1
|
Omics-based identification of biomarkers for nasopharyngeal carcinoma. DISEASE MARKERS 2015; 2015:762128. [PMID: 25999660 PMCID: PMC4427004 DOI: 10.1155/2015/762128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/10/2015] [Indexed: 12/14/2022] [Imported: 08/29/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer that is highly found in distinct geographic areas, such as Southeast Asia. The management of NPC remains burdensome as the prognosis is poor due to the late presentation of the disease and the complex nature of NPC pathogenesis. Therefore, it is necessary to find effective molecular markers for early detection and therapeutic measure of NPC. In this paper, the discovery of molecular biomarker for NPC through the emerging omics technologies including genomics, miRNA-omics, transcriptomics, proteomics, and metabolomics will be extensively reviewed. These markers have been shown to play roles in various cellular pathways in NPC progression. The knowledge on their function will help us understand in more detail the complexity in tumor biology, leading to the better strategies for early detection, outcome prediction, detection of disease recurrence, and therapeutic approach.
Collapse
|
Review |
10 |
30 |
2
|
Epstein-Barr Virus Mediated Signaling in Nasopharyngeal Carcinoma Carcinogenesis. Cancers (Basel) 2020; 12:cancers12092441. [PMID: 32872147 PMCID: PMC7565514 DOI: 10.3390/cancers12092441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] [Imported: 08/29/2023] Open
Abstract
Simple Summary Epstein-Barr virus (EBV) infection is known to contribute in nasopharyngeal carcinoma (NPC) carcinogenesis. The oncogenic roles of the EBV proteins and non-coding RNAs in NPC are becoming evident with the aid of current advances in genome-wide and in-depth molecular analyses. This current work provides a comprehensive overview, which covers recent understandings of the pathogenic role of EBV infection in NPC. Perspectives on molecular mechanisms, which are involved in the pathogenesis of NPC, focusing on the connection between EBV and NPC cells and the corresponding signaling pathways are highlighted. Cancer hallmarks associated with EBV in NPC development are also discussed herein. Abstract Nasopharyngeal carcinoma (NPC) is one of the most common tumors occurring in China and Southeast Asia. Etiology of NPC seems to be complex and involves many determinants, one of which is Epstein-Barr virus (EBV) infection. Although evidence demonstrates that EBV infection plays a key role in NPC carcinogenesis, the exact relationship between EBV and dysregulation of signaling pathways in NPC needs to be clarified. This review focuses on the interplay between EBV and NPC cells and the corresponding signaling pathways, which are modulated by EBV oncoproteins and non-coding RNAs. These altered signaling pathways could be critical for the initiation and progression of NPC.
Collapse
|
Review |
5 |
24 |
3
|
Ngernsombat C, Sreesai S, Harnvoravongchai P, Chankhamhaengdecha S, Janvilisri T. CD2068 potentially mediates multidrug efflux in Clostridium difficile. Sci Rep 2017; 7:9982. [PMID: 28855575 PMCID: PMC5577244 DOI: 10.1038/s41598-017-10155-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/03/2017] [Indexed: 02/04/2023] [Imported: 08/29/2023] Open
Abstract
Clostridium difficile is a major cause of antibiotic-associated diarrhea and the treatment thereof becomes more difficult owing to a rise of multidrug resistant strains. ATP-binding cassette (ABC) transporters are known to play a crucial role in the resistance to multiple antibiotics. In this study, the potential contribution of an ABC transporter in C. difficile multidrug resistance was investigated. The expression level of the cd2068 gene in C. difficile encoding an ABC transporter was up-regulated following the exposure to certain antibiotics compared to the control cells. Heterologous expression of CD2068 in Escherichia coli revealed that it mediated the efflux of fluorescent substrates and conferred resistance to multiple drugs. The CD2068-associated ATPase activity in membrane vesicles was also stimulated by various antibiotics. Furthermore, the insertional inactivation of the cd2068 gene in C. difficile led to a significant increase in susceptibility to antibiotics, which could be genetically complemented, supporting that CD2068 was directly associated to the drug resistance. These results demonstrate the potential role for the ABC transporter CD2068 in the resistance mechanism against multiple drugs in C. difficile.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
18 |
4
|
Harnvoravongchai P, Chankhamhaengdecha S, Ounjai P, Singhakaew S, Boonthaworn K, Janvilisri T. Antimicrobial Effect of Asiatic Acid Against Clostridium difficile Is Associated With Disruption of Membrane Permeability. Front Microbiol 2018; 9:2125. [PMID: 30245677 PMCID: PMC6137100 DOI: 10.3389/fmicb.2018.02125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] [Imported: 08/29/2023] Open
Abstract
Antibiotic resistance is a major concern in Clostridium difficile, the causative agent of antibiotic-associated diarrhea. Reduced susceptibility to first- and second-line agents is widespread, therefore various attempts have been made to seek alternative preventive and therapeutic strategies against this pathogen. In this work, the antimicrobial properties of asiatic acid were evaluated against C. difficile. Asiatic acid displayed substantial inhibitory effects on 19 C. difficile isolates collected from different sources with minimal inhibitory concentrations ranging from 10 to 20 μg/ml. Time kill analysis and minimal bactericidal concentration revealed potential bactericidal activity of this compound. Asiatic acid induced membrane damages and alterations in morphological ultrastructure in C. difficile, thereby causing the leakage of intracellular substances. Moreover, asiatic acid also displayed an inhibitory effect on cell motility, but did not interfere with biofilm formation and spore germination. Analysis of drug combination showed no synergistic effect between asiatic acid and vancomycin/metronidazole. Altogether, asiatic acid exhibited strong antimicrobial activity against vegetative cells and could serve as an alternative resource for tackling C. difficile.
