1
|
Grassi S, Vaiano F, Dimitrova A, Vullo C, Croce EB, Rossi R, Arena V, Strano Rossi S, Campuzano O, Brugada R, Oliva A. Fatal intoxications and inherited cardiac disorders in the young: where to draw the line? Int J Legal Med 2025; 139:1081-1091. [PMID: 39937272 PMCID: PMC12003541 DOI: 10.1007/s00414-025-03439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] [Imported: 03/04/2025]
Abstract
Sudden cardiac death represents a significant public health concern and is one of the leading causes of early mortality worldwide. The escalating use of illicit drugs, approximately 269 million people in 2018, represents a growing public health. Some of these drugs are stimulants that may have multiple effects on the cardiovascular system including the cardiac rhythm, then substance abuse increases the risk of sudden death. For instance, drugs like cocaine and methamphetamine, may be responsible for myocardial infarction as well as occlusive coronary thrombosis with acute infarction. The consequences of such occurrences are far-reaching, with considerable effects not only on the victims but also on their families. Sudden cardiac death presents considerable forensic diagnostic challenges, particularly in the presence of high but non-lethal drug levels increasing the possibility of a genetic predisposition to malignant arrhythmogenic events. Our review aims to discuss the complex relationship between illicit drugs and congenital cardiac disorders, stressing the forensic issues deriving from their interaction and from the differential diagnosis. Indeed, especially when a non-lethal dose of illicit drug in presence of ambiguous microscopic findings is reported, being able to discriminate between a toxic sudden death (entailing criminal implications for the drug dealer) and a natural sudden death is a forensic issue of upmost importance.
Collapse
|
2
|
Martínez-Barrios E, Greco A, Cruzalegui J, Cesar S, Díez-Escuté N, Cerralbo P, Chipa F, Zschaeck I, Slanovic L, Mangas A, Toro R, Brugada J, Sarquella-Brugada G, Campuzano O. Interpreting the actionable clinical role of rare variants associated with short QT syndrome. Hum Genet 2024; 143:1499-1508. [PMID: 39503779 DOI: 10.1007/s00439-024-02713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/19/2024] [Indexed: 11/21/2024] [Imported: 01/07/2025]
Abstract
Genetic testing is recommended in the diagnosis of short QT syndrome. This rare inherited lethal entity is characterized by structural normal hearts with short QT intervals in the electrocardiogram. Few families diagnosed with this arrhythmogenic disease have been reported worldwide so far, impeding a comprehensive understanding of this syndrome. Unraveling the origin of the disease helps to the early identification of genetic carriers at risk. However, only rare variants with a definite deleterious role should be actionable in clinical practice. Our aim was to perform a comprehensive update and reinterpretation, according to the American College of Medical Genetics and Genomics recommendations of all rare variants currently associated with short QT syndrome. We identified 34 rare variants. Reanalysis showed that only nine variants played a deleterious role associated with a definite short QT syndrome phenotype. These variants were located in the four main genes: KCNQ1, KCNH2, KCNJ2 or SLC4A3. Additional rare variants located in other genes were associated with other conditions with phenotypic shortened QT intervals, but not definite diagnosis of short QT syndrome. Periodically updating of rare variants, especially those previously classified as unknown, helps to clarify the role of rare variants and translate genetic data into clinical practice.
Collapse
|
3
|
Alonso-Villa E, Mangas A, Bonet F, Campuzano Ó, Quezada-Feijoo M, Ramos M, García-Padilla C, Franco D, Toro R. The Protective Role of miR-130b-3p Against Palmitate-Induced Lipotoxicity in Cardiomyocytes Through PPARγ Pathway. Int J Mol Sci 2024; 25:12161. [PMID: 39596228 PMCID: PMC11594327 DOI: 10.3390/ijms252212161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] [Imported: 01/07/2025] Open
Abstract
Excess lipid accumulation in the heart is associated with lipotoxicity and cardiac dysfunction due to excessive fatty acid oxidation. Peroxisome proliferator-activated receptor gamma (PPARγ) modulates the expression of key molecules involved in the FA metabolic pathway. Cardiomyocyte-specific overexpression of PPARγ causes dilated cardiomyopathy associated with lipotoxicity in mice. miR-130b-3p has been shown to be downregulated in the plasma of idiopathic dilated cardiomyopathy patients, but its role in modulating cardiomyocyte lipotoxicity via PPARγ remains unclear. Our objective was to investigate the protective role of miR-130b-3p against palmitate-induced lipotoxicity in cardiomyocytes through the modulation of the PPARγ signaling pathway. Human cardiomyoblasts were treated with palmitate. Intracellular lipid accumulation and expression of PPARγ and its downstream targets (CD36, FABP3, CAV1, VLDLR) were analyzed. Mitochondrial oxidative stress was assessed via MitoTracker Green and Redox Sensor Red staining and expression of CPT1B and SOD2. Endoplasmic reticulum stress and apoptosis were determined by examining GRP78, ATF6, XBP1s, CHOP, and caspase-3 expression. miR-130b-3p overexpression was achieved using transfection methods, and its effect on these parameters was evaluated. Luciferase assays were used to confirm PPARγ as a direct target of miR-130b-3p. Palmitate treatment led to increased lipid accumulation and upregulation of PPARγ and its downstream targets in human cardiomyoblasts. Palmitate also increased mitochondrial oxidative stress, endoplasmic reticulum stress and apoptosis. miR-130b-3p overexpression reduced PPARγ expression and its downstream signaling, alleviated mitochondrial oxidative stress and decreased endoplasmic reticulum stress and apoptosis in palmitate-stimulated cardiomyoblasts. Luciferase assays confirmed PPARγ as a direct target of miR-130b-3p. Our findings suggest that miR-130b-3p plays a protective role against palmitate-induced lipotoxicity in cardiomyocytes by modulating the PPARγ signaling pathway.
