1
|
Grossi V, Peserico A, Tezil T, Simone C. p38α MAPK pathway: a key factor in colorectal cancer therapy and chemoresistance. World J Gastroenterol 2014; 20:9744-9758. [PMID: 25110412 PMCID: PMC4123363 DOI: 10.3748/wjg.v20.i29.9744] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/13/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] [Imported: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional therapies is frequently observed in advanced stages, where treatments become ineffective. Resistance to cisplatin, irinotecan and 5-fluorouracil chemotherapy has been shown to involve mitogen-activated protein kinase (MAPK) signaling and recent studies identified p38α MAPK as a mediator of resistance to various agents in CRC patients. Studies published in the last decade showed a dual role for the p38α pathway in mammals. Its role as a negative regulator of proliferation has been reported in both normal (including cardiomyocytes, hepatocytes, fibroblasts, hematopoietic and lung cells) and cancer cells (colon, prostate, breast, lung tumor cells). This function is mediated by the negative regulation of cell cycle progression and the transduction of some apoptotic stimuli. However, despite its anti-proliferative and tumor suppressor activity in some tissues, the p38α pathway may also acquire an oncogenic role involving cancer related-processes such as cell metabolism, invasion, inflammation and angiogenesis. In this review, we summarize current knowledge about the predominant role of the p38α MAPK pathway in CRC development and chemoresistance. In our view, this might help establish the therapeutic potential of the targeted manipulation of this pathway in clinical settings.
Collapse
|
Topic Highlight |
11 |
177 |
2
|
Lucarelli G, Rutigliano M, Sallustio F, Ribatti D, Giglio A, Signorile ML, Grossi V, Sanese P, Napoli A, Maiorano E, Bianchi C, Perego RA, Ferro M, Ranieri E, Serino G, Bell LN, Ditonno P, Simone C, Battaglia M. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging (Albany NY) 2018; 10:3957-3985. [PMID: 30538212 PMCID: PMC6326659 DOI: 10.18632/aging.101685] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/22/2018] [Indexed: 11/25/2022] [Imported: 10/26/2023]
Abstract
An altered metabolism is involved in the development of clear cell - renal cell carcinoma (ccRCC), and in this tumor many altered genes play a fundamental role in controlling cell metabolic activities. We delineated a large-scale metabolomic profile of human ccRCC, and integrated it with transcriptomic data to connect the variations in cancer metabolism with gene expression changes. Moreover, to better analyze the specific contribution of metabolic gene alterations potentially associated with tumorigenesis and tumor progression, we evaluated the transcription profile of primary renal tumor cells. Untargeted metabolomic analysis revealed a signature of an increased glucose uptake and utilization in ccRCC. In addition, metabolites related to pentose phosphate pathway were also altered in the tumor samples in association with changes in Krebs cycle intermediates and related metabolites. We identified NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) as the most highly expressed gene in renal cancer cells and evaluated its role in sustaining angiogenesis, chemoresistance, and mitochondrial dysfunction. Finally, we showed that silencing of NDUFA4L2 affects cell viability, increases mitochondrial mass, and induces ROS generation in hypoxia.
Collapse
|
research-article |
7 |
160 |
3
|
Peserico A, Chiacchiera F, Grossi V, Matrone A, Latorre D, Simonatto M, Fusella A, Ryall JG, Finley LWS, Haigis MC, Villani G, Puri PL, Sartorelli V, Simone C. A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cell Mol Life Sci 2013; 70:2015-2029. [PMID: 23283301 PMCID: PMC11113715 DOI: 10.1007/s00018-012-1244-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 12/29/2022] [Imported: 10/26/2023]
Abstract
Reduction of nutrient intake without malnutrition positively influences lifespan and healthspan from yeast to mice and exerts some beneficial effects also in humans. The AMPK-FoxO axis is one of the evolutionarily conserved nutrient-sensing pathways, and the FOXO3A locus is associated with human longevity. Interestingly, FoxO3A has been reported to be also a mitochondrial protein in mammalian cells and tissues. Here we report that glucose restriction triggers FoxO3A accumulation into mitochondria of fibroblasts and skeletal myotubes in an AMPK-dependent manner. A low-glucose regimen induces the formation of a protein complex containing FoxO3A, SIRT3, and mitochondrial RNA polymerase (mtRNAPol) at mitochondrial DNA-regulatory regions causing activation of the mitochondrial genome and a subsequent increase in mitochondrial respiration. Consistently, mitochondrial transcription increases in skeletal muscle of fasted mice, with a mitochondrial DNA-bound FoxO3A/SIRT3/mtRNAPol complex detectable also in vivo. Our results unveil a mitochondrial arm of the AMPK-FoxO3A axis acting as a recovery mechanism to sustain energy metabolism upon nutrient restriction.
