1
|
Tian M, Liang X, Xu W, Yi X, Yue T, Zhang Y, Yu S, Yan Y, Hu Z, Zhang N, Wang J, Hu R, Sun X, Nie Y, Dai Y, Jin F. More than 2% circulating plasma cells as a prognostic biomarker in a large cohort of patients with newly-diagnosed multiple myeloma. Ann Hematol 2023; 102:2943-2945. [PMID: 37434095 DOI: 10.1007/s00277-023-05362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] [Imported: 07/13/2023]
Affiliation(s)
- Mengru Tian
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, 130061, Jilin, China
| | - Xinyue Liang
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Weiling Xu
- Radiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, 130061, Jilin, China
| | - Tingting Yue
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, 130061, Jilin, China
| | - Yingjie Zhang
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, 130061, Jilin, China
| | - Shanshan Yu
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Yurong Yan
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Zhongli Hu
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Nan Zhang
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Jingxuan Wang
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Rui Hu
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Xiaoxiao Sun
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Yuanyuan Nie
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, 130061, Jilin, China.
| | - Fengyan Jin
- Hematology Department, Cancer Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China.
| |
Collapse
|
2
|
Yang P, Zhou F, Dong Y, Gao G, Xue H, Liang X, Yu S, Xu W, Ma Y, Qin X, Li M, Dai Y, Jin F. The R2-ISS in a Multicenter Cohort of Chinese Patients With Newly Diagnosed Multiple Myeloma. Hemasphere 2023; 7:e857. [PMID: 36999007 PMCID: PMC10043562 DOI: 10.1097/hs9.0000000000000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/02/2023] [Indexed: 04/01/2023] [Imported: 07/13/2023] Open
Affiliation(s)
- Peiyu Yang
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Fan Zhou
- Department of Hematology and Oncology, Shanghai Jing’an District Zhabei Central Hospital, Shanghai, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, Air Force Medical University, Xi’an, Shanxi, China
| | - Hua Xue
- Department of Hematology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Xinyue Liang
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shanshan Yu
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weiling Xu
- Department of Radiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanping Ma
- Department Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoqi Qin
- Department Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mengyao Li
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China
- Department Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengyan Jin
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Liu S, Zhou H, Xu W, Jin T, Liang X, Zhao X, Dai Y, Jin F. Early leukoencephalopathy during daratumumab treatment in a patient with multiple myeloma. Ann Hematol 2023; 102:967-969. [PMID: 36752844 PMCID: PMC9907188 DOI: 10.1007/s00277-023-05120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] [Imported: 07/13/2023]
Affiliation(s)
- Shanshan Liu
- Hematology Department, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China.,Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, 130061, Jilin, China
| | - Hongwei Zhou
- Radiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weiling Xu
- Radiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tao Jin
- Neurology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyue Liang
- Hematology Department, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Xiaoxia Zhao
- Hematology Department, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, 130061, Jilin, China.
| | - Fengyan Jin
- Hematology Department, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China.
| |
Collapse
|
4
|
Li J, Yang H, Zhang L, Zhang S, Dai Y. Metabolic reprogramming and interventions in endometrial carcinoma. Biomed Pharmacother 2023; 161:114526. [PMID: 36933381 DOI: 10.1016/j.biopha.2023.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] [Imported: 07/13/2023] Open
Abstract
Cancer cells are usually featured by metabolic adaptations that facilitate their growth, invasion, and metastasis. Thus, reprogramming of intracellular energy metabolism is currently one of the hotspots in the field of cancer research. Whereas aerobic glycolysis (known as the Warburg effect) has long been considered a dominant form of energy metabolism in cancer cells, emerging evidence indicates that other metabolic forms, especially oxidative phosphorylation (OXPHOS), may play a critical role at least in some types of cancer. Of note, women with metabolic syndromes (MetS), including obesity, hyperglycemia, dyslipidemia, and hypertension, have an increased risk of developing endometrial carcinoma (EC), suggesting a close link between metabolism and EC. Interestingly, the metabolic preferences vary among EC cell types, particularly cancer stem cells and chemotherapy-resistant cells. Currently, it is commonly accepted that glycolysis is the main energy provider in EC cells, while OXPHOS is reduced or impaired. Moreover, agents specifically targeting the glycolysis and/or OXPHOS pathways can inhibit tumor cell growth and promote chemosensitization. For example, metformin and weight control not only reduce the incidence of EC but also improve the prognosis of EC patients. In this review, we comprehensively overview the current in-depth understanding of the relationship between metabolism and EC and provide up-to-date insights into the development of novel therapies targeting energy metabolism for auxiliary treatment in combination with chemotherapy for EC, especially those resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Jiajia Li
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China; Department of Gynecologic Oncology, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Hongmei Yang
- Department of Critical Care Medicine, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Lingyi Zhang
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Songling Zhang
- Department of Gynecologic Oncology, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, Jilin 130012, China.