Collapse
|
4
|
Martínez-Barrios E, Greco A, Cruzalegui J, Cesar S, Díez-Escuté N, Cerralbo P, Chipa F, Zschaeck I, Fogaça-da-Mata M, Díez-López C, Arbelo E, Grassi S, Oliva A, Toro R, Sarquella-Brugada G, Campuzano O. Actionable Variants of Unknown Significance in Inherited Arrhythmogenic Syndromes: A Further Step Forward in Genetic Diagnosis. Biomedicines 2024; 12:2553. [PMID: 39595119 PMCID: PMC11591737 DOI: 10.3390/biomedicines12112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] [Imported: 01/07/2025] Open
Abstract
Background/Objectives: Inherited arrhythmogenic syndromes comprise a heterogenic group of genetic entities that lead to malignant arrhythmias and sudden cardiac death. Genetic testing has become crucial to understand the disease etiology and allow for the early identification of relatives at risk; however, it requires an accurate interpretation of the data to achieve a clinically actionable outcome. This is particularly challenging for the large number of rare variants obtained by current high-throughput techniques, which are mostly classified as of unknown significance. Methods: In this work, we present a new algorithm for the genetic interpretation of the remaining rare variants in order to shed light on their potential clinical implications and reduce the burden of unknown significance. Results: Our study illustrates the potential utility of our individualized comprehensive stepwise analyses focused on the rare variants associated with IAS, which are currently classified as ambiguous, to further determine their trends towards pathogenicity or benign traits. Conclusions: We advocate for personalized disease-focused population frequency data and family segregation analyses for all rare variants that remain ambiguous to further clarify their role. The current ambiguity should not influence medical decisions, but a potential deleterious role would suggest a closer clinical follow-up and frequent genetic data review for a more personalized clinical approach.
Collapse
|
5
|
Martínez-Barrios E, Campuzano O, Greco A, Cruzalegui J, Sarquella-Brugada G. Cardiac channelopathies in pediatrics: a genetic update. Eur J Pediatr 2024; 183:4635-4640. [PMID: 39307882 DOI: 10.1007/s00431-024-05757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] [Imported: 01/07/2025]
Abstract
Cardiac channelopathies are a group of inherited syndromes that can cause malignant arrhythmias and sudden cardiac death, particularly in the pediatric population. Today, a 12-lead electrocardiogram is the most effective tool to diagnose these diseases. Incomplete penetrance and variable expressivity are hallmarks of these syndromes. Some of these malignant entities may remain hidden and only a trigger such as exercise, emotions or fever can unmask the electrical pattern to diagnose the disease. Sudden cardiac death may be the first manifestation of any of these syndromes. The use of complementary tests that allow early diagnosis is strongly recommended, among which we find: pharmacological provocations, exercise tests, and genetic analysis. Genetic testing makes it possible to unravel the origin of the disease, and also identify family members who carry the harmful genetic defect and are therefore at risk. One of the main challenges in this area is the large number of genetic variants of uncertain significance, which prevent effective translation into clinical practice. Early identification of the pediatric population at risk and adequate risk stratification are crucial to adopting personalized preventive measures that reduce the risk of lethal episodes in this population. What is Known: • In the pediatric population, malignant arrhythmias leading to sudden cardiac death are mainly caused by inherited syndromes. • A conclusive genetic diagnosis unravels the origin of the syndrome and allows cascade screening to identify relatives carrying the genetic alteration. What is New: • The use of sequencing technologies allows a broad genetic analysis, helping to unravel new genetic alterations causing inherited arrhythmogenic syndromes. • A periodic reanalysis of genetic variants that currently have an ambiguous role will help discern those that are truly pathogenic.
Collapse
|
6
|
Bergonti M, Ciconte G, Cruzalegui Gomez J, Crotti L, Arbelo E, Casella M, Saenen J, Rossi A, Pannone L, Martinez-Barrios E, Compagnucci P, Russo V, Berne P, Van Leuven O, Boccellino A, Marcon L, Dagradi F, Landra F, Özkartal T, Comune A, Conti S, Ribatti V, Campuzano O, Brugada P, de Asmundis C, Brugada J, Pappone C, Tondo C, Schwartz PJ, Auricchio A, Sarquella-Brugada G, Conte G. Continuous Rhythm Monitoring With Implanted Loop Recorders in Children and Adolescents With Brugada Syndrome. J Am Coll Cardiol 2024; 84:921-933. [PMID: 39197982 DOI: 10.1016/j.jacc.2024.04.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 09/01/2024] [Imported: 01/07/2025]
Abstract
BACKGROUND Young (<18 years of age) patients with Brugada syndrome (BrS) are often under-represented in BrS studies and their management, especially related to syncopal episodes, remains unclear. OBJECTIVES This study sought to describe the arrhythmia prevalence among young patients with BrS undergoing continuous rhythm monitoring by implantable loop recorder (ILR) and to assess the etiology behind syncope of undetermined origin. METHODS A total of 147 patients with BrS with ILR were enrolled in 12 international centers and divided into pediatric (age <12 years; n = 77, 52%) and adolescents (age 13-18 years; n = 70, 48%). RESULTS Mean age was 11.3 years, 53 patients (36.1%) were female, and 31 (21.1%) had spontaneous type 1 electrocardiograms. Over a median follow-up of 3.6 years (Q1-Q3: 1.6-4.8 years), an arrhythmic event was recorded in 33 patients (22.4%), mainly of nonventricular origin: 15 atrial (10.2%) and 16 bradyarrhythmic events (10.9%). Ventricular arrhythmias occurred in 4 patients, all with spontaneous BrS, and were fever-related in one-half. Among all patients with recurrence of syncope during follow-up, true arrhythmic syncope was documented in 5 (17.8%), and it was due to bradyarrhythmias or atrial arrhythmias in 3 cases (60%). CONCLUSIONS Continuous rhythm monitoring with ILRs in young patients with BrS detects a broad range of arrhythmias. Ventricular arrhythmias occur predominantly in patients with spontaneous type 1 electrocardiograms and during fever. Despite the young age, bradyarrhythmias and atrial arrhythmias are frequent and represent the cause of arrhythmic syncope in 60% of patients. Young patients with BrS with syncope of undetermined origin may benefit from ILR implant.
