1
|
Li M, Liu F, Zhang F, Zhou W, Jiang X, Yang Y, Qu K, Wang Y, Ma Q, Wang T, Bai L, Wang Z, Song X, Zhu Y, Yuan R, Gao Y, Liu Y, Jin Y, Li H, Xiang S, Ye Y, Zhang Y, Jiang L, Hu Y, Hao Y, Lu W, Chen S, Gu J, Zhou J, Gong W, Zhang Y, Wang X, Liu X, Liu C, Liu H, Liu Y, Liu Y. Genomic ERBB2/ ERBB3 mutations promote PD-L1-mediated immune escape in gallbladder cancer: a whole-exome sequencing analysis. Gut 2019; 68:1024-1033. [PMID: 29954840 DOI: 10.1136/gutjnl-2018-316039] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 02/05/2023] [Imported: 09/18/2023]
Abstract
OBJECTIVES Patients with gallbladder carcinoma (GBC) lack effective treatment methods largely due to the inadequacy of both molecular characterisation and potential therapeutic targets. We previously uncovered a spectrum of genomic alterations and identified recurrent mutations in the ErbB pathway in GBC. Here, we aimed to study recurrent mutations of genes and pathways in a larger cohort of patients with GBC and investigate the potential mechanisms and clinical significance of these mutations. DESIGN We performed whole-exome sequencing (WES) in 157 patients with GBC. Functional experiments were applied in GBC cell lines to explore the oncogenic roles of ERBB2/ERBB3 hotspot mutations, their correlation with PD-L1 expression and the underlying mechanisms. ERBB inhibitors and a PD-L1 blocker were used to evaluate the anticancer activities in co-culture systems in vitro and in vivo. RESULTS WES identified ERBB2 and ERBB3 mutations at a frequency of 7%-8% in the expanded cohort, and patients with ERBB2/ERBB3 mutations exhibited poorer prognoses. A set of in vitro and in vivo experiments revealed increased proliferation/migration on ERBB2/ERBB3 mutation. Ectopic expression of ERBB2/ERBB3 mutants upregulated PD-L1 expression in GBC cells, effectively suppressed normal T-cell-mediated cytotoxicity in vitro through activation of the PI3K/Akt signalling pathway and contributed to the growth and progression of GBC in vivo. Treatment with an ERBB2/ERBB3 inhibitor or a PD-L1 monoclonal antibody reversed these immunosuppressive effects, and combined therapy revealed promising therapeutic activities. CONCLUSIONS ERBB2/ERBB3 mutations may serve as useful biomarkers in identifying patients who are sensitive to ERBB2/ERBB3 inhibitors and PD-L1 monoclonal antibody treatment. TRIAL REGISTRATION NUMBER NCT02442414;Pre-results.
Collapse
|
|
6 |
124 |
2
|
Shen S, Liu H, Wang Y, Wang J, Ni X, Ai Z, Pan H, Liu H, Shao Y. Long non-coding RNA CRNDE promotes gallbladder carcinoma carcinogenesis and as a scaffold of DMBT1 and C-IAP1 complexes to activating PI3K-AKT pathway. Oncotarget 2018; 7:72833-72844. [PMID: 27637083 PMCID: PMC5341947 DOI: 10.18632/oncotarget.12023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/05/2016] [Indexed: 01/26/2023] [Imported: 09/18/2023] Open
Abstract
Deleted in malignant brain tumors 1 (DMBT1) is deleted during cancer progression and as a potential tumor-suppressor gene in various types of cancer. However, its role in Gallbladder cancer remains poorly understood. DMBT1 has low-expression and deletion of copy number were detected in normal tissues and GBC cancer tissues by qRT-PCR. Knockdown of DMBT1 increased migration and invasion and overexpressed DMBT1 impaired migration and invasion in GBC cells. We also evaluated the molecular mechanism of DMBT1 by RNA sequencing and GSEA analysis. RNA-Pulldown and RIP assay authenticated CRNDE can specified binding with DMBT1 and c-IAP1. Downregulation of DMBT1 resulted in significant change of gene expression (at least 2-fold) in PI3K-AKT pathway, increased expression of MMP-9, JUK-1, ERK and AKT, activating PI3K-AKT pathway lead to GBC carcinogenesis.We for the first time reported, DMBT1 as a prognosis biomarker, is low-expressed in GBC tumors, and CRNDE act as a scaffold to recruit the DMBT1 and c-IAP1, promotes the PI3K-AKT pathway. Our study reveals DMBT1 may be an important contributor to GBC cancer development.
