Library, Elsevier Science Direct, Science Online, MEDLINE and CINAHL were searched for English articles published before May 2017. A total of 16 cohort studies (n = 329 888 participants) from 8 countries were included in the analysis. Pooled relative risks (RR) or regression coefficients (β) with 95% confidence intervals (CI) were estimated. Heterogeneity and publication bias were tested, and sensitivity analysis was also performed. RESULTS We found that long sleep duration was associated with higher risk of obesity (RR [95% CI] = 1.04 [1.00-1.09], P = 0.037), but had no significant associations with weight gain, BMI change or weight change. Long sleep duration increased the risk of weight gain in three situations: among men, in studies with <5 years follow-up, and when sleep duration was 9 or more hours. CONCLUSIONS Long sleep duration was associated with risk of obesity in adults. More cohort studies with objective measures are needed to confirm this relationship.
Collapse
|
17
|
|
Liu Y, Jiang W, Chen G, Li Y. Diagnostic Value and Safety of Emergency Single-Balloon Enteroscopy for Obscure Gastrointestinal Bleeding. Gastroenterol Res Pract 2019;2019:9026278. [PMID: 31534450 DOI: 10.1155/2019/9026278] [Cited by in Crossref: 11] [Cited by in RCA: 12] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This study assesses the diagnostic performance of emergency single-balloon enteroscopy (SBE) for obscure gastrointestinal bleeding (OGIB) under general anesthesia versus conscious sedation. STUDY The data of 102 OGIB in-patients from June 2015 to June 2018 were retrospectively analyzed. The diagnosis and detection rates and adverse events were calculated overall and in relation to age, gender, type of operation and anesthesia, bleeding type, different times of examination, and SBE route. All statistical analyses were performed using SPSS 24.0, and the diagnosis and detection rates were compared using the Chi-square test. RESULTS Among the 102 patients, 66 patients had positive findings, while 11 patients had suspected positive findings, and the diagnosis and detection rates were 64.7% and 75.5%, respectively. Ulcers (19.6%) and tumors (16.7%) were the most common causes of OGIB. There were no statistical differences in diagnosis and detection rates between the ages of ≥60 and <60 and between different genders. Patients with emergency SBE had higher diagnosis and detection rates (68.6% vs. 35.3%, P = 0.023; 80.0% vs. 47.1%, P = 0.016, respectively), when compared with nonemergency SBE patients. The diagnosis rate at 24 hours was higher than that at 2-7 days and one week (88.0% vs. 61.5%, P = 0.030; 88.0% vs. 53.8%, P = 0.007). For overt bleeding, the difference in diagnosis rates at 24 hours, 2-7 days, and one week was statistically significant (100.0% vs. 57.1%, P = 0.006; 100.0% vs. 57.1%, P = 0.006). For occult bleeding, the pairwise comparison revealed no statistical difference. Patients with general anesthesia had a higher detection rate, when compared to patients with conscious sedation (87.9% vs. 63.9%, P = 0.004). In addition, adverse events under general anesthesia were lower, when compared to adverse events under conscious sedation (28.8% vs. 69.4%, P = 0.020). There was no significant difference in adverse events at the different time points (P > 0.05). CONCLUSION Emergency SBE under general anesthesia achieves higher diagnosis and detection rates, and fewer adverse events under conscious sedation, when compared to nonemergency SBE, regardless of the route. For patients with overt bleeding, it is easier to find lesions by emergency SBE within 24 hours.
Collapse
|
18
|
|
Zhang X, Wang Y, Brinkley JS, Oniffrey TM, Zhang R, Chen G, Li R, Moore JB. Eating Frequency Is Not Associated with Obesity in Chinese Adults. Int J Environ Res Public Health 2018;15. [PMID: 30445753 DOI: 10.3390/ijerph15112561] [Cited by in Crossref: 3] [Cited by in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
The prevalence of overweight and obesity has been increasing globally. Recent studies suggest that eating frequency (EF) might be a factor influencing the development of overweight and obesity. This study aims to explore the association between eating frequency and obesity in Chinese adults. A cross-sectional study was conducted in Wuhan, China, from March to June 2016. A self-administered questionnaire and 24-h dietary recall were used to collect data on sociodemographic variables, lifestyle factors, nutrition knowledge, and eating frequency. Participants were divided into four groups according to eating frequency and meal timing: traditional time pattern (TTP), traditional time plus late snack pattern (TTLSP), irregular time pattern (ITP), and all-day pattern (ADP). We performed the chi-squared test and multiple logistic regression to assess associations among variables using JMP statistical software version 14.0.0 (SAS Institute Inc., Cary, NC, USA). Respondents were Chinese adults (N = 2290; range 29⁻74 years; 1162 men). Lower education level, higher food budget, and lower nutrition knowledge were associated with higher likelihood of irregular EF patterns (TTLSP, ITP, or ADP). Men, non-smokers, and participants with less physical activity, lower education level, or lower nutrition knowledge were more likely to be obese. Body mass index (BMI) categorization was significantly different among EF pattern groups (χ² = 25.40, p = 0.003); however, this association was no longer significant in the regression model after adjustment for age, sex, education, smoking, food budget, nutrition knowledge, and physical activity. Thus, EF is not associated with obesity in Chinese adults.
Collapse
|
19
|
|
Yang F, Chen GX. Production of extracellular lysophosphatidic acid in the regulation of adipocyte functions and liver fibrosis. World J Gastroenterol 2018; 24(36): 4132-4151 [PMID: 30271079 DOI: 10.3748/wjg.v24.i36.4132] [Cited by in CrossRef: 11] [Cited by in RCA: 12] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA), a glycerophospholipid, consists of a glycerol backbone connected to a phosphate head group and an acyl chain linked to sn-1 or sn-2 position. In the circulation, LPA is in sub-millimolar range and mainly derived from hydrolysis of lysophosphatidylcholine, a process mediated by lysophospholipase D activity in proteins such as autotaxin (ATX). Intracellular and extracellular LPAs act as bioactive lipid mediators with diverse functions in almost every mammalian cell type. The binding of LPA to its receptors LPA1-6 activates multiple cellular processes such as migration, proliferation and survival. The production of LPA and activation of LPA receptor signaling pathways in the events of physiology and pathophysiology have attracted the interest of researchers. Results from studies using transgenic and gene knockout animals with alterations of ATX and LPA receptors genes, have revealed the roles of LPA signaling pathways in metabolic active tissues and organs. The present review was aimed to summarize recent progresses in the studies of extracellular and intracellular LPA production pathways. This includes the functional, structural and biochemical properties of ATX and LPA receptors. The potential roles of LPA production and LPA receptor signaling pathways in obesity, insulin resistance and liver fibrosis are also discussed.
