1
|
Justić H, Barić A, Ratko M, Šimunić I, Radmilović M, Pongrac M, Škokić S, Dobrivojević Radmilović M. The temporal dynamic of bradykinin type 2 receptor effects reveals its neuroprotective role in the chronic phase of cerebral and retinal ischemic injury. J Cereb Blood Flow Metab 2025; 45:153-170. [PMID: 39113417 PMCID: PMC11572167 DOI: 10.1177/0271678x241270241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 11/20/2024]
Abstract
The activation of the bradykinin type 2 receptor is intricately involved in acute post-ischemic inflammatory responses. However, its precise role in different stages of ischemic injury, especially in the chronic phase, remains unclear. Following simultaneous cerebral and retinal ischemia, bradykinin type 2 receptor knockout mice and their controls were longitudinally monitored for 35 days via magnetic resonance imaging, fundus photography, fluorescein angiography, behavioral assessments, vascular permeability measurements, and immunohistochemistry, as well as glycemic status assessments. Without impacting the lesion size, bradykinin type 2 receptor deficiency reduced acute cerebral vascular permeability preventing the loss of pericytes and tight junctions. In the chronic phase of ischemia, however, it resulted in increased astrogliosis and cortical neuronal loss, as well as higher functional deficits. The retinal findings demonstrated a similar pattern. Bradykinin type 2 receptor deficiency delayed, but exacerbated the development of retinal necrosis, increased subacute vascular permeability, and promoted retinal ganglion cell loss in the chronic phase of ischemia. This investigation sheds light on the temporal dynamic of bradykinin type 2 receptor effects in ischemia, pointing to a therapeutic potential in the subacute and chronic phases of ischemic injury.
Collapse
Affiliation(s)
- Helena Justić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Anja Barić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Martina Ratko
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Iva Šimunić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marin Radmilović
- Sestre milosrdnice University Hospital Center, Department of Ophthalmology, Zagreb, Croatia
| | - Marta Pongrac
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Dobrivojević Radmilović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
2
|
Delgardo M, Tang AJ, Tudor T, Pascual-Leone A, Connolly ES. Role of gC1qR as a modulator of endothelial cell permeability and contributor to post-stroke inflammation and edema formation. Front Cell Neurosci 2023; 17:1123365. [PMID: 37383840 PMCID: PMC10294424 DOI: 10.3389/fncel.2023.1123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. A serious risk of acute ischemic stroke (AIS) arises after the stroke event, due to inflammation and edema formation. Inflammation and edema in the brain are mediated by bradykinin, the formation of which is dependent upon a multi-ligand receptor protein called gC1qR. There are currently no preventive treatments for the secondary damage of AIS produced by inflammation and edema. This review aims to summarize recent research regarding the role of gC1qR in bradykinin formation, its role in inflammation and edema following ischemic injury, and potential therapeutic approaches to preventing post-stroke inflammation and edema formation.
Collapse
|
3
|
Freitas F, Tibiriçá E, Singh M, Fraser PA, Mann GE. Redox Regulation of Microvascular Permeability: IL-1β Potentiation of Bradykinin-Induced Permeability Is Prevented by Simvastatin. Antioxidants (Basel) 2020; 9:antiox9121269. [PMID: 33327440 PMCID: PMC7764912 DOI: 10.3390/antiox9121269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Antioxidant effects of statins have been implicated in the reduction in microvascular permeability and edema formation in experimental and clinical studies. Bradykinin (Bk)-induced increases in microvascular permeability are potentiated by IL-1β; however, no studies have examined the protection afforded by statins against microvascular hyperpermeability. We investigated the effects of simvastatin pretreatment on albumin–fluorescein isothiocyanate conjugate (FITC-albumin) permeability in post-capillary venules in rat cremaster muscle. Inhibition of nitric oxide synthase with L-NAME (10µM) increased basal permeability to FITC-albumin, which was abrogated by superoxide dismutase and catalase. Histamine-induced (1 µM) permeability was blocked by L-NAME but unaffected by scavenging reactive oxygen species with superoxide dismutase (SOD) and catalase. In contrast, bradykinin-induced (1–100 nM) permeability increases were unaffected by L-NAME but abrogated by SOD and catalase. Acute superfusion of the cremaster muscle with IL-1β (30 pM, 10 min) resulted in a leftward shift of the bradykinin concentration–response curve. Potentiation by IL-1β of bradykinin-induced microvascular permeability was prevented by the nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) inhibitor apocynin (1 µM). Pretreatment of rats with simvastatin (5 mg·kg−1, i.p.) 24 h before permeability measurements prevented the potentiation of bradykinin permeability responses by IL-1β, which was not reversed by inhibition of heme oxygenase-1 with tin protoporphyrin IX (SnPP). This study highlights a novel mechanism by which simvastatin prevents the potentiation of bradykinin-induced permeability by IL-1β, possibly by targeting the assembly of NADPH oxidase subunits. Our findings highlight the therapeutic potential of statins in the prevention and treatment of patients predisposed to inflammatory diseases.
Collapse
Affiliation(s)
- Felipe Freitas
- Centre of Research Excellence, King’s College London British Heart Foundation, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK.; (F.F.); (M.S.)
| | - Eduardo Tibiriçá
- National Institute of Cardiology, Ministry of Health, Rio de Janeiro 22240-006, Brazil;
| | - Mita Singh
- Centre of Research Excellence, King’s College London British Heart Foundation, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK.; (F.F.); (M.S.)
| | - Paul A. Fraser
- Centre of Research Excellence, King’s College London British Heart Foundation, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK.; (F.F.); (M.S.)
- Correspondence: (P.A.F.); (G.E.M.); Tel.: +44-(0)20-78484306 (G.E.M.)
| | - Giovanni E. Mann
- Centre of Research Excellence, King’s College London British Heart Foundation, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK.; (F.F.); (M.S.)
- Correspondence: (P.A.F.); (G.E.M.); Tel.: +44-(0)20-78484306 (G.E.M.)
| |
Collapse
|
4
|
Khan H, Kashyap A, Kaur A, Singh TG. Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 2020; 72:1513-1527. [PMID: 33460133 DOI: 10.1111/jphp.13336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ischaemia/reperfusion (I/R) injury is defined as the damage to the tissue which is caused when blood supply returns to tissue after ischaemia. To protect the ischaemic tissue from irreversible injury, various protective agents have been studied but the benefits have not been clinically applicable due to monotargeting, low potency, late delivery or poor tolerability. KEY FINDINGS Strategies involving preconditioning or postconditioning can address the issues related to the failure of protective therapies. In principle, postconditioning (PoCo) is clinically more applicable in the conditions in which there is unannounced ischaemic event. Moreover, PoCo is an attractive beneficial strategy as it can be induced rapidly at the onset of reperfusion via series of brief I/R cycles following a major ischaemic event or it can be induced in a delayed manner. Various pharmacological postconditioning (pPoCo) mechanisms have been investigated systematically. Using different animal models, most of the studies on pPoCo have been carried out preclinically. SUMMARY However, there is a need for the optimization of the clinical protocols to quicken pPoCo clinical translation for future studies. This review summarizes the involvement of various receptors and signalling pathways in the protective mechanisms of pPoCo.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Kashyap
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
5
|
Ma Z, Dong Q, Lyu B, Wang J, Quan Y, Gong S. The expression of bradykinin and its receptors in spinal cord ischemia-reperfusion injury rat model. Life Sci 2019; 218:340-345. [DOI: 10.1016/j.lfs.2018.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022]
|
6
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Didiasova M, Wujak L, Schaefer L, Wygrecka M. Factor XII in coagulation, inflammation and beyond. Cell Signal 2018; 51:257-265. [DOI: 10.1016/j.cellsig.2018.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
8
|
Gauberti M, Potzeha F, Vivien D, Martinez de Lizarrondo S. Impact of Bradykinin Generation During Thrombolysis in Ischemic Stroke. Front Med (Lausanne) 2018; 5:195. [PMID: 30018956 PMCID: PMC6037726 DOI: 10.3389/fmed.2018.00195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Current medical management in the acute phase is based on the activation of the fibrinolytic cascade by intravenous injection of a plasminogen activator (such as tissue-type plasminogen activator, tPA) that promotes restauration of the cerebral blood flow and improves stroke outcome. Unfortunately, the use of tPA is associated with deleterious effects such as hemorrhagic transformation, symptomatic brain edema, and angioedema, which limit the efficacy of this therapeutic strategy. Preclinical and clinical evidence suggests that intravenous thrombolysis generates large amounts of bradykinin, a peptide with potent pro-inflammatory, and pro-edematous effects. This tPA-triggered generation of bradykinin could participate in the deleterious effects of thrombolysis and is a potential target to improve neurological outcome in tPA-treated patients. The present review aims at summarizing current evidence linking thrombolysis, bradykinin generation, and neurovascular damage.
