1
|
Zhang Y, He C, Xu H. Functional Heteroatom Substituted Hyperbranched Polymers: Recent Developments and Perspectives. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39977665 DOI: 10.1021/acsami.4c22844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Heteroatom-substituted hyperbranched polymers (HBPs) have emerged as a versatile class of functional materials, combining the structural merits of hyperbranched architectures with the unique chemical functionalities imparted by heteroatoms such as boron, silicon, phosphorus, sulfur, selenium, and tellurium. These polymers exhibit distinct physicochemical properties, including low viscosity, excellent solubility, high chemical reactivity, and tunable functionality, which position them as promising candidates for diverse applications. This Review highlights the recent advances in heteroatom substituted HBPs, categorizing them from the element group of their heteroatoms (from Group III to Group VI, as well as transition and rare-earth metals). The pivotal role of heteroatoms in modulating polymer properties is explored, with key applications highlighted across four principal domains: fluorescent materials, flame retardants, stimuli-responsive polymers, and polymer modifications. By integrating insights from chemistry, materials science, and interdisciplinary research, this Review underscores the potential of heteroatom-substituted HBPs in addressing current material challenges.
Collapse
Affiliation(s)
- Yuanbo Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chaowei He
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Pradhan A, Biswal S, Bhal S, Biswal BK, Kundu CN, Subuddhi U, Pati A, Hassan PA, Patel S. Amphiphilic Poly(ethylene glycol)-Cholesterol Conjugate: Stable Micellar Formulation for Efficient Loading and Effective Intracellular Delivery of Curcumin. ACS APPLIED BIO MATERIALS 2025; 8:1418-1436. [PMID: 39907519 DOI: 10.1021/acsabm.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A biodegradable and biocompatible micellar-based drug delivery system was developed using amphiphilic methoxy-poly(ethylene glycol)-cholesterol (C1) and poly(ethylene glycol)-S-S-cholesterol (C2) conjugates and applied to the tumoral release of the water-insoluble drug curcumin. These synthesized surfactants C1 and C2 were found to form stable micelles (CMC ∼ 6 μM) and an average hydrodynamic size of around 20-25 nm. The curcumin-encapsulated C1 micelle was formulated by a solvent evaporation method. A very high drug encapsulation efficiency (EE) of ∼88% and a drug loading (DL) capacity of ∼9% were determined for both the micelles. From the reduced rate of curcumin degradation and differential scanning calorimetry (DSC) analysis, the stability of the curcumin-loaded C1 micelle was found to be higher than that of the unloaded micelle, which confirmed a more compact structural arrangement in the presence of hydrophobic curcumin. A pH-sensitive release of curcumin (faster release with decrease in pH) was observed for the curcumin-loaded C1 micelle, attributed to the diffusion and relaxation/erosion of micellar aggregates. To achieve reduction environment-sensitive drug release, a disulfide (S-S) chemical linkage-incorporated mPEG-cholesterol conjugate (C2) was synthesized, which was found to show glutathione-responsive faster release of curcumin. The in vitro experiments carried out in SCC9 oral cancer cell lines showed that the blank C1 and C2 micelles were noncytotoxic at lower concentrations (<50 μM), while curcumin-loaded C1 and C2 micelles inhibited the proliferation and promoted the apoptosis. An increased in vitro cytotoxicity was observed for curcumin-loaded micelles compared to that of curcumin itself, demonstrating a better cell penetration efficacy of the micelle. These results were further supplemented by the in vivo anticancer analysis of the curcumin-loaded C1 and C2 micellar formulations using the mice xenograft model. Notably, curcumin-loaded C2 micelles showed a significantly stronger apoptotic effect in xenograft mice compared to curcumin-loaded C1 micelles, indicating the GSH environment-sensitive drug release and improved bioavailability. In conclusion, the mPEG-cholesterol C1 and C2 micellar system with the advantages of small size, high encapsulation efficiency, high drug loading, simple preparing technique, biocompatibility, and good in vitro and in vivo performance may have the potential to be used as a drug carrier for sustained and stimuli-responsive release of the hydrophobic drug curcumin.
Collapse
Affiliation(s)
- Aiswarya Pradhan
- Department of Chemistry, National Institute of Technology, Rourkela 769 008, India
| | - Stuti Biswal
- Department of Life Sciences, National Institute of Technology, Rourkela 769 008, India
| | - Subhasmita Bhal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, India
| | - Bijesh K Biswal
- Department of Life Sciences, National Institute of Technology, Rourkela 769 008, India
| | - Chanakya Nath Kundu
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology, Rourkela 769 008, India
| | - Anita Pati
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, India
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sabita Patel
- Department of Chemistry, National Institute of Technology, Rourkela 769 008, India
| |
Collapse
|
3
|
Ke Q, Zhang Y, Qin Z, Meng Q, Huang X, Kou X, Zhang Y. Polydopamine-functionalized capsules: From design to applications. J Control Release 2025; 378:1114-1138. [PMID: 39724949 DOI: 10.1016/j.jconrel.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures. This paper systematically reviewed the preparation strategies and related applications of PDA-functionalized capsules. These strategies of PDA-functionalized capsules were discussed in detail from four parts including PDA-functionalized capsules based on hollow PDA, mesoporous PDA (MPDA), directly encapsulating emulsion, and surface modification of capsules. Then the review outlined the applications of PDA-functionalized capsules in biomedicine, energy, textiles, and the environment. Furthermore, this review summarized the current research findings on PDA-functionalized capsules and outlines their future development directions. Overall, we aim for this review to inspire researchers and offer valuable guidance for the synthesis and application of advanced PDA-functionalized capsules.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yifei Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaoyuan Qin
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
4
|
Kumar P, Maji B. Formation to Transportation: En-Route Fission-Facilitated Formation of Spheres in a Phosphorus-Based Porous Organic Polymer for Transportation of Iodine. Chemistry 2024; 30:e202402559. [PMID: 39225335 DOI: 10.1002/chem.202402559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Despite its potential as a clean power source to meet rising electricity demands, nuclear energy generates radioactive waste, including isotopes of iodine, that pose significant environmental and health risks. There is a growing demand to capture radioactive iodine and repurpose it effectively. However, achieving this dual functionality with a single material remains a significant challenge. This study explores phosphorus-based porous organic polymers (P-POPs) as probes for these dual functionalities. By employing 4-formyl(triphenyl)phosphine (BB1) and phenyl-1,4-diacetonitrile (BB2) under the Knoevenagel polycondensation method, P-POPs (PKPOPs) have been synthesized that exhibit a smooth spherical morphology, which efficiently capture and release iodine under ambient conditions, facilitating efficient transportation of molecular iodine. This novel approach aims to potentially transform nuclear waste into valuable organic feedstock via an iodination reaction. The innovative application of PKPOP has also been demonstrated for iodination reactions using ball mills and under continuous flow conditions, showcasing its potential for safer waste management and utilization.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
5
|
Nosrati Z, Chen YA, Bergamo M, Rodríguez‐Rodríguez C, Chan J, Shojania K, Kherani RB, Chin C, Kelsall JT, Dehghan N, Colwill AM, Collins D, Saatchi K, Häfeli UO. Prodrug Nanomedicine for Synovium Targeted Therapy of Inflammatory Arthritis: Insights from Animal Model and Human Synovial Joint Fluid. Adv Healthc Mater 2024; 13:e2401936. [PMID: 39380387 PMCID: PMC11616258 DOI: 10.1002/adhm.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Many patients cannot tolerate low-dose weekly methotrexate (MTX) therapy for inflammatory arthritis treatment due to life-threatening toxicity. Although biologics offer a target-specific therapy, it raises the risk of serious infections and even cancer due to immune system suppression. We introduce an anti-inflammatory arthritis MTX ester prodrug using a long-circulating biocompatible polymeric macromolecule: folic acid (FA) functionalized hyperbranched polyglycerol (HPG). In vitro the drug MTX is incrementally released through pH and enzymatic degradation over 2 weeks. The role of matrix metalloproteinases (MMPs) in site-specific prodrug activation was verified using synovial fluid (SF) of 26 rheumatology patients and 4 healthy controls. Elevated levels of specific MMPs-markers of joint inflammation-positively correlated with enhanced prodrug release explained by acid-catalyzed hydrolysis of esters by proteases. Intravenously administered 111In-radiolabeled prodrug confirmed by SPECT/CT imaging that it accumulated preferentially in inflamed joints while reducing off-target side-effects in a mouse model of rheumatoid arthritis (RA). Added FA as a targeting vector prolonged prodrug action; prodrug with 4x less MTX applied every 2 weeks was as effective as weekly MTX therapy. The preclinical results suggest a prodrug-based strategy for the treatment of inflammatory joint diseases, with potential for other chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zeynab Nosrati