Collapse
|
20
|
|
Liu YP, Jiang WW, Chen GX, Li YQ. Case report and review of the literature of primary gastrointestinal amyloidosis diagnosed with enteroscopy and endoscopic ultrasonography. World J Clin Cases 2018; 6(9): 284-290 [PMID: 30211209 DOI: 10.12998/wjcc.v6.i9.284] [Cited by in CrossRef: 1] [Cited by in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/05/2023] Open
Abstract
Here, we report a rare case of primary gastrointestinal amyloidosis in a stable condition after being followed up for three years. The patient was admitted to the hospital in 2014. Tests showed decreased levels of hemoglobin and ferritin. Transoral and transanal enteroscopy showed multiple nodular protuberances in the esophagus, ileum, colon and rectum. Endoscopic ultrasonography indicated the nodular protuberances stemmed from the submucosa and partially invaded the intrinsic myometrium. Pathological examinations found multiple small nodules in the submucosa and dyed structures, which were positive for special Congo red dyeing. After treatment with oral iron supplements, the levels of hemoglobin and ferritin became normal. It is concluded that the patient represents a case of primary gastrointestinal amyloidosis with multiple nodular protuberances in the digestive tract with controllable moderate abdominal discomfort and anemia and a benign course. Enteroscopy and endoscopic ultrasonography play an important role in the diagnosis of primary gastrointestinal amyloidosis.
Collapse
|
21
|
|
Yan H, Wu Y, Oniffrey T, Brinkley J, Zhang R, Zhang X, Wang Y, Chen G, Li R, Moore JB. Body Weight Misperception and Its Association with Unhealthy Eating Behaviors among Adolescents in China. Int J Environ Res Public Health 2018;15. [PMID: 29738429 DOI: 10.3390/ijerph15050936] [Cited by in Crossref: 13] [Cited by in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Indexed: 02/07/2023] Open
Abstract
This study aims to examine associations between body weight misperception and eating behaviors among Chinese adolescents. Students (N = 2641) from a middle school and a high school in Wuhan, China participated in a cross-sectional study in May 2016. A questionnaire based on the World Health Organization’s Global School-Based Student Health Survey was employed to assess responses. Self-reported data, including weight, height, body weight perception, and eating habits, were collected. Body Mass Index (BMI) for age z-score was calculated from self-reported height and weight using WHO AnthroPlus. We used descriptive, logistic regression analysis and a Kappa test to analyze the data using SPSS. Overall, 56.6% of participants did not correctly categorize their weight status; these were much more likely to be girls. Compared with the correctly-perceived group, those who underestimated their weight tended to report eating late at night, having dinners with family, and checking nutrition labels. In contrast, weight overestimating students were less likely to report eating late at night, having breakfasts with family, having dinners with family, and discussing nutrition topics over meals. Body weight misperception was associated with unhealthy eating behaviors among Chinese adolescents.
Collapse
|
22
|
|
Yang F, Chen G, Ma M, Qiu N, Zhu L, Li J. Fatty acids modulate the expression levels of key proteins for cholesterol absorption in Caco-2 monolayer. Lipids Health Dis 2018;17:32. [PMID: 29463265 DOI: 10.1186/s12944-018-0675-y] [Cited by in Crossref: 18] [Cited by in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fatty acids have been shown to modulate intestinal cholesterol absorption in cells and animals, a process that is mediated by several transporter proteins. Of these proteins, Niemann-Pick C1-Like 1 (NPC1L1) is a major contributor to this process. The current study investigates the unknown mechanism by which fatty acids modulate cholesterol absorption. METHODS We evaluated the effects of six fatty acids palmitic acid (PAM), oleic acid (OLA), linoleic acid (LNA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cholesterol uptake and transport in human enterocytes Caco-2 cells, and on the mRNA expression levels of NPC1L1, others proteins (ABCG5, ABCG8, ABCA1, ACAT2, MTP, Caveolin 1, Annexin-2) involved in cholesterol absorption, and SREBP-1 and SREBP-2 that are responsible for lipid metabolism. RESULTS The polyunsaturated fatty acids (PUFAs), especially for EPA and DHA, dose-dependently inhibited cholesterol uptake and transport in Caco-2 monolayer, while saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) had no inhibitory effects. EPA and DHA inhibited cholesterol absorption in Caco-2 monolayer might be caused by down-regulating NPC1L1 mRNA and protein levels, which were associated with inhibition of SREBP-1/- 2 mRNA expression levels. CONCLUSION Results from this study indicate that functional food containing high PUFAs may have potential therapeutic benefit to reduce cholesterol absorption. Further studies on this topic may provide approaches to control lipid metabolism and to promote health.
Collapse
|
23
|
|
Yang F, Chen G, Ma M, Qiu N, Zhu L, Li J. Egg-Yolk Sphingomyelin and Phosphatidylcholine Attenuate Cholesterol Absorption in Caco-2 Cells. Lipids 2018;53:217-33. [PMID: 29569242 DOI: 10.1002/lipd.12018] [Cited by in Crossref: 18] [Cited by in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023]
Abstract
Phospholipids have been shown to modulate intestinal cholesterol absorption in cells and animals, a process that is regulated by several transporter proteins. Of these proteins, Niemann-Pick C1-Like 1 (NPC1L1) is a major contributor to this process. The mechanism by which phospholipids modulate cholesterol absorption remains unknown. Here, we evaluate the effects of egg-yolk phospholipids on cholesterol absorption and transport in human colon carcinoma cell line (Caco-2 cells) and on the expression of NPC1L1 and others proteins associated with cholesterol absorption (ABCG5, ABCG8, ABCA1, ACAT2, MTP, CAV-1, ANX-2). The roles of SREBP-1 and SREBP-2 in this process were also investigated. The results show that egg-yolk sphingomyelin (CerPCho) and phosphatidylcholine (PtdCho) inhibit cholesterol transport in the Caco-2 monolayer in a dose-dependent manner. These might be due to the decrease of the cholesterol solubility in micelles as well as to the increases in the micellar sizes and the bile acid-binding capacity. Furthermore, the treatments with egg-yolk CerPCho or PtdCho at 1.2 mmol/L reduced the expression levels of NPC1L1 protein to 21 or 22%, respectively, and its mRNA to 9 or 31% of that in the control group (p < 0.05). Moreover, there was a general inhibitory effect of egg-yolk PtdCho and CerPCho on the mRNA levels of SREBP-1, and SREBP-2. These results suggest that the inhibitory effect of egg-yolk CerPCho and PtdCho on cholesterol transport might be due to their interference with the physicochemical properties of micelles and their regulations on the expression of the NPC1L1 gene.