Collapse
|
research-article |
12 |
82 |
4
|
Ranieri C, Di Tommaso S, Loconte DC, Grossi V, Sanese P, Bagnulo R, Susca FC, Forte G, Peserico A, De Luisi A, Bartuli A, Selicorni A, Melis D, Lerone M, Praticò AD, Abbadessa G, Yu Y, Schwartz B, Ruggieri M, Simone C, Resta N. In vitro efficacy of ARQ 092, an allosteric AKT inhibitor, on primary fibroblast cells derived from patients with PIK3CA-related overgrowth spectrum (PROS). Neurogenetics 2018; 19:77-91. [PMID: 29549527 PMCID: PMC5956072 DOI: 10.1007/s10048-018-0540-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/27/2017] [Indexed: 01/19/2023] [Imported: 10/26/2023]
Abstract
Postzygotic mutations of the PIK3CA [phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha] gene constitutively activate the PI3K/AKT/mTOR pathway in PIK3CA-related overgrowth spectrum (PROS) patients, causing congenital mosaic tissue overgrowth that even multiple surgeries cannot solve. mTOR inhibitors are empirically tested and given for compassionate use in these patients. PROS patients could be ideal candidates for enrolment in trials with PI3K/AKT pathway inhibitors, considering the "clean" cellular setting in which a unique driver, a PIK3CA mutation, is present. We aimed to assess the effects of blocking the upstream pathway of mTOR on PROS patient-derived cells by using ARQ 092, a potent, selective, allosteric, and experimental orally bioavailable and highly selective AKT-inhibitor with activity and long-term tolerability, currently under clinical development for treatment of cancer and Proteus syndrome. Cell samples (i.e., primary fibroblasts) were derived from cultured tissues obtained from six PROS patients [3 boys, 3 girls; aged 2 to 17 years] whose spectrum of PIK3A-related overgrowth included HHML [hemihyperplasia multiple lipomatosis; n = 1], CLOVES [congenital lipomatosis, overgrowth, vascular malformations, epidermal nevi, spinal/skeletal anomalies, scoliosis; n = 1], and MCAP [megalencephaly capillary malformation syndrome; n = 4]. We performed the following: (a) a deep sequencing assay of PI3K/AKT pathway genes in the six PROS patients' derived cells to identify the causative mutations and (b) a pathway analysis to assess the phosphorylation status of AKT [Ser473 and Thr308] and its downstream targets [pAKTS1 (Thr246), pRPS6 (Ser235/236), and pRPS6Kβ1 (Ser371)]. The anti-proliferative effect of ARQ 092 was tested and compared to other PI3K/AKT/mTOR inhibitors [i.e., wortmannin, LY249002, and rapamycin] in the six PROS patient-derived cells. Using ARQ 092 to target AKT, a critical node connecting PI3K and mTOR pathways, we observed the following: (1) strong anti-proliferative activity [ARQ 092 at 0.5, 1, and 2.5 μM blunted phosphorylation of AKT and its downstream targets (in the presence or absence of serum) and inhibited proliferation after 72 h; rapamycin at 100 nM did not decrease AKT phosphorylation] and (2) less cytotoxicity as compared to rapamycin and wortmannin. We demonstrated the following: (a) that PROS cells are dependent on AKT; (b) the advantage of inhibiting the pathway immediately downstream of PI3K to circumventing problems depending on multiple classes a PI3K kinases; and (c) that PROS patients benefit from inhibition of AKT rather than mTOR. Clinical development of ARQ 092 in PROS patients is on going in these patients.
Collapse
|
research-article |
7 |
68 |
5
|
Loconte DC, Grossi V, Bozzao C, Forte G, Bagnulo R, Stella A, Lastella P, Cutrone M, Benedicenti F, Susca FC, Patruno M, Varvara D, Germani A, Chessa L, Laforgia N, Tenconi R, Simone C, Resta N. Molecular and Functional Characterization of Three Different Postzygotic Mutations in PIK3CA-Related Overgrowth Spectrum (PROS) Patients: Effects on PI3K/AKT/mTOR Signaling and Sensitivity to PIK3 Inhibitors. PLoS One 2015; 10:e0123092. [PMID: 25915946 PMCID: PMC4411002 DOI: 10.1371/journal.pone.0123092] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/27/2015] [Indexed: 12/02/2022] [Imported: 10/26/2023] Open
Abstract
BACKGROUND PIK3CA-related overgrowth spectrum (PROS) include a group of disorders that affect only the terminal portion of a limb, such as type I macrodactyly, and conditions like fibroadipose overgrowth (FAO), megalencephaly-capillary malformation (MCAP) syndrome, congenital lipomatous asymmetric overgrowth of the trunk, lymphatic, capillary, venous, and combined-type vascular malformations, epidermal nevi, skeletal and spinal anomalies (CLOVES) syndrome and Hemihyperplasia Multiple Lipomatosis (HHML). Heterozygous postzygotic PIK3CA mutations are frequently identified in these syndromes, while timing and tissue specificity of the mutational event are likely responsible for the extreme phenotypic variability observed. METHODS We carried out a combination of Sanger sequencing and targeted deep sequencing of genes involved in the PI3K/AKT/mTOR pathway in three patients (1 MCAP and 2 FAO) to identify causative mutations, and performed immunoblot analyses to assay the phosphorylation status of AKT and P70S6K in affected dermal fibroblasts. In addition, we evaluated their ability to grow in the absence of serum and their response to the PI3K inhibitors wortmannin and LY294002 in vitro. RESULTS AND CONCLUSION Our data indicate that patients' cells showed constitutive activation of the PI3K/Akt pathway. Of note, PI3K pharmacological blockade resulted in a significant reduction of the proliferation rate in culture, suggesting that inhibition of PI3K might prove beneficial in future therapies for PROS patients.
Collapse
|
Case Reports |
10 |
63 |
6
|
Grossi V, Forte G, Sanese P, Peserico A, Tezil T, Lepore Signorile M, Fasano C, Lovaglio R, Bagnulo R, Loconte DC, Susca FC, Resta N, Simone C. The longevity SNP rs2802292 uncovered: HSF1 activates stress-dependent expression of FOXO3 through an intronic enhancer. Nucleic Acids Res 2018; 46:5587-5600. [PMID: 29733381 PMCID: PMC6009585 DOI: 10.1093/nar/gky331] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/23/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] [Imported: 10/26/2023] Open
Abstract
The HSF and FOXO families of transcription factors play evolutionarily conserved roles in stress resistance and lifespan. In humans, the rs2802292 G-allele at FOXO3 locus has been associated with longevity in all human populations tested; moreover, its copy number correlated with reduced frequency of age-related diseases in centenarians. At the molecular level, the intronic rs2802292 G-allele correlated with increased expression of FOXO3, suggesting that FOXO3 intron 2 may represent a regulatory region. Here we show that the 90-bp sequence around the intronic single nucleotide polymorphism rs2802292 has enhancer functions, and that the rs2802292 G-allele creates a novel HSE binding site for HSF1, which induces FOXO3 expression in response to diverse stress stimuli. At the molecular level, HSF1 mediates the occurrence of a promoter-enhancer interaction at FOXO3 locus involving the 5'UTR and the rs2802292 region. These data were confirmed in various cellular models including human HAP1 isogenic cell lines (G/T). Our functional studies highlighted the importance of the HSF1-FOXO3-SOD2/CAT/GADD45A cascade in cellular stress response and survival by promoting ROS detoxification, redox balance and DNA repair. Our findings suggest the existence of an HSF1-FOXO3 axis in human cells that could be involved in stress response pathways functionally regulating lifespan and disease susceptibility.
