1
|
Guo S, Guan T, Ke Y, Lin Y, Tai R, Ye J, Deng Z, Deng S, Ou C. Biologically logic-gated Trojan-horse strategy for personalized triple-negative breast cancer precise therapy by selective ferroptosis and STING pathway provoking. Biomaterials 2025; 315:122905. [PMID: 39471713 DOI: 10.1016/j.biomaterials.2024.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2024] [Revised: 09/29/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Amidst the therapeutic quandaries associated with triple-negative breast cancer (TNBC), an aggressive malignancy distinguished by its immune resistance and limited treatment avenues, the urgent need for innovative solutions is underscored. To conquer the dilemma, we present a groundbreaking approach that ingeniously employs DNA-fragments-containing exosomes (DNA-Exo) and the concept of "biological logic-gates" to achieve precise homing and controlled selective activation of ferroptosis and stimulator interferon genes (STING) pathways. Leveraging insights from our previous research, a nano-Trojan-horse, Fe0@HMON@DNA-Exo, is engineered via in situ Fe0 synthesis within the glutathione (GSH)-responsiveness degradable hollow mesoporous organosilica nanoparticles (HMON) and subsequently enveloped in DNA-Exo derived from 7-ethyl-10-hydroxycamptothecin (SN38)-treated 4T1 cells. Emphasizing the precision of our approach, the DNA-Exo ensures specific 'homing' to TNBC cells, rendering a targeted delivery mechanism. Concurrently, the concept of "biological logic-gates" is employed to dictate a meticulous and selective activation of STING in antigen-presenting cells (APCs) under OR logic-gating with robust immune response and Fe0-based ferroptosis in TNBC cells under AND logic-gating with reactive oxygen species (ROS) storm generation. In essence, our strategy exhibits great potential in transforming the "immunologically cold" nature of TNBC, enabling precise control over cellular responses, illuminating a promising therapeutic paradigm that is comprehensive and productive in pursuing precision oncology and paving the way for personalized TNBC therapies.
Collapse
Affiliation(s)
- Shuai Guo
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Tianwang Guan
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Yushen Ke
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Yuping Lin
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Rundong Tai
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Jujian Ye
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Zhilin Deng
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Shaohui Deng
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China.
| | - Caiwen Ou
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China.
| |
Collapse
|
2
|
Tang Z, Chen C, Zhou C, Liu Z, Li T, Zhang Y, Feng Y, Gu C, Li S, Chen J. Insights into tumor-derived exosome inhibition in cancer therapy. Eur J Med Chem 2025; 285:117278. [PMID: 39823808 DOI: 10.1016/j.ejmech.2025.117278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Exosomes are critical mediators of cell-to-cell communication in physiological and pathological processes, due to their ability to deliver a variety of bioactive molecules. Tumor-derived exosomes (TDEs), in particular, carry carcinogenic molecules that contribute to tumor progression, metastasis, immune escape, and drug resistance. Thus, TDE inhibition has emerged as a promising strategy to combat cancer. In this review, we discuss the key mechanisms of TDE biogenesis and secretion, emphasizing their implications in tumorigenesis and cancer progression. Moreover, we provide an overview of small-molecule TDE inhibitors that target specific biogenesis and/or secretion pathways, highlighting their potential use in cancer treatment. Lastly, we present the existing obstacles and propose corresponding remedies for the future development of TDE inhibitors.
Collapse
Affiliation(s)
- Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shijia Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Abstract
ABSTRACT Mutant KRAS activation occurs in most of pancreatic ductal adenocarcinoma (PDAC), which induce the sensitivity to ferroptosis of PDAC cells, but the underlying mechanism is still poorly understood. Here, we show how KRAS acts in signaling to activate transcription factor FOSL1, which promotes the expression of the iron uptake receptor TFRC. In PDAC cells, repression of TFRC by KRAS/FOSL1 signaling inhibited intracellular iron levels, thereby restricting the occurrence of ferroptosis. Furthermore, the KRAS/FOSL1/TFRC axis can make the PDAC cells vulnerable to alteration of the iron level in the tumor microenvironment. Our study highlights a pivotal mechanism of PDAC ferroptosis through iron metabolism and supports a new therapeutic strategy for PDAC with superior potential.