Collapse
|
24
|
|
Liu L, Hu Q, Wu H, Wang X, Gao C, Chen G, Yao P, Gong Z. Dietary DHA/EPA Ratio Changes Fatty Acid Composition and Attenuates Diet-Induced Accumulation of Lipid in the Liver of ApoE(-/-) Mice. Oxid Med Cell Longev 2018;2018:6256802. [PMID: 30538803 DOI: 10.1155/2018/6256802] [Cited by in Crossref: 15] [Cited by in RCA: 17] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
Diets containing various docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratios protect against liver damage in mice fed with a high-fat diet (HFD). However, it is unclear whether these beneficial roles of DHA and EPA are associated with alterations of fatty acid (FA) composition in the liver. This study evaluated the positive impacts of n-6/n-3 polyunsaturated fatty acids (PUFAs) containing different DHA/EPA ratios on HFD-induced liver disease and alterations of the hepatic FA composition. ApoE-/- mice were fed with HFDs with various ratios of DHA/EPA (2 : 1, 1 : 1, and 1 : 2) and an n-6/n-3 ratio of 4 : 1 for 12 weeks. After treatment, the serum and hepatic FA compositions, serum biochemical parameters, liver injury, and hepatic lipid metabolism-related gene expression were determined. Our results demonstrated that dietary DHA/EPA changed serum and hepatic FA composition by increasing contents of n-6 and n-3 PUFAs and decreasing amounts of monounsaturated fatty acids (MUFAs) and the n-6/n-3 ratio. Among the three DHA/EPA groups, the DHA/EPA 2 : 1 group tended to raise n-3 PUFAs concentration and lower the n-6/n-3 ratio in the liver, whereas DHA/EPA 1 : 2 tended to raise n-6 PUFAs concentration and improve the n-6/n-3 ratio. DHA/EPA supplementation reduced the hepatic impairment of lipid homeostasis, oxidative stress, and the inflammatory responses in HFD-fed mice. The DHA/EPA 2 : 1 group had lower serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol and higher levels of adiponectin than HFD group. The DHA/EPA 1 : 2 group had elevated serum levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, without significant change the expression of genes for inflammation or hepatic lipid metabolism among the three DHA/EPA groups. The results suggest that DHA/EPA-enriched diet with an n-6/n-3 ratio of 4 : 1 may reverse HFD-induced nonalcoholic fatty liver disease to some extent by increasing n-6 and n-3 PUFAs and decreasing the amount of MUFAs and the n-6/n-3 ratio.
Collapse
|
25
|
|
Kuang H, Yang F, Zhang Y, Wang T, Chen G. The Impact of Egg Nutrient Composition and Its Consumption on Cholesterol Homeostasis. Cholesterol 2018;2018:6303810. [PMID: 30210871 DOI: 10.1155/2018/6303810] [Cited by in Crossref: 44] [Cited by in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
Nutrient deficiencies and excess are involved in many aspects of human health. As a source of essential nutrients, eggs have been used worldwide to support the nutritional needs of human societies. On the other hand, eggs also contain a significant amount of cholesterol, a lipid molecule that has been associated with the development of cardiovascular diseases. Whether the increase of egg consumption will lead to elevated cholesterol absorption and disruption of cholesterol homeostasis has been a concern of debate for a while. Cholesterol homeostasis is regulated through its dietary intake, endogenous biosynthesis, utilization, and excretion. Recently, some research interests have been paid to the effects of egg consumption on cholesterol homeostasis through the intestinal cholesterol absorption. Nutrient components in eggs such as phospholipids may contribute to this process. The goals of this review are to summarize the recent progress in this area and to discuss some potential benefits of egg consumption.
Collapse
|
26
|
|
Wang Y, Feng Q, He P, Zhu L, Chen G. Genomics Approach of the Natural Product Pharmacology for High Impact Diseases. Int J Genomics 2018;2018:9468912. [PMID: 29850479 DOI: 10.1155/2018/9468912] [Cited by in Crossref: 4] [Cited by in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Indexed: 02/07/2023] Open
|
27
|
|
Zhao S, Jia T, Tang Y, Zhang X, Mao H, Tian X, Li R, Ma L, Chen G. Reduced mRNA and Protein Expression Levels of Tet Methylcytosine Dioxygenase 3 in Endothelial Progenitor Cells of Patients of Type 2 Diabetes With Peripheral Artery Disease. Front Immunol 2018;9:2859. [PMID: 30574144 DOI: 10.3389/fimmu.2018.02859] [Cited by in Crossref: 5] [Cited by in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs) with immunological properties repair microvasculature to prevent the complications in patients with diabetes. Epigenetic changes such as DNA methylation alter the functions of cells. Tet methylcytosine dioxygenases (TETs) are enzymes responsible for the demethylation of cytosine on genomic DNA in cells. We hypothesized that EPCs of diabetic patients with peripheral artery disease (D-PAD) might have altered expression levels of TETs. Subjects who were non-diabetic (ND, n = 22), with diabetes only (D, n = 29) and with D-PAD (n = 22) were recruited for the collection of EPCs, which were isolated and subjected to analysis. The mRNA and protein expression levels of TET1, TET2, and TET3 were determined using real-time PCR and immunoblot, respectively. The TET1 mRNA expression level in ND group was lower than that in the D and D-PAD groups. The TET3 mRNA level in the ND group was higher than that in the D group, which was higher than that in the D-PAD group. The TET1 protein level in the D-PAD group, but not the D group, was higher than that in the ND group. The TET2 protein level in the D-PAD group, but not the D group, was lower than that in the ND group. The TET3 protein level in the ND group was higher than that in the D group, which was higher than that in the D-PAD group, which is the lowest among the three groups. The changes of TETs protein levels were due to the alterations of their transcripts. These probably lead to epigenetic changes, which may be responsible for the reductions of EPCs numbers and functions in patients with the D-PAD. The expression pattern of TET3 mRNA and TET3 protein in EPCs may be a biomarker of angiopathy in diabetic patients.
Collapse
|
28
|
|
Zhang X, Zhang R, Moore JB, Wang Y, Yan H, Wu Y, Tan A, Fu J, Shen Z, Qin G, Li R, Chen G. The Effect of Vitamin A on Fracture Risk: A Meta-Analysis of Cohort Studies. Int J Environ Res Public Health 2017;14. [PMID: 28891953 DOI: 10.3390/ijerph14091043] [Cited by in Crossref: 18] [Cited by in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/06/2023] Open
Abstract
This meta-analysis evaluated the influence of dietary intake and blood level of vitamin A (total vitamin A, retinol or β-carotene) on total and hip fracture risk. Cohort studies published before July 2017 were selected through English-language literature searches in several databases. Relative risk (RR) with corresponding 95% confidence interval (CI) was used to evaluate the risk. Heterogeneity was checked by Chi-square and I² test. Sensitivity analysis and publication bias were also performed. For the association between retinol intake and total fracture risk, we performed subgroup analysis by sex, region, case ascertainment, education level, age at menopause and vitamin D intake. R software was used to complete all statistical analyses. A total of 319,077 participants over the age of 20 years were included. Higher dietary intake of retinol and total vitamin A may slightly decrease total fracture risk (RR with 95% CI: 0.95 (0.91, 1.00) and 0.94 (0.88, 0.99), respectively), and increase hip fracture risk (RR with 95% CI: 1.40 (1.02, 1.91) and 1.29 (1.06, 1.57), respectively). Lower blood level of retinol may slightly increase total fracture risk (RR with 95% CI: 1.11 (0.94, 1.30)) and hip fracture risk (RR with 95% CI: 1.27 (1.05, 1.53)). In addition, higher β-carotene intake was weakly associated with the increased risk of total fracture (RR with 95% CI: 1.07 (0.97, 1.17)). Our data suggest that vitamin A intake and level may differentially influence the risks of total and hip fractures. Clinical trials are warranted to confirm these results and assess the clinical applicability.