Collapse
|
7
|
Bonet F, Campuzano O, Córdoba-Caballero J, Alcalde M, Sarquella-Brugada G, Braza-Boïls A, Brugada R, Hernández-Torres F, Quezada-Feijoo M, Ramos M, Mangas A, Ranea JAG, Toro R. Role of miRNA-mRNA Interactome in Pathophysiology of Arrhythmogenic Cardiomyopathy. Biomedicines 2024; 12:1807. [PMID: 39200271 PMCID: PMC11351583 DOI: 10.3390/biomedicines12081807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] [Imported: 01/07/2025] Open
Abstract
Arrhythmogenic cardiomyopathy is an inherited entity characterized by irregular cell-cell adhesion, cardiomyocyte death and fibro-fatty replacement of ventricular myocytes, leading to malignant ventricular arrythmias, contractile dysfunction and sudden cardiac death. Pathogenic variants in genes that encode desmosome are the predominant cause of arrhythmogenic cardiomyopathy. Moreover, signalling pathways such as Wnt/ß-catenin and transforming growth factor-β have been involved in the disease progression. However, still little is known about the molecular pathophysiological mechanisms that underlie arrhythmogenic cardiomyopathy pathogenesis. We used mRNA and small RNA sequencing to analyse the transcriptome of health and arrhythmogenic cardiomyopathy of autopsied human hearts. Our results showed 697 differentially expressed genes and eight differentially expressed miRNAs. Functional enrichment revealed mitochondrial respiratory-related pathways, impaired response to oxidative stress, apoptotic signalling pathways and inflammatory response-related and extracellular matrix response pathways. Furthermore, analysis of the miRNA-mRNA interactome identified eleven negatively correlated miRNA-target pairs for arrhythmogenic cardiomyopathy. Our finding revealed novel arrhythmogenic cardiomyopathy-related miRNAs with important regulatory function in disease pathogenesis, highlighting their value as potential key targets for therapeutic approaches.
Collapse
|
8
|
van der Steld LDP, Rocha MDS, Ladeia AMT, Livramento HL, Campos GB, Darrieux FCDC, Campuzano O, Brugada R. PRKAG2 syndrome, a rare hypertrophic cardiomyopathy: a Brazilian long-term follow-up with extracardiac disorders. EINSTEIN-SAO PAULO 2024; 22:eAO0549. [PMID: 39082507 PMCID: PMC11239200 DOI: 10.31744/einstein_journal/2024ao0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 08/03/2024] [Imported: 01/07/2025] Open
Abstract
OBJECTIVE This study aimed to provide a long-term follow-up of PRKAG2 syndrome and describe the new phenotypic aspects of the condition. PRKAG2 syndrome is a rare autosomal-dominant glycogen storage disease characterized by cardiac hypertrophy, ventricular pre-excitation, and conduction system disease. Fatal arrhythmias occur frequently. METHODS A family cohort of 66 participants was recruited. Clinical and genetic analyses were performed. RESULTS Median age of 36.97±17.28 years, with 69.9% being men. Nineteen subjects carried the deleterious variant p.K290I of the PRKAG2 gene. This group experienced many malignant events, including eight pacemaker implants, three sudden cardiac deaths, five aborted cardiac arrests, four strokes, four premature neonatal deaths, two spontaneous abortions, five forceps deliveries, and 12 cesarean procedures. Extracardiac involvement, such as in neurocognitive and psychiatric disorders, has been observed only in carriers of mutations. Palpitations, Syncope, atrial fibrillation, atrial flutter, sinus pauses, and bradycardia were strongly and significantly associated with major or severe adverse events (sudden cardiac death, aborted cardiac arrest, pacemaker use, stroke, and congestive heart failure). Early diagnosis and intervention through antiarrhythmic drugs, anticoagulation, pacemaker implantation, radiofrequency catheter ablation, and cesarean section surgery improved the symptoms and survival rates. Mutations carriers were advised to avoid pregnancy. CONCLUSION This study identified that the p.K291I_PRKAG2 mutation is associated with poor prognosis, highlighting the need for early intervention. Further research may uncover the potential connections between intellectual disability, miscarriage, and neonatal death in individuals with this syndrome.