Collapse
|
research-article |
7 |
54 |
7
|
Germani A, Matrone A, Grossi V, Peserico A, Sanese P, Liuzzi M, Palermo R, Murzilli S, Campese AF, Ingravallo G, Canettieri G, Tezil T, Simone C. Targeted therapy against chemoresistant colorectal cancers: Inhibition of p38α modulates the effect of cisplatin in vitro and in vivo through the tumor suppressor FoxO3A. Cancer Lett 2014; 344:110-118. [PMID: 24215867 DOI: 10.1016/j.canlet.2013.10.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/26/2022] [Imported: 10/26/2023]
Abstract
Chemoresistance is a major obstacle to effective therapy against colorectal cancer (CRC) and may lead to deadly consequences. The metabolism of CRC cells depends highly on the p38 MAPK pathway, whose involvement in maintaining a chemoresistant behavior is currently being investigated. Our previous studies revealed that p38α is the main p38 isoform in CRC cells. Here we show that p38α pharmacological inhibition combined with cisplatin administration decreases colony formation and viability of cancer cells and strongly increases Bax-dependent apoptotic cell death by activating the tumor suppressor protein FoxO3A. Our results indicate that FoxO3A activation up-regulates transcription of its target genes (p21, PTEN, Bim and GADD45), which forces both chemosensitive and chemoresistant CRC cells to undergo apoptosis. Additionally, we found that FoxO3A is required for apoptotic cell death induction, as confirmed by RNA interference experiments. In animal models xenografted with chemoresistant HT29 cells, we further confirmed that the p38-targeted dual therapy strategy produced an increase in apoptosis in cancer tissue leading to tumor regression. Our study uncovers a major role for the p38-FoxO3A axis in chemoresistance, thereby suggesting a new therapeutic approach for CRC treatment; moreover, our results indicate that Bax status may be used as a predictive biomarker.
Collapse
|
|
11 |
44 |
8
|
Sanese P, Forte G, Disciglio V, Grossi V, Simone C. FOXO3 on the Road to Longevity: Lessons From SNPs and Chromatin Hubs. Comput Struct Biotechnol J 2019; 17:737-745. [PMID: 31303978 PMCID: PMC6606898 DOI: 10.1016/j.csbj.2019.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] [Imported: 10/26/2023] Open
Abstract
Health span is driven by a precise interplay between genes and the environment. Cell response to environmental cues is mediated by signaling cascades and genetic variants that affect gene expression by regulating chromatin plasticity. Indeed, they can promote the interaction of promoters with regulatory elements by forming active chromatin hubs. FOXO3 encodes a transcription factor with a strong impact on aging and age-related phenotypes, as it regulates stress response, therefore affecting lifespan. A significant association has been shown between human longevity and several FOXO3 variants located in intron 2. This haplotype block forms a putative aging chromatin hub in which FOXO3 has a central role, as it modulates the physical connection and activity of neighboring genes involved in age-related processes. Here we describe the role of FOXO3 and its single-nucleotide polymorphisms (SNPs) in healthy aging, with a focus on the enhancer region encompassing the SNP rs2802292, which upregulates FOXO3 expression and can promote the activity of the aging hub in response to different stress stimuli. FOXO3 protective effect on lifespan may be due to the accessibility of this region to transcription factors promoting its expression. This could in part explain the differences in FOXO3 association with longevity between genders, as its activity in females may be modulated by estrogens through estrogen receptor response elements located in the rs2802292-encompassing region. Altogether, the molecular mechanisms described here may help establish whether the rs2802292 SNP can be taken advantage of in predictive medicine and define the potential of targeting FOXO3 for age-related diseases.