Collapse
|
Journal Article |
7 |
17 |
5
|
Pearngam P, Kumkate S, Okada S, Janvilisri T. Andrographolide Inhibits Cholangiocarcinoma Cell Migration by Down-Regulation of Claudin-1 via the p-38 Signaling Pathway. Front Pharmacol 2019; 10:827. [PMID: 31404237 PMCID: PMC6669233 DOI: 10.3389/fphar.2019.00827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] [Imported: 08/29/2023] Open
Abstract
Andrographolide, a bioactive phytochemical from Andrographis paniculata, is emerging as a promising anticancer agent against various cancers. This study aims to investigate anticancer activities of andrographolide against cholangiocarcinoma (CCA) and to understand the underlying mechanism. The anti-proliferative activity of andrographolide was evaluated in a range of cholangiocarcinoma (CCA) cell lines including HuCCA-1, KKU-100, KKU-M213, and RMCCA-1. The anti-migration activity and the corresponding mechanism were studied in highly metastatic KKU-M213 cells. The results indicated that andrographolide significantly inhibited the proliferation of CCA cells with the 50% inhibitory growth concentration (IC50) of ∼120 µM. Andrographolide also inhibited CCA cell migration and invasion. Our further explorations demonstrated that andrographolide decreased the expression of claudin-1, a major tight junction protein, while it up-regulated the expression of Snail, a transcriptional repressor of claudin-1. Moreover, andrographolide induced the phosphorylation of Jun N-terminus kinase (JNK) and p-38 Mitogen-activated protein kinase (MAPK). Treatment with the p-38-specific inhibitor recovered the claudin-1 expression and migration ability of CCA cells. This work demonstrated the potential anticancer effects of andrographolide, indicating that andrographolide could inhibit CCA cell migration via suppression of claudin-1 through the activation of p-38 MAPK signaling pathway. This compound would be useful for development of alternative therapeutic agent for CCA.
Collapse
|
Journal Article |
6 |
15 |
6
|
Likhitrattanapisal S, Tipanee J, Janvilisri T. Meta-analysis of gene expression profiles identifies differential biomarkers for hepatocellular carcinoma and cholangiocarcinoma. Tumour Biol 2016; 37:12755-12766. [PMID: 27448818 DOI: 10.1007/s13277-016-5186-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/13/2016] [Indexed: 02/08/2023] [Imported: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the members of hepatobiliary diseases. Both types of cancer often exert high levels of similarity in terms of phenotypic characteristics, thus leading to difficulties in HCC and CCA differential diagnoses. In this study, a transcriptome meta-analysis was performed on HCC and CCA microarray data to identify differential transcriptome networks and potential biomarkers for HCC and CCA. Raw data from nine gene expression profiling datasets, consisting of 1,185 samples in total, were methodologically compiled and analyzed. To evaluate differentially expressed (DE) genes in HCC and CCA, the levels of gene expression were compared between cancer and its normal counterparts (i.e., HCC versus normal liver and CCA versus normal bile duct) using t test (P < 0.05) and k-fold validation. A total of 226 DE genes were specific to HCC, 249 DE genes specific to CCA, and 41 DE genes in both HCC and CCA. Gene ontology and pathway enrichment analyses revealed different patterns between functional transcriptome networks of HCC and CCA. Cell cycle and glycolysis/gluconeogenesis pathways were exclusively dysregulated in HCC whereas complement and coagulation cascades as well as glycine, serine, and threonine metabolism were prodominantly differentially expressed in CCA. Our meta-analysis revealed distinct dysregulation in transcriptome networks between HCC and CCA. Certain genes in these networks were discussed in the context of HCC and CCA transition, unique characteristics of HCC and CCA, and their potentials as HCC and CCA differential biomarkers.