Collapse
Affiliation(s)
- Maxime Gauberti
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France.,Department of Diagnostic Imaging and Interventional Radiology, Centre Hospitalier Universitaire Caen Côte de Nacre, Caen, France
| | - Fanny Potzeha
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France.,Department of Clinical Research, Centre Hospitalier Universitaire Caen, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France
| |
Collapse
|
9
|
Activation of bradykinin B2 receptor induced the inflammatory responses of cytosolic phospholipase A 2 after the early traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2957-2971. [PMID: 29894755 DOI: 10.1016/j.bbadis.2018.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Phospholipase A2 is a known aggravator of inflammation and deteriorates neurological outcomes after traumatic brain injury (TBI), however the exact inflammatory mechanisms remain unknown. This study investigated the role of bradykinin and its receptor, which are known initial mediators within inflammation activation, as well as the mechanisms of the cytosolic phospholipase A2 (cPLA2)-related inflammatory responses after TBI. We found that cPLA2 and bradykinin B2 receptor were upregulated after a TBI. Rats treated with the bradykinin B2 receptor inhibitor LF 16-0687 exhibited significantly less cPLA2 expression and related inflammatory responses in the brain cortex after sustaining a controlled cortical impact (CCI) injury. Both the cPLA2 inhibitor and the LF16-0687 improved CCI rat outcomes by decreasing neuron death and reducing brain edema. The following TBI model utilized both primary astrocytes and primary neurons in order to gain further understanding of the inflammation mechanisms of the B2 bradykinin receptor and the cPLA2 in the central nervous system. There was a stronger reaction from the astrocytes as well as a protective effect of LF16-0687 after the stretch injury and bradykinin treatment. The protein kinase C pathway was thought to be involved in the B2 bradykinin receptor as well as the cPLA2-related inflammatory responses. Rottlerin, a Protein Kinase C (PKC) δ inhibitor, decreased the activity of the cPLA2 activity post-injury, and LF16-0687 suppressed both the PKC pathway and the cPLA2 activity within the astrocytes. These results indicated that the bradykinin B2 receptor-mediated pathway is involved in the cPLA2-related inflammatory response from the PKC pathway.
Collapse
|
10
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Song J, Lyu Y, Wang M, Zhang J, Gao L, Tong X. Treatment of Human Urinary Kallidinogenase Combined with Maixuekang Capsule Promotes Good Functional Outcome in Ischemic Stroke. Front Physiol 2018; 9:84. [PMID: 29487537 PMCID: PMC5816573 DOI: 10.3389/fphys.2018.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022] Open
Abstract
Aims: To evaluate the clinical efficacy of Human Urinary Kallidinogenase (HUK) and Maixuekang capsule in the treatment of acute ischemic stroke (AIS) patients. Methods: In this study, from January 2016 to July 2016, 60 patients with acute ischemic stroke were enrolled and 56 patients with complete information of whom 21 patients received HUK+ basic treatment (HUK group), 16 patients received HUK+ Maixuekang capsule + basic treatment (HUK+ Maixuekang group), 19 patients received basic treatment (control group). 0.15 PNA unit of HUK injection plus 100 ml saline in intravenous infusion was performed in the HUK group and HUK+ Maixuekang group, with once a day for 14 consecutive days. 0.75 g Maixuekang capsules were taken in HUK+ Maixuekang group, with three times a day for 14 consecutive days. The National Institutes of Health Stroke Scale (NIHSS) scores in three groups were analyzed 7 days after treatment. The modified Rankin Scale (mRS) scores in three groups were analyzed 12 month after the treatment. Results: No difference was found in the NIHSS scores, age, gender, and comorbidities between three groups before treatment (p > 0.05). Seven days after treatment, the NIHSS scores in the HUK group and HUK+ Maixuekang group were significantly decreased than before (p HUK = 0.001, p HUK+Maixuekang < 0.001), and lower than that in the control group (p HUK = 0.032; p HUK+Maixuekang < 0.001). Twelve months after treatment, good functional outcome rate (12 month mRS score ≤ 2) in the HUK group and HUK+ Maixuekang group was significantly higher than that in the control group (p HUK = 0.049, p HUK+Maixuekang = 0.032). Conclusion: The treatment of HUK or HUK combined with Maixuekang capsule can effectively improve the neurological function and promote long-term recovery for AIS patients.
Collapse
Affiliation(s)
- Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Lyu
- Department of Medical Affairs, Techpool Biopharma Co., Ltd., Guangzhou, China
| | - Miaomiao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
12
|
Neuroprotection of bradykinin/bradykinin B2 receptor system in cerebral ischemia. Biomed Pharmacother 2017; 94:1057-1063. [DOI: 10.1016/j.biopha.2017.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
|
13
|
Yang J, Su J, Wan F, Yang N, Jiang H, Fang M, Xiao H, Wang J, Tang J. Tissue kallikrein protects against ischemic stroke by suppressing TLR4/NF-κB and activating Nrf2 signaling pathway in rats. Exp Ther Med 2017; 14:1163-1170. [PMID: 28810574 DOI: 10.3892/etm.2017.4614] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/24/2017] [Indexed: 01/04/2023] Open
Abstract
Brain damage following cerebral ischemia-reperfusion (I/R) is a complicated pathophysiological course, in which inflammation and oxidative stress have been suggested to serve an important role. Toll-like receptor 4 (TLR4) has been suggested to be involved in secondary inflammatory process in cerebral ischemia. Nuclear factor erythroid 2-related factor 2 (Nrf2), an important regulator of the antioxidant host defense, maintains the cellular redox homeostasis. Tissue kallikrein (TK) has been proven to elicit a variety of biological effects in ischemic stroke through its anti-inflammatory and anti-oxidant properties. However, the mechanisms underlying its beneficial effects remain poorly defined. The present study examined the hypothesis that TK attenuates ischemic cerebral injury via the TLR4/nuclear factor-κB (NF-κB) and Nrf2 signaling pathways. Using a transient rat middle cerebral artery occlusion (MCAO) model, the effects of immediate and delayed TK treatment subsequent to reperfusion were investigated. The neurological deficits, infarct size, and the expression of TLR4/NF-κB and Nrf2 pathway in ischemic brain tissues were measured at 24 following MCAO. The results indicated that TK immediate treatment significantly improved neurological deficits and reduced the infarct size, accompanied by the inhibition of TLR4 and NF-κB levels, and the activation of Nrf2 pathway. Furthermore, TK delayed treatment also exerted neuroprotection against I/R injury. However, the neuroprotective effect of TK immediate treatment was better compared with that of TK delayed treatment. In conclusion, the results indicated that TK protected the brain against ischemic injury in rats after MCAO through its anti-oxidative and anti-inflammatory effects. Suppression of TLR4/NF-κB and activation of the Nrf2 pathway contributed to the neuroprotective effects induced by TK in cerebral ischemia. Therefore, TK may provide an effective intervention with a wider therapeutic window for ischemic stroke.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianhua Su
- Department of Neurology, The Affiliated Jintan Hospital of Medical College of Jiangsu University, Jintan, Jiangsu 213200, P.R. China
| | - Fen Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nan Yang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Haibo Jiang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingming Fang
- Department of Neurology, Jiangsu Hospital of Chinese Traditional and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Hang Xiao
- Department of Neurotoxicology, Nanjing Medical University, Nanjing, Jiangsu 211199, P.R. China
| | - Jun Wang
- Department of Neurotoxicology, Nanjing Medical University, Nanjing, Jiangsu 211199, P.R. China
| | - Jinrong Tang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
14
|
Abstract
Plasma prekallikrein is the liver-derived precursor of the trypsin-like serine protease plasma kallikrein, and circulates in plasma bound to high molecular weight kininogen. Plasma prekallikrein is activated to plasma kallikrein by activated factor XII or prolylcarboxypeptidase. Plasma kallikrein regulates the activity of multiple proteolytic cascades in the cardiovascular system such as the intrinsic pathway of coagulation, the kallikrein-kinin system, the fibrinolytic system, the renin-angiotensin system, and the complement pathways. As such, plasma kallikrein plays a central role in the pathogenesis of thrombosis, inflammation, and blood pressure regulation. Under physiological conditions, plasma kallikrein serves as a cardioprotective enzyme. However, its increased plasma concentration or hyperactivity perpetuates cardiovascular disease (CVD). In this article, we review the biochemistry and cell biology of plasma kallikrein and summarize data from preclinical and clinical studies that have established important functions of this serine protease in CVD states. Finally, we propose plasma kallikrein inhibitors as a novel class of drugs with potential therapeutic applications in the treatment of CVDs.