Collapse
Key Words
- 3C, Chromosome conformation capture
- 5′UTR, Five prime untranslated region
- ACH, Active chromatin hub
- Aging
- Chromatin hub
- ER, Estrogen receptor
- ERE, Estrogen-responsive element
- FHRE, Forkhead response element
- FOXO3
- FOXO3, Forkhead box 3
- GPx, Glutathione peroxidase
- GWAS, Genome-wide association study
- HPS, Hamartomatous polyposis syndrome
- HSE, Heat shock element
- HSF1, Heat shock factor 1
- IGF-1, Insulin growth factor-1
- LD, Linkage disequilibrium
- Longevity
- PHTS, PTEN hamartoma tumor syndrome
- PJS, Peutz-Jeghers syndrome
- ROS, Reactive oxygen species
- SNP
- SNP, Single nucleotide polymorphism
- SNV, Single nucleotide variant
- SOD2, Superoxide dismutase 2
- TAD, Topologically associated domain
Collapse
|
Review |
6 |
35 |
9
|
Grossi V, Lucarelli G, Forte G, Peserico A, Matrone A, Germani A, Rutigliano M, Stella A, Bagnulo R, Loconte D, Galleggiante V, Sanguedolce F, Cagiano S, Bufo P, Trabucco S, Maiorano E, Ditonno P, Battaglia M, Resta N, Simone C. Loss of STK11 expression is an early event in prostate carcinogenesis and predicts therapeutic response to targeted therapy against MAPK/p38. Autophagy 2015; 11:2102-2113. [PMID: 26391455 PMCID: PMC4824604 DOI: 10.1080/15548627.2015.1091910] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 12/21/2022] [Imported: 10/26/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in men; however, the molecular mechanisms leading to its development and progression are not yet fully elucidated. Of note, it has been recently shown that conditional stk11 knockout mice develop atypical hyperplasia and prostate intraepithelial neoplasia (PIN). We recently reported an inverse correlation between the activity of the STK11/AMPK pathway and the MAPK/p38 cascade in HIF1A-dependent malignancies. Furthermore, MAPK/p38 overactivation was detected in benign prostate hyperplasia, PIN and PCa in mice and humans. Here we report that STK11 expression is significantly decreased in PCa compared to normal tissues. Moreover, STK11 protein levels decreased throughout prostate carcinogenesis. To gain insight into the role of STK11-MAPK/p38 activity balance in PCa, we treated PCa cell lines and primary biopsies with a well-established MAPK14-MAPK11 inhibitor (SB202190), which has been extensively used in vitro and in vivo. Our results indicate that inhibition of MAPK/p38 significantly affects PCa cell survival in an STK11-dependent manner. Indeed, we found that pharmacologic inactivation of MAPK/p38 does not affect viability of STK11-proficient PCa cells due to the triggering of the AMPK-dependent autophagic pathway, while it induces apoptosis in STK11-deficient cells irrespective of androgen receptor (AR) status. Of note, AMPK inactivation or autophagy inhibition in STK11-proficient cells sensitize SB202190-treated PCa cells to apoptosis. On the other end, reconstitution of functional STK11 in STK11-deficient PCa cells abrogates apoptosis. Collectively, our data show that STK11 is a key factor involved in the early phases of prostate carcinogenesis, and suggest that it might be used as a predictive marker of therapeutic response to MAPK/p38 inhibitors in PCa patients.
Collapse
|
research-article |
10 |
33 |
10
|
Chiacchiera F, Grossi V, Cappellari M, Peserico A, Simonatto M, Germani A, Russo S, Moyer MP, Resta N, Murzilli S, Simone C. Blocking p38/ERK crosstalk affects colorectal cancer growth by inducing apoptosis in vitro and in preclinical mouse models. Cancer Lett 2012; 324:98-108. [PMID: 22579651 DOI: 10.1016/j.canlet.2012.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 02/08/2023] [Imported: 10/26/2023]
Abstract
We recently demonstrated that p38α is required to maintain colorectal cancer (CRC) metabolism, as its inhibition leads to FoxO3A activation, autophagy, cell death, and tumor growth reduction both in vitro and in vivo. Here we show that inhibition of p38α is followed by TRAIL-mediated activation of caspase-8 and FoxO3A-dependent HER3 upregulation with consequent overactivation of the MEK-ERK1/2 survival pathway. p38α and MEK combined inhibition specifically induces apoptosis by enabling TRAIL signaling propagation through t-Bid and caspase-3, and fosters cell death in CRC cells and preclinical mouse models. Current MEK1-directed pharmacological strategies could thus be exploited, in combination with p38α inhibition, to develop new approaches for CRC treatment.
Collapse
|
|
13 |
32 |
11
|
Matrone A, Grossi V, Chiacchiera F, Fina E, Cappellari M, Caringella AM, Di Naro E, Loverro G, Simone C. p38alpha is required for ovarian cancer cell metabolism and survival. Int J Gynecol Cancer 2010; 20:203-211. [PMID: 20169663 DOI: 10.1111/igc.0b013e3181c8ca12] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] [Imported: 10/26/2023] Open
Abstract
INTRODUCTION Ovarian cancer is highly sensitive to chemotherapy but also shows a high rate of recurrence and drug resistance. These negative outcomes mostly depend on altered apoptotic pathways, making the design of new therapeutic strategies based on the induction of other types of cell death highly desirable. Several lines of research are now addressing cancer-specific features to specifically target tumor cells, thus reducing adverse effects. In this light, a great deal of attention has been devoted to the metabolic reprogramming occurring in cancer cells, which display increased levels of glycolysis compared with their normal counterparts. We recently showed that inhibition of p38alpha impairs key metabolic functions of colorectal cancer cells, inducing growth arrest, autophagy, and cell death both in vivo and in vitro. These effects are mediated by a switch from hypoxia-inducible factor 1alpha (HIF1alpha) to forkhead transcription factor O (FoxO)-dependent transcription. METHODS We first characterized p38 expression in OVCAR-3, A2780, and SKOV-3 ovarian cancer cell lines. Then, we treated these cells with the p38alpha/p38beta-specific inhibitor SB202190 and performed a morphological, proliferation, and survival analyses. Finally, we studied HIF1alpha and FoxO3A expressions and signaling pathways to evaluate their role in SB202190-induced effects. RESULTS p38alpha blockade induces the formation of intracellular autophagic vacuoles and reduces growth and viability of ovarian cancer cells. As in colorectal cancer, the underlying molecular mechanism seems to rely on a shift from HIF1alpha- to FoxO3A-dependent transcription, which is promoted by the activation of the adenosine monophosphate-activated protein kinase pathway. CONCLUSIONS These data corroborate the hypothesis that pharmacological modulation of genes involved in cancer-specific homeostasis, such as p38alpha, might be exploited to design new therapeutic approaches to cancer treatment.