Collapse
|
9
|
Sarquella-Brugada G, Martínez-Barrios E, Cesar S, Toro R, Cruzalegui J, Greco A, Díez-Escuté N, Cerralbo P, Chipa F, Arbelo E, Diez-López C, Grazioli G, Balderrábano N, Campuzano O. A narrative review of inherited arrhythmogenic syndromes in young population: role of genetic diagnosis in exercise recommendations. BMJ Open Sport Exerc Med 2024; 10:e001852. [PMID: 38975025 PMCID: PMC11227825 DOI: 10.1136/bmjsem-2023-001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/09/2024] [Imported: 01/07/2025] Open
Abstract
Sudden cardiac death is a rare but socially devastating event, especially if occurs in young people. Usually, this unexpected lethal event occurs during or just after exercise. One of the leading causes of sudden cardiac death is inherited arrhythmogenic syndromes, a group of genetic entities characterised by incomplete penetrance and variable expressivity. Exercise can be the trigger for malignant arrhythmias and even syncope in population with a genetic predisposition, being sudden cardiac death as the first symptom. Due to genetic origin, family members must be clinically assessed and genetically analysed after diagnosis or suspected diagnosis of a cardiac channelopathy. Early identification and adoption of personalised preventive measures is crucial to reduce risk of arrhythmias and avoid new lethal episodes. Despite exercise being recommended by the global population due to its beneficial effects on health, particular recommendations for these patients should be adopted considering the sport practised, level of demand, age, gender, arrhythmogenic syndrome diagnosed but also genetic diagnosis. Our review focuses on the role of genetic background in sudden cardiac death during exercise in child and young population.
Collapse
|
10
|
Martínez Olorón P, Alegría I, Cesar S, del Olmo B, Martínez-Barrios E, Carrera-García L, Natera-de Benito D, Nascimento A, Campuzano O, Sarquella-Brugada G. Congenital LMNA-Related Muscular Dystrophy in Paediatrics: Cardiac Management in Monozygotic Twins. Int J Mol Sci 2024; 25:5836. [PMID: 38892025 PMCID: PMC11171958 DOI: 10.3390/ijms25115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] [Imported: 01/07/2025] Open
Abstract
Pathogenic variants in LMNA have been associated with a wide spectrum of muscular conditions: the laminopathies. LMNA-related congenital muscular dystrophy is a laminopathy characterised by the early onset of symptoms and often leads to a fatal outcome at young ages. Children face a heightened risk of malignant arrhythmias. No established paediatric protocols for managing this condition are available. We review published cases and provide insights into disease progression in two twin sisters with LMNA-related muscular dystrophy. Our objective is to propose a cardiac surveillance and management plan tailored specifically for paediatric patients. We present a family of five members, including two twin sisters with LMNA-related muscular dystrophy. A comprehensive neuromuscular and cardiac work-up was performed in all family members. Genetic analysis using massive sequencing technology was performed in both twins. Clinical assessment showed that only the twins showed diagnoses of LMNA-related muscular dystrophy. Follow-up showed an early onset of symptoms and life-threatening arrhythmias, with differing disease progressions despite both twins passing away. Genetic analysis identified a de novo rare missense deleterious variant in the LMNA gene. Other additional rare variants were identified in genes associated with myasthenic syndrome. Early-onset neuromuscular symptoms could be related to a prognosis of worse life-threatening arrhythmias in LMNA related muscular dystrophy. Being a carrier of other rare variants may be a modifying factor in the progression of the phenotype, although further studies are needed. There is a pressing need for specific cardiac recommendations tailored to the paediatric population to mitigate the risk of malignant arrhythmias.
Collapse
|
11
|
Fogaça-da-Mata M, Martínez-Barrios E, Jiménez-Montañés L, Cruzalegui J, Chipa-Ccasani F, Greco A, Cesar S, Díez-Escuté N, Cerralbo P, Zschaeck I, Clavero Adell M, Ayerza-Casas A, Palanca-Arias D, López M, Campuzano O, Brugada J, Sarquella-Brugada G. Brugada Syndrome and Pulmonary Atresia with Intact Interventricular Septum: Fortuitous Finding or New Genetic Connection? Genes (Basel) 2024; 15:638. [PMID: 38790267 PMCID: PMC11121103 DOI: 10.3390/genes15050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] [Imported: 01/07/2025] Open
Abstract
Brugada syndrome is a rare arrhythmogenic syndrome associated mainly with pathogenic variants in the SCN5A gene. Right ventricle outflow tract fibrosis has been reported in some cases of patients diagnosed with Brugada syndrome. Pulmonary atresia with an intact ventricular septum is characterized by the lack of a functional pulmonary valve, due to the underdevelopment of the right ventricle outflow tract. We report, for the first time, a 4-year-old boy with pulmonary atresia with an intact ventricular septum who harbored a pathogenic de novo variant in SCN5A, and the ajmaline test unmasked a type-1 Brugada pattern. We suggest that deleterious variants in the SCN5A gene could be implicated in pulmonary atresia with an intact ventricular septum embryogenesis, leading to overlapping phenotypes.