Collapse
|
15
|
Urodilatin reverses the detrimental influence of bradykinin in acute ischemic stroke. Exp Neurol 2016; 284:1-10. [DOI: 10.1016/j.expneurol.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/15/2016] [Accepted: 07/14/2016] [Indexed: 02/03/2023]
|
16
|
Kumar H, Ropper AE, Lee SH, Han I. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury. Mol Neurobiol 2016; 54:3578-3590. [PMID: 27194298 DOI: 10.1007/s12035-016-9910-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/03/2016] [Indexed: 01/09/2023]
Abstract
The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Alexander E Ropper
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
17
|
Sang H, Liu L, Wang L, Qiu Z, Li M, Yu L, Zhang H, Shi R, Yu S, Guo R, Ye R, Liu X, Zhang R. Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats. Eur J Neurosci 2016; 43:53-65. [PMID: 26565562 DOI: 10.1111/ejn.13133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/29/2015] [Accepted: 11/06/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Hongfei Sang
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| | - Ling Liu
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| | - Liumin Wang
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| | - Zhongming Qiu
- Department of Neurology; The 117th Hospital of PLA; Xihu District Hangzhou Zhejiang Province China
| | - Min Li
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| | - Linjie Yu
- Nanjing University School of Medicine; Nanjing China
| | - Hao Zhang
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| | - Ruifeng Shi
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| | - Shuhong Yu
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| | - Ruibing Guo
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| | - Ruidong Ye
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| | - Xinfeng Liu
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| | - Renliang Zhang
- Department of Neurology; Jinling Hospital; Medical School of Nanjing University; 305 East Zhongshan Road Nanjing 210002 Jiangsu Province China
| |
Collapse
|
18
|
Lalkovičová M, Bonová P, Burda J, Danielisová V. Effect of Bradykinin Postconditioning on Ischemic and Toxic Brain Damage. Neurochem Res 2015. [PMID: 26216051 PMCID: PMC4536273 DOI: 10.1007/s11064-015-1675-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Brain damage caused by ischemia or toxic agents leads in selectively vulnerable regions to apoptosis-like delayed neuronal death and can result in irreversible damage. Selectively vulnerable neurons of the CA1 area of hippocampus are particularly sensitive to ischemic damage. We investigated the effects of bradykinin (BR) postconditioning on cerebral ischemic and toxic injury. Transient forebrain ischemia was induced by four-vessel occlusion for 10 min and toxic injury was induced by trimethyltin (TMT, 8 µg/kg i.p.). BR as a postconditioner at a dose of 150 µg/kg was applied intraperitoneally 48 h after ischemia or TMT intoxication. Experimental animals were divided into groups according to the length of survival (short—3 and 7 days, and long—28 days survival) and according to the applied ischemic or toxic injury. Glutamate concentration was lowered in both CA1 and dentate gyrus areas of hippocampus after the application of BR postconditioning in both ischemic and toxic brain damage. The number of degenerated neurons in the hippocampal CA1 region was significantly lower in BR-treated ischemic and toxic groups compared to vehicle group. The behavioral test used in our experiments confirms also the memory improvement in conditioned animals. The rats’ ability to form spatial maps and learn was preserved, which is visible from our Barnes maze results. By using the methods of delayed postconditioning is possible to stimulate the endogenous protective mechanisms of the organism and induce the neuroprotective effect. In this study we demonstrated that BR postconditioning, if applied before the onset of irreversible neurodegenerative changes, induced neuroprotection against ischemic or toxic injury.
Collapse
Affiliation(s)
- Mária Lalkovičová
- Department of Neurochemistry, Institute of Neurobiology, Slovak Academy of Sciences, Šoltésovej 4-6, 04001, Kosice, Slovak Republic,
| | | | | | | |
Collapse
|
19
|
Danielisova V, Gottlieb M, Bonova P, Nemethova M, Burda J. Bradykinin postconditioning ameliorates focal cerebral ischemia in the rat. Neurochem Int 2014; 72:22-9. [DOI: 10.1016/j.neuint.2014.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 01/10/2023]
|
20
|
Kunz M, Nussberger J, Holtmannspötter M, Bitterling H, Plesnila N, Zausinger S. Bradykinin in blood and cerebrospinal fluid after acute cerebral lesions: correlations with cerebral edema and intracranial pressure. J Neurotrauma 2014; 30:1638-44. [PMID: 23638655 DOI: 10.1089/neu.2012.2774] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bradykinin (BK) was shown to stimulate the production of physiologically active metabolites, blood-brain barrier disruption, and brain edema. The aim of this prospective study was to measure BK concentrations in blood and cerebrospinal fluid (CSF) of patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and ischemic stroke and to correlate BK levels with the extent of cerebral edema and intracranial pressure (ICP). Blood and CSF samples of 29 patients suffering from acute cerebral lesions (TBI, 7; SAH,: 10; ICH, 8; ischemic stroke, 4) were collected for up to 8 days after insult. Seven patients with lumbar drainage were used as controls. Edema (5-point scale), ICP, and the GCS (Glasgow Coma Score) at the time of sample withdrawal were correlated with BK concentrations. Though all plasma-BK samples were not significantly elevated, CSF-BK levels of all patients were significantly elevated in overall (n=73) and early (≤72 h) measurements (n=55; 4.3±6.9 and 5.6±8.9 fmol/mL), compared to 1.2±0.7 fmol/mL of controls (p=0.05 and 0.006). Within 72 h after ictus, patients suffering from TBI (p=0.01), ICH (p=0.001), and ischemic stroke (p=0.02) showed significant increases. CSF-BK concentrations correlated with extent of edema formation (r=0.53; p<0.001) and with ICP (r=0.49; p<0.001). Our results demonstrate that acute cerebral lesions are associated with increased CSF-BK levels. Especially after TBI, subarachnoid and intracerebral hemorrhage CSF-BK levels correlate with extent of edema evolution and ICP. BK-blocking agents may turn out to be effective remedies in brain injuries.