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Yun An Chen
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Marta Bergamo
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | | | - Jonathan Chan
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Kam Shojania
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Raheem B. Kherani
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Carson Chin
- Burnaby Medical and Surgical SpecialistsBurnabyBCV3J 1M2Canada
| | - John T. Kelsall
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | | | | | - David Collins
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2CopenhagenDenmark2100
| |
Collapse
|
6
|
Zheng X, Zhao Y, Zhang Y, Deng R, Li B, Chen S, Zhu J. Multilevel Hollow-Structured Particles through Halogen-Bond Regulated Polymer Assembly under 3D Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405103. [PMID: 39229787 PMCID: PMC11538654 DOI: 10.1002/advs.202405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Engineering of hollow particles with tunable internal structures often requires complicated processes and/or invasive cleavage. Halogen-bond driven 3D confined-assembly of block copolymers has shed light on the engineering of polymer organization along with the fabricating of unique nanostructures. Herein, a family of multilevel hollow-structured particles (e.g., fully porous, multi-chamber, multi-shell, and concentric multi-layer architectures) is reported via halogen-bond regulated 3D confined-assembly of amphiphilic polymer networks. To do so, polystyrene-b-poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) amphiphilic triblock copolymer is selected, where P2VP blocks act as halogen acceptor. Meanwhile, poly(3-(2,3,5,6-tetrafluoro-4-iodophenoxy) propyl acrylate) (PTFIPA) is employed as halogen donor. Halogen-bond driven donor-acceptor linking between PTFIPA and P2VP block presented in PS-b-P2VP-b-PEO, can lead to the formation of supramolecular polymeric networks, along with the increased P2VP domain and tunable hydrophobic volume. Therefore, an adjustable packing parameter (p) is thus anticipated, which can enable the morphology transformation sequence until an equilibrium state is reached. Moreover, computer simulations are further utilized as the tool to interpret such morphologies transition and identify the precise distribution of each component. Benefiting from the tunable hollow structure and a substantial surface for transporting purpose, these structurally novel particles open perspectives toward promising applications including encapsulation, nanoreactor, and catalyst support.
Collapse
Affiliation(s)
- Xihuang Zheng
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Yi Zhao
- Key Laboratory of Weak‐Light Nonlinear Photonics, Ministry of Education, School of PhysicsNankai UniversityTianjin300071China
| | - Yuping Zhang
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Renhua Deng
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Baohui Li
- Key Laboratory of Weak‐Light Nonlinear Photonics, Ministry of Education, School of PhysicsNankai UniversityTianjin300071China
| | - Senbin Chen
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Jintao Zhu
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| |
Collapse
|
7
|
Li Q, Yang X, Xia X, Xia XX, Yan D. Affibody-Functionalized Elastin-like Peptide-Drug Conjugate Nanomicelle for Targeted Ovarian Cancer Therapy. Biomacromolecules 2024; 25:6474-6484. [PMID: 39235966 DOI: 10.1021/acs.biomac.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Recombinant elastin-like polypeptides (ELPs) have emerged as an attractive nanoplatform for drug delivery due to their tunable genetically encoded sequence, biocompatibility, and stimuli-responsive self-assembly behaviors. Here, we designed and biosynthesized an HER2 (human epidermal growth factor receptor 2)-targeted affibody-ELP fusion protein (Z-ELP), which was subsequently conjugated with monomethyl auristatin E (MMAE) to build a protein-drug conjugate (Z-ELP-M). Due to its thermal response, Z-ELP-M can immediately self-assemble into a nanomicelle at physiological temperature. Benefiting from its active targeting and nanomorphology, Z-ELP-M exhibits enhanced cellular internalization and deep tumor penetration in vitro. Moreover, Z-ELP-M shows excellent tumor targeting and superior antitumor efficacy in HER2-positive ovarian cancer, demonstrating a relative tumor growth inhibition of 104.6%. These findings suggest that an affibody-functionalized elastin-like peptide-drug conjugate nanomicelle is an efficient strategy to improve antitumor efficacy and biosafety in cancer therapy.
Collapse
Affiliation(s)
- Qingrong Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
8
|
Qin C, Yang H, Li B, Xing Z, Yu B, Cai M, Pei X, Ma Y, Zhou F, Liu W. Branched Oligomer-Based Reversible Adhesives Enabled by Controllable Self-Aggregation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408330. [PMID: 39096066 DOI: 10.1002/adma.202408330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Supramolecular adhesion material systems based on small molecules have shown great potential to unite the great contradiction between strong adhesion and reversibility. However, these material systems suffer from low adhesion strength/narrow adhesion span, limited designability, and single interaction due to fewer covalent bond content and action sites in small molecules. Herein, an ultrahigh-strength and large-span reversible adhesive enabled by a branched oligomer controllable self-aggregation strategy is developed. The dense covalent bonds present in the branched oligomers greatly enhance adhesion strength without compromising reversibility. The resulting adhesive exhibits a large-span reversible adhesion of ≈140 times, switching between ultra-strong and tough adhesion strength (5.58 MPa and 5093.92 N m-1) and ultralow adhesion (0.04 MPa and 87.656 N m-1) with alternating temperature. Moreover, reversible dynamic double cross-linking endows the adhesive with stable reversible adhesion transitions even after 100 cycles. This reversible adhesion property can also be remotely controlled via a voltage of 8 V, with a loading voltage duration of 45 s. This work paves the way for the design of reversible adhesives with long-span outstanding properties using covalent polymers and offers a pathway for the rational design of high-performance adhesives featuring both robust toughness and exceptional reversibility.
Collapse
Affiliation(s)
- Chenxi Qin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hao Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| | - Zhencai Xing
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| | - Xiaowei Pei
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| |
Collapse
|
9
|
Zeng H, Chen Q, Mo Z, Huang X, Zhou L. Facile synthesis of size‐tunable multihydroxy nanogels by self‐assembly‐induced disulfide bonds crosslinking. JOURNAL OF POLYMER SCIENCE 2024; 62:4040-4050. [DOI: 10.1002/pol.20240163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/24/2024] [Indexed: 01/06/2025]
Abstract
AbstractSignificant advancements have been achieved in polymer nanogel synthesis, yet there is a dearth of methods for easily preparing size‐adjustable, surface‐modifiable, and biocompatible nanogels. This study introduces a straightforward method for fabricating hyperbranched polyglycerol (HPG) nanogels in water through self‐assembly and disulfide bond crosslinking, avoiding the use of surfactants. The process involves modifying HPG with thioctic acid (TA) to create amphiphilic HPG‐TA rich in disulfide bonds, which is then reduced to facilitate water introduction and self‐assembly. Photocrosslinking is used to finalize the formation of HPG nanogels. These nanogels feature a uniform size distribution, with hydrodynamic diameters tunable from around 90 to 400 nm by tweaking synthesis variables. They have shown low cytotoxicity and high stability in aqueous media, with notable sensitivity to pH, especially in acidic conditions (e.g., pH 3), and redox‐responsiveness, as evidenced by reactions to 10 mM dithiothreitol (DTT). The nanogels' multiple hydroxyl groups enable easy functionalization, exemplified by the synthesis of fluorescent HPG‐RB nanogels. This work presents an efficient strategy for producing robust HPG nanogels, potentially spurring further advancements in the field of polymer nanogel synthesis and application.