| | - Yun Dai
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
5
|
Yang P, Xu W, Liang X, Yu S, Yi X, Liu M, Tian M, Yue T, Zhang Y, Yan Y, Hu Z, Guo Q, Zhang N, Wang J, Sun X, Hu R, Kumar SK, Dai Y, Jin F. Dynamic monitoring of minimal residual disease in newly-diagnosed multiple myeloma. Am J Hematol 2023; 98:E61-E64. [PMID: 36540935 DOI: 10.1002/ajh.26810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] [Imported: 07/13/2023]
Affiliation(s)
- Peiyu Yang
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China.,Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weiling Xu
- Radiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyue Liang
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shanshan Yu
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengmeng Liu
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengru Tian
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China.,Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tingting Yue
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China.,Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yingjie Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China.,Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yurong Yan
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongli Hu
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang Guo
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jingxuan Wang
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoxiao Sun
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Hu
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengyan Jin
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Yang P, Chen H, Liang X, Xu W, Yu S, Huang W, Yi X, Guo Q, Tian M, Yue T, Li M, Zhang Y, Zhang M, Yan Y, Hu Z, Kumar SK, Zhou F, Dai Y, Jin F. Proposed risk-scoring model for estimating the prognostic impact of 1q gain in patients with newly diagnosed multiple myeloma. Am J Hematol 2023; 98:251-263. [PMID: 36309982 DOI: 10.1002/ajh.26774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 01/13/2023] [Imported: 07/13/2023]
Abstract
1q gain (+1q) is the most common high-risk cytogenetic abnormality (HRCA) in patients with multiple myeloma (MM). However, its prognostic value remains unclear in the era of novel agents. Here, we retrospectively analyzed the impact of +1q on the outcomes of 934 patients newly diagnosed with MM. +1q was identified in 53.1% of patients and verified as an independent variate for inferior overall survival (OS) (hazard ratio, 1.400; 95% confidence interval, 1.097-1.787; p = .007). Concurrence of other HRCAs (particularly t(14;16) and del(17p)) further exacerbated the outcomes of patients with +1q, suggesting prognostic heterogeneity. Thus, a risk-scoring algorithm based on four risk variates (t(14;16), hypercalcemia, ISS III, and high LDH) was developed to estimate the outcomes of patients with +1q. Of the patients, 376 evaluable patients with +1q were re-stratified into low (31.6%), intermediate (61.7%), and high risk (6.7%) groups, with significantly different progression-free survival and OS (p < .0001), in association with early relapse of the disease. The prognostic value of this model was validated in the CoMMpass cohort. While attaining undetectable MRD largely circumvented the adverse impact of +1q, it scarcely ameliorated the outcome of the patients with high risk, who likely represent a subset of patients with extremely poor survival. Hence, patients with +1q are a heterogeneous group of high-risk patients, therefore underlining the necessity for their re-stratification. The proposed simple risk-scoring model can estimate the outcomes of patients with +1q, which may help guide risk-adapted treatment for such patients.
Collapse
Affiliation(s)
- Peiyu Yang
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China.,Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Haimin Chen
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Xinyue Liang
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weiling Xu
- Radiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shanshan Yu
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang Guo
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengru Tian
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China.,Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tingting Yue
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China.,Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengyao Li
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China.,Hematology Department, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingjie Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengxue Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yurong Yan
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongli Hu
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Fan Zhou
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengyan Jin
- Hematology Department, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Li J, Li Q, Zhang L, Zhang S, Dai Y. Poly-ADP-ribose polymerase (PARP) inhibitors and ovarian function. Biomed Pharmacother 2023; 157:114028. [PMID: 36410122 DOI: 10.1016/j.biopha.2022.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] [Imported: 07/13/2023] Open
Abstract
Poly-ADP-ribose polymerase (PARP) plays an important role in DNA damage detection and repair. PARP inhibitors (PARPi) are a novel class of targeted agents used widely in the treatment of female cancer patients with BRCA mutations, including younger patients. However, the impact of PARPi on ovarian function remains a considerable problem in clinical practice. In this review article, we summarize the current understanding of PARPi's effects on the function of ovary and discuss their potential underlying mechanisms, highlighting the significance of further investigation on the criterion for ovarian failure and its preventive approaches during PARPi treatment.
Collapse
Affiliation(s)
- Jiajia Li
- Gynecologic Oncology Department, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingchao Li
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Lingyi Zhang
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China; Gynecology and Obstetrics Department, Second Hospital of Jilin University, Changchun, Jilin, China
| | - Songling Zhang
- Gynecologic Oncology Department, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
Yang P, Zhou F, Dong Y, Gao G, Xue H, Liang X, Yu S, Xu W, Ma Y, Qin X, Li M, Dai Y, Jin F. The prognostic value of the MASS in a multi-center cohort of patients with newly diagnosed multiple myeloma. Blood Cancer J 2022; 12:134. [PMID: 36104316 PMCID: PMC9474810 DOI: 10.1038/s41408-022-00731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] [Imported: 07/13/2023] Open
|
9
|
Jin F, Xue H, Sun L, Lan M, Zhang L, Zhang J, Tian M, Li Y, Li J, Dai Y. 血液衰老:定义与范畴 (Blood aging: Definition and scope). Sci Sin -Vitae 2022. [DOI: 10.1360/ssv-2022-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] [Imported: 07/13/2023]
|
10
|
Wang W, Sun Y, Liu X, Kumar SK, Jin F, Dai Y. Dual-Targeted Therapy Circumvents Non-Genetic Drug Resistance to Targeted Therapy. Front Oncol 2022; 12:859455. [PMID: 35574302 PMCID: PMC9093074 DOI: 10.3389/fonc.2022.859455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
The introduction of various targeted agents into the armamentarium of cancer treatment has revolutionized the standard care of patients with cancer. However, like conventional chemotherapy, drug resistance, either preexisting (primary or intrinsic resistance) or developed following treatment (secondary or acquired resistance), remains the Achilles heel of all targeted agents with no exception, via either genetic or non-genetic mechanisms. In the latter, emerging evidence supports the notion that intracellular signaling pathways for tumor cell survival act as a mutually interdependent network via extensive cross-talks and feedback loops. Thus, dysregulations of multiple signaling pathways usually join forces to drive oncogenesis, tumor progression, invasion, metastasis, and drug resistance, thereby providing a basis for so-called “bypass” mechanisms underlying non-genetic resistance in response to targeted agents. In this context, simultaneous interruption of two or more related targets or pathways (an approach called dual-targeted therapy, DTT), via either linear or parallel inhibition, is required to deal with such a form of drug resistance to targeted agents that specifically inhibit a single oncoprotein or oncogenic pathway. Together, while most types of tumor cells are often addicted to two or more targets or pathways or can switch their dependency between them, DTT targeting either intrinsically activated or drug-induced compensatory targets/pathways would efficiently overcome drug resistance caused by non-genetic events, with a great opportunity that those resistant cells might be particularly more vulnerable. In this review article, we discuss, with our experience, diverse mechanisms for non-genetic resistance to targeted agents and the rationales to circumvent them in the treatment of cancer, emphasizing hematologic malignancies.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Yang H, Sun Y, Li Q, Jin F, Dai Y. Diverse Epigenetic Regulations of Macrophages in Atherosclerosis. Front Cardiovasc Med 2022; 9:868788. [PMID: 35425818 PMCID: PMC9001883 DOI: 10.3389/fcvm.2022.868788] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Emerging research on epigenetics has resulted in many novel discoveries in atherosclerosis (AS), an inflammaging-associated disease characterized by chronic inflammation primarily driven by macrophages. The bulk of evidence has demonstrated the central role of epigenetic machinery in macrophage polarization to pro- (M1-like) or anti-inflammatory (M2-like) phenotype. An increasing number of epigenetic alterations and their modifiers involved in reprogramming macrophages by regulating DNA methylation or histone modifications (e.g., methylation, acetylation, and recently lactylation) have been identified. They may act to determine or skew the direction of macrophage polarization in AS lesions, thereby representing a promising target. Here we describe the current understanding of the epigenetic machinery involving macrophage polarization, to shed light on chronic inflammation-driving onset and progression of inflammaging-associated diseases, using AS as a prototypic example, and discuss the challenge for developing effective therapies targeting the epigenetic modifiers against these diseases, particularly highlighting a potential strategy based on epigenetically-governed repolarization from M1-like to M2-like phenotype.