Collapse
Affiliation(s)
- Mathias Kunz
- 1 Department of Neurosurgery, Klinikum Großhadern, Ludwig-Maximilians University Munich , Germany
| | | | | | | | | | | |
Collapse
|
21
|
Dobrivojević M, Špiranec K, Sinđić A. Involvement of bradykinin in brain edema development after ischemic stroke. Pflugers Arch 2014; 467:201-12. [DOI: 10.1007/s00424-014-1519-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023]
|
22
|
Wang Z, Han X, Cui M, Fang K, Lu Z, Dong Q. Tissue kallikrein protects rat hippocampal CA1 neurons against cerebral ischemia/reperfusion-induced injury through the B2R-Raf-MEK1/2-ERK1/2 pathway. J Neurosci Res 2014; 92:651-7. [PMID: 24464837 DOI: 10.1002/jnr.23325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/10/2013] [Accepted: 10/19/2013] [Indexed: 12/15/2022]
Abstract
We have documented that tissue kallikrein (TK) prevents neurons from hypoxia/reoxygenation injury through the B2R-ERK1/2 pathway and the antihypoxic function of TK through Homer1b/c-ERK1/2 signaling pathways. The present study investigates the molecular mechanisms of exogenous TK activation of the B2R-ERK1/2 pathway through the β-arrestin-2 assembled B2R-Raf-MEK1/2 signaling module in vivo. The cresyl violet staining results indicated that exogenous TK protected the rat hippocampal CA1 neurons against cerebral ischemia/reperfusion (I/R) injury. The immunoprecipitation (IP) and immunoblotting (IB) results revealed that exogenous TK upregulated the β-arrestin-2 assembled B2R-Raf-MEK1/2 signaling module and upregulated the phosphorylation of Raf (p-Raf), MEK1/2 (p-MEK1/2), and ERK1/2 (p-ERK1/2). Meanwhile, exogenous TK upregulated the expression of nuclear factor-κB (NF-κB), depressed the release of cytochrome c (Cyt c) and bax from mitochondria to the cytosol, and depressed the activation of caspase-3. Take together, our results suggest that exogenous TK attenuated the cerebral I/R induced rat hippocampal CA1 neurons injury through activating the β-arrestin-2 assembled B2R-Raf-MEK1/2 signaling module and that the activated B2R-Raf-MEK1/2 signaling module could upregulate the expression of NF-κB, decrease the release of cytochrome c and bax from mitochondria to the cytosol, and depress the activation of caspase-3.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurology, Huashan hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
23
|
Bradykinin preconditioning affects the number of degenerated neurons and the level of antioxidant enzymes in spinal cord ischemia in rabbits. Acta Histochem 2014; 116:252-7. [PMID: 23981244 DOI: 10.1016/j.acthis.2013.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
Bradykinin preconditioning has been used for acquisition of tolerance after spinal cord ischemia. Rabbits were preconditioned intraperitoneally with bradykinin 48 h prior to 20 min of abdominal aorta ligation followed by 24 and 48 h of reperfusion. The activities of SOD and catalase were measured and Fluoro Jade B (FJB)-positive degenerated neurons were evaluated. The outcomes of Tarlov scoring system used to assess neurological functions showed significant improvement in bradykinin groups compared to the ischemic group. The number of FJB-positive degenerated neurons was decreased in ventral horns of both bradykinin groups. Significantly decreased activities of total SOD and mitochondrial Mn-SOD were also detected in both bradykinin groups versus ischemic group while CuZn-SOD and catalase activities were significantly decreased only in the bradykinin group after 24h of reperfusion versus ischemic group. These findings suggest that one of the possibilities of the neuroprotective effect of delayed bradykinin preconditioning against spinal cord ischemic injury could be realized by mitochondrial protection and decreased synthesis of Mn-SOD as well as by promotion of neuronal survival.
Collapse
|
24
|
Albert-Weißenberger C, Sirén AL, Kleinschnitz C. Ischemic stroke and traumatic brain injury: the role of the kallikrein-kinin system. Prog Neurobiol 2012; 101-102:65-82. [PMID: 23274649 DOI: 10.1016/j.pneurobio.2012.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 12/16/2022]
Abstract
Acute ischemic stroke and traumatic brain injury are a major cause of mortality and morbidity. Due to the paucity of therapies, there is a pressing clinical demand for new treatment options. Successful therapeutic strategies for these conditions must target multiple pathophysiological mechanisms occurring at different stages of brain injury. In this respect, the kallikrein-kinin system is an ideal target linking key pathological hallmarks of ischemic and traumatic brain damage such as edema formation, inflammation, and thrombosis. In particular, the kinin receptors, plasma kallikrein, and coagulation factor XIIa are highly attractive candidates for pharmacological development, as kinin receptor antagonists or inhibitors of plasma kallikrein and coagulation factor XIIa are neuroprotective in animal models of stroke and traumatic brain injury. Nevertheless, conflicting preclinical evaluation as well as limited and inconclusive data from clinical trials suggest caution when transferring observations made in animals into the human situation. This review summarizes current evidence on the pathological significance of the kallikrein-kinin system during ischemic and traumatic brain damage, with a particular focus on experimental data derived from animal models. Experimental findings are also compared with human data if available, and potential therapeutic implications are discussed.
Collapse
|
25
|
Kinin-B2 receptor mediated neuroprotection after NMDA excitotoxicity is reversed in the presence of kinin-B1 receptor agonists. PLoS One 2012; 7:e30755. [PMID: 22348022 PMCID: PMC3277507 DOI: 10.1371/journal.pone.0030755] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/21/2011] [Indexed: 01/21/2023] Open
Abstract
Background Kinins, with bradykinin and des-Arg9-bradykinin being the most important ones, are pro-inflammatory peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin metabolite des-Arg9-bradykinin as well as Lys-des-Arg9-bradykinin activates the kinin-B1 receptor known to be expressed under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-D-aspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes in the CA1 area of rat hippocampal slices. Principal Findings Bradykinin at 10 nM and 1 µM concentrations triggered a neuroprotective cascade via kinin-B2 receptor activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by 10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However, 100 nM Lys-des-Arg9-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spike recovery. The inhibition of population spikes recovery was reversed by PD98059, showing that MEK/MAPK was involved in the induction of apoptosis mediated by the B1 receptor. Conclusions Bradykinin exerted protection against NMDA-induced excitotoxicity which is reversed in the presence of a kinin-B1 receptor agonist. As bradykinin is converted to the kinin-B1 receptor metabolite des-Arg9-bradykinin by carboxypeptidases, present in different areas including in brain, our results provide a mechanism for the neuroprotective effect in vitro despite of the deleterious effect observed in vivo.