Collapse
|
Meta-Analysis |
9 |
15 |
7
|
An Omics Perspective on Molecular Biomarkers for Diagnosis, Prognosis, and Therapeutics of Cholangiocarcinoma. Int J Genomics 2015; 2015:179528. [PMID: 26421274 PMCID: PMC4572471 DOI: 10.1155/2015/179528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/09/2015] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy arising from the epithelial bile duct. The lack of early diagnostic biomarkers as well as therapeutic measures results in severe outcomes and poor prognosis. Thus, effective early diagnostic, prognostic, and therapeutic biomarkers are required to improve the prognosis and prolong survival rates in CCA patients. Recent advancement in omics technologies combined with the integrative experimental and clinical validations has provided an insight into the underlying mechanism of CCA initiation and progression as well as clues towards novel biomarkers. This work highlights the discovery and validation of molecular markers in CCA identified through omics approaches. The possible roles of these molecules in various cellular pathways, which render CCA carcinogenesis and progression, will also be discussed. This paper can serve as a reference point for further investigations to yield deeper understanding in the complex feature of this disease, potentially leading to better approaches for diagnosis, prognosis, and therapeutics.
Collapse
|
Review |
10 |
14 |
8
|
Insights into drug resistance mechanisms in Clostridium difficile. Essays Biochem 2017; 61:81-88. [PMID: 28258232 DOI: 10.1042/ebc20160062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/05/2023] [Imported: 08/29/2023]
Abstract
The incidence of Clostridium difficile infection has been elevated and becoming common in hospitals worldwide. Although antibiotics usually serve as the primary treatment for bacterial infection including C. difficile infection, limitations and failures have been evident due to drug resistance. Antibiotic resistance in C. difficile has been recognized as one of the most important factors to promote the infection and increase the level of severity and the recurrence rate. Several outbreaks in many countries have been linked to the emergence of hypervirulent drug-resistant strains. This pathogen harbours various mechanisms against the actions of antibiotics. The present study highlights three main drug-resistant strategies in C. difficile including drug inactivation, target modification and efflux pump. Other mechanisms that potentially contribute to drug-resistant traits in this organism are also discussed.
Collapse
|
Review |
8 |
14 |
9
|
Phanchana M, Phetruen T, Harnvoravongchai P, Raksat P, Ounjai P, Chankhamhaengdecha S, Janvilisri T. Repurposing a platelet aggregation inhibitor ticagrelor as an antimicrobial against Clostridioides difficile. Sci Rep 2020; 10:6497. [PMID: 32300130 PMCID: PMC7162883 DOI: 10.1038/s41598-020-63199-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/26/2020] [Indexed: 01/18/2023] [Imported: 08/29/2023] Open
Abstract
Drug resistance in Clostridioides difficile becomes a public health concern worldwide, especially as the hypervirulent strains show decreased susceptibility to the first-line antibiotics for C. difficile treatment. Therefore, the simultaneous discovery and development of new compounds to fight this pathogen are urgently needed. In order to determinate new drugs active against C. difficile, we identified ticagrelor, utilized for the prevention of thrombotic events, as exhibiting potent growth-inhibitory activity against C. difficile. Whole-cell growth inhibition assays were performed and compared to vancomycin and metronidazole, followed by determining time-kill kinetics against C. difficile. Activities against biofilm formation and spore germination were also evaluated. Leakage analyses and electron microscopy were applied to confirm the disruption of membrane structure. Finally, ticagrelor's ability to synergize with vancomycin and metronidazole was determined using checkerboard assays. Our data showed that ticagrelor exerted activity with a MIC range of 20-40 µg/mL against C. difficile. This compound also exhibited an inhibitory effect on biofilm formation and spore germination. Additionally, ticagrelor did not interact with vancomycin nor metronidazole. Our findings revealed for the first time that ticagrelor could be further developed as a new antimicrobial agent for fighting against C. difficile.