Collapse
Affiliation(s)
- Huijia Zhao
- From the Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
4
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
5
|
Wang F, Yin L, Hu Y. Progress of extracellular vesicles-based system for tumor therapy. J Control Release 2025:S0168-3659(25)00179-8. [PMID: 39993635 DOI: 10.1016/j.jconrel.2025.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The increasing number of new cancer cases and cancer-related deaths worldwide highlights the urgent need to develop novel anti-tumor treatment methods to alleviate the current challenging situation. Nearly all organisms are capable of secreting extracellular vesicles (EVs), and these nano-scale EVs carrying biological molecules play an important role in intercellular communication, further affecting various physiological and pathological processes. Notably, EVs from different sources have differences in their characteristics and functions. Consequently, diverse EVs have been utilized as drug or vaccine delivery carriers for improving anti-tumor treatment due to their good safety, ease of modification and unique properties, and achieved satisfactory results. Meanwhile, the clinical trials of EV-based platform for tumor therapy are also continuously being conducted. Therefore, in this review, we summarize the recent research progress of EV-based tumor treatment methods, including the introduction of main sources and unique functions of EVs, the application of EVs in tumor treatment as well as their prospects and challenges. Additionally, considering the unique advantages of artificial EVs over natural EVs, we also highlighted their characteristics and applications in tumor treatments. We believe that this review will help researchers develop novel EV-based anti-tumor platforms through a bottom-up design and accelerate the development in this field.
Collapse
Affiliation(s)
- Fei Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China
| | - Le Yin
- Affiliated Tongzhou Hospital of Xinglin College, Nantong University, 999 Jianshe Road, Jinsha Town, Tongzhou District, Nantong, Jiangsu 226300, China.
| | - Yong Hu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
6
|
Yang M, Yu Y, Ge T, Zhu Q, Zhuang A, Wang W, Fan X. Unlocking the Promise of Antitumor Hyperthermia-Immunotherapy with Spiky Surface Topology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415868. [PMID: 39965085 DOI: 10.1002/advs.202415868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignant tumor in adults with high mortality rate. Recently, immunotherapy has shown great success in other tumors, however, its therapeutic effect in UM is unsatisfactory, possibly due to the insufficient immune cell infiltration and low immunogenicity of UM. Thus, an efficient therapeutic strategy to reverse the immunosuppressive tumor microenvironment is required. Herein, a PD-L1 modified hierarchical structure consisting of a magnetic Fe3O4 core and spiky silica shell (MNP@Spiky/PD-L1) is developed to reverse the immunosuppressive tumor microenvironment and trigger powerful antitumor immune responses. The MNP@Spiky can induce enhanced immunogenic cell death as well as physical activation of innate immunity. First, tumor cells are disrupted directly by magnetic hyperthermia effect and released tumor-associated antigens to initiate anti-tumor immune responses. Meanwhile, the spiky surface of MNP@Spiky augmented tumor antigen uptake as well as maturation of dendritic cells through inflammasome activation. By further associating with PD-L1-targeting antibody, MNP@Spiky/PD-L1 reversed the immunosuppressive tumor microenvironment and triggered powerful antitumor immune responses. Overall, this synergistic therapeutic strategy effectively reprogramed tumor microenvironment and achieved tumor eradication, which sheds light on clinical UM immunotherapy.
Collapse
Affiliation(s)
- Muyue Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
- State Key Laboratory of Eye Health, Shanghai Jiao Tong University, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yan Yu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Tongxin Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
- State Key Laboratory of Eye Health, Shanghai Jiao Tong University, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Qiuyi Zhu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
- State Key Laboratory of Eye Health, Shanghai Jiao Tong University, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Wenxing Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
- State Key Laboratory of Eye Health, Shanghai Jiao Tong University, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| |
Collapse
|
7
|
Zhu Z, Wu X, Zhang J, Zhu M, Tian M, Zhao P. Advances in understanding ferroptosis mechanisms and their impact on immune cell regulation and tumour immunotherapy. Discov Oncol 2025; 16:153. [PMID: 39930297 PMCID: PMC11811334 DOI: 10.1007/s12672-025-01911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Ferroptosis is a novel mode of iron-dependent non-apoptotic cell death that occurs mainly due to excessive accumulation of lipid peroxides. Numerous studies in recent years have shown that ferroptosis plays a vital role in the organism and has important interactions with immune cells. Ferroptosis has been shown to have great potential in tumour therapy through studying its mechanism of action. In addition, ferroptosis plays a major role in many types of tumour cells that can potently suppress the tumourigenesis and metastasis, provide a basis for the treatment of many malignant tumour diseases and become a novel therapeutic modality of antitumour immunity in the clinic. Current tumour immunotherapy for ferroptosis in combination with other conventional oncological modalities is not well elaborated. In this paper, we mainly discuss the connection of ferroptosis with immune cells and their mediated tumour immunotherapy in order to provide a better theoretical basis and new thinking about ferroptosis mediated antitumour immunity.