Collapse
Affiliation(s)
- Hongmei Yang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qingchao Li
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhang L, Tan W, Yang H, Zhang S, Dai Y. Detection of Host Cell Gene/HPV DNA Methylation Markers: A Promising Triage Approach for Cervical Cancer. Front Oncol 2022; 12:831949. [PMID: 35402283 PMCID: PMC8990922 DOI: 10.3389/fonc.2022.831949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cervical cancer is the most prevalent gynecologic malignancy, especially in women of low- and middle-income countries (LMICs). With a better understanding of the etiology and pathogenesis of cervical cancer, it has been well accepted that this type of cancer can be prevented and treated via early screening. Due to its higher sensitivity than cytology to identify precursor lesions of cervical cancer, detection of high-risk human papillomavirus (HR-HPV) DNA has been implemented as the primary screening approach. However, a high referral rate for colposcopy after HR-HPV DNA detection due to its low specificity in HR-HPV screening often leads to overtreatment and thus increases the healthcare burden. Emerging evidence has demonstrated that detection of host cell gene and/or HPV DNA methylation represents a promising approach for the early triage of cervical cancer in HR-HPV-positive women owing to its convenience and comparable performance to cytology, particularly in LMICs with limited healthcare resources. While numerous potential markers involving DNA methylation of host cell genes and the HPV genome have been identified thus far, it is crucial to define which genes or panels involving host and/or HPV are feasible and appropriate for large-scale screening and triage. An ideal approach for screening and triage of CIN/ICC requires high sensitivity and adequate specificity and is suitable for self-sampling and inexpensive to allow population-based screening, particularly in LMICs. In this review, we summarize the markers of host cell gene/HR-HPV DNA methylation and discuss their triage performance and feasibility for high-grade precancerous cervical intraepithelial neoplasia or worse (CIN2+ and CIN3+) in HR-HPV-positive women.
Collapse
Affiliation(s)
- Lingyi Zhang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Wenxi Tan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Hongmei Yang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Sun D, Zou Y, Song L, Han S, Yang H, Chu D, Dai Y, Ma J, O'Driscoll CM, Yu Z, Guo J. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B 2022; 12:378-393. [PMID: 35127393 PMCID: PMC8799998 DOI: 10.1016/j.apsb.2021.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023] Open
Abstract
The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.
Collapse
Key Words
- ATF6, activating transcription factor 6
- ATP, adenosine triphosphate
- CI, combination index
- CRC, colorectal cancer
- CRT, calreticulin
- CTLA-4, cytotoxic T lymphocyte antigen 4
- CXCL10, C-X-C motif chemokine 10
- CXCL9, C-X-C motif chemokine 9
- Chemotherapy
- Colorectal cancer
- Combination therapy
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ECL, enhanced chemiluminescence
- EE, encapsulation efficiency
- ER, endoplasmic reticulum
- FA, folate
- HMGB1, high-mobility group box 1
- ICD, immunogenic cell death
- IFN-γ, interferon-gamma
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-4, interleukin-4
- IL-6, interleukin-6
- IRE1, inositol-requiring enzyme 1
- Immunogenic cell death
- Immunotherapy
- LC, loading capacity
- MDSCs, myeloid derived suppressor cells
- MMR, mismatch repair
- MR, molar ratio
- NAC, N-acetyl-l-cysteine
- NP, nanoparticle
- Nano drug delivery system
- PD-L1, programmed death-ligand 1
- PEG, polyethylene glycol
- PERK, PKR-like ER kinase
- PFA, paraformaldehyde
- PVDF, polyvinylidene fluoride
- QTN, quercetin
- ROS, reactive oxygen species
- Reactive oxygen species
- TAAs, tumor-associated antigens
- TME, tumor microenvironment
- Tumor microenvironment
- UPR, unfolded protein response
- p-IRE1, phosphorylation of IRE1
- p-PERK, phosphorylation of PERK
Collapse
|
14
|
Abstract
INTRODUCTION Ferroptosis, a form of programmed cell death, is mediated primarily by lipid peroxidation via a unique iron-dependent process. The mechanisms of ferroptosis involve the metabolisms of amino acids, irons, and lipids, and the regulation of antioxidant systems. Evidence supports the roles of ferroptosis in cancer, while metabolic reprogramming (a hallmark of cancer) renders tumor cells highly vulnerable to ferroptosis and thus provides a rationale for ferroptosis-targeted therapy for cancer. AREA COVERED This article examines the current understanding of the mechanisms and related signaling pathways involving ferroptosis; it focuses on novel targets in cancer and its treatment and drug resistance. The development of ferroptosis-targeted therapy, especially in combination with conventional or non-conventional therapies, are considered with dilemmas and key questions in this research area. EXPERT OPINION An increasing number of potential targets and ferroptosis inducers (FINs) have been identified to treat cancer. However, no specific FIN has entered clinical trials thus far, likely due to poor efficacy and high toxicity in vivo. Thus, new FINs with high selectivity and bioavailability are required to target tumor cells more specifically and potently. Particularly, the combination of FINs with chemotherapy, radiotherapy, targeted therapy, and immunotherapy warrants clinical investigation in the future.
