1
|
Addington E, Sandalli S, Roe AJ. Current understandings of colibactin regulation. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001427. [PMID: 38314762 PMCID: PMC10924459 DOI: 10.1099/mic.0.001427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
The biosynthetic machinery for the production of colibactin is encoded by 19 genes (clbA - S) within the pks pathogenicity island harboured by many E. coli of the B2-phylogroup. Colibactin is a potent genotoxic metabolite which causes DNA-damage and which has potential roles in microbial competition and fitness of pks+ bacteria. Colibactin has also been strongly implicated in the development of colorectal cancer. Given the genotoxicity of colibactin and the metabolic cost of its synthesis, the regulatory system governing the clb cluster is accordingly highly complex, and many of the mechanisms remain to be elucidated. In this review we summarise the current understanding of regulation of colibactin biosynthesis by internal molecular components and how these factors are modulated by signals from the external environment.
Collapse
Affiliation(s)
- Emily Addington
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Sofia Sandalli
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Andrew J. Roe
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| |
Collapse
|
2
|
Tripathi P, Mousa JJ, Guntaka NS, Bruner SD. Structural basis of the amidase ClbL central to the biosynthesis of the genotoxin colibactin. Acta Crystallogr D Struct Biol 2023; 79:830-836. [PMID: 37561403 PMCID: PMC10478638 DOI: 10.1107/s2059798323005703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Colibactin is a genotoxic natural product produced by select commensal bacteria in the human gut microbiota. The compound is a bis-electrophile that is predicted to form interstrand DNA cross-links in target cells, leading to double-strand DNA breaks. The biosynthesis of colibactin is carried out by a mixed NRPS-PKS assembly line with several noncanonical features. An amidase, ClbL, plays a key role in the pathway, catalyzing the final step in the formation of the pseudodimeric scaffold. ClbL couples α-aminoketone and β-ketothioester intermediates attached to separate carrier domains on the NRPS-PKS assembly. Here, the 1.9 Å resolution structure of ClbL is reported, providing a structural basis for this key step in the colibactin biosynthetic pathway. The structure reveals an open hydrophobic active site surrounded by flexible loops, and comparison with homologous amidases supports its unusual function and predicts macromolecular interactions with pathway carrier-protein substrates. Modeling protein-protein interactions supports a predicted molecular basis for enzyme-carrier domain interactions. Overall, the work provides structural insight into this unique enzyme that is central to the biosynthesis of colibactin.
Collapse
Affiliation(s)
| | - Jarrod J. Mousa
- Department of Chemistry, University of Florida, Gainesville, FL 32601, USA
| | | | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
3
|
DiBello M, Healy AR, Nikolayevskiy H, Xu Z, Herzon SB. Structure Elucidation of Secondary Metabolites: Current Frontiers and Lingering Pitfalls. Acc Chem Res 2023; 56:1656-1668. [PMID: 37220079 PMCID: PMC10468810 DOI: 10.1021/acs.accounts.3c00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Analytical methods allow for the structure determination of submilligram quantities of complex secondary metabolites. This has been driven in large part by advances in NMR spectroscopic capabilities, including access to high-field magnets equipped with cryogenic probes. Experimental NMR spectroscopy may now be complemented by remarkably accurate carbon-13 NMR calculations using state-of-the-art DFT software packages. Additionally, microED analysis stands to have a profound effect on structure elucidation by providing X-ray-like images of microcrystalline samples of analytes. Nonetheless, lingering pitfalls in structure elucidation remain, particularly for isolates that are unstable or highly oxidized. In this Account, we discuss three projects from our laboratory that highlight nonoverlapping challenges to the field, with implications for chemical, synthetic, and mechanism of action studies. We first discuss the lomaiviticins, complex unsaturated polyketide natural products disclosed in 2001. The original structures were derived from NMR, HRMS, UV-vis, and IR analysis. Owing to the synthetic challenges presented by their structures and the absence of X-ray crystallographic data, the structure assignments remained untested for nearly two decades. In 2021, the Nelson group at Caltech carried out microED analysis of (-)-lomaiviticin C, leading to the startling discovery that the original structure assignment of the lomaiviticins was incorrect. Acquisition of higher-field (800 MHz 1H, cold probe) NMR data as well as DFT calculations provided insights into the basis for the original misassignment and lent further support to the new structure identified by microED. Reanalysis of the 2001 data set reveals that the two structure assignments are nearly indistinguishable, underscoring the limitations of NMR-based characterization. We then discuss the structure elucidation of colibactin, a complex, nonisolable microbiome metabolite implicated in colorectal cancer. The colibactin biosynthetic gene cluster was detected in 2006, but owing to colibactin's instability and low levels of production, it could not be isolated or characterized. We used a combination of chemical synthesis, mechanism of action studies, and biosynthetic analysis to identify the substructures in colibactin. These studies, coupled with isotope labeling and tandem MS analysis of colibactin-derived DNA interstrand cross-links, ultimately led to a structure assignment for the metabolite. We then discuss the ocimicides, plant secondary metabolites that were studied as agents against drug-resistant P. falciparum. We synthesized the core structure of the ocimicides and found significant discrepancies between our experimental NMR spectroscopic data and that reported for the natural products. We determined the theoretical carbon-13 NMR shifts for 32 diastereomers of the ocimicides. These studies indicated that a revision of the connectivity of the metabolites is likely needed. We end with some thoughts on the frontiers of secondary metabolite structure determination. As modern NMR computational methods are straightforward to execute, we advocate for their systematic use in validating the assignments of novel secondary metabolites.
Collapse
Affiliation(s)
- Mikaela DiBello
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alan R Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Herman Nikolayevskiy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Newly Discovered Mechanisms of Antibiotic Self-Resistance with Multiple Enzymes Acting at Different Locations and Stages. Antibiotics (Basel) 2022; 12:antibiotics12010035. [PMID: 36671236 PMCID: PMC9854587 DOI: 10.3390/antibiotics12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Self-resistance determinants are essential for the biosynthesis of bioactive natural products and are closely related to drug resistance in clinical settings. The study of self-resistance mechanisms has long moved forward on the discovery of new resistance genes and the characterization of enzymatic reactions catalyzed by these proteins. However, as more examples of self-resistance have been reported, it has been revealed that the enzymatic reactions contribute to self-protection are not confined to the cellular location where the final toxic compounds are present. In this review, we summarize representative examples of self-resistance mechanisms for bioactive natural products functional at different cell locations to explore the models of resistance strategies involved. Moreover, we also highlight those resistance determinants that are widespread in nature and describe the applications of self-resistance genes in natural product mining to interrogate the landscape of self-resistance genes in drug resistance-related new drug discovery.
Collapse
|
5
|
The pks island: a bacterial Swiss army knife? Colibactin: beyond DNA damage and cancer. Trends Microbiol 2022; 30:1146-1159. [PMID: 35672224 DOI: 10.1016/j.tim.2022.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/13/2023]
Abstract
The structure and mode of action of colibactin with its potential involvement in cancer have been extensively studied but little is known about the intrinsic function of the biosynthetic gene cluster, coding for colibactin, as a bacterial genotoxin. Paradoxically, this pathogenicity island is also found in commensal and probiotic strains of Escherichia coli and in bacterial species colonizing olive trees and the digestive tract of bees. In this review, we summarize the available literature to address the following key questions. What does this genomic island really encode? What explains the extensive dissemination of this genetically mobile element? What do we really know about the biosynthetic and secretory pathways of colibactin? What is its inherent target/function?