Collapse
|
26
|
Waldner MJ, Baethmann A, Uhl E, Lehmberg J. Bradykinin-induced leukocyte- and platelet-endothelium interactions in the cerebral microcirculation. Brain Res 2012; 1448:163-9. [PMID: 22381894 DOI: 10.1016/j.brainres.2012.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 12/30/2011] [Accepted: 02/03/2012] [Indexed: 11/24/2022]
Abstract
Bradykinin is known for its pathophysiological role as mediator of inflammation. Following cerebral ischemia, bradykinin promotes the secondary brain damage through an increase of vascular permeability and brain edema formation, again hallmarks of inflammation. It is not clear, whether bradykinin also activates inflammatory cells and regulates microcirculatory blood flow in the brain. The purpose of the study is to investigate the reaction of bradykinin upon cerebral leukocyte- and thrombocyte-endothelium interactions as well as microvascular perfusion. Intravital fluorescence microscopy of pial blood vessels was performed in gerbils. Intracarotid injection of bradykinin resulted in increased numbers of rolling and adherent leukocytes as well as rolling platelets at the venular endothelium. This was reversed by administration of a bradykinin B2 receptor antagonist. In contrast, after additional administration of a B1 receptor antagonist, microvascular blood-flow and capillary density was decreased. We conclude that bradykinin initiates leukocyte- and platelet-endothelium interactions in the cerebral microcirculation via activation of B2 receptors. Activation of B1 receptors ensures regular cerebral perfusion. Thus, to attenuate secondary brain damage, inhibition of B2 but not B1 receptors might be of therapeutical benefit.
Collapse
|
27
|
Fraser PA. The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 2011; 51:967-77. [PMID: 21712087 DOI: 10.1016/j.freeradbiomed.2011.06.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 12/31/2022]
Abstract
The brain endothelium constitutes a barrier to the passive movement of substances from the blood into the cerebral microenvironment, and disruption of this barrier after a stroke or trauma has potentially fatal consequences. Reactive oxygen species (ROS), which are formed during these cerebrovascular accidents, have a key role in this disruption. ROS are formed constitutively by mitochondria and also by the activation of cell receptors that transduce signals from inflammatory mediators, e.g., activated phospholipase A₂ forms arachidonic acid that interacts with cyclooxygenase and lipoxygenase to generate ROS. Endothelial NADPH oxidase, activated by cytokines, also contributes to ROS. There is a surge in ROS following reperfusion after cerebral ischemia and the interaction of the signaling pathways plays a role in this. This review critically evaluates the literature and concludes that the ischemic penumbra is a consequence of the initial edema resulting from the ROS surge after reperfusion.
Collapse
Affiliation(s)
- Paul A Fraser
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London SE19NH, UK.
| |
Collapse
|
28
|
Tissue kallikrein protects cortical neurons against hypoxia/reoxygenation injury via the ERK1/2 pathway. Biochem Biophys Res Commun 2011; 407:283-7. [DOI: 10.1016/j.bbrc.2011.02.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 11/22/2022]
|
29
|
Schöller K, Feiler S, Anetsberger S, Kim SW, Plesnila N. Contribution of Bradykinin Receptors to the Development of Secondary Brain Damage After Experimental Subarachnoid Hemorrhage. Neurosurgery 2011; 68:1118-23. [DOI: 10.1227/neu.0b013e31820a0024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Karsten Schöller
- Department of Neurosurgery and University of Munich Medical Center–Grosshadern, Ludwig-Maximilians University, Munich, Germany
- Institute for Surgical Research, University of Munich Medical Center–Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Sergej Feiler
- Department of Neurosurgery and University of Munich Medical Center–Grosshadern, Ludwig-Maximilians University, Munich, Germany
- Institute for Surgical Research, University of Munich Medical Center–Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Stephanie Anetsberger
- Institute for Surgical Research, University of Munich Medical Center–Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Seong-Woong Kim
- Institute for Surgical Research, University of Munich Medical Center–Grosshadern, Ludwig-Maximilians University, Munich, Germany
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nikolaus Plesnila
- Department of Neurosurgery and University of Munich Medical Center–Grosshadern, Ludwig-Maximilians University, Munich, Germany
- Institute for Surgical Research, University of Munich Medical Center–Grosshadern, Ludwig-Maximilians University, Munich, Germany
- Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
30
|
Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury. Molecules 2010; 15:6598-618. [PMID: 20877247 PMCID: PMC6257767 DOI: 10.3390/molecules15096598] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/17/2022] Open
Abstract
Injury to the central nervous system initiates complex physiological, cellular and molecular processes that can result in neuronal cell death. Of interest to this review is the activation of the kinin family of neuropeptides, in particular bradykinin and substance P. These neuropeptides are known to have a potent pro-inflammatory role and can initiate neurogenic inflammation resulting in vasodilation, plasma extravasation and the subsequent development of edema. As inflammation and edema play an integral role in the progressive secondary injury that causes neurological deficits, this review critically examines kinin receptor antagonists as a potential neuroprotective intervention for acute brain injury, and more specifically, traumatic brain and spinal cord injury and stroke.
Collapse
|
31
|
Chao J, Shen B, Gao L, Xia CF, Bledsoe G, Chao L. Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing. Biol Chem 2010; 391:345-55. [PMID: 20180644 DOI: 10.1515/bc.2010.042] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue kallikrein (KLK1) processes low-molecular weight kininogen to produce vasoactive kinins, which exert biological functions via kinin receptor signaling. Using various delivery approaches, we have demonstrated that tissue kallikrein through kinin B2 receptor signaling exhibits a wide spectrum of beneficial effects by reducing cardiac and renal injuries, restenosis and ischemic stroke, and by promoting angiogenesis and skin wound healing, independent of blood pressure reduction. Protection by tissue kallikrein in oxidative organ damage is attributed to the inhibition of apoptosis, inflammation, hypertrophy and fibrosis. Tissue kallikrein also enhances neovascularization in ischemic heart and limb. Moreover, tissue kallikrein/kinin infusion not only prevents but also reverses kidney injury, inflammation and fibrosis in salt-induced hypertensive rats. Furthermore, there is a wide time window for kallikrein administration in protection against ischemic brain infarction, as delayed kallikrein infusion for 24 h after cerebral ischemia in rats is effective in reducing neurological deficits, infarct size, apoptosis and inflammation. Importantly, in the clinical setting, human tissue kallikrein has been proven to be effective in the treatment of patients with acute brain infarction when injected within 48 h after stroke onset. Finally, kallikrein promotes skin wound healing and keratinocyte migration by direct activation of protease-activated receptor 1.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Chen ZB, Huang DQ, Niu FN, Zhang X, Li EG, Xu Y. Human urinary kallidinogenase suppresses cerebral inflammation in experimental stroke and downregulates nuclear factor-kappaB. J Cereb Blood Flow Metab 2010; 30:1356-65. [PMID: 20179726 PMCID: PMC2949229 DOI: 10.1038/jcbfm.2010.19] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study is to investigate the possible mechanism and the neuroprotective effect of human urinary kallidinogenase (HUK) in cerebral ischemia. The mouse middle cerebral artery occlusion (MCAO) model was used. Mice were treated with HUK (20 PNAU/g per day, intravenous) or saline as control, from the beginning of reperfusion to 72 h. Neurological deficits, infarct size, and BWC were measured at 6, 24, 48, and 72 h after MCAO, respectively. Pathological changes of brain were observed by TUNEL assay. Inflammatory factors were measured by real-time PCR and western blotting. Activation of MAPKs, Akt, and nuclear factor-kappaB (NF-kappaB) was detected by western blotting. Our results indicated that HUK significantly improved neurofunction, decreased infarct size, and suppressed edema, as well as inflammatory mediators as compared with the vehicle group. Furthermore, HUK inhibited the NF-kappaB pathway and activated the MAPK/ERK pathway in this neuroprotection.