Collapse
Affiliation(s)
- Zengjun Zhu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, China
| | - Xuanxuan Wu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, China
| | - Jian Zhang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255036, China
| | - Minghui Zhu
- Department of Clinical Laboratory, Huantai County People's Hospital, Zibo, 256400, China
| | - Maojin Tian
- Department of Critical Care Medicine, Zibo Central Hospital, Zibo, 255036, China.
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255036, China.
| |
Collapse
|
8
|
Tao R, Li Y, Gong S, Zhang Q, Zhu Z. Unveiling intricating roles and mechanisms of ferroptosis in melanoma. Biochim Biophys Acta Rev Cancer 2025; 1880:189234. [PMID: 39644939 DOI: 10.1016/j.bbcan.2024.189234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Melanoma is a highly invasive malignant tumor originating from melanocytes, with increasing incidence in recent years. Ferroptosis is an iron-dependent and non-apoptotic form of programmed cell death characterized by the accumulation of lipid peroxides and reactive oxygen species. Morphologically, ferroptosis exhibits the alteration in cells, such as reduced mitochondrial volume, increased density of bilayer membrane, and a decrease or disappearance of mitochondrial cristae. Ferroptosis has shown tremendous potential and applicability in regulating the development of melanoma. As melanoma progresses, certain biomarkers associated with ferroptosis display characteristic patterns of expression. These changes not only reveal the sensitivity of tumor cells to ferroptosis but also provide potential targets for diagnosis and treatment. Besides, inducing ferroptosis has been well-documented to inhibit the growth of melanoma and enhance the efficacy of tumor immunotherapy. Hence, this review emphasizes the roles and regulatory mechanisms of ferroptosis in melanoma development, the involved immune regulation, as well as the potential for diagnosis and treatment of melanoma. The continuous explorations will endow novel strategies for developing ferroptosis-based therapies for melanoma.
Collapse
Affiliation(s)
- Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yichuan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, Hubei Province, China.
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
9
|
Wen J, Wang J, Wang S, Zhou X, Fu Y. Characterization and application of fluorescent hydrogel films with superior mechanical properties in detecting iron(Ⅲ) ions and ferroptosis in oral cancer. Front Bioeng Biotechnol 2025; 12:1526877. [PMID: 39877268 PMCID: PMC11772348 DOI: 10.3389/fbioe.2024.1526877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.0% and the luminescence position remained basically unchanged, caused by the unchanged surface light-emitting structure of the CDs, due to the existence of electrostatic repulsion between the CDs and the hydrogel. Moreover, the tensile-stress of the fluorescent film with 1.0 wt.% of the CDs was increased by 200% to 10.3 Mpa, and the strain was increased from 117% to 153%. The above experimental results are attributed to the hydrogen bonding between the CDs and the sodium alginate-gelatin hydrogel from analyses of the FT-IR spectra. Interestingly, Fe3+ exerted a great quenching effect on this fluorescent film in the concentration range of 0-1.8 μM. The film can be basically used recyclically to detect Fe3+ in solution with a detection limit as low as 0.043 μM. In a word, this work demonstrated an enormous potential of carbon dots in fabricating mechanical and fluorescent properties of the hydrogel and proposed a new detection platform for Fe3+. In view of the promising Fe3+ detection capacity, this hydrogel film can also be applied in oral bacteria surveillance and semi-quantification of ferroptosis in oral cancer.