Collapse
|
6
|
Mousa WK. The microbiome-product colibactin hits unique cellular targets mediating host–microbe interaction. Front Pharmacol 2022; 13:958012. [PMID: 36172175 PMCID: PMC9510844 DOI: 10.3389/fphar.2022.958012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiota produces molecules that are evolved to interact with the diverse cellular machinery of both the host and microbes, mediating health and diseases. One of the most puzzling microbiome molecules is colibactin, a genotoxin encoded in some commensal and extraintestinal microbes and is implicated in initiating colorectal cancer. The colibactin cluster was discovered more than 15 years ago, and most of the research studies have been focused on revealing the biosynthesis and precise structure of the cryptic encoded molecule(s) and the mechanism of carcinogenesis. In 2022, the Balskus group revealed that colibactin not only hits targets in the eukaryotic cell machinery but also in the prokaryotic cell. To that end, colibactin crosslinks the DNA resulting in activation of the SOS signaling pathway, leading to prophage induction from bacterial lysogens and modulation of virulence genes in pathogenic species. These unique activities of colibactin highlight its ecological role in shaping gut microbial communities and further consequences that impact human health. This review dives in-depth into the molecular mechanisms underpinning colibactin cellular targets in eukaryotic and prokaryotic cells, aiming to understand the fine details of the role of secreted microbiome chemistry in mediating host–microbe and microbe–microbe interactions. This understanding translates into a better realization of microbiome potential and how this could be advanced to future microbiome-based therapeutics or diagnostic biomarkers.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
- *Correspondence: Walaa K. Mousa,
| |
Collapse
|
7
|
Wong JJ, Ho FK, Choo PY, Chong KKL, Ho CMB, Neelakandan R, Keogh D, Barkham T, Chen J, Liu CF, Kline KA. Escherichia coli BarA-UvrY regulates the pks island and kills Staphylococci via the genotoxin colibactin during interspecies competition. PLoS Pathog 2022; 18:e1010766. [PMID: 36067266 PMCID: PMC9481169 DOI: 10.1371/journal.ppat.1010766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/16/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Wound infections are often polymicrobial in nature, biofilm associated and therefore tolerant to antibiotic therapy, and associated with delayed healing. Escherichia coli and Staphylococcus aureus are among the most frequently cultured pathogens from wound infections. However, little is known about the frequency or consequence of E. coli and S. aureus polymicrobial interactions during wound infections. Here we show that E. coli kills Staphylococci, including S. aureus, both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. Colibactin biosynthesis is encoded by the pks locus, which we identified in nearly 30% of human E. coli wound infection isolates. While it is not clear how colibactin is released from E. coli or how it penetrates target cells, we found that the colibactin intermediate N-myristoyl-D-Asn (NMDA) disrupts the S. aureus membrane. We also show that the BarA-UvrY two component system (TCS) senses the environment created during E. coli and S. aureus mixed species interaction, leading to upregulation of pks island genes. Further, we show that BarA-UvrY acts via the carbon storage global regulatory (Csr) system to control pks expression. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition. Wound infections are often polymicrobial in nature and are associated with poor disease prognoses. Escherichia coli and Staphylococcus aureus are among the top five most cultured pathogens from wound infections. However, little is known about the polymicrobial interactions between E. coli and S. aureus during wound infections. In this study, we show that E. coli kills S. aureus both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. We also show that the BarA-UvrY two component system (TCS) regulates the pks island during this mixed species interaction, acting through the carbon storage global regulatory (Csr) system to control colibactin production. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition.
Collapse
Affiliation(s)
- Jun Jie Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Chee Meng Benjamin Ho
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ramesh Neelakandan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Damien Keogh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Timothy Barkham
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Abstract
Bacterial genotoxins are peptide or protein virulence factors produced by several pathogens, which make single-strand breaks (SSBs) and/or double-strand DNA breaks (DSBs) in the target host cells. If host DNA inflictions are not resolved on time, host cell apoptosis, cell senescence, and/or even bacterial pathogen-related cancer may occur. Two multi-protein AB toxins, cytolethal distending toxin (CDT) produced by over 30 bacterial pathogens and typhoid toxin from Salmonella Typhi, as well as small polyketide-peptides named colibactin that causes the DNA interstrand cross-linking and subsequent DSBs is the most well-characterized bacterial genotoxins. Using these three examples, this review discusses the mechanisms by which these toxins deliver themselves into the nucleus of the target host cells and exert their genotoxic functions at the structural and functional levels.
Collapse
Affiliation(s)
- Liaoqi Du
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Hirayama Y, Sato M, Watanabe K. Advancing the Biosynthetic and Chemical Understanding of the Carcinogenic Risk Factor Colibactin and Its Producers. Biochemistry 2022; 61:2782-2790. [PMID: 35723977 DOI: 10.1021/acs.biochem.2c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies have shown that Escherichia coli often carries a biosynthetic gene cluster termed either the pks island or the clb cluster that allows the production of a genotoxic polyketide-nonribosomal peptide hybrid secondary metabolite called colibactin. While the gene cluster is not always expressed, when the strain that resides in the colon produces the genotoxin, it is suspected to become a risk factor for colorectal cancer. Therefore, there is great interest in devising a simple method for the detection of colibactin-producing strains and understanding the detailed mechanism of how colibactin can induce oncogenesis, to develop convenient early screening methods and possible preventive treatments against colorectal cancer. However, the definitive chemical structure of colibactin remained elusive until recently, primarily due to its low yield and instability. In this review, we will briefly trace the recent studies leading to the identification of the structure of the active intact colibactin. Subsequently, we will describe our efforts toward developing simple methods for detecting colibactin producers, where we established methods based on the conventional polymerase chain reaction and loop-mediated isothermal amplification techniques. We also designed an activity-based fluorogenic probe for detecting colibactin-producing strains that could discern colibactin production levels among the E. coli strains screened. Using the probe, we isolated a wild-type high-colibactin-producing strain from a colorectal cancer tissue sample that proved to be valuable in identifying new colibactin metabolites and structurally characterizing them by nuclear magnetic resonance. Those techniques and the chemical insight they furnished should improve the fight against colorectal cancer.
Collapse
Affiliation(s)
- Yuichiro Hirayama
- Department of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
10
|
Chen J, Byun H, Liu R, Jung IJ, Pu Q, Zhu CY, Tanchoco E, Alavi S, Degnan PH, Ma AT, Roggiani M, Beld J, Goulian M, Hsiao A, Zhu J. A commensal-encoded genotoxin drives restriction of Vibrio cholerae colonization and host gut microbiome remodeling. Proc Natl Acad Sci U S A 2022; 119:e2121180119. [PMID: 35254905 PMCID: PMC8931321 DOI: 10.1073/pnas.2121180119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
SignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an Escherichia coli-produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including Vibrio cholerae and Bacteroides fragilis, sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Hyuntae Byun
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Rui Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - I-Ji Jung
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Qinqin Pu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | | | - Ethan Tanchoco
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Salma Alavi
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Patrick H. Degnan
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Amy T. Ma
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Jun Zhu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
11
|
Tang JW, Liu X, Ye W, Li ZR, Qian PY. Biosynthesis and bioactivities of microbial genotoxin colibactins. Nat Prod Rep 2022; 39:991-1014. [PMID: 35288725 DOI: 10.1039/d1np00050k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to 2021Colibactin(s), a group of secondary metabolites produced by the pks island (clb cluster) of Escherichia coli, shows genotoxicity relevant to colorectal cancer and thus significantly affects human health. Over the last 15 years, substantial efforts have been exerted to reveal the molecular structure of colibactin, but progress is slow owing to its instability, low titer, and elusive and complex biosynthesis logic. Fortunately, benefiting from the discovery of the prodrug mechanism, over 40 precursors of colibactin have been reported. Some key biosynthesis genes located on the pks island have also been characterised. Using an integrated bioinformatics, metabolomics, and chemical synthesis approach, researchers have recently characterised the structure and possible biosynthesis processes of colibactin, thereby providing new insights into the unique biosynthesis logic and the underlying mechanism of the biological activity of colibactin. Early developments in the study of colibactin have been summarised in several previous reviews covering various study periods, whereas the two most recent reviews have focused primarily on the chemical synthesis of colibactin. The present review aims to provide an update on the biosynthesis and bioactivities of colibactin.
Collapse
Affiliation(s)
- Jian-Wei Tang
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Xin Liu
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Wei Ye
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhong-Rui Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| |
Collapse
|
12
|
Crauste C, Galano JM, Guy A, Lehoux J, Durand T, Balas L. Synthesis of fatty acid bioconjugates and related derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Céline Crauste
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - jean-Marie Galano
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Alexandre Guy
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Jordan Lehoux
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Thierry Durand
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Laurence Balas
- UMR 5247: Institut des Biomolecules Max Mousseron Synthesis of bioactive lipids 1919 route de Mende 34293 Montpellier Cedex FRANCE
| |
Collapse
|
13
|
Hueber A, Petitfils C, Le Faouder P, Langevin G, Guy A, Galano JM, Durand T, Martin JF, Tabet JC, Cenac N, Bertrand-Michel J. Discovery and quantification of lipoamino acids in bacteria. Anal Chim Acta 2022; 1193:339316. [PMID: 35058001 DOI: 10.1016/j.aca.2021.339316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 11/15/2022]
Abstract
Improving knowledge about metabolites produced by the microbiota is a key point to understand its role in human health and disease. Among them, lipoamino acid (LpAA) containing asparagine and their derivatives are bacterial metabolites which could have an impact on the host. In this study, our aim was to extend the characterization of this family. We developed a semi-targeted workflow to identify and quantify new candidates. First, the sample preparation and analytical conditions using liquid chromatography (LC) coupled to high resolution mass spectrometry (HRMS) were optimized. Using a theoretical homemade database, HRMS raw data were manually queried. This strategy allowed us to find 25 new LpAA conjugated to Asn, Gln, Asp, Glu, His, Leu, Ile, Lys, Phe, Trp and Val amino acids. These metabolites were then fully characterized by MS2, and compared to the pure synthesized standards to validate annotation. Finally, a quantitative method was developed by LC coupled to a triple quadrupole instrument, and linearity and limit of quantification were determined. 14 new LpAA were quantified in gram positive bacteria, Lactobacilus animalis, and 12 LpAA in Escherichia coli strain Nissle 1917.