Collapse
|
research-article |
5 |
11 |
10
|
High-Throughput Screening for Biomarker Discovery. DISEASE MARKERS 2015; 2015:108064. [PMID: 26060333 PMCID: PMC4427806 DOI: 10.1155/2015/108064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022] [Imported: 08/29/2023]
|
Introductory Journal Article |
10 |
7 |
11
|
Lectin affinity chromatography and quantitative proteomic analysis reveal that galectin-3 is associated with metastasis in nasopharyngeal carcinoma. Sci Rep 2020; 10:16462. [PMID: 33020562 PMCID: PMC7536187 DOI: 10.1038/s41598-020-73498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] [Imported: 08/29/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a serious cancer in East and Southeast Asia. Patients are often diagnosed at advanced stages, rendering treatment failure due to high potential of metastasis. This study identified lectin-binding glycoproteins with a potential role in NPC metastasis. Cell lysate and culture medium in highly metastatic 5-8F, and lowly-metastatic 6-10B NPC cell lines were fractionated by ConA- and WGA-affinity chromatography, and subjected to GeLC-MS/MS. A total of 232 and 197 proteins were identified in ConA-enriched fraction of 5-8F and 6-10B cell lysates respectively. In WGA-enriched fraction, 65 and 164 proteins were found in 5-8F and 6-10B cell lysates respectively. Proteins identified in culture medium for both cell lines were 223 and 85 for ConA-enriched fraction, and 94 and 124 for WGA-enriched fraction from 5-8F and 6-10B respectively. Differentially expressed proteins were functionally categorized into cell–cell adhesion, extracellular matrix, glycolysis, protein homeostasis and/or glycosylation enzymes, and lipid metabolism. Interestingly, Galectin-3 (Gal-3) was highly expressed in 5-8F cells but was lowly expressed in 6-10B cells. The Gal-3 knockdown in 5-8F cells, Gal-3 overexpression in 6-10B cells and treatment with Gal-3 inhibitor revealed that Gal-3 was responsible for metastatic phenotypes including adhesion, migration and invasion. So Galectin-3 may serve as a potential target for NPC therapeutic interventions.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
6 |
12
|
Likhitrattanapisal S, Kumkate S, Ajawatanawong P, Wongprasert K, Tohtong R, Janvilisri T. Dysregulation of microRNA in cholangiocarcinoma identified through a meta-analysis of microRNA profiling. World J Gastroenterol 2020; 26:4356-4371. [PMID: 32848339 PMCID: PMC7422534 DOI: 10.3748/wjg.v26.i29.4356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/16/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND In the past decades, the potential of microRNA (miRNA) in cancer diagnostics and prognostics has gained a lot of interests. In this study, a meta-analysis was conducted upon the pooled miRNA microarray data of cholangiocarcinoma (CCA).
AIM To identify differentially expressed (DE) miRNAs and perform functional analyses in order to gain insights to understanding miRNA-target interactions involved in tumorigenesis pathways of CCA.
METHODS Raw data from 8 CCA miRNA microarray datasets, consisting of 443 samples in total, were integrated and statistically analyzed to identify DE miRNAs via comparison of levels of miRNA expression between CCA and normal bile duct samples using t-tests (P < 0.001). The 10-fold cross validation was performed in order to increase the robustness of the t-test results.
RESULTS Our data showed 70 up-regulated and 48 down-regulated miRNAs in CCA. Gene Ontology and pathway enrichment analyses revealed that mRNA targets of DE miRNAs were significantly involved in several biological processes. The most prominent dysregulated pathways included phosphatidylinositol-3 kinases/Akt, mitogen-activated protein kinase and Ras signaling pathways.
CONCLUSION DE miRNAs found in our meta-analysis revealed dysregulation in major cancer pathways involved in the development of CCA. These results indicated the necessity of understanding the miRNA-target interactions and the significance of dysregulated miRNAs in terms of diagnostics and prognostics of cancers.
Collapse
|
Meta-Analysis |
5 |
6 |
13
|
Balasubramanian B, Venkatraman S, Myint KZ, Janvilisri T, Wongprasert K, Kumkate S, Bates DO, Tohtong R. Co-Clinical Trials: An Innovative Drug Development Platform for Cholangiocarcinoma. Pharmaceuticals (Basel) 2021; 14:ph14010051. [PMID: 33440754 PMCID: PMC7826774 DOI: 10.3390/ph14010051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] [Imported: 08/29/2023] Open
Abstract
Cholangiocarcinoma (CCA), a group of malignancies that originate from the biliary tract, is associated with a high mortality rate and a concerning increase in worldwide incidence. In Thailand, where the incidence of CCA is the highest, the socioeconomic burden is severe. Yet, treatment options are limited, with surgical resection being the only form of treatment with curative intent. The current standard-of-care remains adjuvant and palliative chemotherapy which is ineffective in most patients. The overall survival rate is dismal, even after surgical resection and the tumor heterogeneity further complicates treatment. Together, this makes CCA a significant burden in Southeast Asia. For effective management of CCA, treatment must be tailored to each patient, individually, for which an assortment of targeted therapies must be available. Despite the increasing numbers of clinical studies in CCA, targeted therapy drugs rarely get approved for clinical use. In this review, we discuss the shortcomings of the conventional clinical trial process and propose the implementation of a novel concept, co-clinical trials to expedite drug development for CCA patients. In co-clinical trials, the preclinical studies and clinical trials are conducted simultaneously, thus enabling real-time data integration to accurately stratify and customize treatment for patients, individually. Hence, co-clinical trials are expected to improve the outcomes of clinical trials and consequently, encourage the approval of targeted therapy drugs. The increased availability of targeted therapy drugs for treatment is expected to facilitate the application of precision medicine in CCA.