Collapse
Affiliation(s)
- Hai Zeng
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering Guilin University of Technology Guilin China
| | - Qingli Chen
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering Guilin University of Technology Guilin China
| | - Zhimin Mo
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering Guilin University of Technology Guilin China
| | - Xiaohua Huang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering Guilin University of Technology Guilin China
| | - Li Zhou
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering Guilin University of Technology Guilin China
| |
Collapse
|
10
|
Yang R, Tang S, Xie X, Jin C, Tong Y, Huang W, Zan X. Enhanced Ocular Delivery of Beva via Ultra-Small Polymeric Micelles for Noninvasive Anti-VEGF Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314126. [PMID: 38819852 DOI: 10.1002/adma.202314126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Pathological ocular neovascularization resulting from retinal ischemia constitutes a major cause of vision loss. Current anti-VEGF therapies rely on burdensome intravitreal injections of Bevacizumab (Beva). Herein ultrasmall polymeric micelles encapsulating Beva (P@Beva) are developed for noninvasive topical delivery to posterior eye tissues. Beva is efficiently loaded into 11 nm micelles fabricated via self-assembly of hyperbranched amphiphilic copolymers. The neutral, brush-like micelles demonstrate excellent drug encapsulation and colloidal stability. In vitro, P@Beva enhances intracellular delivery of Beva in ocular cells versus free drug. Ex vivo corneal and conjunctival-sclera-choroidal tissues transport after eye drops are improved 23-fold and 7.9-fold, respectively. Anti-angiogenic bioactivity is retained with P@Beva eliciting greater inhibition of endothelial tube formation and choroid sprouting over Beva alone. Remarkably, in an oxygen-induced retinopathy (OIR) model, topical P@Beva matching efficacy of intravitreal Beva injection, is the clinical standard. Comprehensive biocompatibility verifies safety. Overall, this pioneering protein delivery platform holds promise to shift paradigms from invasive intravitreal injections toward simplified, noninvasive administration of biotherapeutics targeting posterior eye diseases.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Sicheng Tang
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Xiaoling Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Chaofan Jin
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Yuhua Tong
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, 324000, China
| | - Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| |
Collapse
|
11
|
Kurmaz SV, Komendant RI, Perepelitsina EO, Kurmaz VA, Khodos II, Emelyanova NS, Filatova NV, Amozova VI, Balakina AA, Terentyev AA. New Amphiphilic Terpolymers of N-Vinylpyrrolidone with Acrylic Acid and Triethylene Glycol Dimethacrylate as Promising Drug Delivery: Design, Synthesis and Biological Properties In Vitro. Int J Mol Sci 2024; 25:8422. [PMID: 39125990 PMCID: PMC11312434 DOI: 10.3390/ijms25158422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The terpolymers of N-vinylpyrrolidone (VP) with acrylic acid and triethylene glycol methacrylate were synthesized with more than 90% yield by radical copolymerization in ethanol from monomeric mixtures of different molar composition (98:2:2, 95:5: 2 and 98:2:5) and their monomer composition, absolute molecular masses and hydrodynamic radii in aqueous media were determined. Using the MTT test, these terpolymers were established to be low toxic for non-tumor Vero cells and HeLa tumor cells. Polymer compositions of hydrophobic dye methyl pheophorbide a (MPP) based on studied terpolymers and linear polyvinylpyrrolidone (PVP) were obtained and characterized in water solution. Quantum-chemical modeling of the MPP-copolymer structures was conducted, and the possibility of hydrogen bond formation between terpolymer units and the MPP molecule was shown. Using fluorescence microscopy, the accumulation and distribution of polymer particles in non-tumor (FetMSC) and tumor (HeLa) cells was studied, and an increase in the accumulation of MPP with both types of particles was found.
Collapse
Affiliation(s)
- Svetlana V. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Roman I. Komendant
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Evgenia O. Perepelitsina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Vladimir A. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Igor I. Khodos
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Nina S. Emelyanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Natalia V. Filatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Vera I. Amozova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Anastasia A. Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Alexey A. Terentyev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| |
Collapse
|
12
|
Yang G, Cao Y, Yang X, Cui T, Tan NZV, Lim YK, Fu Y, Cao X, Bhandari A, Enikeev M, Efetov S, Balaban V, He M. Advancements in nanomedicine: Precision delivery strategies for male pelvic malignancies - Spotlight on prostate and colorectal cancer. Exp Mol Pathol 2024; 137:104904. [PMID: 38788248 DOI: 10.1016/j.yexmp.2024.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Pelvic malignancies consistently pose significant global health challenges, adversely affecting the well-being of the male population. It is anticipated that clinicians will continue to confront these cancers in their practice. Nanomedicine offers promising strategies that revolutionize the treatment of male pelvic malignancies by providing precise delivery methods that aim to improve the efficacy of therapeutic outcomes while minimizing side effects. Nanoparticles are designed to encapsulate therapeutic agents and selectively target cancer cells. They can also be loaded with theragnostic agents, enabling multifunctional capabilities. OBJECTIVE This review aims to summarize the latest nanomedicine research into clinical applications, focusing on nanotechnology-based treatment strategies for male pelvic malignancies, encompassing chemotherapy, radiotherapy, immunotherapy, and other cutting-edge therapies. The review is structured to assist physicians, particularly those with limited knowledge of biochemistry and bioengineering, in comprehending the functionalities and applications of nanomaterials. METHODS Multiple databases, including PubMed, the National Library of Medicine, and Embase, were utilized to locate and review recently published articles on advancements in nano-drug delivery for prostate and colorectal cancers. CONCLUSION Nanomedicine possesses considerable potential in improving therapeutic outcomes and reducing adverse effects for male pelvic malignancies. Through precision delivery methods, this emerging field presents innovative treatment modalities to address these challenging diseases. Nevertheless, the majority of current studies are in the preclinical phase, with a lack of sufficient evidence to fully understand the precise mechanisms of action, absence of comprehensive pharmacotoxicity profiles, and uncertainty surrounding long-term consequences.
Collapse
Affiliation(s)
- Guodong Yang
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Te Cui
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yuen Kai Lim
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Xinren Cao
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aanchal Bhandari
- HBT Medical College and Dr. R N Cooper Municipal General Hospital, Mumbai, India
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Balaban
- Clinic of Coloproctology and Minimally Invasive Surgery, Sechenov University, Moscow, Russia
| | - Mingze He
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia.
| |
Collapse
|
13
|
Tu Y, Wen G, Selianitis D, Pispas S. Dense Monolayer Network Structures of Double Hydrophilic Hyperbranched Copolymers at the Air/Water Interface. Macromol Rapid Commun 2024; 45:e2300548. [PMID: 37972570 DOI: 10.1002/marc.202300548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Influences of subphase pH and temperature on the interfacial aggregation behavior of two double hydrophilic hyperbranched copolymers of poly[oligo(ethylene glycol) methacrylate-co-(2-diisopropylamino)ethyl methacrylate] (P(OEGMA-co-DIPAEMA)) at the air/water interface are studied by the Langmuir film balance technique. Morphologies of their Langmuir-Blodgett (LB) films are characterized by atomic force microscopy (AFM). At the interface, P(OEGMA-co-DIPAEMA) copolymers tend to form a dense network structure of circular micelles composed of branching agent-connected carbon backbone cores and mixed shells of OEGMA and DIPAEMA segments (pendant groups). This network structure containing many honeycomb-like holes with diameters of 6-8 nm is identified for the first time and clearly observed in the enlarged AFM images of their LB films. Under acidic conditions, surface pressure versus molecular area isotherms of the two copolymers in the low-pressure region show larger mean molecular area than those under neutral and alkaline conditions due to the lack of impediment from DIPAEMA segments. Upon further compression, each isotherm exhibits a wide pseudo-plateau, which corresponds to OEGMA segments being pressed into the subphase. Furthermore, the isotherms under neutral and alkaline conditions exhibit the lower critical solution temperature behavior of OEGMA segments, and the critical temperature is lower when the hyperbranched copolymer contains higher OEGMA content.