Collapse
Affiliation(s)
- Long Ye
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengyan Jin
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Zhou L, Zhang Y, Meads MB, Dai Y, Ning Y, Hu X, Li L, Sharma K, Nkwocha J, Parker R, Bui D, McCarter J, Kramer L, Purcell C, Sudalagunta PR, Canevarolo RR, Coelho Siqueira Silva MD, De Avila G, Alugubelli RR, Silva AS, Kmeiciak M, Ferreira-Gonzalez A, Shain KH, Grant S. IAP and HDAC inhibitors interact synergistically in myeloma cells through noncanonical NF-κB- and caspase-8-dependent mechanisms. Blood Adv 2021; 5:3776-88. [PMID: 34464977 DOI: 10.1182/bloodadvances.2020003597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Interactions between the inhibitor of apoptosis protein antagonist LCL161 and the histone deacetylase inhibitor panobinostat (LBH589) were examined in human multiple myeloma (MM) cells. LCL161 and panobinostat interacted synergistically to induce apoptosis in diverse MM cell lines, including those resistant to bortezomib (PS-R). Similar interactions were observed with other histone deacetylase inhibitors (MS-275) or inhibitors of apoptosis protein antagonists (birinapant). These events were associated with downregulation of the noncanonical (but not the canonical) NF-κB pathway and activation of the extrinsic, caspase-8-related apoptotic cascade. Coexposure of MM cells to LCL161/LBH589 induced TRAF3 upregulation and led to TRAF2 and NIK downregulation, diminished expression of BCL-XL, and induction of γH2A.X. Ectopic expression of TRAF2, NIK, or BCL-XL, or short hairpin RNA TRAF3 knock-down, significantly reduced LCL161/LBH589 lethality, as did ectopic expression of dominant-negative FADD. Stromal/microenvironmental factors failed to diminish LCL161/LBH589-induced cell death. The LCL161/LBH589 regimen significantly increased cell killing in primary CD138+ cells (N = 31) and was particularly effective in diminishing the primitive progenitor cell-enriched CD138-/19+/20+/27+ population (N = 23) but was nontoxic to normal CD34+ cells. Finally, combined LCL161/LBH589 treatment significantly increased survival compared with single-agent treatment in an immunocompetent 5TGM1 murine MM model. Together, these findings argue that LCL161 interacts synergistically with LBH589 in MM cells through a process involving inactivation of the noncanonical NF-κB pathway and activation of the extrinsic apoptotic pathway, upregulation of TRAF3, and downregulation of TRAF2/BCL-XL. Notably, this regimen overcomes various forms of resistance, is active against primary MM cells, and displays significant in vivo activity. This strategy warrants further consideration in MM.
Collapse
|
16
|
Jin F, Li J, Guo J, Doeppner TR, Hermann DM, Yao G, Dai Y. Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis. European Heart Journal Open 2021; 1:oeab022. [PMID: 35919269 PMCID: PMC9241575 DOI: 10.1093/ehjopen/oeab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/28/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022] [Imported: 07/13/2023]
Abstract
Epigenomic and epigenetic research has been providing several new insights into a variety of diseases caused by non-resolving inflammation, including cardiovascular diseases. Atherosclerosis (AS) has long been recognized as a chronic inflammatory disease of the arterial walls, characterized by local persistent and stepwise accelerating inflammation without resolution, also known as uncontrolled inflammation. The pathogenesis of AS is driven primarily by highly plastic macrophages via their polarization to pro- or anti-inflammatory phenotypes as well as other novel subtypes recently identified by single-cell sequencing. Although emerging evidence has indicated the key role of the epigenetic machinery in the regulation of macrophage plasticity, the investigation of epigenetic alterations and modifiers in AS and related inflammation is still in its infancy. An increasing number of the epigenetic modifiers (e.g. TET2, DNMT3A, HDAC3, HDAC9, JMJD3, KDM4A) have been identified in epigenetic remodelling of macrophages through DNA methylation or histone modifications (e.g. methylation, acetylation, and recently lactylation) in inflammation. These or many unexplored modifiers function to determine or switch the direction of macrophage polarization via transcriptional reprogramming of gene expression and intracellular metabolic rewiring upon microenvironmental cues, thereby representing a promising target for anti-inflammatory therapy in AS. Here, we review up-to-date findings involving the epigenetic regulation of macrophages to shed light on the mechanism of uncontrolled inflammation during AS onset and progression. We also discuss current challenges for developing an effective and safe anti-AS therapy that targets the epigenetic modifiers and propose a potential anti-inflammatory strategy that repolarizes macrophages from pro- to anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University , 71 Xinmin Street, Changchun, Jilin 130012, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences , 1 Dong Dan Dahua Road, Dong Cheng District, Beijing 100730, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University , 1163 Xinmin Street, Changchun 130021, Jilin, China
| | - Thorsten R Doeppner
- Department of Neurology, University of Göttingen Medical School , Robert-Koch-Str. 40 37075, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen , Hufelandstr. 55, 45122 Essen, Germany
| | - Gang Yao
- Department of Neurology, The Second Hospital of Jilin University , 218 Ziqiang Street, Changchun, Jilin 130041, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, Institute of Translational Medicine, The First Hospital of Jilin University , 519 Dong Min Zhu Street, Changchun, Jilin 130061, China
| |
Collapse
|
17
|
Yang H, Song L, Sun B, Chu D, Yang L, Li M, Li H, Dai Y, Yu Z, Guo J. Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Mater Today Bio 2021; 12:100139. [PMID: 34632363 PMCID: PMC8488309 DOI: 10.1016/j.mtbio.2021.100139] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 02/05/2023] Open
Abstract
The impaired wound healing in diabetes is a central concern of healthcare worldwide. However, current treatments often fail due to the complexity of diabetic wounds, and thus, emerging therapeutic approaches are needed. Macrophages, a prominent immune cell in the wound, play key roles in tissue repair and regeneration. Recent evidence has demonstrated that macrophages in diabetic wounds maintain a persistent proinflammatory phenotype that causes the failure of healing. Therefore, modulation of macrophages provides great promise for wound healing in diabetic patients. In this study, the potential of paeoniflorin (PF, a chemical compound derived from the herb Paeonia lactiflora) for the transition of macrophages from M1 (proinflammatory phenotype) to M2 (anti-inflammatory/prohealing phenotype) was confirmed using ex vivo and in vivo experimental approaches. A hydrogel based on high molecular weight hyaluronic acid (HA) was developed for local administration of PF in experimental diabetic mice with a full-thickness wound. The resultant formulation (HA-PF) was able to significantly promote cutaneous healing as compared to INTRASITE Gel (a commercial hydrogel wound dressing). This outcome was accompanied by the amelioration of inflammation, the improvement of angiogenesis, and re-epithelialization, and the deposition of collagen. Our study indicates the significant potential of HA-PF for clinical translation in diabetic wound healing.