Collapse
|
Review |
4 |
4 |
14
|
Phanchana M, Harnvoravongchai P, Wongkuna S, Phetruen T, Phothichaisri W, Panturat S, Pipatthana M, Charoensutthivarakul S, Chankhamhaengdecha S, Janvilisri T. Frontiers in antibiotic alternatives for Clostridioides difficile infection. World J Gastroenterol 2021; 27:7210-7232. [PMID: 34876784 PMCID: PMC8611198 DOI: 10.3748/wjg.v27.i42.7210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/12/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Clostridioides difficile (C. difficile) is a gram-positive, anaerobic spore-forming bacterium and a major cause of antibiotic-associated diarrhea. Humans are naturally resistant to C. difficile infection (CDI) owing to the protection provided by healthy gut microbiota. When the gut microbiota is disturbed, C. difficile can colonize, produce toxins, and manifest clinical symptoms, ranging from asymptomatic diarrhea and colitis to death. Despite the steady-if not rising-prevalence of CDI, it will certainly become more problematic in a world of antibiotic overuse and the post-antibiotic era. C. difficile is naturally resistant to most of the currently used antibiotics as it uses multiple resistance mechanisms. Therefore, current CDI treatment regimens are extremely limited to only a few antibiotics, which include vancomycin, fidaxomicin, and metronidazole. Therefore, one of the main challenges experienced by the scientific community is the development of alternative approaches to control and treat CDI. In this Frontier article, we collectively summarize recent advances in alternative treatment approaches for CDI. Over the past few years, several studies have reported on natural product-derived compounds, drug repurposing, high-throughput library screening, phage therapy, and fecal microbiota transplantation. We also include an update on vaccine development, pre- and pro-biotics for CDI, and toxin antidote approaches. These measures tackle CDI at every stage of disease pathology via multiple mechanisms. We also discuss the gaps and concerns in these developments. The next epidemic of CDI is not a matter of if but a matter of when. Therefore, being well-equipped with a collection of alternative therapeutics is necessary and should be prioritized.
Collapse
|
Frontier |
4 |
4 |
15
|
Ojha SC, Phanchana M, Harnvoravongchai P, Chankhamhaengdecha S, Singhakaew S, Ounjai P, Janvilisri T. Teicoplanin Suppresses Vegetative Clostridioides difficile and Spore Outgrowth. Antibiotics (Basel) 2021; 10:antibiotics10080984. [PMID: 34439034 PMCID: PMC8388965 DOI: 10.3390/antibiotics10080984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] [Imported: 08/29/2023] Open
Abstract
In recent decades, the incidence of Clostridioides difficile infection (CDI) has remained high in both community and health-care settings. With the increasing rate of treatment failures and its ability to form spores, an alternative treatment for CDI has become a global priority. We used the microdilution assay to determine minimal inhibitory concentrations (MICs) of vancomycin and teicoplanin against 30 distinct C. difficile strains isolated from various host origins. We also examined the effect of drugs on spore germination and outgrowth by following the development of OD600. Finally, we confirmed the spore germination and cell stages by microscopy. We showed that teicoplanin exhibited lower MICs compared to vancomycin in all tested isolates. MICs of teicoplanin ranged from 0.03-0.25 µg/mL, while vancomycin ranged from 0.5-4 µg/mL. Exposure of C. difficile spores to broth supplemented with various concentrations of antimicrobial agents did not affect the initiation of germination, but the outgrowth to vegetative cells was inhibited by all test compounds. This finding was concordant with aberrant vegetative cells after antibiotic treatment observed by light microscopy. This work highlights the efficiency of teicoplanin for treatment of C. difficile through prevention of vegetative cell outgrowth.