Collapse
Affiliation(s)
- Amandine Hueber
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; I2MC, Université de Toulouse, Inserm, Université Toulouse 3 Paul Sabatier, Toulouse, France; IRSD, Université de Toulouse, INSERM, INRA, INPENVT, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Camille Petitfils
- IRSD, Université de Toulouse, INSERM, INRA, INPENVT, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Pauline Le Faouder
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; I2MC, Université de Toulouse, Inserm, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Geoffrey Langevin
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier-ENSCM, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier-ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier-ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier-ENSCM, Montpellier, France
| | - Jean-François Martin
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; Toxalim (Research Centre in Food Toxicology), INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University (UPS), Toulouse, France
| | - Jean-Claude Tabet
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France; Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005, Paris, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, INPENVT, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Justine Bertrand-Michel
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; I2MC, Université de Toulouse, Inserm, Université Toulouse 3 Paul Sabatier, Toulouse, France.
| |
Collapse
|
14
|
Jiang T, Yang X, Li G, Zhao X, Sun T, Müller R, Wang H, Li M, Zhang Y. Bacteria-Based Live Vehicle for In Vivo Bioluminescence Imaging. Anal Chem 2021; 93:15687-15695. [PMID: 34783525 DOI: 10.1021/acs.analchem.1c03568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The anticancer therapy strategy mediated by tumor-targeting bacteria needs better visualization tools for imaging and monitoring bacteria in vivo. The probiotic strain Escherichia coli Nissle 1917 (EcN), one of the tumor-targeting bacteria, leads to the potential application for cancer therapy. Here, we report the development and application of a live, EcN-based imageable vehicle for noninvasive in vivo bioluminescence imaging in live mice. Firefly luciferase (Fluc) and luciferin-regenerating enzyme (LRE), an enzyme that contributes to stable bioluminescence, were functionally coexpressed in EcN. The recombinant EcN strain expressing the genomically integrated Fluc-LRE cassette was demonstrated to be a valuable tool for generating robust, continuous, and red-shifted bioluminescence for bacterial tracking in vitro and in vivo, thus providing an optical tumor-targeting system for the in vivo study of bacteria-assisted cancer therapy. Additionally, in vivo imaging of the recombinant EcN strain in the mouse intestinal tract indicated the potential of this strain to be used as a tool in the study of gut.
Collapse
Affiliation(s)
- Tianyu Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China.,Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518000, China
| | - Xingye Yang
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Geng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Xiaohan Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Tao Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Minyong Li
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| |
Collapse
|
15
|
Tsunematsu Y, Hosomi K, Kunisawa J, Sato M, Shibuya N, Saito E, Murakami H, Yoshikawa Y, Iwashita Y, Miyoshi N, Mutoh M, Ishikawa H, Sugimura H, Miyachi M, Wakabayashi K, Watanabe K. Mother-to-infant transmission of the carcinogenic colibactin-producing bacteria. BMC Microbiol 2021; 21:235. [PMID: 34429063 PMCID: PMC8386082 DOI: 10.1186/s12866-021-02292-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/09/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Escherichia coli strain that is known to produce the genotoxic secondary metabolite colibactin is linked to colorectal oncogenesis. Therefore, understanding the properties of such colibactin-positive E. coli and the molecular mechanism of oncogenesis by colibactin may provide us with opportunities for early diagnosis or prevention of colorectal oncogenesis. While there have been major advances in the characterization of colibactin-positive E. coli and the toxin it produces, the infection route of the clb + strain remains poorly characterized. RESULTS We examined infants and their treatments during and post-birth periods to examine potential transmission of colibactin-positive E. coli to infants. Here, analysis of fecal samples of infants over the first month of birth for the presence of a colibactin biosynthetic gene revealed that the bacterium may be transmitted from mother to infant through intimate contacts, such as natural childbirth and breastfeeding, but not through food intake. CONCLUSIONS Our finding suggests that transmission of colibactin-positive E. coli appears to be occurring at the very early stage of life of the newborn and hints at the possibility of developing early preventive measures against colorectal cancer.
Collapse
Affiliation(s)
- Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, 422-8526, Shizuoka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, Laboratory of Gut Environmental System, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 567-0085, Ibaraki-city, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, Laboratory of Gut Environmental System, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 567-0085, Ibaraki-city, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, 422-8526, Shizuoka, Japan
| | - Noriko Shibuya
- Department of Pediatrics, Maternal and Child Health Center, Aiiku Clinic, 106-8580, Tokyo, Japan
| | - Emiko Saito
- Department of Human Nutrition, Tokyo Kasei Gakuin University, 194-0292, Tokyo, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 162-8636, Tokyo, Japan
| | - Yuko Yoshikawa
- School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 180-8602, Tokyo, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 431- 3192, Shizuoka, Japan
| | - Noriyuki Miyoshi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 422-8526, Shizuoka, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, 602-8566, Kyoto, Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, 602-8566, Kyoto, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 431- 3192, Shizuoka, Japan
| | - Motohiko Miyachi
- Department of Physical Activity Research, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 162-8636, Tokyo, Japan
| | - Keiji Wakabayashi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 422-8526, Shizuoka, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 422-8526, Shizuoka, Japan.
| |
Collapse
|
16
|
Wami H, Wallenstein A, Sauer D, Stoll M, von Bünau R, Oswald E, Müller R, Dobrindt U. Insights into evolution and coexistence of the colibactin- and yersiniabactin secondary metabolite determinants in enterobacterial populations. Microb Genom 2021; 7. [PMID: 34128785 PMCID: PMC8461471 DOI: 10.1099/mgen.0.000577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial genotoxin colibactin interferes with the eukaryotic cell cycle by causing dsDNA breaks. It has been linked to bacterially induced colorectal cancer in humans. Colibactin is encoded by a 54 kb genomic region in Enterobacteriaceae. The colibactin genes commonly co-occur with the yersiniabactin biosynthetic determinant. Investigating the prevalence and sequence diversity of the colibactin determinant and its linkage to the yersiniabactin operon in prokaryotic genomes, we discovered mainly species-specific lineages of the colibactin determinant and classified three main structural settings of the colibactin–yersiniabactin genomic region in Enterobacteriaceae. The colibactin gene cluster has a similar but not identical evolutionary track to that of the yersiniabactin operon. Both determinants could have been acquired on several occasions and/or exchanged independently between enterobacteria by horizontal gene transfer. Integrative and conjugative elements play(ed) a central role in the evolution and structural diversity of the colibactin–yersiniabactin genomic region. Addition of an activating and regulating module (clbAR) to the biosynthesis and transport module (clbB-S) represents the most recent step in the evolution of the colibactin determinant. In a first attempt to correlate colibactin expression with individual lineages of colibactin determinants and different bacterial genetic backgrounds, we compared colibactin expression of selected enterobacterial isolates in vitro. Colibactin production in the tested Klebsiella species and Citrobacter koseri strains was more homogeneous and generally higher than that in most of the Escherichia coli isolates studied. Our results improve the understanding of the diversity of colibactin determinants and its expression level, and may contribute to risk assessment of colibactin-producing enterobacteria.
Collapse
Affiliation(s)
- Haleluya Wami
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Daniel Sauer
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Campus E8 1, Saarbrücken, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | | | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Campus E8 1, Saarbrücken, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Gut Microbiota as Potential Biomarker and/or Therapeutic Target to Improve the Management of Cancer: Focus on Colibactin-Producing Escherichia coli in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13092215. [PMID: 34063108 PMCID: PMC8124679 DOI: 10.3390/cancers13092215] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Gut microbiota is emerging as new diagnostic and prognostic marker and/or therapeutic target to improve the management of cancer. This review aims to summarize microbial signatures that have been associated with digestive and other cancers. We report the clinical relevance of these microbial markers to predict the response to cancer therapy. Among these biomarkers, colibactin-producing E. coli are prevalent in the colonic mucosa of patients with colorectal cancer and they promote colorectal carcinogenesis in several pre-clinical models. Here we discuss the promising use of colibactin-producing E. coli as a new predictive factor and a therapeutic target in colon cancer management. Abstract The gut microbiota is crucial for physiological development and immunological homeostasis. Alterations of this microbial community called dysbiosis, have been associated with cancers such colorectal cancers (CRC). The pro-carcinogenic potential of this dysbiotic microbiota has been demonstrated in the colon. Recently the role of the microbiota in the efficacy of anti-tumor therapeutic strategies has been described in digestive cancers and in other cancers (e.g., melanoma and sarcoma). Different bacterial species seem to be implicated in these mechanisms: F. nucleatum, B. fragilis, and colibactin-associated E. coli (CoPEC). CoPEC bacteria are prevalent in the colonic mucosa of patients with CRC and they promote colorectal carcinogenesis in susceptible mouse models of CRC. In this review, we report preclinical and clinical data that suggest that CoPEC could be a new factor predictive of poor outcomes that could be used to improve cancer management. Moreover, we describe the possibility of using these bacteria as new therapeutic targets.