Collapse
Key Words
- Adipic acid dihydrazide, ADH
- Angiogenesis
- Anti-inflammation
- Hydrogel
- Macrophage polarization
- N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, EDC.HCl
- Regenerative medicine
- arginase 1, Arg-1
- bone marrow-derived macrophages, BMDMs
- dimethyl sulfoxide, DMSO
- fetal bovine serum, FBS
- human umbilical vein endothelial cells, HUVECs
- hyaluronic acid, HA
- inducible nitric oxide synthase, iNOS
- integrated optical density, IOD
- interferon-γ, IFN-γ
- interleukin-10, IL-10
- interleukin-1β, IL-1β
- lipopolysaccharide, LPS
- macrophage colony-stimulating factor, M-CSF
- paeoniflorin, PF
- penicillin-streptomycin, P/S
- phosphate-buffered saline, PBS
- polyvinylidene difluoride, PVDF
- scanning electron microscopy, SEM
- signal transducer and activator of transcription, STAT
- streptozocin, STZ
- swelling ratio, SR
- transforming growth factor-β, TGF-β
- tumor necrosis factor-α, TNF-α
- α-smooth muscle actin, α-SMA
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Bingxue Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Meng Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Huan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
18
|
Yang T, Liu X, Kumar SK, Jin F, Dai Y. Decoding DNA methylation in epigenetics of multiple myeloma. Blood Rev 2021; 51:100872. [PMID: 34384602 DOI: 10.1016/j.blre.2021.100872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Dysregulation of DNA methylation in B cells has been observed during their neoplastic transformation and therefore closely associated with various B-cell malignancies including multiple myeloma (MM), a malignancy of terminally differentiated plasma cells. Emerging evidence has unveiled pronounced alterations in DNA methylation in MM, including both global and gene-specific changes that can affect genome stability and gene transcription. Moreover, dysregulated expression of DNA methylation-modifying enzymes has been related with myelomagenesis, disease progression, and poor prognosis. However, the functional roles of the epigenetic abnormalities involving DNA methylation in MM remain elusive. In this article, we review current understanding of the alterations in DNA methylome and DNA methylation modifiers in MM, particularly focusing on DNA methyltransferases (DNMTs) and tet methylcytosine dioxygenases (TETs). We also discuss how these DNA methylation modifiers may be regulated and function in MM cells, therefore providing a rationale for developing novel epigenetic therapies targeting DNA methylation in MM.
Collapse
Affiliation(s)
- Ting Yang
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Fengyan Jin
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130012, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| |
Collapse
|
19
|
Chen K, Yang Q, Zha J, Deng M, Zhou Y, Fu G, Bi S, Feng L, Xu-Monette ZY, Chen XL, Fu G, Dai Y, Young KH, Xu B. Preclinical evaluation of a regimen combining chidamide and ABT-199 in acute myeloid leukemia. Cell Death Dis 2020; 11:778. [PMID: 32948748 PMCID: PMC7501858 DOI: 10.1038/s41419-020-02972-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous myeloid neoplasm with poor clinical outcome, despite the great progress in treatment in recent years. The selective Bcl-2 inhibitor venetoclax (ABT-199) in combination therapy has been approved for the treatment of newly diagnosed AML patients who are ineligible for intensive chemotherapy, but resistance can be acquired through the upregulation of alternative antiapoptotic proteins. Here, we reported that a newly emerged histone deacetylase inhibitor, chidamide (CS055), at low-cytotoxicity dose enhanced the anti-AML activity of ABT-199, while sparing normal hematopoietic progenitor cells. Moreover, we also found that chidamide showed a superior resensitization effect than romidepsin in potentiation of ABT-199 lethality. Inhibition of multiple HDACs rather than some single component might be required. The combination therapy was also effective in primary AML blasts and stem/progenitor cells regardless of disease status and genetic aberrance, as well as in a patient-derived xenograft model carrying FLT3-ITD mutation. Mechanistically, CS055 promoted leukemia suppression through DNA double-strand break and altered unbalance of anti- and pro-apoptotic proteins (e.g., Mcl-1 and Bcl-xL downregulation, and Bim upregulation). Taken together, these results show the high therapeutic potential of ABT-199/CS055 combination in AML treatment, representing a potent and alternative salvage therapy for the treatment of relapsed and refractory patients with AML.