Collapse
Affiliation(s)
- Yongliang Tu
- Department of Polymer Materials and Engineering, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin, 150040, P. R. China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin, 150040, P. R. China
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| |
Collapse
|
14
|
Balafouti A, Forys A, Trzebicka B, Gerardos AM, Pispas S. Anionic Hyperbranched Amphiphilic Polyelectrolytes as Nanocarriers for Antimicrobial Proteins and Peptides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7702. [PMID: 38138846 PMCID: PMC10745097 DOI: 10.3390/ma16247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
This manuscript presents the synthesis of hyperbranched amphiphilic poly (lauryl methacrylate-co-tert-butyl methacrylate-co-methacrylic acid), H-P(LMA-co-tBMA-co-MAA) copolymers via reversible addition fragmentation chain transfer (RAFT) copolymerization of tBMA and LMA, and their post-polymerization modification to anionic amphiphilic polyelectrolytes. The focus is on investigating whether the combination of the hydrophobic characters of LMA and tBMA segments, as well as the polyelectrolyte and hydrophilic properties of MAA segments, both distributed within a unique hyperbranched polymer chain topology, would result in intriguing, branched copolymers with the potential to be applied in nanomedicine. Therefore, we studied the self-assembly behavior of these copolymers in aqueous media, as well as their ability to form complexes with cationic proteins, namely lysozyme (LYZ) and polymyxin (PMX). Various physicochemical characterization techniques, including size exclusion chromatography (SEC) and proton nuclear magnetic resonance (1H-NMR), verified the molecular characteristics of these well-defined copolymers, whereas light scattering and fluorescence spectroscopy techniques revealed promising nanoparticle (NP) self- and co-assembly properties of the copolymers in aqueous media.
Collapse
Affiliation(s)
- Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
| |
Collapse
|
15
|
Kurmaz SV, Perepelitsina EO, Vasiliev SG, Avilova IA, Khodos II, Kurmaz VA, Chernyaev DA, Soldatova YV, Filatova NV, Faingold II. Macromolecular Design and Engineering of New Amphiphilic N-Vinylpyrrolidone Terpolymers for Biomedical Applications. Int J Mol Sci 2023; 24:15170. [PMID: 37894851 PMCID: PMC10607074 DOI: 10.3390/ijms242015170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
New amphiphilic VP-(di)methacrylate terpolymers of different monomer compositions and topologies have been synthesized by radical polymerization in toluene without any growth regulator of polymer chains. Their structures and properties in solid state and water solution were studied by double-detector size-exclusion chromatography; IR-, 1H, and 13C NMR-spectroscopy; DLS, TEM, TG, and DSC methods. The composition of the VP-AlkMA-TEGDM monomer mixture has been established to regulate the topology of the resulting macromolecules. The studied terpolymers presented on TEM images as individual low-contrast particles and their conglomerates of various sizes with highly ordered regions; in general, they are amorphous structures. None of the terpolymers demonstrated cytotoxic effects for noncancerous Vero and tumor HeLa cells. Hydrophobic D-α-tocopherol (TP) was encapsulated in terpolymer nanoparticles (NPs), and its antioxidant activity was evaluated by ABTS (radical monocation 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) or DPPH (2,2'-diphenyl-1-picrylhydrazyl) methods. The reaction efficiency depends on the TP-NP type. The IC50 values for the decolorization reaction of ABTS•+ and DPPH inhibition in the presence of initial and encapsulated TP were obtained.
Collapse
Affiliation(s)
- Svetlana V. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Evgenia O. Perepelitsina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Sergey G. Vasiliev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Irina A. Avilova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Igor I. Khodos
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Vladimir A. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Dmitry A. Chernyaev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Natalia V. Filatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| |
Collapse
|
16
|
Li M, Xuan Y, Zhang W, Zhang S, An J. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review. Int J Biol Macromol 2023; 247:125826. [PMID: 37455006 DOI: 10.1016/j.ijbiomac.2023.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China.
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
17
|
Selianitis D, Katifelis H, Gazouli M, Pispas S. Novel Multi-Responsive Hyperbranched Polyelectrolyte Polyplexes as Potential Gene Delivery Vectors. Pharmaceutics 2023; 15:1627. [PMID: 37376075 DOI: 10.3390/pharmaceutics15061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, we investigate the complexation behavior of poly(oligo(ethylene glycol)methyl methacrylate)-co-poly(2-(diisopropylamino)ethyl methacrylate), P(OEGMA-co-DIPAEMA), hyperbranched polyelectrolyte copolymers, synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization, with short-linear DNA molecules. The synthesized hyperbranched copolymers (HBC), having a different chemical composition, are prepared in order to study their ability to bind with a linear nucleic acid at various N/P ratios (amine over phosphate groups). Specifically, the three pH and thermo-responsive P(OEGMA-co-DIPAEMA) hyperbranched copolymers were able to form polyplexes with DNA, with dimensions in the nanoscale. Using several physicochemical methods, such as dynamic and electrophoretic light scattering (DLS, ELS), as well as fluorescence spectroscopy (FS), the complexation process and the properties of formed polyplexes were explored in response to physical and chemical stimuli such as temperature, pH, and ionic strength. The mass and the size of polyplexes are shown to be affected by the hydrophobicity of the copolymer utilized each time, as well as the N/P ratio. Additionally, the stability of polyplexes in the presence of serum proteins is found to be excellent. Finally, the multi-responsive hyperbranched copolymers were evaluated regarding their cytotoxicity via in vitro experiments on HEK 293 non-cancerous cell lines and found to be sufficiently non-toxic. Based on our results, these polyplexes could be useful candidates for gene delivery and related biomedical applications.
Collapse
Affiliation(s)
- Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
18
|
Soldatova YV, Faingold II, Poletaeva DA, Kozlov AV, Emel'yanova NS, Khodos II, Chernyaev DA, Kurmaz SV. Design and Investigation of New Water-Soluble Forms of α-Tocopherol with Antioxidant and Antiglycation Activity Using Amphiphilic Copolymers of N-Vinylpyrrolidone. Pharmaceutics 2023; 15:pharmaceutics15051388. [PMID: 37242630 DOI: 10.3390/pharmaceutics15051388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Water-soluble forms of α-tocopherol (TP) as an effective antioxidant were obtained by encapsulating it into nanoparticles (NPs) of amphiphilic copolymers of N-vinylpyrrolidone with triethylene glycol dimethacrylate (CPL1-TP) and N-vinylpyrrolidone with hexyl methacrylate and triethylene glycol dimethacrylate (CPL2-TP) synthesized by radical copolymerization in toluene. The hydrodynamic radii of NPs loaded with TP (3.7 wt% per copolymers) were typically ca. 50 or 80 nm depending on copolymer composition, media, and temperature. Characterization of NPs was accomplished by transmission electron microscopy (TEM), IR-, and 1H NMR spectroscopy. Quantum chemical modeling showed that TP molecules are capable to form hydrogen bonds with donor groups of the copolymer units. High antioxidant activity of both obtained forms of TP has been found by the thiobarbituric acid reactive species and chemiluminescence assays. CPL1-TP and CPL2-TP effectively inhibited the process of spontaneous lipid peroxidation as well as α-tocopherol itself. The IC50 values of luminol chemiluminescence inhibition were determined. Antiglycation activity against vesperlysine and pentosidine-like AGEs of TP water-soluble forms was shown. The developed NPs of TP are promising as materials with antioxidant and antiglycation activity and can be used in various biomedical applications.