Collapse
Affiliation(s)
- Jinxi Wen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Jian Wang
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Siqi Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xingping Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - You Fu
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
10
|
Imam M, Ji J, Zhang Z, Yan S. Targeting the initiator to activate both ferroptosis and cuproptosis for breast cancer treatment: progress and possibility for clinical application. Front Pharmacol 2025; 15:1493188. [PMID: 39867656 PMCID: PMC11757020 DOI: 10.3389/fphar.2024.1493188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function. The accumulation of iron and copper ions triggers distinct cell death pathways, known as ferroptosis and cuproptosis, respectively. Ferroptosis is characterized by iron-dependent lipid peroxidation, while cuproptosis involves copper-induced oxidative stress. They are increasingly recognized as promising targets for the development of anticancer drugs. Recently, compelling evidence demonstrated that the interplay between ferroptosis and cuproptosis plays a crucial role in regulating breast cancer progression. This review elucidates the converging pathways of ferroptosis and cuproptosis in breast cancer. Moreover, we examined the value of genes associated with ferroptosis and cuproptosis in the clinical diagnosis and treatment of breast cancer, mainly outlining the potential for a co-targeting approach. Lastly, we delve into the current challenges and limitations of this strategy. In general, this review offers an overview of the interaction between ferroptosis and cuproptosis in breast cancer, offering valuable perspectives for further research and clinical treatment.
Collapse
Affiliation(s)
| | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G, Chen X. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment. J Invest Dermatol 2025:S0022-202X(24)03024-0. [PMID: 39797894 DOI: 10.1016/j.jid.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models. A deeper understanding of the ferroptosis landscape in melanoma based on its biology characteristics, including phenotypic plasticity, metabolic state, genomic alterations, and epigenetic changes, as well as the complex role and mechanisms of ferroptosis in immune cells could provide a foundation for developing effective treatments. In this review, we outline the molecular mechanisms of ferroptosis, decipher the role of melanoma biology in ferroptosis regulation, reveal the therapeutic potential of ferroptosis in melanoma, and discuss the pressing questions that should guide future investigations into ferroptosis in melanoma.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
12
|
Guo X, Song J, Liu M, Ou X, Guo Y. The interplay between the tumor microenvironment and tumor-derived small extracellular vesicles in cancer development and therapeutic response. Cancer Biol Ther 2024; 25:2356831. [PMID: 38767879 PMCID: PMC11110713 DOI: 10.1080/15384047.2024.2356831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
The tumor microenvironment (TME) plays an essential role in tumor cell survival by profoundly influencing their proliferation, metastasis, immune evasion, and resistance to treatment. Extracellular vesicles (EVs) are small particles released by all cell types and often reflect the state of their parental cells and modulate other cells' functions through the various cargo they transport. Tumor-derived small EVs (TDSEVs) can transport specific proteins, nucleic acids and lipids tailored to propagate tumor signals and establish a favorable TME. Thus, the TME's biological characteristics can affect TDSEV heterogeneity, and this interplay can amplify tumor growth, dissemination, and resistance to therapy. This review discusses the interplay between TME and TDSEVs based on their biological characteristics and summarizes strategies for targeting cancer cells. Additionally, it reviews the current issues and challenges in this field to offer fresh insights into comprehending tumor development mechanisms and exploring innovative clinical applications.
Collapse
Affiliation(s)
- Xuanyu Guo
- The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajun Song
- Department of Clinical Laboratory Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
13
|
Lai Y, Huang C, Wu J, Yang K, Yang L. Ferroptosis in Cancer: A new perspective on T cells. Int Immunopharmacol 2024; 143:113539. [PMID: 39488034 DOI: 10.1016/j.intimp.2024.113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
T cells occupy a pivotal position in the immune response against cancer by recognizing and eliminating cancer cells. However, the tumor microenvironment often suppresses the function of T cells, leading to immune evasion and cancer progression. Recent research has unveiled novel connections among T cells, ferroptosis, and cancer. Ferroptosis is a type of regulated cell death that relies iron and reactive oxygen species and is distinguished by the proliferation of lipid peroxides. Emerging scientific findings underscore the potential of ferroptosis to modulate the function and survival of T cells in the tumor microenvironment. Moreover, T cells or immunotherapy can also affect cancer by modulating ferroptosis in cancer cells. This review delved into the intricate crosstalk between T cells and ferroptosis in the context of cancer, highlighting the molecular mechanisms involved. We also explored the therapeutic potential of targeting ferroptosis to enhance the anticancer immune response mediated by T cells. Understanding the interplay among T cells, ferroptosis, and cancer may provide new insights into developing innovative cancer immunotherapies.