Collapse
|
18
|
Tripathi P, Bruner SD. Structural Basis for the Interactions of the Colibactin Resistance Gene Product ClbS with DNA. Biochemistry 2021; 60:1619-1625. [PMID: 33945270 DOI: 10.1021/acs.biochem.1c00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The natural product colibactin, along with its associated biosynthetic gene cluster, is an example system for the role microbially derived small molecules play in the human microbiome. This is particularly relevant in the human gut, where host microbiota is involved in various disorders, including colorectal cancer pathogenesis. Bacteria harboring the colibactin gene cluster induce alkylation of nucleobases in host DNA, forming interstrand cross-links both in vivo and in vitro. These lesions can lead to deleterious double-strand breaks and have been identified as the primary mechanism of colibactin-induced cytotoxicity. The gene product ClbS is one of several mechanisms utilized by the producing bacteria to maintain genome integrity. ClbS catalyzes hydrolytic inactivation of colibactin and has been shown to bind DNA, incurring self-resistance. Presented is the molecular basis for ClbS bound to a DNA oligonucleotide. The structure shows the interaction of the protein with the ends of a DNA duplex with terminal nucleotides flipped to the enzyme active site. The structure suggests an additional function for ClbS, the binding to damaged DNA followed by repair. Additionally, our study provides general insight into the function of the widely distributed and largely uncharacterized DUF1706 protein family.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
19
|
Zhou T, Hirayama Y, Tsunematsu Y, Suzuki N, Tanaka S, Uchiyama N, Goda Y, Yoshikawa Y, Iwashita Y, Sato M, Miyoshi N, Mutoh M, Ishikawa H, Sugimura H, Wakabayashi K, Watanabe K. Isolation of New Colibactin Metabolites from Wild-Type Escherichia coli and In Situ Trapping of a Mature Colibactin Derivative. J Am Chem Soc 2021; 143:5526-5533. [PMID: 33787233 DOI: 10.1021/jacs.1c01495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colibactin is a polyketide-nonribosomal peptide hybrid secondary metabolite that can form interstrand cross-links in double-stranded DNA. Colibactin-producing Escherichia coli has also been linked to colorectal oncogenesis. Thus, there is a strong interest in understanding the role colibactin may play in oncogenesis. Here, using the high-colibactin-producing wild-type E. coli strain we isolated from a clinical sample with the activity-based fluorescent probe we developed earlier, we were able to identify colibactin 770, which was recently identified and proposed as the complete form of colibactin, along with colibactin 788, 406, 416, 420, and 430 derived from colibactin 770 through structural rearrangements and solvolysis. Furthermore, we were able to trap the degrading mature colibactin species by converting the diketone moiety into quinoxaline in situ in the crude culture extract to form colibactin 860 at milligram scale. This allowed us to determine the stereochemically complex structure of the rearranged form of an intact colibactin, colibactin 788, in detail. Furthermore, our study suggested that we were capturing only a few percent of the actual colibactin produced by the microbe, providing a crude quantitative insight into the inherent instability of this compound. Through the structural assignment of colibactins and their degradative products by the combination of LC-HRMS and NMR spectroscopies, we were able to elucidate further the fate of inherently unstable colibactin, which could help acquire a more complete picture of colibactin metabolism and identify key DNA adducts and biomarkers for diagnosing colorectal cancer.
Collapse
Affiliation(s)
- Tao Zhou
- Adenoprevent Co., Ltd., Shizuoka 422-8526, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuichiro Hirayama
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Nanami Suzuki
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Seiji Tanaka
- National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Nahoko Uchiyama
- National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yuko Yoshikawa
- School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Michihiro Mutoh
- Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hideki Ishikawa
- Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Adenoprevent Co., Ltd., Shizuoka 422-8526, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
20
|
Abstract
The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.
Collapse
Affiliation(s)
- Emilee E Shine
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.,Current affiliation: Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jason M Crawford
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
21
|
Williams PC, Wernke KM, Tirla A, Herzon SB. Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite. Nat Prod Rep 2020; 37:1532-1548. [PMID: 33174565 PMCID: PMC7700718 DOI: 10.1039/d0np00072h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut.
Collapse
Affiliation(s)
- Peyton C Williams
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Alina Tirla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA. and Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
22
|
Abstract
The nonribosomal peptide/polyketide hybrid colibactin can be considered a bacterial virulence factor involved in extraintestinal infection and also a procarcinogen. Nevertheless, and despite its genotoxic effect, colibactin expression can also inhibit bacterial or tumor growth and correlates with probiotic anti-inflammatory and analgesic properties. Although the biological function of this natural compound has been studied extensively, our understanding of the regulation of colibactin expression is still far from complete. We investigated in detail the role of regulatory elements involved in colibactin expression and in the growth conditions that promote colibactin expression. In this way, our data shed light on the regulatory mechanisms involved in colibactin expression and may support the expression and purification of this interesting nonribosomal peptide/polyketide hybrid for further molecular characterization. Colibactin is a nonribosomal peptide/polyketide hybrid natural product expressed by different members of the Enterobacteriaceae which can be correlated with induction of DNA double-strand breaks and interference with cell cycle progression in eukaryotes. Regulatory features of colibactin expression are only incompletely understood. We used Escherichia coli strain M1/5 as a model to investigate regulation of expression of the colibactin determinant at the transcriptional level and to characterize regulatory elements located within the colibactin pathogenicity island itself. We measured clbR transcription in vitro and observed that cultivation in defined minimal media led to increased colibactin expression relative to rich media. Transcription of clbR directly responds to iron availability. We also characterized structural DNA elements inside the colibactin determinant involved in ClbR-dependent regulation, i.e., ClbR binding sites and a variable number of tandem repeats located upstream of clbR. We investigated the impact of clbR overexpression or deletion at the transcriptome and proteome levels. Moreover, we compared global gene regulation under these conditions with that occurring upon overexpression or deletion of clbQ, which affects the flux of colibactin production. Combining the results of the transcriptome and proteome analyses with indirect measurements of colibactin levels by cell culture assays and an approximate quantification of colibactin via the second product of colibactin cleavage from precolibactin, N-myristoyl-d-asparagine, we demonstrate that the variable number of tandem repeats plays a significant regulatory role in colibactin expression. We identify ClbR as the only transcriptional activator known so far that is specific and essential for efficient regulation of colibactin production. IMPORTANCE The nonribosomal peptide/polyketide hybrid colibactin can be considered a bacterial virulence factor involved in extraintestinal infection and also a procarcinogen. Nevertheless, and despite its genotoxic effect, colibactin expression can also inhibit bacterial or tumor growth and correlates with probiotic anti-inflammatory and analgesic properties. Although the biological function of this natural compound has been studied extensively, our understanding of the regulation of colibactin expression is still far from complete. We investigated in detail the role of regulatory elements involved in colibactin expression and in the growth conditions that promote colibactin expression. In this way, our data shed light on the regulatory mechanisms involved in colibactin expression and may support the expression and purification of this interesting nonribosomal peptide/polyketide hybrid for further molecular characterization.
Collapse
|
23
|
Kawanishi M, Hisatomi Y, Oda Y, Shimohara C, Tsunematsu Y, Sato M, Hirayama Y, Miyoshi N, Iwashita Y, Yoshikawa Y, Sugimura H, Mutoh M, Ishikawa H, Wakabayashi K, Yagi T, Watanabe K. In vitro genotoxicity analyses of colibactin-producing E. coli isolated from a Japanese colorectal cancer patient. J Toxicol Sci 2020; 44:871-876. [PMID: 31813906 DOI: 10.2131/jts.44.871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Colibactin is a polyketide-peptide genotoxin produced by enteric bacteria such as E. coli, and is considered to contribute to the development of colorectal cancer. We previously isolated E. coli strains from Japanese colorectal cancer patients, and in the present study we investigated the genotoxic potency of the colibactin-producing (clb+) E. coli strains that carry the polyketide synthases "pks" gene cluster (pks+) and an isogenic clb- mutant in which the colibactin-producing ability is impaired. Measurement of phosphorylated histone H2AX indicated that DNA double strand breaks were induced in mammalian CHO AA8 cells infected with the clb+ E. coli strains. Induction of DNA damage response (SOS response) by crude extract of the clb+ strains was 1.7 times higher than that of the clb- E. coli in an umu assay with a Salmonella typhimurium TA1535/pSK1002 tester strain. Micronucleus test with CHO AA8 cells revealed that infection with the clb+ strains induced genotoxicity, i.e., the frequencies of micronucleated cells infected with clb+ strain were 4-6 times higher than with the clb- strain. Since the intestinal flora are affected by dietary habits that are strongly associated with ethnicity, these data may contribute to both risk evaluation and prevention of colorectal cancer in the Japanese population.