Collapse
Affiliation(s)
- Yuliya V Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Irina I Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Darya A Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Alexei V Kozlov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Nina S Emel'yanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Igor I Khodos
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Institutskaya Street, 6, 142432 Chernogolovka, Russia
| | - Dmitry A Chernyaev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Svetlana V Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| |
Collapse
|
19
|
Rybkin AY, Kurmaz SV, Urakova EA, Filatova NV, Sizov LR, Kozlov AV, Koifman MO, Goryachev NS. Nanoparticles of N-Vinylpyrrolidone Amphiphilic Copolymers and Pheophorbide a as Promising Photosensitizers for Photodynamic Therapy: Design, Properties and In Vitro Phototoxic Activity. Pharmaceutics 2023; 15:pharmaceutics15010273. [PMID: 36678902 PMCID: PMC9863766 DOI: 10.3390/pharmaceutics15010273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A series of nanoparticles (NPs) with a hydrodynamic radius from 20 to 100 nm in PBS was developed over the solubilization of hydrophobic dye methyl pheophorbide a (chlorin e6 derivative) by amphiphilic copolymers of N-vinylpyrrolidone with (di)methacrylates. Photophysical properties and biological activity of the NPs aqueous solution were studied. It was found that the dye encapsulated in the copolymers is in an aggregated state. However, its aggregation degree decreases sharply, and singlet oxygen quantum yield and the fluorescence signal increase upon the interaction of these NPs with model biological membranes-liposomes or components of a tissue homogenate. The phototoxic effect of NPs in HeLa cells exceeds by 1.5-2 times that of the reference dye chlorin e6 trisodium salt-one of the most effective photosensitizers used in clinical practice. It could be explained by the effective release of the hydrophobic photosensitizer from the NPs into biological structures. The demonstrated approach can be used not only for the encapsulation of hydrophobic photosensitizers for PDT but also for other drugs, and N-vinylpyrrolidone amphiphilic copolymers show promising potential as a modern platform for the design of targeted delivery vehicles.
Collapse
Affiliation(s)
- Alexander Yu. Rybkin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
- Correspondence:
| | - Svetlana V. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Elizaveta A. Urakova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Natalia V. Filatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Lev R. Sizov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Alexey V. Kozlov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Mikhail O. Koifman
- Department of Chemistry and Technology of Macromolecular Compounds, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Av. 7, 153000 Ivanovo, Russia
| | - Nikolai S. Goryachev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
20
|
Paporakis S, Binns J, Yalcin D, Drummond CJ, Greaves TL, Martin AV. Automation of liquid crystal phase analysis for SAXS, including the rapid production of novel phase diagrams for SDS-water-PIL systems. J Chem Phys 2023; 158:014902. [PMID: 36610972 DOI: 10.1063/5.0122516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lyotropic liquid crystal phases (LCPs) are widely studied for diverse applications, including protein crystallization and drug delivery. The structure and properties of LCPs vary widely depending on the composition, concentration, temperature, pH, and pressure. High-throughput structural characterization approaches, such as small-angle x-ray scattering (SAXS), are important to cover meaningfully large compositional spaces. However, high-throughput LCP phase analysis for SAXS data is currently lacking, particularly for patterns of multiphase mixtures. In this paper, we develop semi-automated software for high throughput LCP phase identification from SAXS data. We validate the accuracy and time-savings of this software on a total of 668 SAXS patterns for the LCPs of the amphiphile hexadecyltrimethylammonium bromide (CTAB) in 53 acidic or basic ionic liquid derived solvents, within a temperature range of 25-75 °C. The solvents were derived from stoichiometric ethylammonium nitrate (EAN) or ethanolammonium nitrate (EtAN) by adding water to vary the ionicity, and adding precursor ions of ethylamine, ethanolamine, and nitric acid to vary the pH. The thermal stability ranges and lattice parameters for CTAB-based LCPs obtained from the semi-automated analysis showed equivalent accuracy to manual analysis, the results of which were previously published. A time comparison of 40 CTAB systems demonstrated that the automated phase identification procedure was more than 20 times faster than manual analysis. Moreover, the high throughput identification procedure was also applied to 300 unpublished scattering patterns of sodium dodecyl-sulfate in the same EAN and EtAN based solvents in this study, to construct phase diagrams that exhibit phase transitions from micellar, to hexagonal, cubic, and lamellar LCPs. The accuracy and significantly low analysis time of the high throughput identification procedure validates a new, rapid, unrestricted analytical method for the determination of LCPs.
Collapse
Affiliation(s)
- Stefan Paporakis
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Jack Binns
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Dilek Yalcin
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Calum J Drummond
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Andrew V Martin
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| |
Collapse
|
21
|
Chen YJ, Wu LT, Xiao H, Sun XL, Wan WM. Recent Advances and Challenges in Barbier Polymerization. Chempluschem 2023; 88:e202200388. [PMID: 36581503 DOI: 10.1002/cplu.202200388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The Barbier reaction, a classical name reaction for carbon-carbon bond formation, has played important roles in organic chemistry for over 120 years. The introduction of the Barbier reaction into polymer chemistry for the development of a novel Barbier polymerization, expands the methodology, monomer, chemical structure and property libraries of polymerization, aggregation-induced emission (AIE) and non-traditional intrinsic luminescence (NTIL). This mini review focuses on Barbier polymerization, including the brief introduction of the history and importance of polymerization methods design and the achievements of Barbier polymerization from molecular design strategies, functionalities and properties. An outlook of Barbier polymerization is also proposed. This mini review on Barbier polymerization therefore may cause inspirations to scientists in different fields.
Collapse
Affiliation(s)
- Yu-Jiao Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Liang-Tao Wu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
22
|
Bharti S, Anant PS, Kumar A. Nanotechnology in stem cell research and therapy. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:6. [DOI: 10.1007/s11051-022-05654-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
|
23
|
Non-spherical Polymeric Nanocarriers for Therapeutics: The Effect of Shape on Biological Systems and Drug Delivery Properties. Pharmaceutics 2022; 15:pharmaceutics15010032. [PMID: 36678661 PMCID: PMC9865764 DOI: 10.3390/pharmaceutics15010032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
This review aims to highlight the importance of particle shape in the design of polymeric nanocarriers for drug delivery systems, along with their size, surface chemistry, density, and rigidity. Current manufacturing methods used to obtain non-spherical polymeric nanocarriers such as filomicelles or nanoworms, nanorods and nanodisks, are firstly described. Then, their interactions with biological barriers are presented, including how shape affects nanoparticle clearance, their biodistribution and targeting. Finally, their drug delivery properties and their therapeutic efficacy, both in vitro and in vivo, are discussed and compared with the characteristics of their spherical counterparts.
Collapse
|
24
|
Li G, Zuo YY. Molecular and colloidal self-assembly at the oil–water interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
New Nanosized Systems Doxorubicin-Amphiphilic Copolymers of N-Vinylpyrrolidone and (Di)methacrylates with Antitumor Activity. Pharmaceutics 2022; 14:pharmaceutics14122572. [PMID: 36559068 PMCID: PMC9784683 DOI: 10.3390/pharmaceutics14122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Nanosized systems of DOX with antitumor activity on the base of micelle-like particles of amphiphilic thermosensitive copolymers of N-vinylpyrrolidone (VP) with triethylene glycol dimethacrylate (TEGDM), and N-vinylpyrrolidone and methacrylic acid (MAA) with TEGDM were explored. They were investigated in aqueous solutions by electron absorption spectroscopy, dynamic light scattering and cyclic voltammetry. Experimental data and quantum-chemical modeling indicated the formation of a hydrogen bond between oxygen-containing groups of monomer units of the copolymers and H-atoms of OH and NH2 groups of DOX; the energies and H-bond lengths in the considered structures were calculated. A simulation of TDDFT spectra of DOX and its complexes with the VP and TEGDM units was carried out. Electrochemical studies in PBS have demonstrated that the oxidation of encapsulated DOX appeared to be easier than that of the free one, and its reduction was somewhat more difficult. The cytotoxicity of VP-TEGDM copolymer compositions containing 1, 5 and 15 wt% DOX was studied in vitro on HeLa cells, and the values of IC50 doses were determined at 24 and 72 h of exposure. The copolymer compositions containing 5 and 15 wt% DOX accumulated actively in cell nuclei and did not cause visual changes in cell morphology.