Collapse
Affiliation(s)
- Yuping Lai
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Huankui academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunxia Huang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiaqiang Wu
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kangping Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Liang Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
14
|
Zhang X, Zhang Y, Lv X, Zhang P, Xiao C, Chen X. DNA-Free Guanosine-Based Polymer Nanoreactors with Multienzyme Activities for Ferroptosis-Apoptosis Combined Antitumor Therapy. ACS NANO 2024; 18:33531-33544. [PMID: 39610058 DOI: 10.1021/acsnano.4c11275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2024]
Abstract
Concurrent induction of ferroptosis and apoptosis by enzyme catalysis represents a promising modality for cancer therapy. Inspired by the structures of DNA and G-quadruplex/hemin DNAzyme, a DNA-free guanosine-based polymer nanoreactor (HPG@hemin-GOx) is prepared as a ferroptosis-apoptosis inducer by a one-step assembly of phenylboronic acid-modified hyaluronic acid (HA-PBA), guanosine (G), hemin, and glucose oxidase (GOx). HPG@hemin-GOx shows GOx, peroxidase (POD)-like, catalase (CAT)-like, and glutathione peroxidase (GPX)-like activities. The GOx activity of the nanoreactor can increase intracellular hydrogen peroxide (H2O2) levels by oxidizing glucose in the presence of oxygen. The POD-like activity of HPG@hemin-GOx can then induce the generation of hydroxyl radicals utilizing generated H2O2. Meanwhile, the production of oxygen by the CAT-like activity can facilitate the oxygen-consuming glucose oxidation process of GOx, thus promoting the generation of intracellular reactive oxygen species (ROS). Moreover, the GPX-like activity of HPG@hemin-GOx can deplete intracellular glutathione and thus downregulate GPX4 expression. Consequently, HPG@hemin-GOx induces apoptosis and ferroptosis by ROS-mediated damages of nuclear DNA and mitochondria, and GPX4 depletion-induced lipid peroxidation accumulation, resulting in a strong anticancer effect as demonstrated both in vitro and in vivo. This work provides a method for the construction of polymeric nanoreactors with multienzyme activities for ferroptosis-apoptosis synergistic anticancer therapy.
Collapse
Affiliation(s)
- Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yingqi Zhang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xueli Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
15
|
Lodha P, Acari A, Rieck J, Hofmann S, Dieterich LC. The Lymphatic Vascular System in Extracellular Vesicle-Mediated Tumor Progression. Cancers (Basel) 2024; 16:4039. [PMID: 39682225 DOI: 10.3390/cancers16234039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Tumor growth and progression require molecular interactions between malignant and host cells. In recent years, extracellular vesicles (EVs) emerged as an important pillar of such interactions, carrying molecular information from their donor cells to distant recipient cells. Thereby, the phenotype and function of the recipient cells are altered, which may facilitate tumor immune escape and tumor metastasis to other organs through the formation of pre-metastatic niches. A prerequisite for these effects of tumor cell-derived EVs is an efficient transport system from the site of origin to the body periphery. Here, we highlight the role of the lymphatic vascular system in the distribution and progression-promoting functions of tumor cell-derived EVs. Importantly, the lymphatic vascular system is the primary drainage system for interstitial fluid and its soluble, particulate, and cellular contents, and therefore represents the principal route for regional (i.e., to tumor-draining lymph nodes) and systemic distribution of EVs derived from solid tumors. Furthermore, recent studies highlighted the tumor-draining lymph node as a crucial site where tumor-derived EVs exert their effects. A deeper mechanistic understanding of how EVs gain access to the lymphatic vasculature, how they interact with their recipient cells in tumor-draining lymph nodes and beyond, and how they induce phenotypic and functional maladaptation will be instrumental to identify new molecular targets and conceive innovative approaches for cancer therapy.