Collapse
|
29
|
|
Yan H, Zhang R, Oniffrey TM, Chen G, Wang Y, Wu Y, Zhang X, Wang Q, Ma L, Li R, Moore JB. Associations among Screen Time and Unhealthy Behaviors, Academic Performance, and Well-Being in Chinese Adolescents. Int J Environ Res Public Health 2017;14. [PMID: 28587225 DOI: 10.3390/ijerph14060596] [Cited by in Crossref: 56] [Cited by in RCA: 55] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Indexed: 02/07/2023] Open
Abstract
Screen time is negatively associated with markers of health in western youth, but very little is known about these relationships in Chinese youth. Middle-school and high-school students (n = 2625) in Wuhan, China, completed questionnaires assessing demographics, health behaviors, and self-perceptions in spring/summer 2016. Linear and logistic regression analyses were conducted to determine whether, after adjustment for covariates, screen time was associated with body mass index (BMI), eating behaviors, average nightly hours of sleep, physical activity (PA), academic performance, and psychological states. Watching television on school days was negatively associated with academic performance, PA, anxiety, and life satisfaction. Television viewing on non-school days was positively associated with sleep duration. Playing electronic games was positively associated with snacking at night and less frequently eating breakfast, and negatively associated with sleep duration and self-esteem. Receiving electronic news and study materials on non-school days was negatively associated with PA, but on school days, was positively associated with anxiety. Using social networking sites was negatively associated with academic performance, but positively associated with BMI z-score, PA and anxiety. Screen time in adolescents is associated with unhealthy behaviors and undesirable psychological states that can contribute to poor quality of life.
Collapse
|
30
|
|
Li Y, Liu Y, Chen G. Vitamin A status affects the plasma parameters and regulation of hepatic genes in streptozotocin-induced diabetic rats. Biochimie 2017;137:1-11. [PMID: 28238841 DOI: 10.1016/j.biochi.2017.02.012] [Cited by in Crossref: 11] [Cited by in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
Vitamin A (VA) status regulates metabolism in rats. Whether VA status and availability of retinoic acid (RA) contribute to the insulin-regulated hepatic gene expression remains to be determined. Zucker lean rats with VA sufficient (VAS) or VA deficient (VAD) status were treated with streptozotocin (STZ) to induce insulin-dependent diabetes. They were treated with saline (STZ-VAS-C or STZ-VAD-C), RA (STZ-VAS-RA or STZ-VAD-RA), insulin (STZ-VAS-INS or STZ-VAD-INS), or insulin + RA (STZ-VAS-INS + RA or STZ-VAD-INS + RA) for 3 h. Insulin and insulin + RA treatments reduced tail tip blood glucose, raised plasma insulin and suppressed plasma β-hydroxybutyrate levels in both STZ-VAD and STZ-VAS rats. STZ-VAD-INS and STZ-VAD-INS + RA rats had lower plasma glucose levels than STZ-VAD-C rats had. STZ-VAD-INS and STZ-VAD-INS + RA rats had higher plasma leptin level and lower glucagon level than STZ-VAD-C rats did. Insulin treatment induced Gck, Srebp-1c and Fas and suppressed Pck1 expression levels in the liver of STZ-VAS and STZ-VAD rats. Interestingly, insulin treatment inhibited Cyp26a1 expression in STZ-VAD, but not STZ-VAS rats, whereas RA treatment induced it in both. RA treatment induced Gck expression only in STZ-VAD rats. Insulin + RA treatment further induced the Cyp26a1 and Gck expressions in STZ-VAD rats. The Srebp-1c expression levels of STZ-VAD-INS and STZ-VAD-INS + RA rats were higher than that of STZ-VAS-INS and STZ-VAS-INS + RA rats. The changes of Gck mRNA and glucokinase protein were consistent. In STZ-induced diabetic rats, VA is not required for insulin-regulated Gck, Srebp-1c, Fas and Pck1 expression. However, VA status altered responses of certain genes (Cyp26a1 and Srebp-1c) to insulin treatment.
Collapse
|
31
|
|
Chen W, Chen G. Danshen (Salvia miltiorrhiza Bunge): A Prospective Healing Sage for Cardiovascular Diseases. Curr Pharm Des 2017;23:5125-35. [PMID: 28828985 DOI: 10.2174/1381612823666170822101112] [Cited by in Crossref: 16] [Cited by in RCA: 20] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
Danshen (Salvia miltiorrhiza Bunge) is a valued herbal plant in the Traditional Chinese Medicine. The dried root of this plant (Radix Salvia miltiorrhiza), either alone or in combination with other herbal ingredients, has been used for hundreds of years to treat numerous ailments, especially cardiovascular diseases. For the past several decades, many studies have tried to delineate the putative cardioprotective effects of this folk medicine through the lens of modern scientific research. In this review, we have summarized the current knowledge about the pharmacological potentials of danshen. The main focus is laid on the predominant bioactive compounds in danshen, which include phenolic acids and tanshinones. We discussed the absorption and metabolism of these compounds, and examine in detail the cardioprotective mechanisms during atherosclerosis, thrombosis, and myocardial infarction reperfusion.
Collapse
|
32
|
|
Wang YQ, Zhang YQ, Zhang F, Zhang YW, Li R, Chen GX. Increased Eating Frequency Is Associated with Lower Obesity Risk, But Higher Energy Intake in Adults: A Meta-Analysis. Int J Environ Res Public Health 2016;13. [PMID: 27322302 DOI: 10.3390/ijerph13060603] [Cited by in Crossref: 13] [Cited by in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
Body weight is regulated by energy intake which occurs several times a day in humans. In this meta-analysis, we evaluated whether eating frequency (EF) is associated with obesity risk and energy intake in adults without any dietary restriction. Experimental and observational studies published before July 2015 were selected through English-language literature searches in several databases. These studies reported the association between EF and obesity risk (odd ratios, ORs) in adults who were not in dietary restriction. R software was used to perform statistical analyses. Ten cross-sectional studies, consisting of 65,742 participants, were included in this analysis. ORs were considered as effect size for the analysis about the effect of EF on obesity risk. Results showed that the increase of EF was associated with 0.83 time lower odds of obesity (i.e., OR = 0.83, 95% confidence intervals (CI) 0.70-0.99, p = 0.040). Analysis about the effect of EF on differences in participants' energy intake revealed that increased EF was associated with higher energy intake (β = 125.36, 95% CI 21.76-228.97, p = 0.017). We conclude that increased EF may lead to lower obesity risk but higher energy intake. Clinical trials are warranted to confirm these results and to assess the clinical practice applicability.