Collapse
Affiliation(s)
- Kai Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China
- Department of Hematology, the First Affiliated Hospital of Xiamen University, 361003, Xiamen, Fujian, China
- The First People's Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), 528000, Foshan, Guangdong, China
| | - Qianying Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jie Zha
- Department of Hematology, the First Affiliated Hospital of Xiamen University, 361003, Xiamen, Fujian, China
| | - Manman Deng
- Department of Hematology, the First Affiliated Hospital of Xiamen University, 361003, Xiamen, Fujian, China
| | - Yong Zhou
- Department of Hematology, the First Affiliated Hospital of Xiamen University, 361003, Xiamen, Fujian, China
| | - Guofeng Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Silei Bi
- Department of Hematology, the First Affiliated Hospital of Xiamen University, 361003, Xiamen, Fujian, China
| | - Liying Feng
- Department of Hematology, the First Affiliated Hospital of Xiamen University, 361003, Xiamen, Fujian, China
| | - Zijun Y Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University School of Medicine, Duke University Medical Center and Cancer Institute, Durham, NC, 27710, USA
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, Cancer Center, the First Hospital of Jilin University, 130021, Changchun, Jilin, China.
| | - Ken H Young
- Hematopathology Division and Department of Pathology, Duke University School of Medicine, Duke University Medical Center and Cancer Institute, Durham, NC, 27710, USA.
| | - Bing Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.
- Department of Hematology, the First Affiliated Hospital of Xiamen University, 361003, Xiamen, Fujian, China.
| |
Collapse
|
20
|
Ding X, Huang W, Peng Y, Fan H, Zhu Y, Liu X, Yang Y, Guo Q, Qiu L, Dai Y, Zou D, Jin F. Pegfilgrastim improves the outcomes of mobilization and engraftment in autologous hematopoietic stem cell transplantation for the treatment of multiple myeloma. Ann Hematol 2020; 99:1331-1339. [PMID: 32382775 DOI: 10.1007/s00277-019-03800-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023]
Abstract
Autologous stem cell transplantation (ASCT) is the only curable therapy for multiple myeloma (MM), while its success primarily relies on mobilization to obtain sufficient hematopoietic stem/progenitor cells (HPC). Although the role of Pegfilgrastim (PEG), a novel PEGylated form of the recombinant G-CSF filgrastim (FIL), in mobilization has been demonstrated, it remains unclear whether this approach is cost-effective in MM treatment. Here, we performed a real-world analysis to evaluate the efficacy and cost of PEG for mobilization in a cohort of MM patients, of which 53% carried high-risk cytogenetic abnormalities. A total of 91 patients who received either a single dose of PEG (6 or 12 mg, n = 42) or multiple dosing of 10 μg/kg/day FIL (n = 49) after chemotherapy for HPC mobilization were included. The yield of MNCs and CD34+ cells per milliliter of blood collected via apheresis was significantly greater in the PEG group than that in the FIL group (P = 0.014 and P = 0.038). Mobilization with PEG yielded significantly higher median number of collected CD34+ cells than FIL (5.56 vs. 4.82 × 106/kg; P = 0.038). Moreover, the average time-to-recovery of leukocytes and platelets after transplantation was markedly shorter in the PEG group than that in the FIL group (leukocyte, 11.59 ± 1.98 vs 12.93 ± 2.83 days, P = 0.019; platelet, 12.86 ± 2.62 vs 14.80 ± 5.47, P = 0.085). However, the total cost of mobilization and apheresis using PEG or FIL was comparable (P = 0.486). Of note, mobilization with 12 mg PEG further shortened time-to-recovery of leukocytes (10.64 ± 0.51 vs. 12.04 ± 2.26 days, P = 0.05) and platelets (10.60 ± 2.89 vs. 13.33 ± 2.35 days, P = 0.031) compared with 6 mg PEG. Our results support a notion that PEG (especially 12 mg) combined with chemotherapy is a cost-effective and convenient regimen of mobilization, which might improve the outcome of ASCT in MM.
Collapse
Affiliation(s)
- Xiao Ding
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Yi Peng
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongqiong Fan
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yingqiao Zhu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuelian Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanping Yang
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang Guo
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, China.
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China. .,Department of Lymphoma, Blood Diseases Hospital and Institute of Hematology, CAMS, 288 Nanjing Road, Tianjin, China.
| | - Fengyan Jin
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
21
|
Yao G, Man YH, Li AR, Guo Y, Dai Y, Wang P, Zhou YF. NO up-regulates migraine-related CGRP via activation of an Akt/GSK-3β/NF-κB signaling cascade in trigeminal ganglion neurons. Aging (Albany NY) 2020; 12:6370-6384. [PMID: 32276265 PMCID: PMC7185139 DOI: 10.18632/aging.103031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/24/2020] [Indexed: 02/05/2023]
Abstract
The release of the neuropeptide CGRP from the trigeminal ganglion neurons (TGNs) plays a central role in migraine. Whereas CGRP can activate NO release from ganglionic glial cells, NO in turn enhances CGRP release. However, it remains unclear how NO promotes CGRP release. Here, we report that the NO donor SNAP triggered CGRP release from cultured primary TGNs. This event was associated with GSK-3β activation and Akt inactivation. Immunofluorescent staining revealed that GSK-3β primarily located in neurons. Furthermore, GSK-3β inhibition resulted in a marked reduction in expression of CGRP as well as other migraine-related factors, including substance P, cholecystokinin, and prostaglandin E2. Last, exposure to SNAP also activated NF-κB, while NF-κB inhibition prevented the induction of CGRP by SNAP. Interestingly, this event was blocked by GSK-3β inhibition, in association with inhibition of NF-κB/p65 expression and nuclear translocation. Together, these findings argue that NO could stimulate TGNs to release of CGRP as well as other migraine-related factors, likely by activating GSK-3β, providing a novel mechanism underlying a potential feed-forward loop between NO and CGRP in migraine. They also raise a possibility that GSK-3β might act to trigger migraine through activation of NF-κB, suggesting a link between neuroinflammation and migraine.