Collapse
Affiliation(s)
- Masanobu Kawanishi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University
| | - Yuuta Hisatomi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University
| | - Yoshimitsu Oda
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University
| | - Chiaki Shimohara
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka
| | | | - Noriyuki Miyoshi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine
| | - Yuko Yoshikawa
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka.,School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine
| | - Michihiro Mutoh
- Division of Prevention, Center for Public Health Sciences, National Cancer Center
| | - Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka
| | - Takashi Yagi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
24
|
Abbasi MN, Fu J, Bian X, Wang H, Zhang Y, Li A. Recombineering for Genetic Engineering of Natural Product Biosynthetic Pathways. Trends Biotechnol 2020; 38:715-728. [PMID: 31973879 DOI: 10.1016/j.tibtech.2019.12.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/21/2023]
Abstract
Microbial genomes encode many cryptic and uncharacterized biosynthetic gene clusters (BGCs). Exploiting this unexplored genetic wealth to discover microbial novel natural products (NPs) remains a challenging issue. We review homologous recombination (HR)-based recombineering, mediated by the recombinases RecE/RecT from Rac prophage and Redα/Redβ from lambda phage, which has developed into a highly inclusive tool for direct cloning of large DNA up to 100 kb, seamless mutation, multifragment assembly, and heterologous expression of microbial NP BGCs. Its utilization in the refactoring, engineering, and functional expression of long BGCs for NP biosynthesis makes it easy to elucidate NP-producing potential in microbes. This review also highlights various applications of recombineering in NP-derived drug discovery.
Collapse
Affiliation(s)
- Muhammad Nazeer Abbasi
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jun Fu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Hailong Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
25
|
Abstract
Natural products from microorganisms are important small molecules that play roles in various biological processes like cellular growth, motility, nutrient acquisition, stress response, biofilm formation, and defense. It is hypothesized that pathogens exploit these molecules to regulate virulence and persistence during infections. Here, we present selected examples of signaling natural products from human pathogenic bacteria that use these metabolites to gain a competitive advantage. Targeting these signaling systems provides novel strategies to antimicrobial treatments.
Collapse
Affiliation(s)
- Zhijuan Hu
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
26
|
Abstract
Colibactin-producing Escherichia coli strains are associated with cancerous and precancerous colorectal tissues and are suspected of promoting colorectal carcinogenesis. In this study, we describe a new interplay between the synthesis of the genotoxin colibactin and the polyamine spermidine. Polyamines are highly abundant in cancer tissue and are associated with cell proliferation. The need for spermidine in genotoxic activity provides a new perspective on the role of these metabolites in the pathogenicity of colibactin-producing E. coli strains in colorectal cancer. Colibactin is a polyketide/nonribosomal peptide produced by Escherichia coli strains that harbor the pks island. This toxin induces DNA double-strand breaks and DNA interstrand cross-links in infected eukaryotic cells. Colibactin-producing strains are found associated with colorectal cancer biopsy specimens and promote intestinal tumor progression in various murine models. Polyamines are small polycationic molecules produced by both microorganisms and eukaryotic cells. Their levels are increased in malignancies, where they contribute to disease progression and metastasis. In this study, we demonstrated that the endogenous spermidine synthase SpeE is required for full genotoxic activity of colibactin-producing E. coli. Supplying spermidine in a ΔspeE pks+E. coli strain restored genotoxic activity. Spermidine is involved in the autotoxicity linked to colibactin and is required for direct damaging activity on DNA. The production of the colibactin prodrug motif is impaired in ΔspeE mutants. Therefore, we demonstrated that spermidine has a direct impact on colibactin synthesis. IMPORTANCE Colibactin-producing Escherichia coli strains are associated with cancerous and precancerous colorectal tissues and are suspected of promoting colorectal carcinogenesis. In this study, we describe a new interplay between the synthesis of the genotoxin colibactin and the polyamine spermidine. Polyamines are highly abundant in cancer tissue and are associated with cell proliferation. The need for spermidine in genotoxic activity provides a new perspective on the role of these metabolites in the pathogenicity of colibactin-producing E. coli strains in colorectal cancer.
Collapse
|
27
|
Abstract
The clb gene cluster encodes the biosynthesis of metabolites known as precolibactins and colibactins. The clb pathway is found in gut commensal E. coli, and clb metabolites are thought to initiate colorectal cancer via DNA cross-linking. Here we report confirmation of the structural assignment of the complex clb product precolibactin 886 via a biomimetic synthetic pathway. We show that a α-ketoimine linear precursor undergoes spontaneous cyclization to precolibactin 886 upon HPLC purification. Studies of this α-ketoimine and the related α-dicarbonyl revealed that these compounds are unexpectedly susceptible to nucleophilic cleavage under mildly basic conditions. This cleavage pathway forms other known clb metabolites or biosynthetic intermediates and explains the difficulties in isolating fully mature biosynthetic products. This cleavage also accounts for a recently identified colibactin–adenine adduct. The colibactin peptidase ClbP deacylates synthetic precolibactin 886 to form a non-genotoxic pyridone, suggesting precolibactin 886 lies off-path of the major biosynthetic route.
Collapse
|
28
|
Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. Nat Chem 2019; 11:880-889. [PMID: 31527851 PMCID: PMC6761029 DOI: 10.1038/s41557-019-0317-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to clb genomic island that distributes widespread in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumor formation and enhance progression of colorectal cancer via DNA double-strand breaks-induced cellular senescence and death; however, the chemical basis contributing to the pathogenesis at the molecular level has not been fully characterized. Here we report the discovery of colibactin-645 a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSBs activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, highlighting a unique fate of the aminomalonate building monomer in forming the C-terminal 5-hydroxy 4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin’s DNA DSBs activity and facilitates further mechanistic study of colibactin-related CRC incidence and prevention.
Collapse
|
29
|
Xue M, Kim CS, Healy AR, Wernke KM, Wang Z, Frischling MC, Shine EE, Wang W, Herzon SB, Crawford JM. Structure elucidation of colibactin and its DNA cross-links. Science 2019; 365:science.aax2685. [PMID: 31395743 DOI: 10.1126/science.aax2685] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022]
Abstract
Colibactin is a complex secondary metabolite produced by some genotoxic gut Escherichia coli strains. The presence of colibactin-producing bacteria correlates with the frequency and severity of colorectal cancer in humans. However, because colibactin has not been isolated or structurally characterized, studying the physiological effects of colibactin-producing bacteria in the human gut has been difficult. We used a combination of genetics, isotope labeling, tandem mass spectrometry, and chemical synthesis to deduce the structure of colibactin. Our structural assignment accounts for all known biosynthetic and cell biology data and suggests roles for the final unaccounted enzymes in the colibactin gene cluster.
Collapse
Affiliation(s)
- Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Chung Sub Kim
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Alan R Healy
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Zhixun Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | - Emilee E Shine
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Weiwei Wang
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA.,W. M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT 06510, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA. .,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
30
|
Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, Brennan CA, Chun E, Ngo L, Samson LD, Engelward BP, Garrett WS, Balbo S, Balskus EP. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019; 363:363/6428/eaar7785. [PMID: 30765538 DOI: 10.1126/science.aar7785] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/16/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Certain Escherichia coli strains residing in the human gut produce colibactin, a small-molecule genotoxin implicated in colorectal cancer pathogenesis. However, colibactin's chemical structure and the molecular mechanism underlying its genotoxic effects have remained unknown for more than a decade. Here we combine an untargeted DNA adductomics approach with chemical synthesis to identify and characterize a covalent DNA modification from human cell lines treated with colibactin-producing E. coli Our data establish that colibactin alkylates DNA with an unusual electrophilic cyclopropane. We show that this metabolite is formed in mice colonized by colibactin-producing E. coli and is likely derived from an initially formed, unstable colibactin-DNA adduct. Our findings reveal a potential biomarker for colibactin exposure and provide mechanistic insights into how a gut microbe may contribute to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Matthew R Wilson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Yindi Jiang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Paul D Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Andrea Carrá
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Caitlin A Brennan
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lizzie Ngo
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Institute, Boston, MA 02115, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA.