Collapse
|
Journal Article |
7 |
49 |
3
|
Wang J, Shen S, Wang B, Ni X, Liu H, Ni X, Yu R, Suo T, Liu H. Serum lipid levels are the risk factors of gallbladder stones: a population-based study in China. Lipids Health Dis 2020; 19:50. [PMID: 32192520 PMCID: PMC7083041 DOI: 10.1186/s12944-019-1184-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/30/2019] [Indexed: 01/06/2023] [Imported: 09/01/2023] Open
Abstract
BACKGROUND Gallstones are the cause of a majority of biliary tract discomfort. Although many community-based studies have addressed the risk factors for gallstone disease (GSD), little is known about GSD prevalence and risk factors in Chinese populations. METHODS From January 2014 to January 2015, participants (N = 2,068,523) were recruited by Meinian Onehealth Healthcare Co., Ltd. They received a physical examination, and GSD was determined by ultrasound. RESULTS The prevalence of GSD was 8.1%. Risks of GSD were similar between males and females in all age groups. Risk factors for gallstones include body mass index, waist circumference, waist-to-hip ratio, and physical activity, as well as biological factors such as age, sex, and elevated blood lipid levels. Serum lipid levels of GSD were statistically different from controls in total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (H-DL), low-density lipoprotein cholesterol (LDL), and apolipoprotein B (APOB). Furthermore, TC > 5.00 mmol/L, TG > 1.39 mmol/L, HDL < 1.19 mmol/L, LDL > 3.04 mmol/L, and APOB > 0.97 mmol/L were risk factors for gallstones. CONCLUSIONS Serum lipid levels are associated with GSD. TC, TG, LDL, and APOB are risk factors, while HDL is a protective factor.
Collapse
|
Journal Article |
5 |
30 |
4
|
HDAC1 promoted migration and invasion binding with TCF12 by promoting EMT progress in gallbladder cancer. Oncotarget 2017; 7:32754-64. [PMID: 27092878 PMCID: PMC5078048 DOI: 10.18632/oncotarget.8740] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/28/2016] [Indexed: 12/29/2022] [Imported: 01/25/2025] Open
Abstract
The identification of prognostic markers for gallbladder cancer is needed for clinical practice. Histone deacetylases (HDACs) play an important role in tumor development and progression by modifying histone and non-histone proteins. However, the expression of HDAC1 in patients with gallbladder cancer is still unknown. Here, we reported that HDAC1 expression was elevated in cancerous tissue and correlated with lymph node metastasis and poorer overall survival in patients with GBC. Knockdown of HDAC1 using lentivirus delivery of HDAC1-specific shRNA abrogated the migration and invasion of GBC cells in vitro. TCF-12, as the HDAC1 binding protein, has also correlates with poor prognosis in GBC patients. And there is a positive correlation between HDAC1 and TCF-12 which leading the high invasion and migration ability of GBC cells. Taken together, our data suggested that HDAC1 and TCF-12 are a potential prognostic maker and may be a molecular target for inhibiting invasion and metastasis in GBC.
Collapse
|
Journal Article |
8 |
29 |
5
|
Chen P, Wang Y, Li J, Bo X, Wang J, Nan L, Wang C, Ba Q, Liu H, Wang H. Diversity and intratumoral heterogeneity in human gallbladder cancer progression revealed by single-cell RNA sequencing. Clin Transl Med 2021; 11:e462. [PMID: 34185421 PMCID: PMC8236117 DOI: 10.1002/ctm2.462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/03/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022] [Imported: 09/18/2023] Open
Abstract
BACKGROUND Gallbladder cancer (GC) is a malignant disease characterized with highly cellular heterogeneity and poor prognosis. Determining the intratumoral heterogeneity and microenvironment (TME) can provide novel therapeutic strategies for GC. METHODS We performed the single-cell RNA sequencing on the primary and lymph node metastatic gallbladder tumors and the adjacent normal tissues of five patients. The transcriptomic atlas and ligand-receptor-based intercellular communication networks of the single cells were characterized. RESULTS The transcriptomic landscape of 24,887 single cells was obtained and characterized as 10 cellular clusters, including epithelial, neuroendocrine tumor cells, T&NK cells, B cells, RGS5+ fibroblasts, POSTN+ fibroblasts, PDGFRA+ fibroblasts, endothelial, myeloid cells, and mast cells. Different types of GC harbored distinct epithelial tumor subpopulations, and squamous cell carcinoma could be differentiated from adenocarcinoma cells. Abundant immune cells infiltrated into adenocarcinoma and squamous cell carcinoma, rather than neuroendocrine neoplasms, which showed significant enrichment of stromal cells. CD4+/FOXP3+ T-reg and CD4+/CXCL13+ T helper cells with higher exhausting biomarkers, as well as a dynamic lineage transition of tumor-associated macrophages from CCL20hi /CD163lo , CCL20lo /CD163hi to APOE+, were identified in GC tissues, suggesting the immunosuppressive and tumor-promoting status of immune cells in TME. Two distinct endothelial cells (KDR+ and ACKR1+), which were involved in angiogenesis and lymphangiogenesis, showed remarkable ligand-receptor interactions with primary GC cells and macrophages in gallbladder tumors. CONCLUSIONS This study reveals a widespread reprogramming across multiple cell populations in GC progression, dissects the cellular heterogeneity and interactions in gallbladder TME, and provides potential therapeutic targets for GC.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Disease Progression
- Female
- Follow-Up Studies
- Gallbladder Neoplasms/genetics
- Gallbladder Neoplasms/metabolism
- Gallbladder Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Middle Aged
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Neuroendocrine Tumors/genetics
- Neuroendocrine Tumors/metabolism
- Neuroendocrine Tumors/pathology
- Prognosis
- Single-Cell Analysis/methods
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Survival Rate
- Transcriptome