Collapse
Affiliation(s)
- Gang Yao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China.,School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Yu-Hong Man
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - An-Ran Li
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Guo
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology - Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi-Fa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
22
|
Jin F, Zheng X, Yang Y, Yao G, Ye L, Doeppner TR, Hermann DM, Wang H, Dai Y. Impairment of hypoxia-induced angiogenesis by LDL involves a HIF-centered signaling network linking inflammatory TNFα and angiogenic VEGF. Aging (Albany NY) 2020; 11:328-349. [PMID: 30659163 PMCID: PMC6366960 DOI: 10.18632/aging.101726] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Hypoxia inducible factors (HIFs) mediate angiogenesis via up-regulation of various pro-angiogenic factors (particularly VEGF) in response to hypoxia. Here, we report that hypoxia unexpectedly induced robust production of the pro-inflammatory factor TNFα by endothelial cells (ECs), suggesting an autocrine loop that in turn activated HIFs via an NF-κB-dependent process, resulting in production of VEGF and thereby promotion of angiogenesis. In contrast, low-density lipoprotein (LDL) prevented expression of HIFs in ECs exposed to either hypoxia or TNFα, while knockdown of either HIF-1α or HIF-2α strikingly attenuated hypoxia-induced production of VEGF by ECs as well as EC colony formation and tube formation. Significantly, LDL attenuated hypoxia-induced angiogenesis by disrupting the TNFα/NF-κB/HIF/VEGF signaling cascade via down-regulation of the TNF receptor TNF-R1, rather than TNFα itself, and multiple key components of both canonical and non-canonical NF-κB pathways. By doing so, LDL was able to either inhibit or down-regulate a wide spectrum of HIF-dependent pro-angiogenic downstream targets and signals. Together, these findings argue existence of a self-regulatory TNFα/NF-κB/HIF/VEGF signaling network in ECs, which mediates and fine-tones angiogenesis, at least in response to hypoxia. They also suggest that LDL impairs angiogenesis by disrupting this network, which might represent a novel mechanism underlying anti-angiogenic property of LDL.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiangyu Zheng
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanping Yang
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Gang Yao
- Department of Neurology, the Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Long Ye
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Duisburg-Essen Medical School, Essen, Germany
| | - Haifeng Wang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Ye J, Zha J, Shi Y, Li Y, Yuan D, Chen Q, Lin F, Fang Z, Yu Y, Dai Y, Xu B. Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair. Clin Epigenetics 2019; 11:137. [PMID: 31590682 PMCID: PMC6781368 DOI: 10.1186/s13148-019-0723-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
While the aberrant translocation of the mixed-lineage leukemia (MLL) gene drives pathogenesis of acute myeloid leukemia (AML), it represents an independent predictor for poor prognosis of adult AML patients. Thus, small molecule inhibitors targeting menin-MLL fusion protein interaction have been emerging for the treatment of MLL-rearranged AML. As both inhibitors of histone deacetylase (HDAC) and menin-MLL interaction target the transcription-regulatory machinery involving epigenetic regulation of chromatin remodeling that governs the expression of genes involved in tumorigenesis, we hypothesized that these two classes of agents might interact to kill MLL-rearranged (MLL-r) AML cells. Here, we report that the combination treatment with subtoxic doses of the HDAC inhibitor chidamide and the menin-MLL interaction inhibitor MI-3 displayed a highly synergistic anti-tumor activity against human MLL-r AML cells in vitro and in vivo, but not those without this genetic aberration. Mechanistically, co-exposure to chidamide and MI-3 led to robust apoptosis in MLL-r AML cells, in association with loss of mitochondrial membrane potential and a sharp increase in ROS generation. Combined treatment also disrupted DNA damage checkpoint at the level of CHK1 and CHK2 kinases, rather than their upstream kinases (ATR and ATM), as well as DNA repair likely via homologous recombination (HR), but not non-homologous end joining (NHEJ). Genome-wide RNAseq revealed gene expression alterations involving several potential signaling pathways (e.g., cell cycle, DNA repair, MAPK, NF-κB) that might account for or contribute to the mechanisms of action underlying anti-leukemia activity of chidamide and MI-3 as a single agent and particularly in combination in MLL-r AML. Collectively, these findings provide a preclinical basis for further clinical investigation of this novel targeted strategy combining HDAC and Menin-MLL interaction inhibitors to improve therapeutic outcomes in a subset of patients with poor-prognostic MLL-r leukemia.
Collapse
Affiliation(s)
- Jing Ye
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Yin Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Delin Yuan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Fusheng Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
24
|
Abstract
A complex network precisely regulates the cell cycle through the G1, S, G2, and M phases and is the basis for cell division under physiological and pathological conditions. On the one hand, the transition from one phase to another as well as the progression within each phase is driven by the specific cyclin-dependent kinases (CDKs; e.g., CDK1, CDK2, CDK4, CDK6, and CDK7), together with their exclusive partner cyclins (e.g., cyclin A1, B1, D1–3, and E1). On the other hand, these phases are negatively regulated by endogenous CDK inhibitors such as p16ink4a, p18ink4c, p19ink4d, p21cip1, and p27kip1. In addition, several checkpoints control the commitment of cells to replicate DNA and undergo mitosis, thereby avoiding the passage of genomic errors to daughter cells. CDKs are often constitutively activated in cancer, which is characterized by the uncontrolled proliferation of transformed cells, due to genetic and epigenetic abnormalities in the genes involved in the cell cycle. Moreover, several oncogenes and defective tumor suppressors promote malignant changes by stimulating cell cycle entry and progression or disrupting DNA damage responses, including the cell cycle checkpoints, DNA repair mechanisms, and apoptosis. Thus, genes or proteins related to cell cycle regulation remain the main targets of interest in the treatment of various cancer types, including hematologic malignancies. In this context, advances in the understanding of the cell cycle regulatory machinery provide a basis for the development of novel therapeutic approaches. The present article summarizes the pathways as well as their genetic and epigenetic alterations that regulate the cell cycle; moreover, it discusses the various approved or potential therapeutic targets associated with the cell cycle, focusing on hematologic malignancies.