Collapse
|
26
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
27
|
New amphiphilic terpolymers of N-vinylpyrrolidone with poly(ethylene glycol) methyl ether methacrylate and triethylene glycol dimethacrylate as carriers of the hydrophobic fluorescent dye. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Cai D, Yang Y, Lu J, Yuan Z, Zhang Y, Yang X, Huang X, Li T, Tian X, Xu B, Wang P, Lei H. Injectable Carrier-Free Hydrogel Dressing with Anti-Multidrug-Resistant Staphylococcus aureus and Anti-Inflammatory Capabilities for Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43035-43049. [PMID: 36124878 DOI: 10.1021/acsami.2c15463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibacterial hydrogels have gradually become a powerful weapon to treat bacterially infected wounds and accelerate healing. In this paper, we designed a small-molecule self-healing antibacterial hydrogel containing 100% drug-loaded benzyl 3β-amino-11-oxo-olean-12-en-30-oate (GN-Bn), which was governed by π-π stacking, hydrogen bonding, and van der Waals forces. Due to the carrier-free design concept, the problems of interbatch variability during sample preparation and carrier-related toxicity can be effectively avoided. Moreover, the GN-Bn hydrogel exhibited promising antibacterial activities against multidrug-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of the GN-Bn hydrogel was 1.5625 nmol/mL, which was lower than those against clinical agents such as norfloxacin, penicillin, and tetracycline. This is attributed to its unique antibacterial mechanism that aims at killing bacteria or preventing their growth by regulating arginine biosynthesis and metabolism through both transcriptomic (RNA-seq) analysis and quantitative polymerase chain reaction (qPCR) analysis. In addition, the GN-Bn hydrogel can also inhibit proinflammatory cytokines (TNF-α, IL-1β, and IL-6) to promote wound healing. Collectively, the GN-Bn hydrogel elicited dual therapeutic effects on an MRSA-infected full-thickness skin wound model through its antibacterial and anti-inflammatory activities, which is attributed to the fact that the GN-Bn hydrogel has multiple advantages including sufficient mechanical stability, biocompatibility, and unique antibacterial mechanisms, making it significantly accelerate MRSA-infected full-thickness skin wound healing as a wound dressing. In a word, the GN-Bn antibacterial hydrogel dressing with an anti-inflammatory and antibacterial bifunctional material holds great potential in clinical application.
Collapse
Affiliation(s)
- Desheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yuqin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xiaoyun Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Tong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xuehao Tian
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| |
Collapse
|
29
|
Functionalized Hyperbranched Aliphatic Polyester Polyols: Synthesis, Properties and Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Zhao J, Zhang C, Wang W, Li C, Mu X, Hu K. Current progress of nanomedicine for prostate cancer diagnosis and treatment. Biomed Pharmacother 2022; 155:113714. [PMID: 36150309 DOI: 10.1016/j.biopha.2022.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022] Open
Abstract
Prostate cancer (PCa) is the most common new cancer case and the second most fatal malignancy in men. Surgery, endocrine therapy, radiotherapy and chemotherapy are the main clinical treatment options for PCa. However, most prostate cancers can develop into castration-resistant prostate cancer (CRPC), and due to the invasiveness of prostate cancer cells, they become resistant to different treatments and activate tumor-promoting signaling pathways, thereby inducing chemoresistance, radioresistance, ADT resistance, and immune resistance. Nanotechnology, which can combine treatment with diagnostic imaging tools, is emerging as a promising treatment modality in prostate cancer therapy. Nanoparticles can not only promote their accumulation at the pathological site through passive targeting techniques for enhanced permeability and retention (EPR), but also provide additional advantages for active targeting using different ligands. This property results in a reduced drug dose to achieve the desired effect, a longer duration of action within the tumor and fewer side effects on healthy tissues. In addition, nanotechnology can create good synergy with radiotherapy, chemotherapy, thermotherapy, photodynamic therapy and gene therapy to enhance their therapeutic effects with greater scope, and reduce the resistance of prostate cancer. In this article, we intend to review and discuss the latest technologies regarding the use of nanomaterials as therapeutic and diagnostic tools for prostate cancer.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Chen Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Kebang Hu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
31
|
Kurmaz SV, Ivanova II, Fadeeva NV, Perepelitsina EO, Lapshina MA, Balakina AA, Terent’ev AA. New Amphiphilic Branched Copolymers of N-Vinylpyrrolidone with Methacrylic Acid for Biomedical Applications. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Tang Q, Ren H, Kochovski Z, Cheng L, Zhang K, Yuan J, Zhang W. Topological Effects on Cyclic Co‐Poly(Ionic Liquid)s Self‐Assembly. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qingquan Tang
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology Wuhan Textile University Wuhan 430200 China
| | - Hao Ren
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology Wuhan Textile University Wuhan 430200 China
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany
| | - Lisheng Cheng
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Ke Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry The Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry Stockholm University Stockholm 10691 Sweden
| | - Weiyi Zhang
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 China
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| |
Collapse
|
33
|
Jeon SW, Yoon YJ, Park SM, Jang JD, Kim TH. Unusual Self-Assembly of Amphiphilic Block Copolymer Blends Induced by Control of Hydrophobic Interaction. J Phys Chem B 2022; 126:6511-6519. [PMID: 35926238 DOI: 10.1021/acs.jpcb.2c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Block copolymer blend systems have been of great interest for a wide range of potential applications, such as nanobuilding blocks or guidance materials, because they can provide a rich phase behavior according to external conditions. However, a new and unique phase behavior of block copolymers, which can give us their more extended potential applications, has not yet been reported. Herein, we report the unusual self-assembly of two different types of Pluronic P65 and PE6200 triblock copolymer blends dependent on temperature and PE6200 concentration, which is unique for the block copolymer blends in aqueous solution. As the temperature and concentration of PE6200 (as an additive) increased, the Pluronic P65/PE6200 copolymer blends sequentially self-assembled into an isotropic micellar-hexagonal-isotropic micellar or isotropic micellar-hexagonal-isotropic micellar-lamellar phase, which is a discontinuous ordered phase (called a closed looplike phase transition), and their phase transition temperature could be controlled. To the best of our knowledge, this is the first report of a closed looplike phase transition of Pluronic block copolymer blends in aqueous solution, which can be easily applied to nanosized templates for temperature-selective highly ordered structures and optical devices such as optoelectronics or optical sensors.
Collapse
Affiliation(s)
- Sang-Woo Jeon
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Young-Jin Yoon
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Sang-Min Park
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea.,Research Center for Advanced Nuclear Interdisciplinary Technology, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Tae-Hwan Kim
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.,Department of Quantum System Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.,Research Center for Advanced Nuclear Interdisciplinary Technology, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.,High-Enthalpy Plasma Research Center, Jeonbuk National University, Wanju-gun, Jeollabukdo 55317, Republic of Korea
| |
Collapse
|
34
|
Bhattacharya D, Kleeblatt DC, Statt A, Reinhart WF. Predicting aggregate morphology of sequence-defined macromolecules with recurrent neural networks. SOFT MATTER 2022; 18:5037-5051. [PMID: 35748651 DOI: 10.1039/d2sm00452f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembly of dilute sequence-defined macromolecules is a complex phenomenon in which the local arrangement of chemical moieties can lead to the formation of long-range structure. The dependence of this structure on the sequence necessarily implies that a mapping between the two exists, yet it has been difficult to model so far. Predicting the aggregation behavior of these macromolecules is challenging due to the lack of effective order parameters, a vast design space, inherent variability, and high computational costs associated with currently available simulation techniques. Here, we accurately predict the morphology of aggregates self-assembled from sequence-defined macromolecules using supervised machine learning. We find that regression models with implicit representation learning perform significantly better than those based on engineered features such as k-mer counting, and a recurrent-neural-network-based regressor performs the best out of nine model architectures we tested. Furthermore, we demonstrate the high-throughput screening of monomer sequences using the regression model to identify candidates for self-assembly into selected morphologies. Our strategy is shown to successfully identify multiple suitable sequences in every test we performed, so we hope the insights gained here can be extended to other increasingly complex design scenarios in the future, such as the design of sequences under polydispersity and at varying environmental conditions.