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
|
research-article |
4 |
27 |
6
|
PDK1 induces JunB, EMT, cell migration and invasion in human gallbladder cancer. Oncotarget 2016; 6:29076-86. [PMID: 26318166 PMCID: PMC4745712 DOI: 10.18632/oncotarget.4931] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022] [Imported: 01/25/2025] Open
Abstract
The protein 3-phosphoinositide-dependent protein kinase 1 (PDK1) is upregulated in cancer. Here we showed that PDK1 stimulated cell proliferation, invasion and metastasis in gallbladder cancer (GBC), by inducing JunB and epithelial–mesenchymal transition. JunB levels were increased in GBC samples and positively correlated with PDK1 levels in tumors. High levels of JunB predicted poor overall survival in GBC patients. Thus, PDK1 functions as a tumor promoter in human GBC by upregulating JunB.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
27 |
7
|
Dai Y, Wang M, Wu H, Xiao M, Liu H, Zhang D. Loss of FOXN3 in colon cancer activates beta-catenin/TCF signaling and promotes the growth and migration of cancer cells. Oncotarget 2018; 8:9783-9793. [PMID: 28039460 PMCID: PMC5354770 DOI: 10.18632/oncotarget.14189] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] [Imported: 09/18/2023] Open
Abstract
Aberrant activation of beta-catenin/TCF is a hallmark of colon cancer. How the functions of nuclear localized beta-catenin are regulated is not fully understood. Here, it was found that FOXN3 (Forkhead box N3) was down-regulated in colon cancer tissues. Forced expression of FOXN3 inhibited the growth, migration and invasion of colon cancer cells, while knocking down the expression of FOXN3 promoted the growth, migration, invasion and metastasis of colon cancer cells. FOXN3 bind to beta-catenin and inhibited beta-catenin/TCF signaling by blocking the interaction between beta-catenin and TCF4. Taken together, these data demonstrated the suppressive roles of FOXN3 in the progression of colon cancer, and indicated that restoring the functions of FOXN3 would be a novel therapeutic strategy for colon cancer.
Collapse
|
Journal Article |
7 |
26 |
8
|
Wang J, Bo X, Suo T, Liu H, Ni X, Shen S, Li M, Xu J, Liu H, Wang Y. Tumor-infiltrating neutrophils predict prognosis and adjuvant chemotherapeutic benefit in patients with biliary cancer. Cancer Sci 2018; 109:2266-2274. [PMID: 29723922 PMCID: PMC6029827 DOI: 10.1111/cas.13627] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/29/2022] [Imported: 09/18/2023] Open
Abstract
Tumor-infiltrating neutrophils (TIN) carry out quite significant but opposite functions in different cancers, and their function in biliary cancer has not been fully characterized. To investigate the prognostic significance of TIN in biliary cancer, a training set (n = 118) and a validation set (n = 127) were involved in this study. TIN were evaluated by immunohistochemical staining of CD66b, and then defined as low (neutrophils <18/high-power field [HPF]) vs high (neutrophils ≥18/HPF). Kaplan-Meier curve, Cox proportional hazards models and receiver operating characteristic curve were used to assess the prognostic significance. TIN was identified as an independent prognostic factor for overall survival in the training set (HR: 4.720; 95% CI: 2.623-8.493; P < .001) which was confirmed in the validation set (HR: 4.993; 95% CI: 2.626-9.492; P < .001). Notably, among patients with stage III and IV disease, those with low TIN could benefit from adjuvant chemotherapy, with a reduced risk of compromised survival compared with those with high TIN (HR: 0.294; 95% CI: 0.099-0.873; P = .047 in the training set; and HR: 0.100; 95% CI: 0.022-0.462; P = .006 in the validation set). In addition, TIN were negatively related to biological pathways as regulation of activated T-cell proliferation and lymphocyte-mediated immunity, and showed a negative correlation with CD8 + T cells (r = -.324, P < .001). Taken together, our results implicate TIN as an independent marker of prognosis and indicator of patients who would benefit from adjuvant chemotherapy in biliary cancer.
Collapse
|
Journal Article |
7 |
25 |
9
|
Yuedi D, Yuankun C, Jiaying Z, Han L, Yueqi W, Houbao L, Dexiang Z. TFCP2 activates beta-catenin/TCF signaling in the progression of pancreatic cancer. Oncotarget 2017; 8:70538-70549. [PMID: 29050300 PMCID: PMC5642575 DOI: 10.18632/oncotarget.19741] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/20/2017] [Indexed: 11/25/2022] [Imported: 01/25/2025] Open
Abstract
Aberrant activation of beta-catenin/TCF (T-cell factor) signaling is frequently observed in the pancreatic cancer. However, the regulation of nuclear beta-catenin/TCF transcription machinery remains largely unknown. In this study, TFCP2 (transcriptional factor CP2) expression in pancreatic cancer was detected by qPCR, immunohistochemistry and western blot. Western blot, colony formation assay, migration and invasion experiment were performed to investigate the effects of TFCP2 on the growth and migration of pancreatic cancer cells. In vivo, mouse metastasis models were utilized to determine metastasis ability. Western blots were used to evaluate the related protein expression. Luciferase reporter assay was used to explore the role of TFCP2 on beta-catenin/TCF signaling. We have shown that the transcription factor TFCP2 was up-regulated in the pancreatic cancer. Over-expression of TFCP2 promoted the growth, migration, invasion and colony formation of pancreatic cancer cells, while knocking down the expression of TFCP2 inhibited the growth, migration, invasion, colony formation and metastasis of pancreatic cancer cells. The mechanism study revealed that TFCP2 interacted beta-catenin, enhanced the interaction between beta-catenin and TCF4, and activated beta-catenin/TCF signaling. Taken together, our study demonstrated the oncogenic roles of TFCP2 in pancreatic cancer, and suggested that TFCP2 might be a target for the treatment of pancreatic cancer.