Collapse
|
|
15 |
29 |
12
|
Celestini V, Tezil T, Russo L, Fasano C, Sanese P, Forte G, Peserico A, Lepore Signorile M, Longo G, De Rasmo D, Signorile A, Gadaleta RM, Scialpi N, Terao M, Garattini E, Cocco T, Villani G, Moschetta A, Grossi V, Simone C. Uncoupling FoxO3A mitochondrial and nuclear functions in cancer cells undergoing metabolic stress and chemotherapy. Cell Death Dis 2018; 9:231. [PMID: 29445193 PMCID: PMC5833443 DOI: 10.1038/s41419-018-0336-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/19/2023] [Imported: 08/29/2023]
Abstract
While aberrant cancer cell growth is frequently associated with altered biochemical metabolism, normal mitochondrial functions are usually preserved and necessary for full malignant transformation. The transcription factor FoxO3A is a key determinant of cancer cell homeostasis, playing a dual role in survival/death response to metabolic stress and cancer therapeutics. We recently described a novel mitochondrial arm of the AMPK-FoxO3A axis in normal cells upon nutrient shortage. Here, we show that in metabolically stressed cancer cells, FoxO3A is recruited to the mitochondria through activation of MEK/ERK and AMPK, which phosphorylate serine 12 and 30, respectively, on FoxO3A N-terminal domain. Subsequently, FoxO3A is imported and cleaved to reach mitochondrial DNA, where it activates expression of the mitochondrial genome to support mitochondrial metabolism. Using FoxO3A-/- cancer cells generated with the CRISPR/Cas9 genome editing system and reconstituted with FoxO3A mutants being impaired in their nuclear or mitochondrial subcellular localization, we show that mitochondrial FoxO3A promotes survival in response to metabolic stress. In cancer cells treated with chemotherapeutic agents, accumulation of FoxO3A into the mitochondria promoted survival in a MEK/ERK-dependent manner, while mitochondrial FoxO3A was required for apoptosis induction by metformin. Elucidation of FoxO3A mitochondrial vs. nuclear functions in cancer cell homeostasis might help devise novel therapeutic strategies to selectively disable FoxO3A prosurvival activity.
Collapse
|
research-article |
7 |
27 |
13
|
Grossi V, Liuzzi M, Murzilli S, Martelli N, Napoli A, Ingravallo G, Del Rio A, Simone C. Sorafenib inhibits p38α activity in colorectal cancer cells and synergizes with the DFG-in inhibitor SB202190 to increase apoptotic response. Cancer Biol Ther 2012; 13:1471-1481. [PMID: 22986232 PMCID: PMC3542239 DOI: 10.4161/cbt.22254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] [Imported: 10/26/2023] Open
Abstract
In the search for new strategies to efficiently fight colorectal cancer, efforts are being increasingly focused on targeting regulatory signaling pathways involved in cancer-specific features. As a result, several studies have recently addressed the therapeutic potential of molecularly-targeted drugs capable of inhibiting the activity of protein kinases involved in relevant signaling cascades. Here we show that simultaneous inhibition of the DFG-in and DFG-out conformations of p38α by means of type-I and type-II inhibitors is beneficial to impair more efficiently its kinase activity. Moreover, we found that SB202190 (type-I) and sorafenib (type-II) synergize at the molecular and biological level, as co-treatment with these compounds enhances tumor growth inhibition and induction of apoptosis both in colorectal cancer cell lines and animal models. These results support the need to reconsider sorafenib as a therapeutic agent against colorectal cancer and provide new insights that underline the importance to elucidate the activity of protein kinase inhibitors for the treatment of colorectal carcinoma.
Collapse
|
research-article |
13 |
20 |
14
|
Grossi V, Fasano C, Celestini V, Lepore Signorile M, Sanese P, Simone C. Chasing the FOXO3: Insights into Its New Mitochondrial Lair in Colorectal Cancer Landscape. Cancers (Basel) 2019; 11:414. [PMID: 30909600 PMCID: PMC6468785 DOI: 10.3390/cancers11030414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Colorectal cancer (CRC) poses a formidable challenge in terms of molecular heterogeneity, as it involves a variety of cancer-related pathways and molecular changes unique to an individual's tumor. On the other hand, recent advances in DNA sequencing technologies provide an unprecedented capacity to comprehensively identify the genetic alterations resulting in tumorigenesis, raising the hope that new therapeutic approaches based on molecularly targeted drugs may prevent the occurrence of chemoresistance. Regulation of the transcription factor FOXO3a in response to extracellular cues plays a fundamental role in cellular homeostasis, being part of the molecular machinery that drives cells towards survival or death. Indeed, FOXO3a is controlled by a range of external stimuli, which not only influence its transcriptional activity, but also affect its subcellular localization. These regulation mechanisms are mediated by cancer-related signaling pathways that eventually drive changes in FOXO3a post-translational modifications (e.g., phosphorylation). Recent results showed that FOXO3a is imported into the mitochondria in tumor cells and tissues subjected to metabolic stress and cancer therapeutics, where it induces expression of the mitochondrial genome to support mitochondrial metabolism and cell survival. The current review discusses the potential clinical relevance of multidrug therapies that drive cancer cell fate by regulating critical pathways converging on FOXO3a.
Collapse
|
Review |
6 |
15 |
15
|
Sanese P, Fasano C, Buscemi G, Bottino C, Corbetta S, Fabini E, Silvestri V, Valentini V, Disciglio V, Forte G, Lepore Signorile M, De Marco K, Bertora S, Grossi V, Guven U, Porta N, Di Maio V, Manoni E, Giannelli G, Bartolini M, Del Rio A, Caretti G, Ottini L, Simone C. Targeting SMYD3 to Sensitize Homologous Recombination-Proficient Tumors to PARP-Mediated Synthetic Lethality. iScience 2020; 23:101604. [PMID: 33205017 PMCID: PMC7648160 DOI: 10.1016/j.isci.2020.101604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/07/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] [Imported: 10/26/2023] Open
Abstract
SMYD3 is frequently overexpressed in a wide variety of cancers. Indeed, its inactivation reduces tumor growth in preclinical in vivo animal models. However, extensive characterization in vitro failed to clarify SMYD3 function in cancer cells, although confirming its importance in carcinogenesis. Taking advantage of a SMYD3 mutant variant identified in a high-risk breast cancer family, here we show that SMYD3 phosphorylation by ATM enables the formation of a multiprotein complex including ATM, SMYD3, CHK2, and BRCA2, which is required for the final loading of RAD51 at DNA double-strand break sites and completion of homologous recombination (HR). Remarkably, SMYD3 pharmacological inhibition sensitizes HR-proficient cancer cells to PARP inhibitors, thereby extending the potential of the synthetic lethality approach in human tumors.