Collapse
|
12
|
Fernandez-Falgueras A, Coll M, Iglesias A, Tiron C, Campuzano O, Brugada R. The importance of variant reinterpretation in inherited cardiovascular diseases: Establishing the optimal timeframe. PLoS One 2024; 19:e0297914. [PMID: 38691546 PMCID: PMC11062523 DOI: 10.1371/journal.pone.0297914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 05/03/2024] [Imported: 01/07/2025] Open
Abstract
Inherited cardiovascular diseases are rare diseases that are difficult to diagnose by non-expert professionals. Genetic analyses play a key role in the diagnosis of these diseases, in which the identification of a pathogenic genetic variant is often a diagnostic criterion. Therefore, genetic variant classification and routine reinterpretation as data become available represent one of the main challenges associated with genetic analyses. Using the genetic variants identified in an inherited cardiovascular diseases unit during a 10-year period, the objectives of this study were: 1) to evaluate the impact of genetic variant reinterpretation, 2) to compare the reclassification rates between different cohorts of cardiac channelopathies and cardiomyopathies, and 3) to establish the most appropriate periodicity for genetic variant reinterpretation. All the evaluated cohorts (full cohort of inherited cardiovascular diseases, cardiomyopathies, cardiac channelopathies, hypertrophic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic cardiomyopathy, Brugada syndrome, long QT syndrome and catecholaminergic polymorphic ventricular tachycardia) showed reclassification rates above 25%, showing even higher reclassification rates when there is definitive evidence of the association between the gene and the disease in the cardiac channelopathies. Evaluation of genetic variant reclassification rates based on the year of the initial classification showed that the most appropriate frequency for the reinterpretation would be 2 years, with the possibility of a more frequent reinterpretation if deemed convenient. To keep genetic variant classifications up to date, genetic counsellors play a critical role in the reinterpretation process, providing clinical evidence that genetic diagnostic laboratories often do not have at their disposal and communicating changes in classification and the potential implications of these reclassifications to patients and relatives.
Collapse
|
13
|
Campuzano O, Sarquella-Brugada G, Brugada R. Sudden unexplained death in young people: A family matter. Kardiol Pol 2024; 82:361-362. [PMID: 38566616 DOI: 10.33963/v.phj.99975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] [Imported: 01/07/2025]
|
14
|
Pérez-Serra A, Toro R, Martinez-Barrios E, Iglesias A, Fernandez-Falgueras A, Alcalde M, Coll M, Puigmulé M, del Olmo B, Picó F, Lopez L, Arbelo E, Cesar S, de Llano CT, Mangas A, Brugada J, Sarquella-Brugada G, Brugada R, Campuzano O. Implementing a New Algorithm for Reinterpretation of Ambiguous Variants in Genetic Dilated Cardiomyopathy. Int J Mol Sci 2024; 25:3807. [PMID: 38612618 PMCID: PMC11012211 DOI: 10.3390/ijms25073807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] [Imported: 01/07/2025] Open
Abstract
Dilated cardiomyopathy is a heterogeneous entity that leads to heart failure and malignant arrhythmias. Nearly 50% of cases are inherited; therefore, genetic analysis is crucial to unravel the cause and for the early identification of carriers at risk. A large number of variants remain classified as ambiguous, impeding an actionable clinical translation. Our goal was to perform a comprehensive update of variants previously classified with an ambiguous role, applying a new algorithm of already available tools. In a cohort of 65 cases diagnosed with dilated cardiomyopathy, a total of 125 genetic variants were classified as ambiguous. Our reanalysis resulted in the reclassification of 12% of variants from an unknown to likely benign or likely pathogenic role, due to improved population frequencies. For all the remaining ambiguous variants, we used our algorithm; 60.9% showed a potential but not confirmed deleterious role, and 24.5% showed a potential benign role. Periodically updating the population frequencies is a cheap and fast action, making it possible to clarify the role of ambiguous variants. Here, we perform a comprehensive reanalysis to help to clarify the role of most of ambiguous variants. Our specific algorithms facilitate genetic interpretation in dilated cardiomyopathy.
Collapse
|
15
|
Grassi S, Pinchi V, Campuzano O, Oliva A, Brugada R. Editorial: Genetics of sudden unexplained death in children and young adults: state of the art, testing and implications for translational research, public health and forensic pathology. Front Med (Lausanne) 2023; 10:1309179. [PMID: 37964890 PMCID: PMC10641374 DOI: 10.3389/fmed.2023.1309179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] [Imported: 01/07/2025] Open
|
16
|
Sarquella-Brugada G, Martínez-Barrios E, Cesar S, Arbelo E, Diez C, Campuzano Larrea O. Deporte y síndromes arritmogénicos hereditarios (Sport and inherited arrhythmogenic syndromes). RETOS 2023; 51:719-725. [DOI: 10.47197/retos.v51.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] [Imported: 01/07/2025]
Abstract
Los síndromes arritmogénicos hereditarios son un grupo de patologías cardiacas asociadas a arritmias malignas y un mayor riesgo de muerte súbita cardiaca, en ocasiones la primera manifestación de la patología. Estos síndromes suelen presentarse especialmente en población menor de 35 años, a menudo causando episodios arritmogénicos durante la práctica deportiva. Por esta razón, resulta esencial realizar estudios cardiológicos exhaustivos a deportistas, independientemente del deporte practicado, nivel de exigencia, edad o sexo para la prevención de estos episodios. Las principales entidades incluidas en este grupo son el síndrome de QT largo, el síndrome de Brugada, el síndrome de QT corto y la Taquicardia Ventricular Polimórfica Catecolaminérgica. La comprensión de los mecanismos que predisponen a las arritmias cardiacas hereditarias sigue siendo uno de los retos a resolver por la investigación biomédica ya que algunas de las complicaciones en las arritmias sólo se presentan cuando existe una interacción perfecta entre factores ambientales y genéticos. Los avances en el estudio del genoma humano han permitido identificar multitud de variantes en diversos genes asociados a este tipo de síndromes cardiacos. Al ser síndromes hereditarios, otros miembros de la familia pueden ser portadores del mismo defecto genético por lo que realizar un estudio fenotipo-genotipo en estas familias permite identificar otros miembros a riesgo de padecer episodios arritmogénicos letales.