Collapse
|
Journal Article |
8 |
24 |
10
|
Downregulation of stathmin 1 in human gallbladder carcinoma inhibits tumor growth in vitro and in vivo. Sci Rep 2016; 6:28833. [PMID: 27349455 PMCID: PMC4923895 DOI: 10.1038/srep28833] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] [Imported: 01/25/2025] Open
Abstract
Gallbladder carcinoma (GBC) is a highly lethal malignancy of the gastrointestinal tract. Despite extensive research, the underlying molecular mechanism of GBC remains largely unclear. Stathmin 1 (STMN1) is an important cytosolic protein associated with microtubule stability that was reported to be involved in tumorigenesis. Up to our knowledge, its role in gallbladder carcinoma has not been analyzed. In this study, we found that STMN1 was significantly highly expressed in GBC by immunohistochemistry (IHC). Further research demonstrated that silencing of STMN1 inhibited cell growth in vitro. Moreover, knockdown of STMN1 induced apoptosis and delayed G2/M phase transformation in GBC cells. Our data support a rationale for further studies that the silencing of STMN1 may regulate the activity of p38 MAPK kinase and p53/p21 signal pathway. Besides, xenografted gallbladder carcinoma cells growth were significantly impaired after STMN1 was silenced in vivo. These results suggested that STMN1 played an important role in cell proliferation and migration. This provided a potential clue for investigating the therapeutic target in GBC.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
23 |
11
|
Shen S, Wang J, Zheng B, Tao Y, Li M, Wang Y, Ni X, Suo T, Liu H, Liu H, Zhang J. LINC01714 Enhances Gemcitabine Sensitivity by Modulating FOXO3 Phosphorylation in Cholangiocarcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:446-457. [PMID: 31902744 PMCID: PMC6948235 DOI: 10.1016/j.omtn.2019.11.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/02/2023] [Imported: 08/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play crucial roles in human cancers. However, the underlying biological functions and mechanisms of lncRNAs in cholangiocarcinoma (CCA) remain largely unknown. We aimed to characterize the transcriptional landscape of lncRNAs in CCA and identify lncRNAs that were able to serve as prognosis markers and therapeutic targets for CCA. Here, we investigated the transcriptional landscape and dysregulation of lncRNAs in CCA. LINC01714 was found to be recurrently downregulated in CCA tumor samples. Our results revealed that decreased LINC01714 expression was associated with the poor survival of CCA patients. Our observations revealed that LINC01714 suppressed the proliferation, migration, and invasion abilities of CCA cells both in vitro and in vivo. Furthermore, we found that LINC01714 physically interacted with Forkhead Box O3 (FOXO3) and increased the FOXO3 protein level. In addition, LINC01714 could decrease the phosphorylation level of FOXO3. Interestingly, LINC01714 was able to enhance the sensitivity to gemcitabine in CCA tumor cells through modulating phosphorylated FOXO3-Ser318. Our study revealed LINC01714 as a promising prognostic indictor for patients with CCA, provided insights into the molecular pathogenesis of CCA, and also showed that LINC01714 is a potential therapeutic combination for gemcitabine in CCA treatment.
Collapse
|
Journal Article |
6 |
21 |
12
|
Ai Z, Lu W, Ton S, Liu H, Sou T, Shen Z, Qin X. Arsenic trioxide-mediated growth inhibition in gallbladder carcinoma cells via down-regulation of Cyclin D1 transcription mediated by Sp1 transcription factor. Biochem Biophys Res Commun 2007; 360:684-9. [PMID: 17617380 DOI: 10.1016/j.bbrc.2007.06.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/23/2007] [Indexed: 02/03/2023] [Imported: 09/18/2023]
Abstract
Gallbladder carcinoma (GBC), an aggressive and mostly lethal malignancy, is known to be resistant to a number of drug stimuli. Here, we demonstrated that arsenic trioxide inhibited the proliferation of gallbladder carcinoma in vivo and in vitro as well as the transcription of cell cycle-related protein Cyclin D1. And, Cyclin D1 overexpression inhibited the negative role of arsenic trioxide in cell cycle progression. We further explored the mechanisms by which arsenic trioxide affected Cyclin D1 transcription and found that the Sp1 transcription factor was down-regulated by arsenic trioxide, with a corresponding decrease in Cyclin D1 promoter activity. Taken together, these results suggested that arsenic trioxide inhibited gallbladder carcinoma cell proliferation via down-regulation of Cyclin D1 transcription in a Sp1-dependent manner, which provided a new mechanism of arsenic trioxide-involved cell proliferation and may have important therapeutic implications in gallbladder carcinoma patients.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