Collapse
|
33
|
|
Huang XJ, Li J, Mei ZY, Chen G. Gentiopicroside and sweroside from Veratrilla baillonii Franch. induce phosphorylation of Akt and suppress Pck1 expression in hepatoma cells. Biochem Cell Biol 2016;94:270-8. [PMID: 27248905 DOI: 10.1139/bcb-2015-0173] [Cited by in Crossref: 18] [Cited by in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023] Open
Abstract
The use of phytochemicals and herbal medicines has accompanied human history. Advances in modern biomedical sciences have allowed us to investigate the functional mechanisms of herbal medicines and phytochemicals. Veratrilla baillonii Franch. has long been used as a medicinal herb in southwestern China. Here, we analyzed the effects of an ethanol extract from V. baillonii (VBFE) on the expression levels of the cytosolic form of the phosphoenolpyruvate carboxykinase gene (Pck1) mRNA and components of the insulin signalling cascade in HL1C hepatoma cells. Compared with the insulin control, VBFE treatment inhibited the expression of Pck1 mRNA in a dose-dependent manner. This was associated with the phosphorylation of Akt and Erk1/2 in a time-dependent manner. Further analysis of the purified components of VBFE indicated that gentiopicroside and sweroside from VBFE, alone and in combination, suppressed Pck1 expression and induced Akt and Erk1/2 phosphorylation. In conclusion, gentiopicroside and sweroside suppress Pck1 expression and induce phosphorylation of components in the insulin signalling cascade. This is the first study to demonstrate that gentiopicroside and sweroside show insulin-mimicking effects on the regulation of Pck1 expression. Further studies are warranted to explore the potential of gentiopicroside and sweroside in the control of blood glucose in animals.
Collapse
|
34
|
|
Li Y, Li R, Chen W, Chen G. Vitamin A status and its metabolism contribute to the regulation of hepatic genes during the cycle of fasting and refeeding in rats. J Nutr Biochem 2016;30:33-43. [PMID: 27012619 DOI: 10.1016/j.jnutbio.2015.11.012] [Cited by in Crossref: 14] [Cited by in RCA: 15] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
Vitamin A (VA) status and its metabolism affect hepatic metabolic homeostasis. We investigated if VA status and metabolism contribute to energy metabolism and expression of hepatic genes in the cycle of fasting and refeeding. Zucker lean rats with VA sufficient (VAS) or VA deficient (VAD) status were respectively grouped as: ad libitum (VAS-AD or VAD-AD), 48-h fasted (VAS-Fasted or VAD-Fasted), 48-h fasted and refed a VAS diet (VAS-Refed-VAS or VAD-Refed-VAS), or refed a VAD diet (VAS-Refed-VAD or VAD-Refed-VAD) for 6 h. Respiratory exchange ratio (RER) of rats fed the VAS or VAD diet was monitored for 6 weeks. From week four, rats fed the VAS diet had higher RER than those fed the VAD diet. VAS-Refed rats had higher plasma levels of glucose, triglyceride, insulin and leptin than VAD-Refed rats. The mRNA and protein levels of hepatic genes for fuel metabolism in the fasting and refeeding cycle were determined using real-time polymerase chain reaction and immunoblot, respectively. The mRNA levels of glucokinase (Gck), sterol regulatory element-binding protein 1c (Srebp-1c), and fatty acid synthase (Fas) were lowered in VAS-Fasted and VAD-Fasted rats, and increased in VAS-Refed-VAS, VAS-Refed-VAD and VAD-Refed-VAS, but not VAD-Refed-VAD, rats. The ACL and FAS protein levels only dropped in VAS-Fasted rats and increased in VAS-Refed-VAS rats. The GK protein level decreased only in VAS-Fasted rats, and increased in VAS-Refed-VAS, VAS-Refed-VAD and VAD-Refed-VAS (but not VAD-Refed-VAD) rats. We conclude that VA status and its metabolism in the fasting and refeeding cycle contribute to the regulation of hepatic gene expression in rats.
Collapse
|
35
|
|
Zhang R, Wang Y, Li R, Chen G. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism. Int J Mol Sci 2015;16:14210-44. [PMID: 26110391 DOI: 10.3390/ijms160614210] [Cited by in Crossref: 51] [Cited by in RCA: 53] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism.
Collapse
|
36
|
|
Raynor HA, Goff MR, Poole SA, Chen G. Eating Frequency, Food Intake, and Weight: A Systematic Review of Human and Animal Experimental Studies. Front Nutr 2015;2:38. [PMID: 26734613 DOI: 10.3389/fnut.2015.00038] [Cited by in Crossref: 17] [Cited by in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/05/2023] Open
Abstract
Eating frequently during the day, or "grazing," has been proposed to assist with managing food intake and weight. This systematic review assessed the effect of greater eating frequency (EF) on intake and anthropometrics in human and animal experimental studies. Studies were identified through the PubMed electronic database. To be included, studies needed to be conducted in controlled settings or use methods that carefully monitored food intake, and measure food intake or anthropometrics. Studies using human or animal models of disease states (i.e., conditions influencing glucose or lipid metabolism), aside from being overweight or obese, were not included. The 25 reviewed studies (15 human and 10 animal studies) contained varying study designs, EF manipulations (1-24 eating occasions per day), lengths of experimentation (230 min to 28 weeks), and sample sizes (3-56 participants/animals per condition). Studies were organized into four categories for reporting results: (1) human studies conducted in laboratory/metabolic ward settings; (2) human studies conducted in field settings; (3) animal studies with experimental periods <1 month; and (4) animal studies with experimental periods >1 month. Out of the 13 studies reporting on consumption, 8 (61.5%) found no significant effect of EF. Seventeen studies reported on anthropometrics, with 11 studies (64.7%) finding no significant effect of EF. Future, adequately powered, studies should examine if other factors (i.e., disease states, physical activity, energy balance and weight status, long-term increased EF) influence the relationship between increased EF and intake and/or anthropometrics.
Collapse
|
37
|
|
Chen G. The link between Hepatic Vitamin A Metabolism and Nonalcoholic Fatty Liver Disease. Curr Drug Targets 2015;16:1281-92. [PMID: 25808650 DOI: 10.2174/1389450116666150325231015] [Cited by in Crossref: 16] [Cited by in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
The liver is essential for the control of glucose and lipid metabolism. Excessive accumulation of fat in the liver disturbs its function and leads to the development of fatty liver diseases. The nonalcoholic fatty liver disease (NAFLD) is a common type of fatty liver disease found in patients who have not consumed significant amount of alcohol. Multiple factors and cell types contribute to the development and progression of NAFLD. Diets contain macronutrients with energy and micronutrients with regulatory roles. As an essential micronutrient, vitamin A (VA), plays critical roles in various physiological functions including the regulation of glucose and lipid homeostasis in the liver. The body's VA is mainly stored in quiescent hepatic stellate cells (HSCs) in the liver. Hepatocytes actively metabolize VA, and change glucose and lipid metabolism in response to VA metabolites. Interestingly, the activated HSCs lose their VA content and contribute to the NAFLD progression. Significant number of studies have been conducted to investigate the link between VA metabolism and NAFLD development. This review is to summarize current literatures that discuss the changes of VA metabolism occurring locally between hepatocytes and HSCs, and intracellularly in hepatocytes during the course of NAFLD development. It appears that factors derived from HSCs and hepatocytes mutually affect each other, which contributes to NAFLD development. Additionally, this review discusses the potential mechanism by which excessive VA metabolism increases lipogenesis and contributes to fat accumulation in hepatocytes. It offers potential future directions for the study of the role of VA metabolism in the NAFLD development.