Palabras claves: Genética. Deporte. Muerte súbita cardíaca. Síndromes arrítmicos hereditarios.
Abstract. Inherited arrhythmogenic syndromes are a group of cardiac pathologies associated with malignant arrhythmias and sudden cardiac death, sometimes the first manifestation of the pathology. These syndromes usually manifest in the population under 35 years of age, causing arrhythmogenic episodes during sports practice. For this reason, carrying out exhaustive cardiological studies on athletes, regardless of the sport practiced, level of demand, age or gender, is essential to prevent these malignant episodes. The main entities included in this group are Long QT syndrome, Brugada syndrome, Short QT syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia. A large part of the mechanisms that predispose to inherited cardiac arrhythmias continue to be one of the challenges to be resolved by biomedical research, since some of the complications in arrhythmias only occur when there is a perfect interaction between environmental and genetic factors. Advances in the study of the genome have made it possible to identify a multitude of variants in numerous genes, being these genetic alterations responsible for the predisposition to arrhythmias. As these are hereditary syndromes, other family members may be carriers of the same genetic defect, so carrying out a phenotype-genotype correlation in these families makes it possible to identify other members at risk of suffering lethal arrhythmogenic episodes.
Key Words: Genetics. Sport. Sudden cardiac death. Inherited arrhythmic syndromes.
Collapse
|
17
|
Grassi S, Campuzano O, Cazzato F, Coll M, Puggioni A, Zedda M, Arena V, Iglesias A, Sarquella-Brugada G, Pinchi V, Brugada R, Oliva A. Postmortem diagnosis of Takotsubo syndrome on autoptic findings: is it reliable? A systematic review. Cardiovasc Pathol 2023; 65:107543. [PMID: 37169210 DOI: 10.1016/j.carpath.2023.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] [Imported: 09/13/2023] Open
Abstract
Takotsubo syndrome (TTS) is a cardiac syndrome characterized by transient left ventricular systolic dysfunction in the absence of significant obstructive coronary artery disease. At the autopsy, its diagnosis is often challenging, since it is generally thought that it relates to no characteristic macroscopic or microscopic findings. In order to verify this last statement, we performed a systematic review of the literature following Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA) criteria. To the best of our knowledge, it is the first systematic review addressing this issue. We identified recurring but not pathognomonic (microscopic) features of TTS: contraction band necrosis and non-specific inflammatory changes (e.g., interstitial infiltrates of mononuclear lymphocytes and macrophages) typically in the absence of microscopic findings typical of acute myocardial infarction. In cases of TTS-related sudden death, careful evaluation of anamnesis, autopsy data and post-mortem genetic results (to exclude other causes) should be considered to overcome the complexity of these cases.
Collapse
|
18
|
Alcalde M, Toro R, Bonet F, Córdoba-Caballero J, Martínez-Barrios E, Ranea JA, Vallverdú-Prats M, Brugada R, Meraviglia V, Bellin M, Sarquella-Brugada G, Campuzano O. Role of MicroRNAs in Arrhythmogenic Cardiomyopathy: translation as biomarkers into clinical practice. Transl Res 2023:S1931-5244(23)00070-1. [PMID: 37105319 DOI: 10.1016/j.trsl.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] [Imported: 08/29/2023]
Abstract
Arrhythmogenic cardiomyopathy is a rare inherited entity, characterized by a progressive fibro-fatty replacement of the myocardium. It leads to malignant arrhythmias and a high risk of sudden cardiac death. Incomplete penetrance and variable expressivity are hallmarks of this arrhythmogenic cardiac disease, where the first manifestation may be syncope and sudden cardiac death, often triggered by physical exercise. Early identification of individuals at risk is crucial to adopt protective and ideally personalized measures to prevent lethal episodes. The genetic analysis identifies deleterious rare variants in nearly 70% of cases, mostly in genes encoding proteins of the desmosome. However, other factors may modulate the phenotype onset and outcome of disease, such as microRNAs. These small noncoding RNAs play a key role in gene expression regulation and the network of cellular processes. In recent years, data focused on the role of microRNAs as potential biomarkers in arrhythmogenic cardiomyopathy has progressively increased. A better understanding of the functions and interactions of microRNAs will likely have clinical implications. Herein, we propose an exhaustive review of the literature regarding these noncoding RNAs, their versatile mechanisms of gene regulation and present novel targets in arrhythmogenic cardiomyopathy.