19 |
13
|
KLF2 is downregulated in pancreatic ductal adenocarcinoma and inhibits the growth and migration of cancer cells. Tumour Biol 2015; 37:3425-31. [PMID: 26449825 DOI: 10.1007/s13277-015-4053-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/02/2015] [Indexed: 11/27/2022] [Imported: 01/25/2025] Open
|
|
10 |
18 |
14
|
Bo X, Wang J, Suo T, Ni X, Liu H, Shen S, Li M, Wang Y, Liu H, Xu J. Tumor-infiltrating mast cells predict prognosis and gemcitabine-based adjuvant chemotherapeutic benefit in biliary tract cancer patients. BMC Cancer 2018; 18:313. [PMID: 29562907 PMCID: PMC5863450 DOI: 10.1186/s12885-018-4220-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/13/2018] [Indexed: 01/06/2023] [Imported: 08/30/2023] Open
Abstract
Background Recent studies have reported TIMs play an important role in tumors progression or regression, but the effect of TIMs in biliary tract cancer remains unclear. The aim of this study is to investigate the prognostic value of tumor infiltrating mast cells (TIMs) and its influence on gemcitabine-based adjuvant chemotherapy (ACT) benefits in biliary tract cancer patients after surgery. Methods TIMs were evaluated by immunohistochemical staining of tryptase in 250 patients with resected gallbladder carcinoma (GBC) or extrahepatic bile duct carcinoma (EBDC) from Zhongshan Hospital. The relationships between TIMs and clinicopathological factors and postoperative prognosis were analyzed respectively. Results High TIMs infiltration was significantly correlated with prolonged overall survival (OS). Furthermore, multivariate analysis indicated TNM stage and TIMs as independent prognostic factors for OS. Patients with high TIMs infiltration appeared to significantly benefit from Gemcitabine-based ACT in the discovery and validation cohorts. Spearman analysis identified that TIMs infiltration were positively correlated with anti-tumor CD8+ T cells. Conclusion TIMs infiltration is an independent favorable prognostic factor in GBC and EBDC patients, which could better stratify patients with different prognosis and predict benefit from gemcitabine-based ACT. Electronic supplementary material The online version of this article (10.1186/s12885-018-4220-1) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
18 |
15
|
Bo X, Chen E, Wang J, Nan L, Xin Y, Wang C, Lu Q, Rao S, Pang L, Li M, Lu P, Zhang D, Liu H, Wang Y. Diagnostic accuracy of imaging modalities in differentiating xanthogranulomatous cholecystitis from gallbladder cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:627. [PMID: 31930028 DOI: 10.21037/atm.2019.11.35] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] [Imported: 09/18/2023]
Abstract
Background The aim of this study was to assess the diagnostic performance of radiological imaging in differentiating xanthogranulomatous cholecystitis (XGC) from gallbladder cancer (GBC). Methods A retrospective analysis of the radiological imaging performed in patients who had pathologically confirmed XGC or GBC between December 2004 to April 2016 was performed. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of each imaging modality, and combined imaging modalities were calculated. Results A total of 218 patients (XGC =109, GBC =109) were identified; 19 patients received all of abdominal ultrasound (US), contrast-enhanced ultrasound (CEUS), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET/CT); 21 received four of these imaging examination types; 45 received three examinations; 58 received two examinations; and 75 received only one examination. The sensitivity and specificity of CEUS was 90% and 93%, respectively, higher than abdominal US (80%, 86%), CT (71%, 92%), MRI (75%, 90%), and PET/CT (55%, 90%) (all values respective). The sensitivity, specificity, NPV, and PPV of the US combined with CEUS were 91%, 90%, 94%, and 85%, respectively. Although the specificity of CEUS + CT and CEUS + MRI were 100% and 92%, respectively, the sensitivity of CEUS + CT and CEUS + MRI were both only 67%. Conclusions The Abdominal US is not sufficiently accurate to confidently guide clinical practice, and CEUS showed better diagnostic performance than the other imaging modalities in differentiating XGC from GBC. The combination of abdominal CEUS and CT is helpful for differential diagnosis, as it indicates GBC with better specificity and PPV.