Collapse
|
38
|
|
Chen W, Goff MR, Kuang H, Chen G. Higher protein kinase C ζ in fatty rat liver and its effect on insulin actions in primary hepatocytes. PLoS One 2015;10:e0121890. [PMID: 25822413 DOI: 10.1371/journal.pone.0121890] [Cited by in Crossref: 6] [Cited by in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
We previously showed the impairment of insulin-regulated gene expression in the primary hepatocytes from Zucker fatty (ZF) rats, and its association with alterations of hepatic glucose and lipid metabolism. However, the molecular mechanism is unknown. A preliminary experiment shows that the expression level of protein kinase C ζ (PKCζ), a member of atypical PKC family, is higher in the liver and hepatocytes of ZF rats than that of Zucker lean (ZL) rats. Herein, we intend to investigate the roles of atypical protein kinase C in the regulation of hepatic gene expression. The insulin-regulated hepatic gene expression was evaluated in ZL primary hepatocytes treated with atypical PKC recombinant adenoviruses. Recombinant adenovirus-mediated overexpression of PKCζ, or the other atypical PKC member PKCι/λ, alters the basal and impairs the insulin-regulated expressions of glucokinase, sterol regulatory element-binding protein 1c, the cytosolic form of phosphoenolpyruvate carboxykinase, the catalytic subunit of glucose 6-phosphatase, and insulin like growth factor-binding protein 1 in ZL primary hepatocytes. PKCζ or PKCι/λ overexpression also reduces the protein level of insulin receptor substrate 1, and the insulin-induced phosphorylation of AKT at Ser473 and Thr308. Additionally, PKCι/λ overexpression impairs the insulin-induced Prckz expression, indicating the crosstalk between PKCζ and PKCι/λ. We conclude that the PKCζ expression is elevated in hepatocytes of insulin resistant ZF rats. Overexpressions of aPKCs in primary hepatocytes impair insulin signal transduction, and in turn, the down-stream insulin-regulated gene expression. These data suggest that elevation of aPKC expression may contribute to the hepatic insulin resistance at gene expression level.
Collapse
|
39
|
|
Chen L, Wang C, Huang S, Gong B, Yu J, Shi Q, Chen G. Effects of individual and multiple fatty acids (palmitate, oleate and docosahaexenoic acid) on cell viability and lipid metabolism in LO2 human liver cells. Mol Med Rep 2014;10:3254-60. [PMID: 25241938 DOI: 10.3892/mmr.2014.2579] [Cited by in Crossref: 12] [Cited by in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023] Open
Abstract
This study was designed to investigate the direct effects of fatty acids (FAs) on the cell viability and the expression levels of genes involved in lipid metabolism in LO2 human liver cells. Palmitate (PA), oleate (OA) and docosahaexenoic acid (DHA) were used to represent saturated, mono-unsaturated and polyunsaturated FAs, respectively. At concentrations of ≤3.2 µg/ml, treatment with single FAs increased the viability of the LO2 cells. At FA concentrations of >3.2 µg/ml, cell viability following OA treatment was increased, but PA or DHA treatment at these concentrations reduced cell viability. Administration of mixtures of these FAs in three ratios (PA:OA:DHA = 1:2:1, 1:1:1 and 1:1:2, respectively) increased the cell viability compared with the control group. The intracellular triglyceride (TG) levels following all types of treatment were significantly increased and the accumulation of TGs was markedly increased with high doses of DHA. In addition, peroxisome proliferator-activated receptor-γ was significantly upregulated in all groups, with the exception of the 1:1:1 group at 3.2 µg/ml and the 1:1:2 group at 12.8 µg/ml. The expression levels of sterol regulatory-element binding protein‑1c, liver X receptor α and apolipoprotein C‑I were significantly reduced in all groups with the exception of the DHA‑treated group and the 1:2:1 groups at 3.2 and 12.8 µg/ml. In conclusion, these results indicate that the type, concentration and mixture ratios of FAs are all important in determining the cell viability and lipid metabolism-related gene expression in LO2 hepatocytes.
Collapse
|
40
|
|
Li R, Zhang R, Li Y, Zhu B, Chen W, Zhang Y, Chen G. A RARE of hepatic Gck promoter interacts with RARα, HNF4α and COUP-TFII that affect retinoic acid- and insulin-induced Gck expression. J Nutr Biochem 2014;25:964-76. [PMID: 24973045 DOI: 10.1016/j.jnutbio.2014.04.009] [Cited by in Crossref: 17] [Cited by in RCA: 18] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
The expression of hepatic glucokinase gene (Gck) is regulated by hormonal and nutritional signals. How these signals integrate to regulate the hepatic Gck expression is unclear. We have shown that the hepatic Gck expression is affected by Vitamin A status and synergistically induced by insulin and retinoids in primary rat hepatocytes. We hypothesized that this is mediated by a retinoic acid responsive element (RARE) in the hepatic Gck promoter. Here, we identified the RARE in the hepatic Gck promoter using standard molecular biology techniques. The single nucleotide mutations affecting the promoter activation by retinoic acid (RA) were also determined for detail analysis of protein and DNA interactions. We have optimized experimental conditions for performing electrophoresis mobility shift assay and demonstrated the interactions of the retinoic acid receptor α (RARα), retinoid X receptor α (RXRα), hepatocyte nuclear factor 4α (HNF4α) and chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) in the rat nuclear extract with this RARE, suggesting their roles in the regulation of Gck expression. Chromatin immunoprecipitation assays demonstrated that recombinant adenovirus-mediated overexpression of RARα, HNF4α and COUP-TFII, but not RXRα, significantly increased their occupancy in the hepatic Gck promoter in primary rat hepatocytes. Overexpression of RARα, HNF4α and COUP-TFII, but not RXRα, also affected the RA- and insulin-mediated Gck expression in primary rat hepatocytes. In summary, this hepatic Gck promoter RARE interacts with RARα, HNF4α and COUP-TFII to integrate Vitamin A and insulin signals.
Collapse
|
41
|
|
Chen W, Chen G. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism. J Clin Med 2014;3:453-79. [PMID: 26237385 DOI: 10.3390/jcm3020453] [Cited by in Crossref: 47] [Cited by in RCA: 46] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity's impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol), regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a key role in the general health of an individual. This review summarizes recent research progress regarding VA's role in carbohydrate, lipid, and protein metabolism. Due to the large amount of information regarding VA functions, this review focusses on metabolism in metabolic active organs and tissues. Additionally, some perspectives for future studies will be provided.