Collapse
|
research-article |
5 |
14 |
16
|
Forte G, Grossi V, Celestini V, Lucisano G, Scardapane M, Varvara D, Patruno M, Bagnulo R, Loconte D, Giunti L, Petracca A, Giglio S, Genuardi M, Pellegrini F, Resta N, Simone C. Characterization of the rs2802292 SNP identifies FOXO3A as a modifier locus predicting cancer risk in patients with PJS and PHTS hamartomatous polyposis syndromes. BMC Cancer 2014; 14:661. [PMID: 25208626 PMCID: PMC4167262 DOI: 10.1186/1471-2407-14-661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/02/2014] [Indexed: 12/22/2022] [Imported: 10/26/2023] Open
Abstract
BACKGROUND Hamartomatous polyposis syndromes (HPS) are inherited conditions associated with high cancer risk. They include the Peutz-Jeghers and the PTEN hamartoma tumor syndromes, which are caused by mutations in the LKB1 and PTEN genes, respectively. Estimation of cancer risk is crucial in order to optimize surveillance, but no prognostic markers are currently available for these conditions. Our study relies on a 'signal transduction' hypothesis based on the crosstalk between LKB1/AMPK and PI3K/PTEN/Akt signaling at the level of the tumor suppressor protein FoxO3A. Interestingly, the FOXO3A rs2802292 G-allele was shown to be associated with longevity, reduced risk of aging-related diseases and increased expression of FoxO3A mRNA. METHODS We typed rs2802292 in 150 HPS unrelated patients and characterized the expression of FoxO3A by quantitative PCR and immunoblot analysis in human intestinal cell lines. RESULTS We found a significantly higher risk for malignancies in females and TT genotype carriers compared to patients having at least one G-allele. Subgroup analysis for each HPS syndrome revealed a G-allele-associated beneficial effect on cancer risk occurring mainly in males. Molecular characterization of human intestinal cell lines showed that the G-allele significantly correlated with increased basal expression of FoxO3A mRNA and protein. CONCLUSION Our results suggest an inverse correlation between the protective allele (G) copy number and cancer risk, and might be useful to optimize surveillance in HPS patients. Further investigations are needed to confirm our hypothesis and to ascertain whether differences in therapeutic response exist across genotypes.
Collapse
|
research-article |
11 |
9 |
17
|
Madia F, Grossi V, Peserico A, Simone C. Updates from the Intestinal Front Line: Autophagic Weapons against Inflammation and Cancer. Cells 2012; 1:535-557. [PMID: 24710489 PMCID: PMC3901109 DOI: 10.3390/cells1030535] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/04/2012] [Accepted: 08/01/2012] [Indexed: 12/11/2022] [Imported: 10/26/2023] Open
Abstract
The intestine lies at the interface between the organism and its environment and responds to infection/inflammation in a multi-leveled manner, potentially leading to chronic inflammatory pathologies and cancer formation. Indeed, the immune response at the intestinal epithelium has been found to be involved in the origin and development of colorectal cancer, which is the third most commonly diagnosed neoplastic disease. Among the mechanisms induced upon inflammation, autophagy appears as a defensive strategy for the clearance of invading microbes and intracellular waste components. Autophagy has also been found to play an important role in colorectal cancer, where it seems to have a pro-survival or pro-death function depending on the stage of the neoplastic process. In this paper we discuss the dual role of autophagy in colorectal cancer and review evidence showing that modulation of autophagy affects the immune response and cancer biology. The study of key players involved in autophagy might contribute to the design of new approaches for colorectal cancer, consisting in combined therapies capable of modifying cancer-specific metabolism rather than simply evoking a generic apoptotic and/or autophagic response, thus enhancing the efficacy of currently used drugs and treatments.
Collapse
|
review-article |
13 |
8 |
18
|
Lepore Signorile M, Grossi V, Di Franco S, Forte G, Disciglio V, Fasano C, Sanese P, De Marco K, Susca FC, Mangiapane LR, Nicotra A, Di Carlo G, Dituri F, Giannelli G, Ingravallo G, Canettieri G, Stassi G, Simone C. Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death Dis 2021; 12:316. [PMID: 33767160 PMCID: PMC7994846 DOI: 10.1038/s41419-021-03572-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 02/01/2023] [Imported: 08/29/2023]
Abstract
The prognosis of locally advanced colorectal cancer (CRC) is currently unsatisfactory. This is mainly due to drug resistance, recurrence, and subsequent metastatic dissemination, which are sustained by the cancer stem cell (CSC) population. The main driver of the CSC gene expression program is Wnt signaling, and previous reports indicate that Wnt3a can activate p38 MAPK. Besides, p38 was shown to feed into the canonical Wnt/β-catenin pathway. Here we show that patient-derived locally advanced CRC stem cells (CRC-SCs) are characterized by increased expression of p38α and are "addicted" to its kinase activity. Of note, we found that stage III CRC patients with high p38α levels display reduced disease-free and progression-free survival. Extensive molecular analysis in patient-derived CRC-SC tumorspheres and APCMin/+ mice intestinal organoids revealed that p38α acts as a β-catenin chromatin-associated kinase required for the regulation of a signaling platform involved in tumor proliferation, metastatic dissemination, and chemoresistance in these CRC model systems. In particular, the p38α kinase inhibitor ralimetinib, which has already entered clinical trials, promoted sensitization of patient-derived CRC-SCs to chemotherapeutic agents commonly used for CRC treatment and showed a synthetic lethality effect when used in combination with the MEK1 inhibitor trametinib. Taken together, these results suggest that p38α may be targeted in CSCs to devise new personalized CRC treatment strategies.