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
31
|
Jiang Y, Stornetta A, Villalta PW, Wilson MR, Boudreau PD, Zha L, Balbo S, Balskus EP. Reactivity of an Unusual Amidase May Explain Colibactin's DNA Cross-Linking Activity. J Am Chem Soc 2019; 141:11489-11496. [PMID: 31251062 PMCID: PMC6728428 DOI: 10.1021/jacs.9b02453] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Certain commensal and pathogenic bacteria produce colibactin, a small-molecule genotoxin that causes interstrand cross-links in host cell DNA. Although colibactin alkylates DNA, the molecular basis for cross-link formation is unclear. Here, we report that the colibactin biosynthetic enzyme ClbL is an amide bond-forming enzyme that links aminoketone and β-keto thioester substrates in vitro and in vivo. The substrate specificity of ClbL strongly supports a role for this enzyme in terminating the colibactin NRPS-PKS assembly line and incorporating two electrophilic cyclopropane warheads into the final natural product scaffold. This proposed transformation was supported by the detection of a colibactin-derived cross-linked DNA adduct. Overall, this work provides a biosynthetic explanation for colibactin's DNA cross-linking activity and paves the way for further study of its chemical structure and biological roles.
Collapse
Affiliation(s)
- Yindi Jiang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, United States
| | - Matthew R. Wilson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Paul D. Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Li Zha
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| |
Collapse
|
32
|
Hirayama Y, Tsunematsu Y, Yoshikawa Y, Tamafune R, Matsuzaki N, Iwashita Y, Ohnishi I, Tanioka F, Sato M, Miyoshi N, Mutoh M, Ishikawa H, Sugimura H, Wakabayashi K, Watanabe K. Activity-Based Probe for Screening of High-Colibactin Producers from Clinical Samples. Org Lett 2019; 21:4490-4494. [PMID: 31192617 DOI: 10.1021/acs.orglett.9b01345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
While high-colibactin-producing Escherichia coli is thought to be associated with colorectal oncogenesis, this study is complicated part due to an inability to isolate colibactin adequately. Here, we created fluorescent probes activated by ClbP, the colibactin-maturing peptidase, to identify high-colibactin-producing strains. Our probe served as a valuable clinical diagnostic tool that allowed simple high-throughput diagnostic screening of clinical samples. Furthermore, the probe also allowed identification of high-colibactin producers that would help advance our understanding of colibactin biosynthesis.
Collapse
Affiliation(s)
- Yuichiro Hirayama
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Yuko Yoshikawa
- School of Veterinary Medicine, Faculty of Veterinary Science , Nippon Veterinary and Life Science University , Tokyo 180-8602 , Japan
| | - Ryota Tamafune
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Nobuo Matsuzaki
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Yuji Iwashita
- Department of Tumor Pathology , Hamamatsu University School of Medicine , Shizuoka 431-3192 , Japan
| | - Ippei Ohnishi
- Division of Pathology , Iwata City Hospital , Iwata 438-8550 , Japan
| | - Fumihiko Tanioka
- Division of Pathology , Iwata City Hospital , Iwata 438-8550 , Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Noriyuki Miyoshi
- Graduate School of Nutritional and Environmental Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Center for Public Health Sciences , National Cancer Center , Tokyo 104-0045 , Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention , Kyoto Prefectural University of Medicine , Kyoto 602-8566 , Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology , Hamamatsu University School of Medicine , Shizuoka 431-3192 , Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| |
Collapse
|
33
|
McErlean M, Overbay J, Van Lanen S. Refining and expanding nonribosomal peptide synthetase function and mechanism. J Ind Microbiol Biotechnol 2019; 46:493-513. [PMID: 30673909 PMCID: PMC6460464 DOI: 10.1007/s10295-018-02130-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have been exploited in medicine, agriculture, and biotechnology, among other fields. As a consequence, there have been considerable efforts aimed at understanding how NRPSs orchestrate the assembly of these natural products. This review highlights several recent examples that continue to expand upon the fundamental knowledge of NRPS mechanism and includes (1) the discovery of new NRPS substrates and the mechanism by which these sometimes structurally complex substrates are made, (2) the characterization of new NRPS activities and domains that function during the process of peptide assembly, and (3) the various catalytic strategies that are utilized to release the NRPS product. These findings continue to strengthen the predictive power for connecting genes to products, thereby facilitating natural product discovery and development in the Genomics Era.
Collapse
Affiliation(s)
- Matt McErlean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan Overbay
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Steven Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
34
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
35
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
36
|
Moodie LWK, Hubert M, Zhou X, Albers MF, Lundmark R, Wanrooij S, Hedberg C. Photoactivated Colibactin Probes Induce Cellular DNA Damage. Angew Chem Int Ed Engl 2018; 58:1417-1421. [DOI: 10.1002/anie.201812326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Madlen Hubert
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
| | - Xin Zhou
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | | - Richard Lundmark
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | - Sjoerd Wanrooij
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | |
Collapse
|
37
|
Moodie LWK, Hubert M, Zhou X, Albers MF, Lundmark R, Wanrooij S, Hedberg C. Photoactivated Colibactin Probes Induce Cellular DNA Damage. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Madlen Hubert
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
| | - Xin Zhou
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | | - Richard Lundmark
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | - Sjoerd Wanrooij
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | |
Collapse
|
38
|
Shine EE, Xue M, Patel JR, Healy AR, Surovtseva YV, Herzon SB, Crawford JM. Model Colibactins Exhibit Human Cell Genotoxicity in the Absence of Host Bacteria. ACS Chem Biol 2018; 13:3286-3293. [PMID: 30403848 DOI: 10.1021/acschembio.8b00714] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Colibactins are genotoxic secondary metabolites produced in select Enterobacteriaceae, which induce downstream DNA double-strand breaks (DSBs) in human cell lines and are thought to promote the formation of colorectal tumors. Although key structural and functional features of colibactins have been elucidated, the full molecular mechanisms regulating these phenotypes remain unknown. Here, we demonstrate that free model colibactins induce DSBs in human cell cultures and do not require delivery by host bacteria. Through domain-targeted editing, we demonstrate that a subset of native colibactins generated from observed module skipping in the nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) biosynthetic assembly line share DNA alkylation phenotypes with the model colibactins in vitro. However, module skipping eliminates the strong DNA interstrand cross-links formed by the wild-type pathway in cell culture. This product diversification during the modular NRPS-PKS biosynthesis produces a family of metabolites with varying observed mechanisms of action (DNA alkylation versus cross-linking) in cell culture. The presence of membranes separating human cells from model colibactins attenuated genotoxicity, suggesting that membrane diffusion limits colibactin activity and could account for the reported bacterium-human cell-to-cell contact phenotype. Additionally, extracellular supplementation of the colibactin resistance protein ClbS was able to intercept colibactins in an Escherichia coli-human cell transient infection model. Our studies demonstrate that free model colibactins recapitulate cellular phenotypes associated with module-skipped products in the native colibactin pathway and define specific protein domains that are required for efficient DNA interstrand cross-linking in the native pathway.
Collapse
Affiliation(s)
- Emilee E. Shine
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jaymin R. Patel
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Alan R. Healy
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Jason M. Crawford
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
39
|
Li R, Helbig L, Fu J, Bian X, Herrmann J, Baumann M, Stewart AF, Müller R, Li A, Zips D, Zhang Y. Expressing cytotoxic compounds in Escherichia coli Nissle 1917 for tumor-targeting therapy. Res Microbiol 2018; 170:74-79. [PMID: 30447257 DOI: 10.1016/j.resmic.2018.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/16/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
Abstract
Abnormal blood vessels and hypoxic and necrotic regions are common features of solid tumors and related to the malignant phenotype and therapy resistance. Certain obligate or facultative anaerobic bacteria exhibit inherent ability to colonize and proliferate within solid tumors in vivo. Escherichia coli Nissle 1917 (EcN), a non-pathogenic probiotic in European markets, has been known to proliferate selectively in the interface between the viable and necrotic regions of solid tumors. The objective of this study was to establish a tumor-targeting therapy system using the genetically engineered EcN for targeted delivery of cytotoxic compounds, including colibactin, glidobactin and luminmide. Biosynthetic gene clusters of these cytotoxic compounds were introduced into EcN and the corresponding compounds were detected in the resultant recombinant EcN strains. The recombinant EcN showed significant cytotoxic activity in vitro and in vivo as well, and significantly suppressed the tumor growth. Together, this study confirmed efficient tumor-targeting colonization of EcN and demonstrated its potentiality in the tumor-specific delivery of cytotoxic compounds as a new tumor-targeting therapy system.