Collapse
|
Journal Article |
6 |
17 |
16
|
CIZ1 promoted the growth and migration of gallbladder cancer cells. Tumour Biol 2014; 36:2583-91. [PMID: 25427641 DOI: 10.1007/s13277-014-2876-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022] [Imported: 01/25/2025] Open
Abstract
Gallbladder cancer (GBC) is one of the most common and aggressive diseases among the gastrointestinal tract malignancies, and the molecular mechanism underlying this disease remains largely unknown. CIZ1 (Cip1 interacting zinc finger protein 1), a binding partner of p21(Cip1/Waf1), has been found to be involved in the tumorigenesis recently. However, the expression pattern and biological functions of CIZ1 in the progression of GBC are not fully understood. In this study, it was found that the expression of CIZ1 was significantly elevated in GBC samples compared to their adjacent normal tissues. Moreover, overexpression of CIZ1 promoted the growth and migration of GBC cells, while knocking down the expression of CIZ1 inhibited the growth, migration, and tumorigenesis of GBC cells in vitro and in vivo. Mechanistically, CIZ1 was found to interact with TCF4 (T-cell factor) and activate beta-catenin/TCF signaling. Our study demonstrated that CIZ1 played an oncogenic role in the progression of GBC and CIZ1 might be a promising target for the treatment of GBC.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
17 |
17
|
Fan K, Wang J, Sun W, Shen S, Ni X, Gong Z, Zheng B, Gao Z, Ni X, Suo T, Liu H, Liu H. MUC16 C-terminal binding with ALDOC disrupts the ability of ALDOC to sense glucose and promotes gallbladder carcinoma growth. Exp Cell Res 2020; 394:112118. [PMID: 32502493 DOI: 10.1016/j.yexcr.2020.112118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] [Imported: 08/30/2023]
Abstract
The MUC16 C-terminal (MUC16c) level is associated with tumor serum CA-125 levels, however, the roles remain unclear in gallbladder carcinoma (GBC). In this study, we found that MUC16c promoted glucose uptake and glycolysis for GBC cell proliferation. Mass spectrometry analysis suggested that MUC16c could combine with aldolase. The ALDOC mRNA and protein are overexpressed in GBC tumors. The IHC results also showed the consistent up-regulation of. ALDOC and MUC16c level in GBC tumor tissues than in peritumor tissues. We determined that MUC16c combining with ALDOC promoted ALDOC protein stability and disrupted the ability of ALDOC sensing glucose deficiency, which activated AMPK pathway and increased GBC cell proliferation. ALDOC knockdown significantly inhibited the glucose uptake and glycolysis induced by MUC16c. Our study established important roles of MUC16c promoting GBC cell glycolysis and proliferation and revealed the underlying mechanism of CA-125-related heavy tumor metabolic burden in GBC.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
16 |
18
|
Shen X, Li J, Liao W, Wang J, Chen H, Yao Y, Liu H, Ding K. microRNA-149 targets caspase-2 in glioma progression. Oncotarget 2018; 7:26388-99. [PMID: 27049919 PMCID: PMC5041987 DOI: 10.18632/oncotarget.8506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] [Imported: 09/18/2023] Open
Abstract
Malignant gliomas are the most common form of intrinsic primary brain tumors worldwide. Alterations in microRNAs play a role in highly invasive malignant glioma, but detail mechanism still unknown. In this study, the role and mechanism of microRNA-149 (miR-149) in glioma are investigated. We show that miR-149 is expressed at substantially higher levels in glioma than in normal tissues. Stable overexpression of miR-149 augments potent prosurvival activity, as evidenced by promotion of cell viability, inhibition of apoptosis, and induced xenografted tumor growth in vivo. We further show that Caspase-2 is identified as a functional target of miR-149 and expression of caspase-2 is inversely associated with miR-149 in vitro. In addition, miR-149 promotes tumor survival in the U87-MG and A172 cell lines and it targets caspase-2 via inactivation of the p53 and p21 pathways. There results support a special role for miR-149 by targeting Caspase-2 to impact on p53 signaling pathway. We speculate that miR-149 has distinct biological functions in p53 wild type cells and p53 mutation cells, and the mechanisms involved remain to be explored in future. Our study suggests that targeting miR-149 may be a novel therapy strategy for treating p53 wild type glioma tumors in humans.
Collapse
|
Journal Article |
7 |
15 |
19
|
Zhang D, Dai Y, Cai Y, Suo T, Liu H, Wang Y, Cheng Z, Liu H. PEBP4 promoted the growth and migration of cancer cells in pancreatic ductal adenocarcinoma. Tumour Biol 2015; 37:1699-705. [PMID: 26311050 DOI: 10.1007/s13277-015-3906-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/05/2015] [Indexed: 02/02/2023] [Imported: 09/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignancies in the world. Numerous studies have linked the activation of AKT to the progression of PDAC. Phosphatidylethanolamine-binding protein 4 (PEBP4) has been reported to be upregulated in various cancer types. However, its expression pattern and biological functions in PDAC are unknown. In this study, it was found that the messenger RNA (mRNA) and protein level of PEBP4 was elevated in PDAC samples. Forced expression of PEBP4 in PDAC cell lines promoted cell growth and migration, while downregulation of PEBP4 in PDAC cells by RNA interference (RNAi) inhibited the growth, migration, and metastasis of the cancer cells. PEBP4 interacted with AKT and promoted the phosphorylation of serine 473 in AKT. Collectively, this study suggested that PEBP4 might promote the progression of PDAC through activating AKT signaling and PEBP4 might be a promising therapeutic target for PDAC treatment.