Collapse
Affiliation(s)
- Debjyoti Bhattacharya
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Devon C Kleeblatt
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Antonia Statt
- Materials Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Wesley F Reinhart
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
35
|
Honmane SM, Charde MS, Salunkhe SS, Choudhari PB, Nangare SN. Polydopamine surface-modified nanocarriers for improved anticancer activity: Current progress and future prospects. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Preparation and pH/temperature dual drug release behavior of polyamino acid nanomicelles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Li J, Yang Z, Jiang Z, Ni M, Xu M. A self-healing and self-adhesive chitosan based ion-conducting hydrogel sensor by ultrafast polymerization. Int J Biol Macromol 2022; 209:1975-1984. [PMID: 35500766 DOI: 10.1016/j.ijbiomac.2022.04.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/15/2022]
Abstract
Recently, owing to the wide applications in electronic skin and human activity monitoring, flexible hydrogel strain sensors have attracted great attention. And the better preparation with more efficient is always common aspiration. In this work, acrylamide (AM) was in situ polymerized in chitosan (CS) matrix to prepare hydrogels (PAM@CS). Inspired by the adhesion of natural mussels, plant polyphenol tannic acid (TA) was introduced into the system, Fe3+ was also introduced as redox agent to perform an ultrafast polymerization, and the composite hydrogel PAM@CS/TA-Fe can be prepared at 60 °C within 1 min. The hydrogels are ion conductive and show good sensing performance in detecting major and subtle body motions. Benefiting from the multiple dynamic noncovalent bonds, the PAM@CS/TA-Fe hydrogels also show excellent adhesion performance and good self-healing property, which would expand their application range in wearable and flexible electronic equipment.
Collapse
Affiliation(s)
- Jingwen Li
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Zhongli Yang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Zhicheng Jiang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Mengying Ni
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Min Xu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
38
|
Hu Y, Mu J. How the modification of the hyperbranched terminals affects the solution self-assembly of linear-block-hyperbranched copolymers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Molecular Dynamics Simulations of Essential Oil Ingredients Associated with Hyperbranched Polymer Drug Carriers. Polymers (Basel) 2022; 14:polym14091762. [PMID: 35566930 PMCID: PMC9105242 DOI: 10.3390/polym14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Our work concerns the study of four candidate drug compounds of the terpenoid family, found as essential oil ingredients in species of the Greek endemic flora, namely carvacrol, p-cymene, γ-terpinene, and thymol, via the simulation method of molecular dynamics. Aquatic solutions of each compound, as well as a solution of all four together in realistic (experimental) proportions, are simulated at atmospheric pressure and 37 °C using an OPLS force field combined with TIP3P water. As verified, all four compounds exhibit a strong tendency to phase-separate, thereby calling for the use of carrier molecules as aids for the drug to circulate in the blood and enter the cells. Systems of two such carrier molecules, the hyperbranched poly(ethylene imine) (HBPEI) polyelectrolyte and hyperbranched polyglycerol (HPG), are examined in mixtures with carvacrol, the most abundant among the four compounds, at a range of concentrations, as well as with all four compounds present in natural proportions. Although a tendency of the terpenoids to cluster separately persists at high concentrations, promising association effects are observed for all drug–polymer ratios. HBPEI systems tend to form diffuse structures comprising small mixed clusters as well as freely floating polymer and essential oil molecules, a finding attributed to the polymer–polymer electrostatic repulsions, which here are only partially screened by the counterions. On the other hand, the electrically neutral HPG molecules cluster together with essential oil species to form a single nanodroplet. Currently, terpenoid–polymer clusters near lipid bilayer membranes are being studied to determine the propensity of the formed complexes to enter cell membranes.
Collapse
|
40
|
Qian H, Wang K, Lv M, Zhao C, Wang H, Wen S, Huang D, Chen W, Zhong Y. Recent advances on next generation of polyzwitterion-based nano-vectors for targeted drug delivery. J Control Release 2022; 343:492-505. [PMID: 35149143 DOI: 10.1016/j.jconrel.2022.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/01/2022]
Abstract
Poly (ethylene glycol) (PEG)-based nanomedicines are perplexed by the challenges of oxidation damage, immune responses after repeated injections, and limited excretion from the body. As an alternative to PEG, bioinspired zwitterions bearing an identical number of positive and negative ions, exhibit exceptional hydrophilicity, excellent biomimetic nature and chemical malleability, endowing zwitterionic nano-vectors with biocompatibility, non-fouling feature, extended blood circulation and multifunctionality. In this review, we innovatively classify zwitterionic nano-vectors into linear, hyperbranched, crosslinked, and hybrid nanoparticles according to different chemical architectures in rational design of zwitterionic nano-vectors for enhanced drug delivery with an emphasis on zwitterionic engineering innovations as alternatives of PEG-based nanomedicines. Through combination with other nanostratagies, the intelligent zwitterionic nano-vectors can orchestrate stealth and other biological functionalities together to improve the efficacy in the whole journey of drug delivery.
Collapse
Affiliation(s)
- Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mengtong Lv
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Suchen Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
41
|
Liu F, Wang X, Li Y, Ren M, He P, Wang L, Xu J, Yang S, Ji P. Dendrimer-modified gelatin methacrylate hydrogels carrying adipose-derived stromal/stem cells promote cartilage regeneration. Stem Cell Res Ther 2022; 13:26. [PMID: 35073961 PMCID: PMC8785478 DOI: 10.1186/s13287-022-02705-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cartilage defects pose a significant burden on medical treatment, leading to an urgent need to develop regenerative medicine approaches for cartilage repair, such as stem cell therapy. However, the direct injection of stem cells can result in insufficient delivery or inaccurate differentiation. Hence, it is necessary to choose appropriate stem cell delivery scaffolds with high biocompatibility, injectability and chondral differentiation induction ability for cartilage regeneration. Methods In this study, the photocrosslinked gelatin methacrylate (GelMA) hydrogel with high cell affinity and plasticity was selected and strengthened by incorporating methacrylic anhydride-modified poly(amidoamine) (PAMAM-MA) to fabricate an adipose-derived stromal/stem cells (ASCs) delivery scaffold for cartilage repair. The physiochemical properties of the GelMA/PAMAM-MA hydrogel, including the internal structure, stability and mechanical properties, were tested. Then, ASCs were encapsulated into the hydrogels to determine the in vitro and in vivo chondrogenic differentiation induction abilities of the GelMA/PAMAM-MA hydrogel. Results Compared with the GelMA hydrogel, the GelMA/PAMAM-MA hydrogel exhibited more uniform structure, stability and mechanical properties. Moreover, on the basis of good biocompatibility, the hybrid hydrogel was proven to exert a sufficient ability to promote cartilage regeneration by in vitro three-dimensional (3D) culture of rASCs and in vivo articular cartilage defect repair. Conclusions The injectable photocrosslinked GelMA/PAMAM-MA hydrogel was proven to be a capable stem cell carrier for cartilage repair and provides new insight into the design strategy of stem cell delivery scaffolds. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02705-6.