Collapse
|
research-article |
4 |
4 |
16
|
Pipatthana M, Harnvoravongchai P, Pongchaikul P, Likhitrattanapisal S, Phanchana M, Chankhamhaengdecha S, Janvilisri T. The repertoire of ABC proteins in Clostridioides difficile. Comput Struct Biotechnol J 2021; 19:2905-2920. [PMID: 34094001 PMCID: PMC8144104 DOI: 10.1016/j.csbj.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 11/07/2022] [Imported: 08/29/2023] Open
Abstract
ABC transporters transport substrates across membranes driven by ATP hydrolysis. ABC proteins of C. difficile 630 can be classified into 12 sub-families. Most NPs are found within sub-families involving in drug export. Most core NPs in C. difficile are associated with drug efflux system. ABC proteins in sub-families 3, 6, 7, and 9 may participate in drug resistance.
ATP-binding cassette (ABC) transporters belong to one of the largest membrane protein superfamilies, which function in translocating substrates across biological membranes using energy from ATP hydrolysis. Currently, the classification of ABC transporters in Clostridioides difficile is not complete. Therefore, the sequence-function relationship of all ABC proteins encoded within the C. difficile genome was analyzed. Identification of protein domains associated with the ABC system in the C. difficile 630 reference genome revealed 226 domains: 97 nucleotide-binding domains (NBDs), 98 transmembrane domains (TMDs), 30 substrate-binding domains (SBDs), and one domain with features of an adaptor protein. Gene organization and transcriptional unit analyses indicated the presence of 78 ABC systems comprising 28 importers and 50 exporters. Based on NBD sequence similarity, ABC transporters were classified into 12 sub-families according to their substrates. Interestingly, all ABC exporters, accounting for 64% of the total ABC systems, are involved in antibiotic resistance. Based on analysis of ABC proteins from 49 C. difficile strains, the majority of core NBDs are predicted to be involved in multidrug resistance systems, consistent with the ability of this organism to survive exposure to an array of antibiotics. Our findings herein provide another step toward a better understanding of the function and evolutionary relationships of ABC proteins in this pathogen.
Collapse
|
Journal Article |
4 |
3 |
17
|
Wongkuna S, Janvilisri T, Phanchana M, Harnvoravongchai P, Aroonnual A, Aimjongjun S, Malaisri N, Chankhamhaengdecha S. Temporal Variations in Patterns of Clostridioides difficile Strain Diversity and Antibiotic Resistance in Thailand. Antibiotics (Basel) 2021; 10:antibiotics10060714. [PMID: 34199301 PMCID: PMC8231780 DOI: 10.3390/antibiotics10060714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023] [Imported: 08/29/2023] Open
Abstract
Clostridioides difficile has been recognized as a life-threatening pathogen that causes enteric diseases, including antibiotic-associated diarrhea and pseudomembranous colitis. The severity of C. difficile infection (CDI) correlates with toxin production and antibiotic resistance of C. difficile. In Thailand, the data addressing ribotypes, toxigenic, and antimicrobial susceptibility profiles of this pathogen are scarce and some of these data sets are limited. In this study, two groups of C. difficile isolates in Thailand, including 50 isolates collected from 2006 to 2009 (THA group) and 26 isolates collected from 2010 to 2012 (THB group), were compared for toxin genes and ribotyping profiles. The production of toxins A and B were determined on the basis of toxin gene profiles. In addition, minimum inhibitory concentration of eight antibiotics were examined for all 76 C. difficile isolates. The isolates of the THA group were categorized into 27 A−B+CDT− (54%) and 23 A-B-CDT- (46%), while the THB isolates were classified into five toxigenic profiles, including six A+B+CDT+ (23%), two A+B+CDT− (8%), five A−B+CDT+ (19%), seven A−B+CDT− (27%), and six A−B−CDT− (23%). By visually comparing them to the references, only five ribotypes were identified among THA isolates, while 15 ribotypes were identified within THB isolates. Ribotype 017 was the most common in both groups. Interestingly, 18 unknown ribotyping patterns were identified. Among eight tcdA-positive isolates, three isolates showed significantly greater levels of toxin A than the reference strain. The levels of toxin B in 3 of 47 tcdB-positive isolates were significantly higher than that of the reference strain. Based on the antimicrobial susceptibility test, metronidazole showed potent efficiency against most isolates in both groups. However, high MIC values of cefoxitin (MICs 256 μg/mL) and chloramphenicol (MICs ≥ 64 μg/mL) were observed with most of the isolates. The other five antibiotics exhibited diverse MIC values among two groups of isolates. This work provides evidence of temporal changes in both C. difficile strains and patterns of antimicrobial resistance in Thailand.