Collapse
|
Journal Article |
10 |
14 |
20
|
Zhang D, Wang Y, Dai Y, Wang J, Suo T, Pan H, Liu H, Shen S, Liu H. Downregulation of RIP140 in hepatocellular carcinoma promoted the growth and migration of the cancer cells. Tumour Biol 2014; 36:2077-85. [PMID: 25391428 DOI: 10.1007/s13277-014-2815-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023] [Imported: 09/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with a poor response to chemotherapy. It is very important to identify novel diagnosis biomarkers and therapeutic targets. RIP140, a regulator of estrogen receptor, recently has been found to be involved in the tumorigenesis. However, its function in the progression of HCC remains poorly understood. Here, we found that the expression of RIP140 was downregulated in the HCC tissues. Moreover, overexpression of RIP140 in HCC cells inhibited cell proliferation and migration, while downregulation of RIP140 promoted the tumorigenicity of HCC cells in vitro and in vivo. Mechanistically, RIP140 interacted with beta-catenin and negatively regulated beta-catenin/TCF signaling. Taken together, our study suggests the suppressive roles of RIP140 in the pathogenesis of HCC.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
14 |
21
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen J, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao Y, Gao Y, Gao YG, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Han TZ, Hao XQ, Harris FA, et alAblikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen J, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao Y, Gao Y, Gao YG, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang LQ, Huang XT, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JC, Li K, Li LK, Li L, Li PL, Li PR, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Lin DX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi M, Qian S, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang WP, Wang X, Wang XF, Wang XL, Wang YD, Wang Y, Wang Y, Wang YF, Wang YQ, Wang Z, Wang ZG, Wang ZY, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu JF, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JW, Zhang JY, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao J, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Measurement of Proton Electromagnetic Form Factors in e^{+}e^{-}→pp[over ¯] in the Energy Region 2.00-3.08 GeV. PHYSICAL REVIEW LETTERS 2020; 124:042001. [PMID: 32058790 DOI: 10.1103/physrevlett.124.042001] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/19/2019] [Indexed: 06/10/2023] [Imported: 09/18/2023]
Abstract
The process of e^{+}e^{-}→pp[over ¯] is studied at 22 center-of-mass energy points (sqrt[s]) from 2.00 to 3.08 GeV, exploiting 688.5 pb^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section (σ_{pp[over ¯]}) of e^{+}e^{-}→pp[over ¯] is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (|G_{E}/G_{M}|) and the value of the effective (|G_{eff}|), electric (|G_{E}|), and magnetic (|G_{M}|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. |G_{E}/G_{M}| and |G_{M}| are determined with high accuracy, providing uncertainties comparable to data in the spacelike region, and |G_{E}| is measured for the first time. We reach unprecedented accuracy, and precision results in the timelike region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on nonperturbative quantum chromodynamics.
Collapse
|
|
5 |
13 |
22
|
Wang J, Bo X, Nan L, Wang CC, Gao Z, Suo T, Ni X, Liu H, Lu P, Wang Y, Liu H. Landscape of distant metastasis mode and current chemotherapy efficacy of the advanced biliary tract cancer in the United States, 2010-2016. Cancer Med 2019; 9:1335-1348. [PMID: 31876990 PMCID: PMC7013071 DOI: 10.1002/cam4.2794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/25/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022] [Imported: 09/18/2023] Open
Abstract
Background The distant metastasis (DM) mode and treatment efficacies in the advanced biliary tract cancer (BTC) were obscure, and a credible evaluation is urgently needed. Method A total of 6348 advanced BTC patients (ICC, intrahepatic cholangiocarcinoma, n = 1762; PHCC, perihilar cholangiocarcinoma, n = 1103; GBC, gallbladder cancer, n = 2580; DCC, distal cholangiocarcinoma, n = 538; AVC, carcinoma of Vater ampulla, n = 365) were enrolled from the Surveillance, Epidemiology, and End Results (SEER) database. Propensity score matching (PSM) process was carried out for less bias. Result The proportion of M1 patients in each subtype at first diagnosis was 26.4% (ICC), 37.2% (PHCC), 41. 0% (GBC), 24.5% (DCC), and 12.7% (AVC), and the constitution of DM sites in different subtypes varied apparently. Moreover, the survival of metastasis sites was different (P < .05 in all the subtypes) where the multi‐metastasis and distant lymph node (dLN) only always indicated the worst and best prognosis, respectively. Chemotherapy presented the most significant survival impact with the lowest hazard ratio by multivariate cox model and still provided a survival improvement after PSM (all P < .001) in all subtypes. However, the median months manifested different between patients with and without chemotherapy among the subtypes (ICC, from 5 to 9; PHCC, from 6 to 10; AVC, from 4 to 9; GBC, from 6 to 7; DCC from 6 to 8). Conclusion We provided a landscape about the detailed DM mode of the advanced BTC in a large population, found the survival differences among DM sites, and revealed the different chemotherapy efficacies in the BTC subtypes.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
12 |
23
|
Wang J, Bo X, Wang C, Xin Y, Nan L, Luo R, Chen L, Shi X, Suo T, Ni X, Liu H, Shen S, Li M, Lu P, Wang Y, Liu H. Low immune index correlates with favorable prognosis but with reduced benefit from chemotherapy in gallbladder cancer. Cancer Sci 2019; 111:219-228. [PMID: 31729088 PMCID: PMC6942443 DOI: 10.1111/cas.14239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] [Imported: 09/18/2023] Open
Abstract
Use of immune index is a new potential approach for cancer classification and prediction. To investigate the status and clinical effect of immune index in gallbladder cancer (GBC), 238 GBC patients from Zhongshan Hospital affiliated to Fudan University were involved in the present study, including 113 patients in a training set and 125 patients in a validation set. Five immune cells (macrophages, neutrophils, regulatory T cells, cytotoxic T cells and mast cells) were selected based on a literature review and the immune index for each patient was calculated using the LASSO regression. A low immune index (<1) was defined as immunotype A and a high immune index (≥1) was defined as immunotype B. The 5-year overall survival rate for immunotype A was higher than that for immunotype B in the training set and the validation set (70.0% vs 37.0%, P < 0.001; 68.9% vs 47.5%, P = 0.002; respectively). Moreover, the immune index showed higher prediction efficiency compared with all the single immune cells which we selected. When combined with the immune index, the areas under the curve (AUC) of the TNM staging system in both sets were elevated from 0.677 to 0.787 and from 0.631 to 0.694, respectively. Interestingly, gemcitabine-based chemotherapy only benefits stage II patients of immunotype B and stage III patients of both immunotype A and immunotype B (P = 0.015, P = 0.030, P = 0.011, respectively) but does not work in stage II patients of immunotype A (P = .307). Taken together, the immune index could effectively predict prognosis and the benefits of gemcitabine-based chemotherapy and might improve on the TNM staging system.