Collapse
Affiliation(s)
- Fengyi Liu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xu Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mingxing Ren
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping He
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lu Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
42
|
Xia X, Suzuki R, Gao T, Isono T, Satoh T. One-step synthesis of sequence-controlled multiblock polymers with up to 11 segments from monomer mixture. Nat Commun 2022; 13:163. [PMID: 35013294 PMCID: PMC8748456 DOI: 10.1038/s41467-021-27830-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Switchable polymerization holds considerable potential for the synthesis of highly sequence-controlled multiblock. To date, this method has been limited to three-component systems, which enables the straightforward synthesis of multiblock polymers with less than five blocks. Herein, we report a self-switchable polymerization enabled by simple alkali metal carboxylate catalysts that directly polymerize six-component mixtures into multiblock polymers consisting of up to 11 blocks. Without an external trigger, the catalyst polymerization spontaneously connects five catalytic cycles in an orderly manner, involving four anhydride/epoxide ring-opening copolymerizations and one L-lactide ring-opening polymerization, creating a one-step synthetic pathway. Following this autotandem catalysis, reasonable combinations of different catalytic cycles allow the direct preparation of diverse, sequence-controlled, multiblock copolymers even containing various hyperbranched architectures. This method shows considerable promise in the synthesis of sequentially and architecturally complex polymers, with high monomer sequence control that provides the potential for designing materials.
Collapse
Affiliation(s)
- Xiaochao Xia
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China.
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Tianle Gao
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| |
Collapse
|
43
|
Borova S, Schlutt C, Nickel J, Luxenhofer R. A Transient Initiator for Polypeptoids Postpolymerization
α
‐Functionalization via Activation of a Thioester Group. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Solomiia Borova
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy Julius‐Maximilans‐University of Würzburg Röntgenring 11 Würzburg Bavaria 97070 Germany
| | - Christine Schlutt
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy Julius‐Maximilans‐University of Würzburg Röntgenring 11 Würzburg Bavaria 97070 Germany
| | - Joachim Nickel
- Department of Tissue Engineering and Regenerative Medicine University Hospital of Würzburg Röntgenring 11 Würzburg Bavaria 97070 Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy Julius‐Maximilans‐University of Würzburg Röntgenring 11 Würzburg Bavaria 97070 Germany
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science University of Helsinki P.O. Box 55 Helsinki 00014 Finland
| |
Collapse
|
44
|
Huang Z, Gao LX, Guo F, Li D, Tang Y, Hu H, Luo Y, Tang D, Wang B, zhang Y. Novel Prodrug Supramolecular Nanoparticles Capable of Rapid Mitochondrial-Targeted and ROS-Responsive for Pancreatic Cancer Therapy. NEW J CHEM 2022. [DOI: 10.1039/d2nj01157c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial dysfunction is a feature of cancer cells and targeting cancer mitochondria has emerged as a promising anticancer therapy. In this study, a novel mitochondria-targeted and ROS-responsive drug delivery nanoplatform...
Collapse
|
45
|
Bera S, Barman R, Ghosh S. Hyperbranched vs. linear poly(disulfide) for intracellular drug delivery. Polym Chem 2022. [DOI: 10.1039/d2py00896c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication reports comparative studies between amphiphilic hyperbranched and linear poly(disulfide) with regard to their aggregation and glutathione-responsive intracellular drug delivery.
Collapse
Affiliation(s)
- Sukanya Bera
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| | - Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| |
Collapse
|
46
|
Liu Y, Cao Y, Zhang X, Lin Y, Li W, Demir B, Searles DJ, Whittaker AK, Zhang A. Thermoresponsive Supramolecular Assemblies from Dendronized Amphiphiles To Form Fluorescent Spheres with Tunable Chirality. ACS NANO 2021; 15:20067-20078. [PMID: 34866390 DOI: 10.1021/acsnano.1c07764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Balance between self-association of structural units and self-repulsion from crowding-induced steric hindrance accounts for the supramolecular assembly of the amphiphilic entities to form ordered structures, and solvation provides a toolbox to conveniently modulate the assemblies through differential interactions to various structural units. Here we report solvation-modulated supramolecular chiral assembly in aqueous solutions of amphiphilic dendronized tetraphenylethylenes (TPEs) with three-folded dendritic oligoethylene glycols (OEGs) through dipeptide Ala-Gly linkage. These dendronized amphiphiles can form supramolecular spheres with enhanced supramolecular chirality, which is tunable and dependent on solvation. These nanosized spherical aggregates exhibit thermoresponsive behavior, and their cloud point temperatures are dependent on mixed solvent of water and THF. The phase transition temperatures increase with water fractions due to water-driven shifting of OEG moieties from interiors of the aggregates to their peripheries. Furthermore, the thermally induced dehydration and collapse of OEG moieties mediate the reversible aggregation and deaggregation between the spheres, imparting tunable aggregation-induced fluorescent emission (AIE) and supramolecular chirality. Both experimental results and molecular dynamic simulations have highlighted that reversible chirality transformations of the amphiphilic dendronized assemblies mediated by solvation through change solvent quality or thermally dehydration are dependent on the balance between interactions of OEG dendrons with TPE moieties and with the solvent molecules.
Collapse
Affiliation(s)
- Yanjun Liu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| | - Yuexin Cao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| | - Yaodong Lin
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| | - Baris Demir
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Debra J Searles
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| |
Collapse
|
47
|
Dayal P, Misra N, Khewle S, Singh RA. On the Role of Half-Catalan Numbers and Pathwidth in Hyperbranched Polymers Synthesized by AB m Step Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pratyush Dayal
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Neeldhara Misra
- Department of Computer Science and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Surbhi Khewle
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Ravi Anand Singh
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
48
|
Amphiphilic copolymers of N-vinylpyrrolidone with (di)methacrylates as promising carriers for the platinum(IV) complex with antitumor activity. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3289-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Zhu Q, Liu C. The future directions of synthetic chemistry. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
After being developed over hundred years, synthetic chemistry has created numerous new molecules and new materials to support a better life welfare. Even so, many challenges still remain in synthetic chemistry, higher selectivity, higher efficiency, environmental benign and sustainable energy are never been so wistful before. Herein, several topics surrounded the ability improvement of synthesis and the application enhancement of synthesis will be briefly discussed.
Collapse
Affiliation(s)
- Qing Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , P. R. China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , P. R. China
| |
Collapse
|
50
|
Kiran P, Khan A, Neekhra S, Pallod S, Srivastava R. Nanohybrids as Protein-Polymer Conjugate Multimodal Therapeutics. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:676025. [PMID: 35047929 PMCID: PMC8757875 DOI: 10.3389/fmedt.2021.676025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Protein therapeutic formulations are being widely explored as multifunctional nanotherapeutics. Challenges in ensuring susceptibility and efficacy of nanoformulation still prevail owing to various interactions with biological fluids before reaching the target site. Smart polymers with the capability of masking drugs, ease of chemical modification, and multi-stimuli responsiveness can assist controlled delivery. An active moiety like therapeutic protein has started to be known as an important biological formulation with a diverse medicinal prospect. The delivery of proteins and peptides with high target specificity has however been tedious, due to their tendency to aggregate formation in different environmental conditions. Proteins due to high chemical reactivity and poor bioavailability are being researched widely in the field of nanomedicine. Clinically, multiple nano-based formulations have been explored for delivering protein with different carrier systems. A biocompatible and non-toxic polymer-based delivery system serves to tailor the polymer or drug better. Polymers not only aid delivery to the target site but are also responsible for proper stearic orientation of proteins thus protecting them from internal hindrances. Polymers have been shown to conjugate with proteins through covalent linkage rendering stability and enhancing therapeutic efficacy prominently when dealing with the systemic route. Here, we present the recent developments in polymer-protein/drug-linked systems. We aim to address questions by assessing the properties of the conjugate system and optimized delivery approaches. Since thorough characterization is the key aspect for technology to enter into the market, correlating laboratory research with commercially available formulations will also be presented in this review. By examining characteristics including morphology, surface properties, and functionalization, we will expand different hybrid applications from a biomaterial stance applied in in vivo complex biological conditions. Further, we explore understanding related to design criteria and strategies for polymer-protein smart nanomedicines with their potential prophylactic theranostic applications. Overall, we intend to highlight protein-drug delivery through multifunctional smart polymers.
Collapse
Affiliation(s)
- Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shubham Pallod
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|