Collapse
|
research-article |
4 |
7 |
19
|
Loconte DC, Patruno M, Lastella P, Di Gregorio C, Grossi V, Forte G, Ingravallo G, Varvara D, Bagnulo R, Simone C, Resta N, Stella A. A rare MSH2 mutation causes defective binding to hMSH6, normal hMSH2 staining, and loss of hMSH6 at advanced cancer stage. Hum Pathol 2014; 45:2162-2167. [PMID: 25106712 DOI: 10.1016/j.humpath.2014.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 01/13/2023] [Imported: 10/26/2023]
Abstract
Lynch syndrome is caused by germline mutations in 1 of the 4 DNA mismatch repair genes (MLH1, MSH2, MSH6, and PMS2). Mutations in MSH2 cause concomitant loss of hMSH6, whereas MLH1 mutations lead to concurrent loss of PMS2. Much less frequent mutations in MSH6 or PMS2 are associated with the isolated loss of the corresponding proteins. We here demonstrate the causative role of the first germline mutation of MSH2, c.1249-1251 dupGTT (p.417V-418I dupV), associated with normal hMSH2 expression and lack of hMSH6 protein despite a normal MSH6 gene sequence. hMSH6 protein was completely lost only in advanced cancer stages due to 2 different "second hits": a whole MSH2 gene deletion and a frame-shifting insertion in the MSH6 (C)8 repeat in the coding sequence.
Collapse
|
Case Reports |
11 |
6 |
20
|
Zollino M, Ranieri C, Grossi V, Leoni C, Lattante S, Mazzà D, Simone C, Resta N. Germline pathogenic variant in PIK3CA leading to symmetrical overgrowth with marked macrocephaly and mild global developmental delay. Mol Genet Genomic Med 2019; 7:e845. [PMID: 31290289 PMCID: PMC6687641 DOI: 10.1002/mgg3.845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/18/2019] [Indexed: 11/13/2022] [Imported: 10/26/2023] Open
Abstract
BACKGROUND Activating pathogenic variants in PIK3CA gene usually occur at a mosaic status and underlie a variety of segmental overgrowth phenotypes. Germline variants in PIK3CA have been rarely reported, described in a total of 12 patients with macrocephaly to date. Clinical and prognostic features of these germline variants have not been described in detail yet. METHODS Targeted deep sequencing by custom panel of the 21 genes involved in the PI3K/AKT/mTOR pathway was performed in a 13-year-old boy with macrocephaly and physical overgrowth. PI3K/AKT/mTOR pathway analysis was performed in fibroblasts by Western blot. The effects of miransertib (AKT inhibitor) and rapamycin (mTOR inhibitor) were assessed. RESULTS A de novo pathogenic variant (c.1090G>C; p.Gly364Arg) in PIK3CA gene was detected in a non-mosaic status in peripheral blood cells, buccal smears, and skin fibroblasts. Increased levels of phosphorylated AKT residues were observed in fibroblasts, rescued by miransertib. CONCLUSION Germline variants in PIK3CA are associated to a mild phenotype characterized by overgrowth, severe macrocephaly, mild intellectual disability, and few dysmorphic features. Investigations of PI3K/AKT/mTOR pathway should be performed in patients with severe macrocephaly and unspecific physical overgrowth. Longitudinal studies to assess prognosis and cancer predisposition are recommended.
Collapse
|
Case Reports |
6 |
6 |
21
|
Lepore Signorile M, Grossi V, Fasano C, Forte G, Disciglio V, Sanese P, De Marco K, La Rocca F, Armentano R, Valentini AM, Giannelli G, Simone C. c-MYC Protein Stability Is Sustained by MAPKs in Colorectal Cancer. Cancers (Basel) 2022; 14:4840. [PMID: 36230763 PMCID: PMC9562641 DOI: 10.3390/cancers14194840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] [Imported: 10/26/2023] Open
Abstract
c-MYC is one of the most important factors involved in colorectal cancer (CRC) initiation and progression; indeed, it is found to be upregulated in up to 80% of sporadic cases. During colorectal carcinogenesis, c-MYC is maintained upregulated through β-catenin-mediated transcriptional activation and ERK-mediated post-translational stabilization. Our data demonstrate that p38α, a kinase involved in CRC metabolism and survival, contributes to c-Myc protein stability. Moreover, we show that p38α, like ERK, stabilizes c-MYC protein levels by preventing its ubiquitination. Of note, we found that p38α phosphorylates c-MYC and interacts with it both in vitro and in cellulo. Extensive molecular analyses in the cellular and in vivo models revealed that the p38α kinase inhibitors, SB202190 and ralimetinib, affect c-MYC protein levels. Ralimetinib also exhibited a synthetic lethality effect when used in combination with the MEK1 inhibitor trametinib. Overall, our findings identify p38α as a promising therapeutic target, acting directly on c-MYC, with potential implications for countering c-MYC-mediated CRC proliferation, metastatic dissemination, and chemoresistance.
Collapse
|
research-article |
3 |
5 |
22
|
Disciglio V, Fasano C, Cariola F, Forte G, Grossi V, Sanese P, Lepore Signorile M, Resta N, Lotesoriere C, Stella A, Lolli I, Simone C. Gastric polyposis and desmoid tumours as a new familial adenomatous polyposis clinical variant associated with APC mutation at the extreme 3'-end. J Med Genet 2020; 57:356-360. [PMID: 31591141 PMCID: PMC7231465 DOI: 10.1136/jmedgenet-2019-106299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/23/2023] [Imported: 10/26/2023]
Abstract
Germline mutations of the APC gene, which encodes a multidomain protein of 2843 amino acid residues, cause familial adenomatous polyposis (FAP). Three FAP clinical variants are correlated with the location of APC mutations: (1) classic FAP with profuse polyposis (>1000 adenomas), associated with mutations from codon 1250 to 1424; (2) attenuated FAP (<100 adenomas), associated with mutations at APC extremities (before codon 157 and after codon 1595); (3) classic FAP with intermediate colonic polyposis (100-1000 adenomas), associated with mutations located in the remaining part of APC In an effort to decipher the clinical phenotype associated with APC C-terminal germline truncating mutations in patients with FAP, after screening APC mutations in one family whose members (n=4) developed gastric polyposis, colon oligo-polyposis and desmoid tumours, we performed a literature meta-analysis of clinically characterised patients (n=97) harbouring truncating mutations in APC C-terminus. The APC distal mutations identified in this study cluster with a phenotype characterised by colon oligo-polyposis, diffuse gastric polyposis and desmoid tumours. In conclusion, we describe a novel FAP clinical variant, which we propose to refer to as Gastric Polyposis and Desmoid FAP, that may require tailored management.