Collapse
|
19
|
Díez-Escuté N, Arbelo E, Martínez-Barrios E, Cerralbo P, Cesar S, Cruzalegui J, Chipa F, Fiol V, Zschaeck I, Hernández C, Campuzano O, Sarquella-Brugada G. Sex differences in long QT syndrome. Front Cardiovasc Med 2023; 10:1164028. [PMID: 37082456 PMCID: PMC10110834 DOI: 10.3389/fcvm.2023.1164028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] [Imported: 08/29/2023] Open
Abstract
Long QT Syndrome (LQTS) is a rare, inherited channelopathy characterized by cardiac repolarization dysfunction, leading to a prolonged rate-corrected QT interval in patients who are at risk for malignant ventricular tachyarrhythmias, syncope, and even sudden cardiac death. A complex genetic origin, variable expressivity as well as incomplete penetrance make the diagnosis a clinical challenge. In the last 10 years, there has been a continuous improvement in diagnostic and personalized treatment options. Therefore, several factors such as sex, age diagnosis, QTc interval, and genetic background may contribute to risk stratification of patients, but it still currently remains as a main challenge in LQTS. It is widely accepted that sex is a risk factor itself for some arrhythmias. Female sex has been suggested as a risk factor in the development of malignant arrhythmias associated with LQTS. The existing differences between the sexes are only manifested after puberty, being the hormones the main inducers of arrhythmias. Despite the increased risk in females, no more than 10% of the available publications on LQTS include sex-related data concerning the risk of malignant arrhythmias in females. Therein, the relevance of our review data update concerning women and LQTS.
Collapse
|
20
|
Cesar S, Campuzano O, Cruzalegui J, Fiol V, Moll I, Martínez-Barrios E, Zschaeck I, Natera-de Benito D, Ortez C, Carrera L, Expósito J, Berrueco R, Bautista-Rodriguez C, Dabaj I, Gómez García-de-la-Banda M, Quijano-Roy S, Brugada J, Nascimento A, Sarquella-Brugada G. Characterization of cardiac involvement in children with LMNA-related muscular dystrophy. Front Cell Dev Biol 2023; 11:1142937. [PMID: 36968203 PMCID: PMC10036759 DOI: 10.3389/fcell.2023.1142937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] [Imported: 09/13/2023] Open
Abstract
Introduction: LMNA-related muscular dystrophy is a rare entity that produce "laminopathies" such as Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B (LGMD1B), and LMNA-related congenital muscular dystrophy (L-CMD). Heart failure, malignant arrhythmias, and sudden death may occur. No consensus exists on cardiovascular management in pediatric laminopathies. The aim was to perform an exhaustive cardiologic follow-up in pediatric patients diagnosed with LMNA-related muscular dystrophy. Methods: Baseline cardiac work-up consisted of clinical assessment, transthoracic Doppler echocardiography, 12-lead electrocardiogram, electrophysiological study, and implantation of a long-term implantable cardiac loop recorder (ILR). Results: We enrolled twenty-eight pediatric patients diagnosed with EDMD (13 patients), L-CMD (11 patients), LGMD1B (2 patients), and LMNA-related mild weakness (2 patients). Follow-up showed dilated cardiomyopathy (DCM) in six patients and malignant arrhythmias in five (four concomitant with DCM) detected by the ILR that required implantable cardioverter defibrillator (ICD) implantation. Malignant arrhythmias were detected in 20% of our cohort and early-onset EDMD showed worse cardiac prognosis. Discussion: Patients diagnosed with early-onset EDMD are at higher risk of DCM, while potentially life-threatening arrhythmias without DCM appear earlier in L-CMD patients. Early onset neurologic symptoms could be related with worse cardiac prognosis. Specific clinical guidelines for children are needed to prevent sudden death.
Collapse
|
21
|
Martínez-Barrios E, Grassi S, Brión M, Toro R, Cesar S, Cruzalegui J, Coll M, Alcalde M, Brugada R, Greco A, Ortega-Sánchez ML, Barberia E, Oliva A, Sarquella-Brugada G, Campuzano O. Molecular autopsy: Twenty years of post-mortem diagnosis in sudden cardiac death. Front Med (Lausanne) 2023; 10:1118585. [PMID: 36844202 PMCID: PMC9950119 DOI: 10.3389/fmed.2023.1118585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] [Imported: 08/29/2023] Open
Abstract
In the forensic medicine field, molecular autopsy is the post-mortem genetic analysis performed to attempt to unravel the cause of decease in cases remaining unexplained after a comprehensive forensic autopsy. This negative autopsy, classified as negative or non-conclusive, usually occurs in young population. In these cases, in which the cause of death is unascertained after a thorough autopsy, an underlying inherited arrhythmogenic syndrome is the main suspected cause of death. Next-generation sequencing allows a rapid and cost-effectives genetic analysis, identifying a rare variant classified as potentially pathogenic in up to 25% of sudden death cases in young population. The first symptom of an inherited arrhythmogenic disease may be a malignant arrhythmia, and even sudden death. Early identification of a pathogenic genetic alteration associated with an inherited arrhythmogenic syndrome may help to adopt preventive personalized measures to reduce risk of malignant arrhythmias and sudden death in the victim's relatives, at risk despite being asymptomatic. The current main challenge is a proper genetic interpretation of variants identified and useful clinical translation. The implications of this personalized translational medicine are multifaceted, requiring the dedication of a specialized team, including forensic scientists, pathologists, cardiologists, pediatric cardiologists, and geneticists.