Collapse
Affiliation(s)
- Zhi-bin Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Shakur H, Andrews P, Asser T, Balica L, Boeriu C, Quintero JDC, Dewan Y, Druwé P, Fletcher O, Frost C, Hartzenberg B, Mantilla JM, Murillo-Cabezas F, Pachl J, Ravi RR, Rätsep I, Sampaio C, Singh M, Svoboda P, Roberts I. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury. Trials 2009; 10:109. [PMID: 19958521 PMCID: PMC2794266 DOI: 10.1186/1745-6215-10-109] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/03/2009] [Indexed: 11/18/2022] Open
Abstract
Background Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. Methods Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE), mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS), the Disability Rating Scale (DRS) and a modified version of the Oxford Handicap Scale (HIREOS). Results 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163) in the combined Anatibant treated group, compared to 19.3% (11/57) in the placebo group (relative risk = 1.37; 95% CI 0·76 to 2·46). All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36). The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. Conclusion This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in the risk of serious adverse events was reduced. This trial provides no reliable evidence of benefit or harm and a larger trial would be needed to establish safety and effectiveness. Trial Registration This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN23625128.
Collapse
Affiliation(s)
- Haleema Shakur
- Department of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thal SC, Sporer S, Schmid-Elsaesser R, Plesnila N, Zausinger S. Inhibition of bradykinin B2 receptors before, not after onset of experimental subarachnoid hemorrhage prevents brain edema formation and improves functional outcome. Crit Care Med 2009; 37:2228-34. [DOI: 10.1097/ccm.0b013e3181a068fc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Zweckberger K, Plesnila N. Anatibant®, a selective non-peptide bradykinin B2 receptor antagonist, reduces intracranial hypertension and histopathological damage after experimental traumatic brain injury. Neurosci Lett 2009; 454:115-7. [DOI: 10.1016/j.neulet.2009.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 11/28/2022]
|
36
|
Austinat M, Braeuninger S, Pesquero JB, Brede M, Bader M, Stoll G, Renné T, Kleinschnitz C. Blockade of Bradykinin Receptor B1 but Not Bradykinin Receptor B2 Provides Protection From Cerebral Infarction and Brain Edema. Stroke 2009; 40:285-93. [DOI: 10.1161/strokeaha.108.526673] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Madeleine Austinat
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Stefan Braeuninger
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - João B. Pesquero
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Marc Brede
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Michael Bader
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Guido Stoll
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Thomas Renné
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Christoph Kleinschnitz
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| |
Collapse
|
37
|
Tang M, Cui M, Dong Q, Ren HM, Xiao BG, Luo BY, Shao Y, Liu L, Zhou HG. The bradykinin B2 receptor mediates hypoxia/reoxygenation induced neuronal cell apoptosis through the ERK1/2 pathway. Neurosci Lett 2009; 450:40-4. [DOI: 10.1016/j.neulet.2008.10.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 10/19/2008] [Accepted: 10/31/2008] [Indexed: 11/30/2022]
|
38
|
Danielisová V, Gottlieb M, Némethová M, Burda J. Effects of Bradykinin Postconditioning on Endogenous Antioxidant Enzyme Activity After Transient Forebrain Ischemia in Rat. Neurochem Res 2007; 33:1057-64. [DOI: 10.1007/s11064-007-9550-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
|
39
|
Noda M, Kariura Y, Pannasch U, Nishikawa K, Wang L, Seike T, Ifuku M, Kosai Y, Wang B, Nolte C, Aoki S, Kettenmann H, Wada K. Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J Neurochem 2007; 101:397-410. [PMID: 17402969 DOI: 10.1111/j.1471-4159.2006.04339.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bradykinin (BK) has been reported to be a mediator of brain damage in acute insults. Receptors for BK have been identified on microglia, the pathologic sensors of the brain. Here, we report that BK attenuated lipopolysaccharide (LPS)-induced release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta from microglial cells, thus acting as an anti-inflammatory mediator in the brain. This effect was mimicked by raising intracellular cAMP or stimulating the prostanoid receptors EP2 and EP4, while it was abolished by a cAMP antagonist, a prostanoid receptor antagonist, or by an inhibitor of the inducible cyclooxygenase (cyclooxygenase-2). BK also enhanced formation of prostaglandin E(2) and expression of microsomal prostaglandin E synthase. Expression of BK receptors and EP2/EP4 receptors were also enhanced. Using physiological techniques, we identified functional BK receptors not only in culture, but also in microglia from acute brain slices. BK reduced LPS-induced neuronal death in neuron-microglia co-cultures. This was probably mediated via microglia as it did not affect TNF-alpha-induced neuronal death in pure neuronal cultures. Our data imply that BK has anti-inflammatory and neuroprotective effects in the central nervous system by modulating microglial function.
Collapse
MESH Headings
- Alprostadil/metabolism
- Animals
- Animals, Newborn
- Anti-Inflammatory Agents/immunology
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/pharmacology
- Bradykinin/immunology
- Bradykinin/metabolism
- Bradykinin/pharmacology
- Cells, Cultured
- Coculture Techniques
- Cyclic AMP/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Cytoprotection/immunology
- Encephalitis/immunology
- Encephalitis/metabolism
- Encephalitis/physiopathology
- Gliosis/chemically induced
- Gliosis/immunology
- Gliosis/metabolism
- Interleukin-1beta/immunology
- Interleukin-1beta/metabolism
- Lipopolysaccharides
- Mice
- Mice, Inbred C57BL
- Microglia/immunology
- Microglia/metabolism
- Nerve Degeneration/immunology
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Organ Culture Techniques
- Rats
- Rats, Wistar
- Receptors, Bradykinin/drug effects
- Receptors, Bradykinin/metabolism
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP4 Subtype
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kläsner B, Lumenta DB, Pruneau D, Zausinger S, Plesnila N. Therapeutic window of bradykinin B2 receptor inhibition after focal cerebral ischemia in rats. Neurochem Int 2006; 49:442-7. [PMID: 16624448 DOI: 10.1016/j.neuint.2006.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 11/15/2022]
Abstract
Following cerebral ischemia bradykinin/kinin B(2) receptors mediate inflammatory responses resulting in edema formation and secondary brain damage. However, the therapeutic window for B(2) receptor inhibition determining its potential clinical use has not been investigated so far. The aim of the current study was therefore to investigate the effect of delayed B(2) receptor inhibition on morphological and functional outcome following experimental stroke. Rats were subjected to 90 min of middle cerebral artery occlusion (MCAo) by an intraluminal filament. Animals received 0.9% NaCl or 1.0mg/kg/day Anatibant (LF 16-0687 Ms), a selective bradykinin B(2) receptor antagonist, for 3 days beginning at different time points after MCAo: 1, 2.5, 4.5, or 6.5h (n=10 per group). Neurological recovery was examined daily, infarct volume on day 7 after MCAo. Animal physiology was not influenced by B(2) receptor inhibition. Significant improvement of functional outcome was observed when treatment was delayed up to 4.5h after ischemia (p<0.05 versus vehicle). Inhibition of B(2) receptors during ischemia, i.e. when the inhibitor was given 1h after MCAo, reduced infarct volume in the basal ganglia and in the cortex by 49% (p<0.05) and 26% (p<0.05), respectively. Inhibition of B(2) receptors at later time points (2.5, 4.5, or 6.5 after MCAo) reduced penumbral damage, i.e. cortical infarction, by 19-26% (p<0.05). In conclusion, the current study shows that the therapeutic window of B(2) receptor inhibition extends for up to 6.5h after MCAo. Our data therefore suggest that inhibition of kinin B(2) receptors represents a treatment strategy for ischemic stroke which may warrant clinical validation.