Collapse
|
42
|
|
Huang EC, Zhao Y, Chen G, Baek SJ, McEntee MF, Minkin S, Biggerstaff JP, Whelan J. Zyflamend, a polyherbal mixture, down regulates class I and class II histone deacetylases and increases p21 levels in castrate-resistant prostate cancer cells. BMC Complement Altern Med 2014;14:68. [PMID: 24555771 DOI: 10.1186/1472-6882-14-68] [Cited by in Crossref: 14] [Cited by in RCA: 15] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Zyflamend, a mixture containing extracts of ten herbs, has shown promise in a variety of preclinical cancer models, including prostate cancer. The current experiments were designed to investigate the effects of Zyflamend on the expression of class I and II histone deacetylases, a family of enzymes known to be over expressed in a variety of cancers. METHODS CWR22Rv1 cells, a castrate-resistant prostate cancer cell line, were treated with Zyflamend and the expression of class I and II histone deacetylases, along with their downstream target the tumor suppressor gene p21, was investigated. Involvement of p21 was confirmed with siRNA knockdown and over expression experiments. RESULTS Zyflamend down-regulated the expression of all class I and II histone deacetylases where Chinese goldthread and baikal skullcap (two of its components) appear to be primarily responsible for these results. In addition, Zyflamend up regulated the histone acetyl transferase complex CBP/p300, potentially contributing to the increase in histone 3 acetylation. Expression of the tumor suppressor gene p21, a known downstream target of histone deacetylases and CBP/p300, was increased by Zyflamend treatment and the effect on p21 was, in part, mediated through Erk1/2. Knockdown of p21 with siRNA technology attenuated Zyflamend-induced growth inhibition. Over expression of p21 inhibited cell growth and concomitant treatment with Zyflamend enhanced this effect. CONCLUSIONS Our results suggest that the extracts of this polyherbal combination increase histone 3 acetylation, inhibit the expression of class I and class II histone deacetylases, increase the activation of CBP/p300 and inhibit cell proliferation, in part, by up regulating p21 expression.
Collapse
|
43
|
|
Howell M, Li R, Zhang R, Li Y, Chen W, Chen G. The expression of Apoc3 mRNA is regulated by HNF4α and COUP-TFII, but not acute retinoid treatments, in primary rat hepatocytes and hepatoma cells. Mol Cell Biochem 2014;387:241-50. [PMID: 24234421 DOI: 10.1007/s11010-013-1889-y] [Cited by in Crossref: 8] [Cited by in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
Vitamin A status regulates obesity development, hyperlipidemia, and hepatic lipogenic gene expression in Zucker fatty (ZF) rats. The development of hyperlipidemia in acne patients treated with retinoic acid (RA) has been attributed to the induction of apolipoprotein C-III expression. To understand the role of retinoids in the development of hyperlipidemia in ZF rats, the expression levels of several selected RA-responsive genes in the liver and isolated hepatocytes from Zucker lean (ZL) and ZF rats were compared using real-time PCR. The Rarb and Srebp-1c mRNA levels are higher in the liver and isolated hepatocytes from ZF than ZL rats. The Apoc3 mRNA level is only higher in the isolated hepatocytes from ZF than ZL rats. To determine whether dynamic RA production acutely regulates Apoc3 expression, its mRNA levels in response to retinoid treatments or adenovirus-mediated overexpression of hepatocyte nuclear factor 4 alpha (HNF4α) and chicken ovalbumin upstream-transcription factor II (COUP-TFII) were analyzed. Retinoid treatments for 2-6 h did not induce the expression of Apoc3 mRNA. The overexpression of HNF4α or COUP-TFII induced or inhibited Apoc3 expression, respectively. We conclude that short-term retinoid treatments could not induce Apoc3 mRNA expression, which is regulated by HNF4α and COUP-TFII in hepatocytes.
Collapse
|
44
|
|
Chen W, Howell ML, Li Y, Li R, Chen G. Vitamin A and feeding statuses modulate the insulin-regulated gene expression in Zucker lean and fatty primary rat hepatocytes. PLoS One 2014;9:e100868. [PMID: 25105869 DOI: 10.1371/journal.pone.0100868] [Cited by in Crossref: 14] [Cited by in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
Unattended hepatic insulin resistance predisposes individuals to dyslipidemia, type 2 diabetes and many other metabolic complications. The mechanism of hepatic insulin resistance at the gene expression level remains unrevealed. To examine the effects of vitamin A (VA), total energy intake and feeding conditions on the insulin-regulated gene expression in primary hepatocytes of Zucker lean (ZL) and fatty (ZF) rats, we analyze the expression levels of hepatic model genes in response to the treatments of insulin and retinoic acid (RA). We report that the insulin- and RA-regulated glucokinase, sterol regulatory element-binding protein-1c and cytosolic form of phosphoenolpyruvate carboxykinase expressions are impaired in hepatocytes of ZF rats fed chow or a VA sufficient (VAS) diet ad libitum. The impairments are partially corrected when ZF rats are fed a VA deficient (VAD) diet ad libitum or pair-fed a VAS diet to the intake of their VAD counterparts in non-fasting conditions. Interestingly in the pair-fed ZL and ZF rats, transient overeating on the last day of pair-feeding regimen changes the expression levels of some VA catabolic genes, and impairs the insulin- and RA-regulated gene expression in hepatocytes. These results demonstrate that VA and feeding statuses modulate the hepatic insulin sensitivity at the gene expression level.
Collapse
|
45
|
|
Guan HP, Chen G. Factors affecting insulin-regulated hepatic gene expression. Prog Mol Biol Transl Sci 2014;121:165-215. [PMID: 24373238 DOI: 10.1016/B978-0-12-800101-1.00006-5] [Cited by in Crossref: 7] [Cited by in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
Obesity has become a major concern of public health. A common feature of obesity and related metabolic disorders such as noninsulin-dependent diabetes mellitus is insulin resistance, wherein a given amount of insulin produces less than normal physiological responses. Insulin controls hepatic glucose and fatty acid metabolism, at least in part, via the regulation of gene expression. When the liver is insulin-sensitive, insulin can stimulate the expression of genes for fatty acid synthesis and suppress those for gluconeogenesis. When the liver becomes insulin-resistant, the insulin-mediated suppression of gluconeogenic gene expression is lost, whereas the induction of fatty acid synthetic gene expression remains intact. In the past two decades, the mechanisms of insulin-regulated hepatic gene expression have been studied extensively and many components of insulin signal transduction pathways have been identified. Factors that alter these pathways, and the insulin-regulated hepatic gene expression, have been revealed and the underlying mechanisms have been proposed. This chapter summarizes the recent progresses in our understanding of the effects of dietary factors, drugs, bioactive compounds, hormones, and cytokines on insulin-regulated hepatic gene expression. Given the large amount of information and progresses regarding the roles of insulin, this chapter focuses on findings in the liver and hepatocytes and not those described for other tissues and cells. Typical insulin-regulated hepatic genes, such as insulin-induced glucokinase and sterol regulatory element-binding protein-1c and insulin-suppressed cytosolic phosphoenolpyruvate carboxyl kinase and insulin-like growth factor-binding protein 1, are used as examples to discuss the mechanisms such as insulin regulatory element-mediated transcriptional regulation. We also propose the potential mechanisms by which these factors affect insulin-regulated hepatic gene expression and discuss potential future directions of the area of research.