Collapse
|
Journal Article |
4 |
1 |
18
|
Tulalamba W, Ngernsombat C, Larbcharoensub N, Janvilisri T. Transcriptomic profiling revealed FZD10 as a novel biomarker for nasopharyngeal carcinoma recurrence. Front Oncol 2023; 12:1084713. [PMID: 36776376 PMCID: PMC9909960 DOI: 10.3389/fonc.2022.1084713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] [Imported: 08/29/2023] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a type of cancers that develops in the nasopharynx, the very upper part of the throat behind the nose. NPC is typically diagnosed in later stages of the disease and has a high rate of recurrence due to the location of the tumor growth site. In this study, we compared the gene expression profiles of NPC tissues from patients with and without recurrence to identify potential molecular biomarkers of NPC recurrence. Methods Microarrays were used to analyze the expression of genes in 15 NPC tissues taken at the time of diagnosis and at the site of recurrence following therapeutic treatment. Pathway enrichment analysis was used to examine the biological interactions between the major differentially expressed genes. The target identified was then validated using immunohistochemistry on 86 NPC tissue samples. Results Our data showed that the Wnt signaling pathway was enhanced in NPC tissues with recurrence. FZD10, a component of the Wnt signaling pathway, was significantly expressed in NPC tissues, and was significantly associated with NPC recurrence. Conclusion Our study provides new insights into the pathogenesis of NPC and identifies FZD10 as a potential molecular biomarker for NPC recurrence. FZD10 may be a promising candidate for NPC recurrence and a potential therapeutic target.
Collapse
|
research-article |
2 |
|
19
|
Advances in molecular diagnostics. BIOMED RESEARCH INTERNATIONAL 2013; 2013:172521. [PMID: 23781497 PMCID: PMC3678431 DOI: 10.1155/2013/172521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022] [Imported: 08/29/2023]
|
Editorial |
12 |
|
20
|
Ngernsombat C, Prattapong P, Larbcharoensub N, Khotthong K, Janvilisri T. WNT8B as an Independent Prognostic Marker for Nasopharyngeal Carcinoma. ACTA ACUST UNITED AC 2021; 28:2529-2539. [PMID: 34287269 PMCID: PMC8293245 DOI: 10.3390/curroncol28040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] [Imported: 08/29/2023]
Abstract
BACKGROUND Members of the Wnt signaling pathway have been shown to play a role in nasopharyngeal carcinoma (NPC) progression. AIM The purpose of this study was to investigate WNT8B protein expression in NPC patients using tissue microarray (TMA) analysis and to evaluate its correlation with patient survival and clinical parameters. METHODS A total of 82 NPC cases, together with six normal nasopharyngeal tissue samples, were targeted to construct the TMA blocks. The WNT8B protein expression was evaluated by immunohistochemistry and its correlation to the clinicopathological features was investigated. RESULTS Sixty-two of 82 (75.6%) cases exhibited high WNT8B protein expression while 20/82 (24.4%) cases appeared to have low WNT8B expression. The univariate analysis revealed that systemic metastasis was associated with patient 5-year survival. The multivariate Cox proportional hazard regression analysis showed that WNT8B expression and systemic metastasis were significantly associated with the survival of NPC patients. Furthermore, there was no correlation found between the WNT8B protein expression and other clinicopathological parameters. CONCLUSION Our results suggest that the expression of WNT8B is associated with NPC patients' survival and could serve as an independent prognostic factor for NPC patients.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
|
21
|
Baicalein Inhibits Metastatic Phenotypes in Nasopharyngeal Carcinoma Cells via a Focal Adhesion Protein Integrin β8. Pharmaceuticals (Basel) 2021; 15:ph15010005. [PMID: 35056061 PMCID: PMC8780671 DOI: 10.3390/ph15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] [Imported: 08/29/2023] Open
Abstract
Baicalein, a prominent flavonoid from the indigenous herbal plant Scutellaria baicalensis Georgi, possesses broad-spectrum anticancer activities. However, the biological effects of baicalein on nasopharyngeal carcinoma (NPC) and its underlying mechanisms remain unclarified. Thus, in this study, we examined the effects of baicalein on NPC cell lines and investigated the corresponding molecular mechanism through transcriptome profiling. In the study, four NPC cell lines were treated with various concentrations of baicalein at different time points. Cellular toxicity and proliferative inhibition of baicalein were examined by MTT assay. Metastatic phenotypes of NPC cells were investigated by wound healing, transwell, and adhesion assays. Additionally, microarray experiments were performed to determine the cellular pathways affected by baicalein. The expression and localization of the integrin β8 were validated by western immunoblotting and immunofluorescence. Our results revealed that baicalein exhibited its cytotoxicity and antiproliferative activity on all tested NPC cell lines. It also significantly inhibited metastatic phenotypes at sub-lethal concentrations. Transcriptomic analysis showed that baicalein significantly affected the focal adhesion pathway in NPC, where integrin β8 was greatly diminished. Thus, the present study results suggested that baicalein inhibits the metastatic phenotypes of NPC cells by modulating integrin β8, one of the major molecules in a focal adhesion pathway.