Collapse
|
22
|
Vallverdú-Prats M, Carreras D, Pérez GJ, Campuzano O, Brugada R, Alcalde M. Alterations in Calcium Handling Are a Common Feature in an Arrhythmogenic Cardiomyopathy Cell Model Triggered by Desmosome Genes Loss. Int J Mol Sci 2023; 24:ijms24032109. [PMID: 36768439 PMCID: PMC9917020 DOI: 10.3390/ijms24032109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023] [Imported: 09/13/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium. Deleterious variants in desmosomal genes are the main cause of ACM and lead to common and gene-specific molecular alterations, which are not yet fully understood. This article presents the first systematic in vitro study describing gene and protein expression alterations in desmosomes, electrical conduction-related genes, and genes involved in fibrosis and adipogenesis. Moreover, molecular and functional alterations in calcium handling were also characterized. This study was performed d with HL1 cells with homozygous knockouts of three of the most frequently mutated desmosomal genes in ACM: PKP2, DSG2, and DSC2 (generated by CRISPR/Cas9). Moreover, knockout and N-truncated clones of DSP were also included. Our results showed functional alterations in calcium handling, a slower calcium re-uptake was observed in the absence of PKP2, DSG2, and DSC2, and the DSP knockout clone showed a more rapid re-uptake. We propose that the described functional alterations of the calcium handling genes may be explained by mRNA expression levels of ANK2, CASQ2, ATP2A2, RYR2, and PLN. In conclusion, the loss of desmosomal genes provokes alterations in calcium handling, potentially contributing to the development of arrhythmogenic events in ACM.
Collapse
|
23
|
Cesar S, Coll M, Fiol V, Fernandez-Falgueras A, Cruzalegui J, Iglesias A, Moll I, Perez-Serra A, Martínez-Barrios E, Ferrer-Costa C, del Olmo B, Puigmulè M, Alcalde M, Lopez L, Pico F, Berrueco R, Brugada J, Zschaeck I, Natera-de Benito D, Carrera-García L, Exposito-Escudero J, Ortez C, Nascimento A, Brugada R, Sarquella-Brugada G, Campuzano O. LMNA-related muscular dystrophy: Identification of variants in alternative genes and personalized clinical translation. Front Genet 2023; 14:1135438. [PMID: 37035729 PMCID: PMC10080029 DOI: 10.3389/fgene.2023.1135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] [Imported: 08/29/2023] Open
Abstract
Background: Laminopathies are caused by rare alterations in LMNA, leading to a wide clinical spectrum. Though muscular dystrophy begins at early ages, disease progression is different in each patient. We investigated variability in laminopathy phenotypes by performing a targeted genetic analysis of patients diagnosed with LMNA-related muscular dystrophy to identify rare variants in alternative genes, thereby explaining phenotypic differences. Methods: We analyzed 105 genes associated with muscular diseases by targeted sequencing in 26 pediatric patients of different countries, diagnosed with any LMNA-related muscular dystrophy. Family members were also clinically assessed and genetically analyzed. Results: All patients carried a pathogenic rare variant in LMNA. Clinical diagnoses included Emery-Dreifuss muscular dystrophy (EDMD, 13 patients), LMNA-related congenital muscular dystrophy (L-CMD, 11 patients), and limb-girdle muscular dystrophy 1B (LGMD1B, 2 patients). In 9 patients, 10 additional rare genetic variants were identified in 8 genes other than LMNA. Genotype-phenotype correlation showed additional deleterious rare variants in five of the nine patients (3 L-CMD and 2 EDMD) with severe phenotypes. Conclusion: Analysis f known genes related to muscular diseases in close correlation with personalized clinical assessments may help identify additional rare variants of LMNA potentially associated with early onset or most severe disease progression.
Collapse
|
24
|
Acknowledgment to reviewers of Journal of Translational Genetics and Genomics in 2022. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2023; 6:443-444. [DOI: 10.20517/jtgg.2023.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] [Imported: 09/13/2023]
|
25
|
Martinez-Barrios E, Sarquella-Brugada G, Perez-Serra A, Fernandez-Falgueras A, Cesar S, Alcalde M, Coll M, Puigmulé M, Iglesias A, Ferrer-Costa C, del Olmo B, Picó F, Lopez L, Fiol V, Cruzalegui J, Hernandez C, Arbelo E, Díez-Escuté N, Cerralbo P, Grassi S, Oliva A, Toro R, Brugada J, Brugada R, Campuzano O. Reevaluation of ambiguous genetic variants in sudden unexplained deaths of a young cohort. Int J Legal Med 2023; 137:345-351. [PMID: 36693943 PMCID: PMC9902310 DOI: 10.1007/s00414-023-02951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] [Imported: 08/29/2023]
Abstract
Sudden death cases in the young population remain without a conclusive cause of decease in almost 40% of cases. In these situations, cardiac arrhythmia of genetic origin is suspected as the most plausible cause of death. Molecular autopsy may reveal a genetic defect in up to 20% of families. Most than 80% of rare variants remain classified with an ambiguous role, impeding a useful clinical translation. Our aim was to update rare variants originally classified as of unknown significance to clarify their role. Our cohort included fifty-one post-mortem samples of young cases who died suddenly and without a definite cause of death. Five years ago, molecular autopsy identified at least one rare genetic alteration classified then as ambiguous following the American College of Medical Genetics and Genomics' recommendations. We have reclassified the same rare variants including novel data. About 10% of ambiguous variants change to benign/likely benign mainly because of improved population frequencies. Excluding cases who died before one year of age, almost 21% of rare ambiguous variants change to benign/likely benign. This fact makes it important to discard these rare variants as a cause of sudden unexplained death, avoiding anxiety in relatives' carriers. Twenty-five percent of the remaining variants show a tendency to suspicious deleterious role, highlighting clinical follow-up of carriers. Periodical reclassification of rare variants originally classified as ambiguous is crucial, at least updating frequencies every 5 years. This action aids to increase accuracy to enable and conclude a cause of death as well as translation into the clinic.
Collapse
|