Collapse
|
25
|
Zhou L, Zhang Y, Leng Y, Dai Y, Kmieciak M, Kramer L, Sharma K, Wang Y, Craun W, Grant S. The IAP antagonist birinapant potentiates bortezomib anti-myeloma activity in vitro and in vivo. J Hematol Oncol 2019; 12:25. [PMID: 30845975 PMCID: PMC6407248 DOI: 10.1186/s13045-019-0713-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Mechanisms by which Smac mimetics (SMs) interact with proteasome inhibitors (e.g., bortezomib) are largely unknown, particularly in multiple myeloma (MM), a disease in which bortezomib represents a mainstay of therapy. Methods Interactions between the clinically relevant IAP (inhibitor of apoptosis protein) antagonist birinapant (TL32711) and the proteasome inhibitor bortezomib were investigated in multiple myeloma (MM) cell lines and primary cells, as well as in vivo models. Induction of apoptosis and changes in gene and protein expression were monitored using MM cell lines and confirmed in primary MM cell populations. Genetically modified cells (e.g., exhibiting shRNA knockdown or ectopic expression) were employed to evaluate the functional significance of birinapant/bortezomib-induced changes in protein levels. A MM xenograft model was used to evaluate the in vivo activity of the birinapant/bortezomib regimen. Results Birinapant and bortezomib synergistically induced apoptosis in diverse cell lines, including bortezomib-resistant cells (PS-R). The regimen robustly downregulated cIAP1/2 but not the canonical NF-κB pathway, reflected by p65 phosphorylation and nuclear accumulation. In contrast, the bortezomib/birinapant regimen upregulated TRAF3, downregulated TRAF2, and diminished p52 processing and BCL-XL expression, consistent with disruption of the non-canonical NF-κB pathway. TRAF3 knockdown, ectopic TRAF2, or BCL-XL expression significantly diminished birinapant/bortezomib toxicity. The regimen sharply increased extrinsic apoptotic pathway activation, and cells expressing dominant-negative FADD or caspase-8 displayed markedly reduced birinapant/bortezomib sensitivity. Primary CD138+ (n = 43) and primitive MM populations (CD138−/19+/20+/27+; n = 31) but not normal CD34+ cells exhibited significantly enhanced toxicity with combined treatment (P < 0.0001). The regimen was also fully active in the presence of HS-5 stromal cells or growth factors (e.g., IL-6 and VEGF). Finally, the regimen was well tolerated and significantly increased survival (P < 0.05 and P < 0.001) compared to single agents in a MM xenograft model. Combined treatment also downregulated cIAP1/2 and p52 while increasing PARP cleavage in MM cells in vivo. Conclusions Our data suggest that birinapant and bortezomib interact synergistically in MM cells, including those resistant to bortezomib, through inactivation of the non-canonical NF-κB and activation of the extrinsic apoptotic pathway both in vitro and in vivo. They also argue that a strategy combining cIAP antagonists and proteasome inhibitors warrants attention in MM. Electronic supplementary material The online version of this article (10.1186/s13045-019-0713-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Zhou
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Yu Zhang
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Yun Leng
- Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Yun Dai
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University Health Sciences Center, Richmond, VA, USA
| | - Lora Kramer
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Kanika Sharma
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Yan Wang
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA.,Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - William Craun
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA. .,Massey Cancer Center, Virginia Commonwealth University Health Sciences Center, Richmond, VA, USA.
| |
Collapse
|
26
|
Shi C, Guan Y, Zeng L, Liu G, Zhu Y, Xu H, Lu Y, Liu J, Guo J, Feng X, Zhao X, Jiang W, Li G, Li G, Dai Y, Jin F, Li W, Zhou W. High COX-2 expression contributes to a poor prognosis through the inhibition of chemotherapy-induced senescence in nasopharyngeal carcinoma. Int J Oncol 2018; 53:1138-1148. [PMID: 29956730 PMCID: PMC6065426 DOI: 10.3892/ijo.2018.4462] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/11/2018] [Indexed: 02/05/2023] Open
Abstract
Resistance to radiotherapy and chemotherapy currently represents one of the major reasons for therapeutic failure in nasopharyngeal carcinoma (NPC). However, the mechanisms underlying resistance to chemotherapy in NPC remain unclear. In this study, cell counting assay, cell cycle assay and senescence associated β-galactosidase activity were performed to evaluate cell growth, proliferation and senescence, respectively. We found that the aberrant expression of cyclooxygenase-2 (COX-2) was associated with a poor outcome and recurrance in patients with NPC. In NPC cells, COX-2 overexpression increased cell proliferation, inhibited cellular senescence and resulted in chemoresistance, while the knockdown of COX-2 reduced cell proliferation, promoted cellular senescence and overcame chemoresistance. Furthermore, fibroblasts from COX-2 knockout mice exhibited cellular senescence, particularly when treated with chemotherapeutic agents. Mechanistically, COX-2 interacted with p53 protein and inhibited cellular senescence, which resulted in chemotherapeutic resistance. On the whole, these findings indicate that COX-2 may play a critical role in chemotherapeutic resistance in NPC via the inhibition of chemotherapy-induced senescence via the inactivation of p53. This study provides experimental evidence for the preclinical value of increasing chemotherapy-induced senescence by targeting COX-2 as an effective antitumor treatment in patients with recurrent NPC.
Collapse
Affiliation(s)
- Chen Shi
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yongjun Guan
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; National Health and Family Planning Commission, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Guizhu Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai 200030, P.R. China
| | - Yinghong Zhu
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; National Health and Family Planning Commission, Centra
|
|