Collapse
|
Journal Article |
6 |
12 |
24
|
Ren T, Li Y, Zhang X, Geng Y, Shao Z, Li M, Wu X, Wang XA, Liu F, Wu W, Shu Y, Bao R, Gong W, Dong P, Dang X, Liu C, Liu C, Sun B, Liu J, Wang L, Hong D, Qin R, Jiang X, Zhang X, Xu J, Jia J, Yang B, Li B, Dai C, Cao J, Cao H, Tao F, Zhang Z, Wang Y, Jin H, Cai H, Fei Z, Gu J, Han W, Feng X, Fang L, Zheng L, Zhu C, Wang K, Zhang X, Li X, Jin C, Qian Y, Cui Y, Xu Y, Wang X, Liu H, Hua Y, Liu C, Hao J, Wang C, Li Q, Li X, Liu J, Li M, Qiu Y, Wu B, Zheng J, Chen X, Zhu H, Hua K, Yan M, Wang P, Zang H, Ma X, Hong J, Liu Y. Protocol for a gallbladder cancer registry study in China: the Chinese Research Group of Gallbladder Cancer (CRGGC) study. BMJ Open 2021; 11:e038634. [PMID: 33593763 PMCID: PMC7888310 DOI: 10.1136/bmjopen-2020-038634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 09/18/2023] Open
Abstract
INTRODUCTION Gallbladder cancer (GBC), the sixth most common gastrointestinal tract cancer, poses a significant disease burden in China. However, no national representative data are available on the clinical characteristics, treatment and prognosis of GBC in the Chinese population. METHODS AND ANALYSIS The Chinese Research Group of Gallbladder Cancer (CRGGC) study is a multicentre retrospective registry cohort study. Clinically diagnosed patient with GBC will be identified from 1 January 2008 to December, 2019, by reviewing the electronic medical records from 76 tertiary and secondary hospitals across 28 provinces in China. Patients with pathological and radiological diagnoses of malignancy, including cancer in situ, from the gallbladder and cystic duct are eligible, according to the National Comprehensive Cancer Network 2019 guidelines. Patients will be excluded if GBC is the secondary diagnosis in the discharge summary. The demographic characteristics, medical history, physical examination results, surgery information, pathological data, laboratory examination results and radiology reports will be collected in a standardised case report form. By May 2021, approximately 6000 patient with GBC will be included. The clinical follow-up data will be updated until 5 years after the last admission for GBC of each patient. The study aimed (1) to depict the clinical characteristics, including demographics, pathology, treatment and prognosis of patient with GBC in China; (2) to evaluate the adherence to clinical guidelines of GBC and (3) to improve clinical practice for diagnosing and treating GBC and provide references for policy-makers. ETHICS AND DISSEMINATION The protocol of the CRGGC has been approved by the Committee for Ethics of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine (SHEC-C-2019-085). All results of this study will be published in peer-reviewed journals and presented at relevant conferences. TRIAL REGISTRATION NUMBER NCT04140552, Pre-results.
Collapse
|
other |
4 |
11 |
25
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, et alAblikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khan T, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li XQ, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Richter M, Ripka M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HH, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Complete Measurement of the Λ Electromagnetic Form Factors. PHYSICAL REVIEW LETTERS 2019; 123:122003. [PMID: 31633986 DOI: 10.1103/physrevlett.123.122003] [Show More Authors] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/26/2019] [Indexed: 06/10/2023] [Imported: 09/18/2023]
Abstract
The exclusive process e^{+}e^{-}→ΛΛ[over ¯], with Λ→pπ^{-} and Λ[over ¯]→p[over ¯]π^{+}, has been studied at sqrt[s]=2.396 GeV for measurement of the timelike Λ electric and magnetic form factors, G_{E} and G_{M}. A data sample, corresponding to an integrated luminosity of 66.9 pb^{-1}, was collected with the BESIII detector for this purpose. A multidimensional analysis with a complete decomposition of the spin structure of the reaction enables a determination of the modulus of the ratio R=|G_{E}/G_{M}| and, for the first time for any baryon, the relative phase ΔΦ=Φ_{E}-Φ_{M}. The resulting values are R=0.96±0.14(stat)±0.02(syst) and ΔΦ=37°±12°(stat)±6°(syst), respectively. These are obtained using the recently established and most precise value of the asymmetry parameter α_{Λ}=0.750±0.010 measured by BESIII. In addition, the cross section is measured with unprecedented precision to be σ=118.7±5.3(stat)±5.1(syst) pb, which corresponds to an effective form factor of |G|=0.123±0.003(stat)±0.003(syst). The contribution from two-photon exchange is found to be negligible. Our result enables the first complete determination of baryon timelike electromagnetic form factors.
Collapse
|
|
6 |
10 |