Collapse
|
|
4 |
|
22
|
Wongkuna S, Ghimire S, Chankhamhaengdecha S, Janvilisri T, Scaria J. Mediterraneibacter catenae SW178 sp. nov., an intestinal bacterium of feral chicken. PeerJ 2021; 9:e11050. [PMID: 33986975 PMCID: PMC8086573 DOI: 10.7717/peerj.11050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 11/20/2022] [Imported: 08/29/2023] Open
Abstract
A Gram-positive, coccobacillus, white raised and circular with an entire edge colony, and obligately anaerobic bacterium, strain SW178 was isolated from the cecum content of feral chickens in Brookings, South Dakota, USA. The most closely related strain based on 16S rRNA gene sequence analysis of strain SW178 was Mediterraneibacter torques ATCC 27756T (Ruminococcus torques ATCC 27756T) with 96.94% similarity. The genome of strain SW178 is 3.18 Mbp with G+C content of 46.9 mol%. The optimal temperature and pH for growth in modified brain heart infusion (BHI-M) medium were 45 °C and pH 7.5, respectively. The sole carbon sources of the strain were dextrin, L-fucose, D-galacturonic, α-D-glucose, L-rhamnose and D-sorbitol. The primary cellular fatty acids were C14 : 0, C16 : 0 and C16 : 0 dimethyl acetal (DMA). Based on the genotypic and phenotypic comparison, we proposed that strain SW178 belong to the genus Mediterraneibacter in the family Lachnospiraceae as a novel species, in which the name Mediterraneibacter catenae is proposed. The type strain is SW178 (= DSM 109242T = CCOS 1886T).
Collapse
|
Journal Article |
4 |
|
23
|
Janvilisri T, Sorg JA, Scaria J, Sadowsky MJ. Editorial: Alternative Therapeutic Approaches For Multidrug Resistant Clostridium difficile. Front Microbiol 2019; 10:1216. [PMID: 31214150 PMCID: PMC6554321 DOI: 10.3389/fmicb.2019.01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 11/13/2022] [Imported: 08/29/2023] Open
|
Editorial |
6 |
|
24
|
Sukphokkit S, Kiatwuthinon P, Kumkate S, Janvilisri T. Distinct cholangiocarcinoma cell migration in 2D monolayer and 3D spheroid culture based on galectin-3 expression and localization. Front Oncol 2023; 12:999158. [PMID: 36713574 PMCID: PMC9881414 DOI: 10.3389/fonc.2022.999158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/02/2022] [Indexed: 01/15/2023] [Imported: 08/29/2023] Open
Abstract
Introduction Cholangiocarcinoma (CCA) is difficult to cure due to its ineffective treatment and advanced stage diagnosis. Thoroughly mechanistic understandings of CCA pathogenesis crucially help improving the treatment success rates. Using three-dimensional (3D) cell culture platform offers several advantages over a traditional two-dimensional (2D) culture as it resembles more closely to in vivo tumor. Methods Here, we aimed to establish the 3D CCA spheroids with lowly (KKU-100) and highly (KKU-213A) metastatic potentials to investigate the CCA migratory process and its EMT-associated galectin-3 in the 3D setting. Results and discussion Firstly, the growth of lowly metastatic KKU-100 cells was slower than highly metastatic KKU-213A cells in both 2D and 3D systems. Hollow formation was observed exclusively inside the KKU-213A spheroids, not in KKU-100. Additionally, the migration activity of KKU-213A cells was higher than that of KKU-100 cells in both 2D and 3D systems. Besides, altered expression of galectin-3 were observed across all CCA culture conditions with substantial relocalization from inside the 2D cells to the border of spheroids in the 3D system. Notably, the CCA migration was inversely proportional to the galectin-3 expression in the 3D culture, but not in the 2D setting. This suggests the contribution of culture platforms to the alternation of the CCA cell migration process. Conclusions Thus, our data revealed that 3D culture of CCA cells was phenotypically distinct from 2D culture and pointed to the superiority of using the 3D culture model for examining the CCA cellular mechanisms, providing knowledges that are better correlated with CCA phenotypes in vivo.
Collapse
|
research-article |
2 |
|