Collapse
Affiliation(s)
- Benjamin Kläsner
- Institute for Surgical Research, University of Munich Medical Center, Grosshadern, Germany
| | | | | | | | | |
Collapse
|
41
|
Storini C, Bergamaschini L, Gesuete R, Rossi E, Maiocchi D, De Simoni MG. Selective inhibition of plasma kallikrein protects brain from reperfusion injury. J Pharmacol Exp Ther 2006; 318:849-54. [PMID: 16705080 DOI: 10.1124/jpet.106.105064] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied the effect of DX-88, a selective recombinant inhibitor of human plasma kallikrein, in transient or permanent focal brain ischemia (with or without reperfusion, respectively) induced in C57BL/6 mice. Twenty-four hours after transient ischemia, DX-88 administered at the beginning of ischemia (pre) induced a dose-dependent reduction of ischemic volume that, at the dose of 30 microg/mouse, reached 49% of the volume of saline-treated mice. At the same dose, DX-88 was also able to reduce brain swelling to 32%. Mice treated with DX-88 pre had significantly lower general and focal deficit score. Fluoro-Jade staining, a marker for neuronal degeneration, showed that DX-88-treated mice had a reduction in the number of degenerating cells, compared with saline-treated mice. Seven days after transient ischemia, the DX-88 protective effect was still present. When the inhibitor was injected at the end of ischemia (post), it was still able to reduce ischemic volume, brain swelling, and neurological deficits. DX-88 efficacy was lost when the inhibitor was given 30 min after the beginning of reperfusion (1 h post) or when reperfusion was not present (permanent occlusion model). This study shows that DX-88 has a strong neuroprotective effect in the early phases of brain ischemia preventing reperfusion injury and indicates that inhibition of plasma kallikrein may be a useful tool in the strategy aimed at reducing the detrimental effects linked to reperfusion.
Collapse
Affiliation(s)
- Claudio Storini
- Department of Neuroscience, Mario Negri Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Ongali B, Hellal F, Rodi D, Plotkine M, Marchand-Verrecchia C, Pruneau D, Couture R. Autoradiographic Analysis of Mouse Brain Kinin B1 and B2 Receptors after Closed Head Trauma and Ability of Anatibant Mesylate to Cross the Blood–Brain Barrier. J Neurotrauma 2006; 23:696-707. [PMID: 16689671 DOI: 10.1089/neu.2006.23.696] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potent non-peptide B2 receptor (R) antagonist, Anatibant mesylate (Ms) (LF 16-0687 Ms), reduces brain edema and improves neurological function recovery in various focal and diffuse models of traumatic brain injury in rodents. In the present study, alteration of kinin B1 and B2R after closed head trauma (CHT) and in vivo binding properties of Anatibant Ms (3 mg/kg, s.c.) injected 30 min after CHT were studied in mice by autoradiography using the radioligands [125I]HPP-Hoe 140 (B2R), and [125I]HPP-des-Arg10-Hoe 140 (B1R). Whereas B1R is barely detected in most brain regions, B2R is extensively distributed, displaying the highest densities in the hindbrain. CHT was associated with a slight increase of B1R and a decrease of B2R (10-50%) in several brain regions. Anatibant Ms (Ki = 22 pM) displaced the B2R radioligand from its binding sites in several areas of the forebrain, basal ganglia and hindbrain. Displacement was achieved in 1 h and persisted at 4 h post-injection. The inhibition did not exceed 50% of the total specific binding in non-injured mice. After CHT, the displacement by Anatibant Ms was higher and almost complete in the cortex, caudate putamen, thalamus, hippocampus, medial geniculate nucleus, ventral tegmental area, and raphe. Evans blue extravasation in brain tissue at 4 h after CHT was abolished by Anatibant Ms. It appeared that Anatibant Ms penetrated into the brain in sufficient amounts, particularly after disruption of the blood-brain barrier, to account for its B2R-mediated neuro- and vascular protective effects. The diminished binding of B2R after CHT may reflect the occupancy or internalization of B2R following the endogenous production of bradykinin (BK).
Collapse
Affiliation(s)
- Brice Ongali
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Hess PJ. Systemic inflammatory response to coronary artery bypass graft surgery. Am J Health Syst Pharm 2006; 62:S6-9. [PMID: 16227195 DOI: 10.2146/ajhp050302] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Several aspects of the systemic inflammatory response to coronary artery bypass graft surgery are described. SUMMARY The inflammatory response is a fundamental biological protective mechanism that gathers together the body's cellular and chemical defense mechanisms at the local site of tissue injury. The systemic inflammatory response syndrome refers to a systemic, whole body, non-localized response. This response, which occurs to some degree in most patients undergoing coronary artery bypass graft surgery, has the potential to affect all tissues and vital organs. When blood interacts with the cardiopulmonary bypass machine, several cellular and humoral pathways are activated including the complement system, the coagulation system, and the fibrinolytic system. These, in turn, activate inflammatory response cells, such as leukocytes and platelets. Together these molecular pathways and activated cells mediate the frequently observed clinical sequelae such as edema, tissue and organ damage, and hyperfibrinolysis. In order for a molecule drug to attenuate effectively this response, it would need to have a broad enough spectrum of activity to inhibit multiple pathways and to limit their cross-amplification. Aprotinin, a nonspecific serine protease, is an important attenuator of this response as it inhibits several important serine proteases, including kallikrein, plasmin, thrombin, and elastase, which are involved in fibrinolysis and cell transmigration and degranulation into soft tissues. CONCLUSION Treatment with aprotinin during coronary artery bypass graft surgery should be considered as a way to attenuate bleeding and systemic inflammatory responses.
Collapse
Affiliation(s)
- Philip J Hess
- University of Florida and Shands Hospital, 1600 SW Archer Road, Gainesville, FL 32610-0286, USA.
| |
Collapse
|
44
|
Xia CF, Smith RS, Shen B, Yang ZR, Borlongan CV, Chao L, Chao J. Postischemic brain injury is exacerbated in mice lacking the kinin B2 receptor. Hypertension 2006; 47:752-61. [PMID: 16534002 DOI: 10.1161/01.hyp.0000214867.35632.0e] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Kallikrein cleaves low molecular weight kininogen to generate vasoactive kinins, which bind to the kinin B2 receptor, triggering a host of biological effects. Kallikrein gene delivery has been shown previously to reduce ischemia/reperfusion-induced cerebral infarction. In this study, we tested the hypothesis that the kinin B2 receptor plays a protective role in ischemic brain injury using kinin B2 receptor gene knockout (B2R-KO) mice subjected to middle cerebral artery occlusion (MCAO). The mortality rate and neurological deficit scores of B2R-KO mice (n=48) after MCAO were significantly increased compared with wild-type (WT) mice (n=40) when examined over a 14-day period. In addition, the infarct volume in B2R-KO mice was significantly larger than in WT mice at days 1 and 3 after MCAO. Similarly, apoptotic cells, detected by TUNEL labeling counterstained with propidium iodide, and caspase-3 activity in the ischemic brain increased significantly in B2R-KO mice at days 1 and 3 after MCAO. Furthermore, the accumulation of neutrophils in the ischemic brain of B2R-KO mice after MCAO increased when compared with WT mice and was associated with elevated tumor necrosis factor alpha expression. These alterations in B2R-KO mice correlated with decreased NO levels, Akt, and glycogen synthase kinase-3beta phosphorylation and increased nicotinamide-adenine dinucleotide oxidase activity. These results indicate that the kinin B2 receptor promotes survival and protects against brain injury by suppression of apoptosis and inflammation induced by ischemic stroke.