Collapse
|
brief-report |
5 |
5 |
23
|
Grossi V, Simone C. Special Agents Hunting Down Women Silent Killer: The Emerging Role of the p38α Kinase. JOURNAL OF ONCOLOGY 2012; 2012:382159. [PMID: 22481926 PMCID: PMC3317177 DOI: 10.1155/2012/382159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/21/2011] [Accepted: 12/29/2011] [Indexed: 02/08/2023] [Imported: 10/26/2023]
Abstract
Ovarian cancer is sensitive to chemotherapy with platinum compounds; however, the therapy success rate is significantly lowered by a high incidence of recurrence and by the acquisition of drug resistance. These negative outcomes mainly depend on altered apoptotic and drug resistance pathways, determining the need for the design of new therapeutic strategies to improve patient survival. This challenge has become even more critical because it has been recognized that hindering uncontrolled cell growth is not sufficient as the only curative approach. In fact, while current therapies are mostly conceived to impair survival of highly proliferating cells, several lines of research are now focusing on cancer-specific features to specifically target malignant cells with the aim of avoiding drug resistance and reducing adverse effects. Recently, great interest has been generated by the identification of metabolic reprogramming mechanisms occurring in cancer cells, such as the increase in glycolysis levels. In this light, pharmacologic manipulation of relevant pathways involved in cancer-specific metabolism and drug resistance could prove an effective approach to treat ovarian cancer patients.
Collapse
|
review-article |
13 |
5 |
24
|
Lepore Signorile M, Grossi V, Fasano C, Simone C. Colorectal Cancer Chemoprevention: A Dream Coming True? Int J Mol Sci 2023; 24:7597. [PMID: 37108756 PMCID: PMC10140862 DOI: 10.3390/ijms24087597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] [Imported: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest forms of cancer worldwide. CRC development occurs mainly through the adenoma-carcinoma sequence, which can last decades, giving the opportunity for primary prevention and early detection. CRC prevention involves different approaches, ranging from fecal occult blood testing and colonoscopy screening to chemoprevention. In this review, we discuss the main findings gathered in the field of CRC chemoprevention, focusing on different target populations and on various precancerous lesions that can be used as efficacy evaluation endpoints for chemoprevention. The ideal chemopreventive agent should be well tolerated and easy to administer, with low side effects. Moreover, it should be readily available at a low cost. These properties are crucial because these compounds are meant to be used for a long time in populations with different CRC risk profiles. Several agents have been investigated so far, some of which are currently used in clinical practice. However, further investigation is needed to devise a comprehensive and effective chemoprevention strategy for CRC.
Collapse
|
Review |
2 |
4 |
25
|
Mancarella S, Serino G, Gigante I, Cigliano A, Ribback S, Sanese P, Grossi V, Simone C, Armentano R, Evert M, Calvisi DF, Giannelli G. CD90 is regulated by notch1 and hallmarks a more aggressive intrahepatic cholangiocarcinoma phenotype. J Exp Clin Cancer Res 2022; 41:65. [PMID: 35172861 PMCID: PMC8851853 DOI: 10.1186/s13046-022-02283-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/10/2022] [Imported: 10/26/2023] Open
Abstract
BACKGROUND Intrahepatic Cholangiocarcinoma (iCCA) is characterized by a strong stromal reaction playing a role in tumor progression. Thymus cell antigen 1 (THY1), also called Cluster of Differentiation 90 (CD90), is a key regulator of cell-cell and cell-matrix interaction. In iCCA, CD90 has been reported to be associated with a poor prognosis. In an iCCA PDX model, we recently found that CD90 was downregulated in mice treated with the Notch γ-secretase inhibitor Crenigacestat. The study aims to investigate the role of CD90 in relation to the NOTCH pathway. METHODS THY1/CD90 gene and protein expression was evaluated in human iCCA tissues and xenograft models by qRT-PCR, immunohistochemistry, and immunofluorescence. Notch1 inhibition was achieved by siRNA. THY1/CD90 functions were investigated in xenograft models built with HuCCT1 and KKU-M213 cell lines, engineered to overexpress or knockdown THY1, respectively. RESULTS CD90 co-localized with EPCAM, showing its epithelial origin. In vitro, NOTCH1 silencing triggered HES1 and THY1 down-regulation. RBPJ, a critical transcriptional regulator of NOTCH signaling, exhibited putative binding sites on the THY1 promoter and bound to the latter, implying CD90 as a downstream NOTCH pathway effector. In vivo, Crenigacestat suppressed iCCA growth and reduced CD90 expression in the PDX model. In the xenograft model, Crenigacestat inhibited tumor growth of HuCCT1 cells transfected to overexpress CD90 and KKU-M213 cells constitutively expressing high levels of CD90, while not affecting the growth of HuCCT1 control cells and KKU-M213 depleted of CD90. In an iCCA cohort, patients with higher expression levels of NOTCH1/HES1/THY1 displayed a significantly shorter survival. CONCLUSIONS iCCA patients with higher NOTCH1/HES1/THY1 expression have the worst prognosis, but they are more likely to benefit from Notch signaling inhibition. These findings represent the scientific rationale for testing NOTCH1 inhibitors in clinical trials, taking the first step toward precision medicine for iCCA.
Collapse
|
research-article |
3 |
3 |