Collapse
|
46
|
|
Purohit JS, Hu P, Chen G, Whelan J, Moustaid-Moussa N, Zhao L. Activation of nucleotide oligomerization domain containing protein 1 induces lipolysis through NF-κB and the lipolytic PKA activation in 3T3-L1 adipocytes. Biochem Cell Biol 2013;91:428-34. [PMID: 24219284 DOI: 10.1139/bcb-2013-0049] [Cited by in Crossref: 9] [Cited by in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023] Open
Abstract
Obesity is associated with chronic inflammation. Toll-like receptors (TLR) and NOD-like receptors (NLR) are two families of pattern recognition receptors that play important roles in the immune response and inflammation in adipocytes. Activation of TLR4 has been shown to stimulate lipolysis from adipose tissue or adipocytes. However, effects of activation of nucleotide-oligomerization domain containing protein 1 (NOD1), one of the prominent members of NLRs, on adipocyte lipolysis have not been studied. Here we report that NOD1 activation by the synthetic ligands (Tri-DAP and C12-iEDAP) stimulated lipolysis in 3T3-L1 adipocytes in a time- and dose-dependent manner. C12-iEDAP-induced lipolysis was attenuated with NOD1 siRNA knockdown, demonstrating the specificity of the effects. Moreover, inhibition of the protein kinase A (PKA)/hormone sensitive lipase (HSL) and NF-κB pathways by the pharmacological inhibitors attenuated the lipolytic effects of C12-iEDAP. Furthermore, we show NOD1 activation induced PKA activation independent of cAMP production and inhibition of NF-κB pathways attenuated phosphorylation of selected PKA lipolytic targets (phosphorylation of Perilipin Ser 517 and HSL Ser 563). Taken together, our results demonstrate a novel role of NOD1 activation, via NF-κB/PKA lipolytic activation, in inducing lipolysis in adipocytes and suggest that NOD1 activation may contribute to dyslipidemia in obesity.
Collapse
|
47
|
|
Zhang L, Hayes DG, Chen G, Zhong Q. Transparent dispersions of milk-fat-based nanostructured lipid carriers for delivery of β-carotene. J Agric Food Chem 2013;61:9435-43. [PMID: 24007298 DOI: 10.1021/jf403512c] [Cited by in Crossref: 61] [Cited by in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
Nanostructured lipid carriers (NLCs) are possible vehicles to incorporate lipophilic bioactive compounds in transparent functional beverages. In this work, anhydrous milk fat (AMF) and Tween 80 were used to prepare NLCs using a phase-inversion temperature method, and β-carotene was used as a model lipophilic bioactive compound. The phase-inversion temperature decreased from >95 to 73 °C, when NaCl increased from 0 to 1.0 M in the aqueous phase. At 0.8 M NaCl and phase inversion by heating at 90 °C for 30 min, transparent NLC dispersions were observed at AMF levels higher than 10% (w/w), corresponding to particles smaller than ~25 nm. The NLC dispersions were dilution- and dialysis-stable and maintained turbidity and particle size during 90 days of storage at room temperature. The degradation of β-carotene encapsulated in NLCs was much reduced when compared to its encapsulation in the soybean-oil-based nanoemulsion.
Collapse
|
48
|
|
Chen G. Roles of Vitamin A Metabolism in the Development of Hepatic Insulin Resistance. ISRN Hepatol 2013;2013:534972. [PMID: 27335827 DOI: 10.1155/2013/534972] [Cited by in Crossref: 15] [Cited by in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.
Collapse
|
49
|
|
Chen G, Pang Z. Endocannabinoids and obesity. Vitam Horm 2013;91:325-68. [PMID: 23374723 DOI: 10.1016/B978-0-12-407766-9.00014-6] [Cited by in Crossref: 7] [Cited by in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
A safe and effective antiobesity drug is needed to combat the global obesity epidemic. The discovery of cannabinoids from medicinal herbs has revealed the endocannabinoid system (ECS) in animals and humans, which regulates various physiological activities such as feeding, thermogenesis, and body weight (BW). Although cannabinoid receptors 1 (CB1) antagonists have shown antiobesity efficacies in animal models and in the clinic, they failed to establish as a treatment due to their psychological side effects. Recent studies indicate that CB1 in various peripheral tissues may mediate some of the therapeutic effects of CB1 antagonists, such as improved lipid and glucose homeostasis. It rationalizes the development of compounds with limited brain penetration, for minimizing the side effects while retaining the therapeutic efficacies. A survey of the literature has revealed some controversies about how the ECS affects obesity. This review summarizes the research progresses and discusses some future perspectives.
Collapse
|
50
|
|
Zhang Y, Li R, Li Y, Chen W, Zhao S, Chen G. Vitamin A status affects obesity development and hepatic expression of key genes for fuel metabolism in Zucker fatty rats. Biochem Cell Biol 2012;90:548-57. [PMID: 22554462 DOI: 10.1139/o2012-012] [Cited by in Crossref: 33] [Cited by in RCA: 34] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023] Open
Abstract
We hypothesized that vitamin A (VA) status may affect obesity development. Male Zucker lean (ZL) and fatty (ZF) rats after weaning were fed a synthetic VA deficient (VAD) or VA sufficient (VAS) diet for 8 weeks before their plasma parameters and hepatic genes' expression were analyzed. The body mass (BM) of ZL or ZF rats fed the VAD diet was lower than that of their corresponding controls fed the VAS diet at 5 or 2 weeks, respectively. The VAD ZL and ZF rats had less food intake than the VAS rats after 5 weeks. The VAD ZL and ZF rats had lower plasma glucose, triglyceride, insulin, and leptin levels, as well as lower liver glycogen content, net mass of epididymal fat, and liver/BM and epididymal fat/BM ratios (ZL only) than their respective VAS controls. VAD rats had lower hepatic Cyp26a1, Srebp-1c, Fas, Scd1, Me1, Gck, and Pklr (ZL and ZF); and higher Igfbp1 (ZL and ZF), Pck1(ZF only), and G6pc (ZF only) mRNA levels than their respective VAS controls. We conclude that ZL and ZF rats responded differently to dietary VA deficiency. VA status affected obesity development and altered the expression of hepatic genes for fuel metabolism in ZF rats. The mechanisms will help us to combat metabolic diseases.
Collapse
|