Collapse
Affiliation(s)
- Chun-Fang Xia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Xia CF, Yin H, Yao YY, Borlongan CV, Chao L, Chao J. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther 2006; 17:206-19. [PMID: 16454654 DOI: 10.1089/hum.2006.17.206] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stroke-induced neurological deficits and mortality are often associated with timing of treatment after the onset of stroke. We showed that local delivery of the human tissue kallikrein gene into rat brain immediately after middle cerebral artery occlusion (MCAO) exerts neuroprotection. In this study, we investigated the effect of systemic delivery of the kallikrein gene 8 hr after MCAO. Expression of recombinant human tissue kallikrein after gene transfer was identified in the ischemic brain region and blood vessels. Intravenous injection of adenovirus encoding the kallikrein gene significantly reduced neurological deficit scores 2 and 7 days after gene transfer. Kallikrein gene transfer also reduced ischemia-reperfusion (I/R)-induced cerebral infarction and promoted the survival and migration of glial cells from penumbra to the ischemic core from 3 to 14 days after gene delivery. Kallikrein reduced I/R-induced apoptosis of neuronal cells and inhibited inflammatory cell accumulation in the ischemic brain. These effects were blocked by the kinin B2 receptor antagonist icatibant. In addition, kallikrein enhanced angiogenesis and promoted neurogenesis after I/R and the stimulatory effect of kinin on neuronal cell proliferation was confirmed in primary cultured neuronal cells. The protective effects of kallikrein, through the kinin B2 receptor, were accompanied by increased cerebral nitric oxide and Bcl-2 levels, Akt phosphorylation, and reduced NAD(P)H oxidase activity, superoxide production, Bax levels, and caspase-3 activity. These results indicate that delayed systemic administration of the kallikrein gene after onset of stroke protects against ischemic brain injury by inhibiting apoptosis and inflammation and by promoting angiogenesis and neurogenesis.
Collapse
Affiliation(s)
- Chun-Fang Xia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
46
|
Xia CF, Yin H, Yao YY, Borlongan CV, Chao L, Chao J. Kallikrein Protects Against Ischemic Stroke by Inhibiting Apoptosis and Inflammation and Promoting Angiogenesis and Neurogenesis. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
47
|
Lumenta DB, Plesnila N, Kläsner B, Baethmann A, Pruneau D, Schmid-Elsaesser R, Zausinger S. Neuroprotective effects of a postischemic treatment with a bradykinin B2 receptor antagonist in a rat model of temporary focal cerebral ischemia. Brain Res 2006; 1069:227-34. [PMID: 16378603 DOI: 10.1016/j.brainres.2005.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 11/07/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
Abstract
Bradykinin, an endogenous nonapeptide produced by activation of the kallikrein-kinin system, promotes neuronal tissue damage as well as disturbances in blood-brain barrier function through activation of B2 receptors. In a rat model of focal cerebral ischemia, blockade of B2 receptors before initiation of ischemia with the B2 receptor antagonist, LF 16-0687 Ms, afforded substantial neuroprotection. In order to assess the potential clinical value of this approach, we evaluated the effect of LF 16-0687 Ms given at reperfusion following focal cerebral ischemia on local cerebral blood flow (LCBF), neurological outcome, and infarct size. Sprague-Dawley rats were subjected to MCA occlusion for 90 min by an intraluminal filament. Animals were assigned to one of four treatment arms (n = 7 each): (1) vehicle, (2) LF 16-0687 Ms (1.0 mg/kg/day), (3) LF 16-0687 Ms (3.0 mg/kg/day), or (4) LF 16-0687 Ms (10.0 mg/kg/day) given at reperfusion and repetitively over 2 days. Neurological recovery was examined daily, and infarct volume was assessed histologically on day 7 after ischemia. Physiological parameters and local CBF were not influenced by the treatment. Significant improvement of neurological outcome was observed on postischemic day 3 in animals receiving 1.0 and 3.0 mg/kg/day of LF 16-0687 Ms (P < 0.05). Inhibition of B2 receptors significantly reduced infarct volume in all treated animals predominantly in the cortex. B2 receptor blockade with LF 16-0687 Ms showed neuroprotective effectiveness even when therapy was initiated upon reperfusion, i.e. 90 min after induction of ischemia. Therefore, blockade of B2 receptors seems to be a promising therapeutic approach after focal cerebral ischemia, which deserves further experimental and clinical evaluation.
Collapse
Affiliation(s)
- D B Lumenta
- Institute for Surgical Research, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Ping A, Chun ZX, Xue XY. Bradykinin preconditioning induces protective effects against focal cerebral ischemia in rats. Brain Res 2005; 1059:105-12. [PMID: 16182259 DOI: 10.1016/j.brainres.2005.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 07/31/2005] [Accepted: 08/05/2005] [Indexed: 12/21/2022]
Abstract
Bradykinin is recognized to play an important role in heart ischemia tolerance, and it is expressed in ischemic brain. We hypothesized that bradykinin might play a role in the regulation of tolerance to ischemic brain when administered prior to the ischemic episode. We investigated the effects of bradykinin preconditioning on ischemic damage using an in vivo model of 2-h ischemia and 24-h reperfusion focal cerebral ischemia in rats. Prior to ischemia, bradykinin was pumped into the brain via external carotid artery at a dose of 10 microg/kg/min for 15 min. A significant reduction of 41.20% in infarct size was noted in rats pretreated by bradykinin 15 min prior to ischemia. Brain edema and permeability of blood-brain barrier were also decreased. Immunohistochemical and Western blot analysis of brains revealed a significant increase in basic fibroblast growth factor protein levels. The study demonstrated that bradykinin preconditioning induces protection against ischemic brain injury, and this protection is likely due to the protection of cerebral vasculature and the promotion of neuronal survival.
Collapse
Affiliation(s)
- An Ping
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang
| | | | | |
Collapse
|
49
|
Gröger M, Lebesgue D, Pruneau D, Relton J, Kim SW, Nussberger J, Plesnila N. Release of bradykinin and expression of kinin B2 receptors in the brain: role for cell death and brain edema formation after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2005; 25:978-89. [PMID: 15815587 DOI: 10.1038/sj.jcbfm.9600096] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pharmacological studies using bradykinin B2 receptor antagonists suggest that bradykinin, an early mediator of inflammation and the main metabolite of the kallikrein-kinin system, is involved in secondary brain damage after cerebral ischemia. However, the time-course of bradykinin production and kinin receptor expression as well as the conclusive role of bradykinin B2 receptors for brain damage after experimental stroke have not been elucidated so far. C57/Bl6 mice were subjected to 45 mins of middle cerebral artery occlusion (MCAO) and 2, 4, 8, 24, and 48 h later brains were removed for the analysis of tissue bradykinin concentration and kinin B2 receptor mRNA and protein expression. Brain edema, infarct volume, functional outcome, and long-term survival were assessed in WT and B2-/- mice 24 h or 7 days after MCAO. Tissue bradykinin was maximally increased 12 h after ischemia (three-fold), while kinin B2 receptor mRNA upregulation peaked 24 to 48 h after MCAO (10- to 12-fold versus naïve brain tissue). Immunohistochemistry revealed that kinin B2 receptors were constitutively and widely expressed in mouse brain, were upregulated 2 h after ischemia in cells showing signs of ischemic damage, and remained upregulated in the penumbra up to 24 h after ischemia. B2-/- mice had improved motor function (P<0.05), smaller infarct volumes (-38%; P<0.01), developed less brain edema (-87%; P<0.05), and survived longer (P<0.01) as compared with wild-type controls. The current results show that bradykinin is produced in the brain, kinin B2 receptors are upregulated on dying cells, and B2 receptors are involved in cell death and brain edema formation after experimental stroke.
Collapse
Affiliation(s)
- Moritz Gröger
- Laboratory of Experimental Neurosurgery, Institute for Surgical Research, University of Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57:27-77. [PMID: 15734727 DOI: 10.1124/pr.57.1.2] [Citation(s) in RCA: 742] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development.
Collapse
Affiliation(s)
- L M Fredrik Leeb-Lundberg
- Division of Cellular and Molecular Pharmacology, Department of Experimental Medical Science, Lund University, BMC, A12, SE-22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|