Collapse
Affiliation(s)
- Ruijuan Li
- Shandong University - Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Linda Helbig
- Experimental Radiotherapy of Tumours, OncoRay National Center for Radiation Research in Oncology, Medical Faculty and University Hospital, Dresden University of Technology, Germany
| | - Jun Fu
- Shandong University - Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China; Department of Genomics, Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Xiaoying Bian
- Shandong University - Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Baumann
- Experimental Radiotherapy of Tumours, OncoRay National Center for Radiation Research in Oncology, Medical Faculty and University Hospital, Dresden University of Technology, Germany
| | - A Francis Stewart
- Department of Genomics, Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Aiying Li
- Shandong University - Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| | - Daniel Zips
- Experimental Radiotherapy of Tumours, OncoRay National Center for Radiation Research in Oncology, Medical Faculty and University Hospital, Dresden University of Technology, Germany.
| | - Youming Zhang
- Shandong University - Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
40
|
Wassenaar TM. E. coli and colorectal cancer: a complex relationship that deserves a critical mindset. Crit Rev Microbiol 2018; 44:619-632. [DOI: 10.1080/1040841x.2018.1481013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Chen H, Fang Q, Tu Q, Liu C, Yin J, Yin Y, Xia L, Bian X, Zhang Y. Identification of a contact-dependent growth inhibition system in the probiotic Escherichia coli Nissle 1917. FEMS Microbiol Lett 2018; 365:4980907. [PMID: 29688444 DOI: 10.1093/femsle/fny102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/19/2018] [Indexed: 01/02/2023] Open
Abstract
Contact-dependent growth inhibition (CDI) is a type of competitive mechanisms and has been identified in various strains including Burkholderia, Dickeya, E. coli and Yersinia. Classical CDI systems contain three genes, cdiB, cdiA and cdiI. CdiB encoded by cdiB gene is a conserved β-barrel protein and required for export of CdiA. CdiA protein encoded by cdiA gene includes a conserved N-terminal domain and variable C-terminal toxic domain (CdiA-CT). Immunity protein CdiI binds and inactivates toxin protein CdiA-CT. Here, we identified two CDI systems, an intact cdiBAI operon with a truncated CdiB due to an unexpected mutation and an 'orphan' cdiA-CT/cdiI module in the probiotic Escherichia coli Nissle 1917 (EcN) genome. Both CdiA-CTs from EcN showed auto-inhibition activity when transferring into E. coli DH5α, as well the sequential deletion of amino acid residues resulted in the generation of the most potent mutant of CdiA-CT. CdiI neutralized the toxicity activity of CdiA and was immunity protein as previous report. In conclusion, this is the first report that the functional CDI system is in probiotic EcN and might provide a potential competitive mechanism for probiotic EcN in intestinal microenvironment.
Collapse
Affiliation(s)
- Hanna Chen
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Qian Fang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Qiang Tu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China.,Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Chenlang Liu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiaoying Bian
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Youming Zhang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China.,Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
42
|
Tsunematsu Y. Biosynthesis-assisted Structure Elucidation of Colibactin, the Genotoxic Metabolite Produced by Commensal Microbiota. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Faïs T, Delmas J, Barnich N, Bonnet R, Dalmasso G. Colibactin: More Than a New Bacterial Toxin. Toxins (Basel) 2018; 10:toxins10040151. [PMID: 29642622 PMCID: PMC5923317 DOI: 10.3390/toxins10040151] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/16/2022] Open
Abstract
Cyclomodulins are bacterial toxins that interfere with the eukaryotic cell cycle. A new cyclomodulin called colibactin, which is synthetized by the pks genomic island, was discovered in 2006. Despite many efforts, colibactin has not yet been purified, and its structure remains elusive. Interestingly, the pks island is found in members of the family Enterobacteriaceae (mainly Escherichia coli and Klebsiella pneumoniae) isolated from different origins, including from intestinal microbiota, septicaemia, newborn meningitis, and urinary tract infections. Colibactin-producing bacteria induce chromosomal instability and DNA damage in eukaryotic cells, which leads to senescence of epithelial cells and apoptosis of immune cells. The pks island is mainly observed in B2 phylogroup E. coli strains, which include extra-intestinal pathogenic E. coli strains, and pksE. coli are over-represented in biopsies isolated from colorectal cancer. In addition, pksE. coli bacteria increase the number of tumours in diverse colorectal cancer mouse models. Thus, colibactin could have a major impact on human health. In the present review, we will focus on the biological effects of colibactin, the distribution of the pks island, and summarize what is currently known about its synthesis and its structure.
Collapse
Affiliation(s)
- Tiphanie Faïs
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Julien Delmas
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
| | - Richard Bonnet
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Guillaume Dalmasso
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
44
|
Abstract
Colibactins are hybrid polyketide-nonribosomal peptides produced by Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae harboring the pks genomic island. These genotoxic metabolites are produced by pks-encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are bona fide virulence factors and are suspected of promoting colorectal carcinogenesis when produced by intestinal E. coli. Natural active colibactins have not been isolated, and how they induce DNA damage in the eukaryotic host cell is poorly characterized. Here, we show that DNA strands are cross-linked covalently when exposed to enterobacteria producing colibactins. DNA cross-linking is abrogated in a clbP mutant unable to deacetylate precolibactins or by adding the colibactin self-resistance protein ClbS, confirming the involvement of the mature forms of colibactins. A similar DNA-damaging mechanism is observed in cellulo, where interstrand cross-links are detected in the genomic DNA of cultured human cells exposed to colibactin-producing bacteria. The intoxicated cells exhibit replication stress, activation of ataxia-telangiectasia and Rad3-related kinase (ATR), and recruitment of the DNA cross-link repair Fanconi anemia protein D2 (FANCD2) protein. In contrast, inhibition of ATR or knockdown of FANCD2 reduces the survival of cells exposed to colibactin-producing bacteria. These findings demonstrate that DNA interstrand cross-linking is the critical mechanism of colibactin-induced DNA damage in infected cells. Colorectal cancer is the third-most-common cause of cancer death. In addition to known risk factors such as high-fat diets and alcohol consumption, genotoxic intestinal Escherichia coli bacteria producing colibactin are proposed to play a role in colon cancer development. Here, by using transient infections with genotoxic E. coli, we showed that colibactins directly generate DNA cross-links in cellulo. Such lesions are converted into double-strand breaks during the repair response. DNA cross-links, akin to those induced by metabolites of alcohol and high-fat diets and by widely used anticancer drugs, are both severely mutagenic and profoundly cytotoxic lesions. This finding of a direct induction of DNA cross-links by a bacterium should facilitate delineating the role of E. coli in colon cancer and engineering new anticancer agents.
Collapse
|
45
|
Tripathi P, Shine EE, Healy AR, Kim CS, Herzon SB, Bruner SD, Crawford JM. ClbS Is a Cyclopropane Hydrolase That Confers Colibactin Resistance. J Am Chem Soc 2017; 139:17719-17722. [PMID: 29112397 DOI: 10.1021/jacs.7b09971] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Certain commensal Escherichia coli contain the clb biosynthetic gene cluster that codes for small molecule prodrugs known as precolibactins. Precolibactins are converted to colibactins by N-deacylation; the latter are postulated to be genotoxic and to contribute to colorectal cancer formation. Though advances toward elucidating (pre)colibactin biosynthesis have been made, the functions and mechanisms of several clb gene products remain poorly understood. Here we report the 2.1 Å X-ray structure and molecular function of ClbS, a gene product that confers resistance to colibactin toxicity in host bacteria and which has been shown to be important for bacterial viability. The structure harbors a potential colibactin binding site and shares similarity to known hydrolases. In vitro studies using a synthetic colibactin analog and ClbS or an active site residue mutant reveal cyclopropane hydrolase activity that converts the electrophilic cyclopropane of the colibactins into an innocuous hydrolysis product. As the cyclopropane has been shown to be essential for genotoxic effects in vitro, this ClbS-catalyzed ring-opening provides a means for the bacteria to circumvent self-induced genotoxicity. Our study provides a molecular-level view of the first reported cyclopropane hydrolase and support for a specific mechanistic role of this enzyme in colibactin resistance.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Emilee E Shine
- Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Alan R Healy
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Chung Sub Kim
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Jason M Crawford
- Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| |
Collapse
|
46
|
Pérez-Berezo T, Pujo J, Martin P, Le Faouder P, Galano JM, Guy A, Knauf C, Tabet JC, Tronnet S, Barreau F, Heuillet M, Dietrich G, Bertrand-Michel J, Durand T, Oswald E, Cenac N. Identification of an analgesic lipopeptide produced by the probiotic Escherichia coli strain Nissle 1917. Nat Commun 2017; 8:1314. [PMID: 29101366 PMCID: PMC5670229 DOI: 10.1038/s41467-017-01403-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/14/2017] [Indexed: 01/19/2023] Open
Abstract
Administration of the probiotic Escherichia coli strain Nissle 1917 (EcN) decreases visceral pain associated with irritable bowel syndrome. Mutation of clbA, a gene involved in the biosynthesis of secondary metabolites, including colibactin, was previously shown to abrogate EcN probiotic activity. Here, we show that EcN, but not an isogenic clbA mutant, produces an analgesic lipopeptide. We characterize lipoamino acids and lipopeptides produced by EcN but not by the mutant by online liquid chromatography mass spectrometry. One of these lipopeptides, C12AsnGABAOH, is able to cross the epithelial barrier and to inhibit calcium flux induced by nociceptor activation in sensory neurons via the GABAB receptor. C12AsnGABAOH inhibits visceral hypersensitivity induced by nociceptor activation in mice. Thus, EcN produces a visceral analgesic, which could be the basis for the development of new visceral pain therapies. Escherichia coli Nissle is a probiotic that decreases visceral pain associated with irritable bowel syndrome. Here, the authors show that the microbe produces an analgesic lipopeptide, structurally related to GABA, that can cross the gut epithelial barrier and inhibits visceral hypersensitivity in mice.
Collapse
Affiliation(s)
- Teresa Pérez-Berezo
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, 31024, Toulouse, France
| | - Julien Pujo
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, 31024, Toulouse, France
| | - Patricia Martin
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, 31024, Toulouse, France.,CHU Toulouse, Hôpital Purpan, Service de bactériologie-hygiène, 31024, Toulouse, France
| | | | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier-ENSCM, 34093, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier-ENSCM, 34093, Montpellier, France
| | - Claude Knauf
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, 31024, Toulouse, France
| | - Jean Claude Tabet
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75005, Paris, France
| | - Sophie Tronnet
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, 31024, Toulouse, France
| | - Frederick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, 31024, Toulouse, France
| | - Maud Heuillet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, 31024, Toulouse, France
| | | | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier-ENSCM, 34093, Montpellier, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, 31024, Toulouse, France.,CHU Toulouse, Hôpital Purpan, Service de bactériologie-hygiène, 31024, Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, 31024, Toulouse, France.
| |
Collapse
|
47
|
Guntaka NS, Healy AR, Crawford JM, Herzon SB, Bruner SD. Structure and Functional Analysis of ClbQ, an Unusual Intermediate-Releasing Thioesterase from the Colibactin Biosynthetic Pathway. ACS Chem Biol 2017; 12:2598-2608. [PMID: 28846367 PMCID: PMC5830302 DOI: 10.1021/acschembio.7b00479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colibactin is a genotoxic hybrid nonribosomal peptide/polyketide secondary metabolite produced by various pathogenic and probiotic bacteria residing in the human gut. The presence of colibactin metabolites has been correlated to colorectal cancer formation in several studies. The specific function of many gene products in the colibactin gene cluster can be predicted. However, the role of ClbQ, a type II editing thioesterase, has not been established. The importance of ClbQ has been demonstrated by genetic deletions that abolish colibactin cytotoxic activity, and recent studies suggest an atypical role in releasing pathway intermediates from the assembly line. Here we report the 2.0 Å crystal structure and biochemical characterization of ClbQ. Our data reveal that ClbQ exhibits greater catalytic efficiency toward acyl-thioester substrates as compared to precolibactin intermediates and does not discriminate among carrier proteins. Cyclized pyridone-containing colibactins, which are off-pathway derivatives, are not viable substrates for ClbQ, while linear precursors are, supporting a role of ClbQ in facilitating the promiscuous off-loading of premature precolibactin metabolites and novel insights into colibactin biosynthesis.
Collapse
Affiliation(s)
- Naga Sandhya Guntaka
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alan R. Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
48
|
Healy AR, Herzon SB. Molecular Basis of Gut Microbiome-Associated Colorectal Cancer: A Synthetic Perspective. J Am Chem Soc 2017; 139:14817-14824. [PMID: 28949546 DOI: 10.1021/jacs.7b07807] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A significant challenge toward studies of the human microbiota involves establishing causal links between bacterial metabolites and human health and disease states. Certain strains of commensal Escherichia coli harbor the 54-kb clb gene cluster which codes for small molecules named precolibactins and colibactins. Several studies suggest colibactins are genotoxins and support a role for clb metabolites in colorectal cancer formation. Significant advances toward elucidating the structures and biosynthesis of the precolibactins and colibactins have been made using genetic approaches, but their full structures remain unknown. In this Perspective we describe recent synthetic efforts that have leveraged biosynthetic advances and shed light on the mechanism of action of clb metabolites. These studies indicate that deletion of the colibactin peptidase ClbP, a modification introduced to promote accumulation of precolibactins, leads to the production of non-genotoxic pyridone-based isolates derived from the diversion of linear biosynthetic intermediates toward alternative cyclization pathways. Furthermore, these studies suggest the active genotoxins (colibactins) are unsaturated imines that are potent DNA damaging agents, thereby confirming an earlier mechanism of action hypothesis. Although these imines have very recently been detected in bacterial extracts, they have to date confounded isolation. As the power of "meta-omics" approaches to natural products discovery further advance, we anticipate that chemical synthetic and biosynthetic studies will become increasingly interdependent.
Collapse
Affiliation(s)
- Alan R Healy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
49
|
Abstract
Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrew M Gulick
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
50
|
Bian X, Tang B, Yu Y, Tu Q, Gross F, Wang H, Li A, Fu J, Shen Y, Li YZ, Stewart AF, Zhao G, Ding X, Müller R, Zhang Y. Heterologous Production and Yield Improvement of Epothilones in Burkholderiales Strain DSM 7029. ACS Chem Biol 2017; 12:1805-1812. [PMID: 28467833 DOI: 10.1021/acschembio.7b00097] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cloning of microbial natural product biosynthetic gene clusters and their heterologous expression in a suitable host have proven to be a feasible approach to improve the yield of valuable natural products and to begin mining cryptic natural products in microorganisms. Myxobacteria are a prolific source of novel bioactive natural products with only limited choices of heterologous hosts that have been exploited. Here, we describe the use of Burkholderiales strain DSM 7029 as a potential heterologous host for the functional expression of myxobacterial secondary metabolites. Using a newly established electroporation procedure, the 56 kb epothilone biosynthetic gene cluster from the myxobacterium Sorangium cellulosum was introduced into the chromosome of strain DSM 7029 by transposition. Production of epothilones A, B, C, and D was detected despite their yields being low. Optimization of the medium, introduction of the exogenous methylmalonyl-CoA biosynthetic pathway, and overexpression of rare tRNA genes resulted in an approximately 75-fold increase in the total yields of epothilones to 307 μg L-1. These results show that strain DSM 7029 has the potential to produce epothilones with reasonable titers and might be a broadly applicable host for the heterologous expression of other myxobacterial polyketide synthases and nonribosomal peptide synthetases, expediting the process of genome mining.
Collapse
Affiliation(s)
- Xiaoying Bian
- Shandong
University−Helmholtz Institute of Biotechnology, State Key
Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266235, China
- Department
of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Saarland University, 66123 Saarbrücken, Germany
| | - Biao Tang
- Collaborative
Innovation Center for Genetics and Development, State Key Laboratory
of Genetic Engineering, Department of Microbiology, School of Life
Sciences, Fudan University, Shanghai 200433, China
| | - Yucong Yu
- Collaborative
Innovation Center for Genetics and Development, State Key Laboratory
of Genetic Engineering, Department of Microbiology, School of Life
Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Tu
- Shandong
University−Helmholtz Institute of Biotechnology, State Key
Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266235, China
- Department
of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Saarland University, 66123 Saarbrücken, Germany
| | - Frank Gross
- Genomics,
Biotechnology Center, Technische Universität Dresden, Dresden 01062, Germany
| | - Hailong Wang
- Shandong
University−Helmholtz Institute of Biotechnology, State Key
Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266235, China
| | - Aiying Li
- Shandong
University−Helmholtz Institute of Biotechnology, State Key
Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266235, China
| | - Jun Fu
- Shandong
University−Helmholtz Institute of Biotechnology, State Key
Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266235, China
- Genomics,
Biotechnology Center, Technische Universität Dresden, Dresden 01062, Germany
| | - Yuemao Shen
- Shandong
University−Helmholtz Institute of Biotechnology, State Key
Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266235, China
| | - Yue-zhong Li
- Shandong
University−Helmholtz Institute of Biotechnology, State Key
Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266235, China
| | - A. Francis Stewart
- Genomics,
Biotechnology Center, Technische Universität Dresden, Dresden 01062, Germany
| | - Guoping Zhao
- Collaborative
Innovation Center for Genetics and Development, State Key Laboratory
of Genetic Engineering, Department of Microbiology, School of Life
Sciences, Fudan University, Shanghai 200433, China
- CAS
Key Laboratory of Synthetic Biology, Institute of Plant Physiology
and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoming Ding
- Collaborative
Innovation Center for Genetics and Development, State Key Laboratory
of Genetic Engineering, Department of Microbiology, School of Life
Sciences, Fudan University, Shanghai 200433, China
| | - Rolf Müller
- Department
of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Saarland University, 66123 Saarbrücken, Germany
| | - Youming Zhang
- Shandong
University−Helmholtz Institute of Biotechnology, State Key
Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266235, China
| |
Collapse
|