Collapse
Affiliation(s)
- Pragati Lodha
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Heidelberg Bioscience International Graduate School (HBIGS), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Alperen Acari
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Heidelberg Bioscience International Graduate School (HBIGS), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Jochen Rieck
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sarah Hofmann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
16
|
Jiang C, Li W, Yan J, Yu X, Feng Y, Li B, Liu Y, Dai Y. A Robust ROS Generation and Ferroptotic Lipid Modulation Nanosystem for Mutual Reinforcement of Ferroptosis and Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2401502. [PMID: 39352071 PMCID: PMC11616257 DOI: 10.1002/adhm.202401502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Indexed: 12/06/2024]
Abstract
Ferroptosis initiation is often utilized for synergistic immunotherapy. While, current immunotherapy is limited by an immunosuppressive tumor microenvironment (TME), and ferroptosis is limited by insufficient reactive oxygen species (ROS) and ferroptotic lipids in tumor cells. Here, an arachidonic acid (AA) loaded nanosystem (CTFAP) is developed to mutually reinforce ferroptosis and cancer immunotherapy by augmenting ROS generation and modulating ferroptotic lipids. CTFAP is composed of acid-responsive core calcium peroxide (CaO2) nanoparticles, ferroptotic lipids sponsor AA, tetracarboxylic porphyrin (TCPP) and Fe3+ based metal-organic framework structure, and biocompatible mPEG-DSPE for improved stability. Once endocytosed by tumor cells, CTFAP can release oxygen (O2) and hydrogen peroxide (H2O2) in the acidic TME, facilitating TCPP-based sonodynamic therapy and Fe3+-mediated Fenton-like reactions to generate substantial ROS for cell ferroptosis initiation. The immunogenic cell death (ICD) after ferroptosis promotes interferon γ (IFN-γ) secretion to up-regulate the expression of long-chain family member 4 (ACSL4), cooperating with the released AA from CTFAP to accelerate the accumulation of lipid peroxidation (LPO) and thereby promoting ferroptosis in cancer cells.CTFAP with ultrasound treatment efficiently suppresses tumor growth, has great potential to challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Jiang
- Cancer Center and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Wenxi Li
- Cancer Center and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Jie Yan
- Cancer Center and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Xinying Yu
- Cancer Center and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Yuzhao Feng
- Cancer Center and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Bei Li
- Cancer Center and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Yuan Liu
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yunlu Dai
- Cancer Center and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| |
Collapse
|
17
|
Lu Y, Xie X, Luo L. Ferroptosis crosstalk in anti-tumor immunotherapy: molecular mechanisms, tumor microenvironment, application prospects. Apoptosis 2024; 29:1914-1943. [PMID: 39008197 DOI: 10.1007/s10495-024-01997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Immunotherapies for cancer, specifically immune checkpoint inhibition (ICI), have shown potential in reactivating the body's immune response against tumors. However, there are challenges to overcome in addressing drug resistance and improving the effectiveness of these treatments. Recent research has highlighted the relationship between ferroptosis and the immune system within immune cells and the tumor microenvironment (TME), suggesting that combining targeted ferroptosis with immunotherapy could enhance anti-tumor effects. This review explores the potential of using immunotherapy to target ferroptosis either alone or in conjunction with other therapies like immune checkpoint blockade (ICB) therapy, radiotherapy, and nanomedicine synergistic treatments. It also delves into the roles of different immune cell types in promoting anti-tumor immune responses through ferroptosis. Together, these findings provide a comprehensive understanding of synergistic immunotherapy focused on ferroptosis and offer innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Yining Lu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xiaoting Xie
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
18
|
Zhu X, Li T, Wang Q, Yan K, Ma S, Lin Y, Zeng G, Liu J, Cao J, Wang D. Dual-Synergistic Nanomodulator Alleviates Exosomal PD-L1 Expression Enabling Exhausted Cytotoxic T Lymphocytes Rejuvenation for Potentiated iRFA-Treated Hepatocellular Carcinoma Immunotherapy. ACS NANO 2024; 18:32818-32833. [PMID: 39528907 DOI: 10.1021/acsnano.4c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2024]
Abstract
The tumor immunosuppressive microenvironment (TME) induced by incomplete radiofrequency ablation (iRFA) in hepatocellular carcinoma (HCC) is a critical driver of tumor progression and metastasis. Herein, we proposed a therapeutic strategy aimed at remodeling the post-iRFA TME by targeting exosome biogenesis, secretion, and PD-L1 expression, thereby rejuvenating cytotoxic T lymphocyte function to mitigate the progression and metastasis of HCC. Leveraging the versatile properties of polydopamine nanomodulators, we have engineered a tailored delivery platform for GW4869 and amlodipine (AM), enabling precise and tumor-specific release of these therapeutic agents. Initially, GW4869, a neutral sphingomyelinase inhibitor, synergized with AM, an intracellular calcium modulator, to suppress exosome biogenesis and secretion. Subsequently, AM triggered the autophagic degradation of PD-L1. In vitro and in vivo experiments demonstrated that this synergistic approach significantly enhanced the robust activation and proliferation of various functional T-cell subsets following iRFA, particularly CD8+T cells, IFN-γ+ CD8+ cytotoxic T cells, natural killer cells, and innate lymphoid cells. Concurrently, it effectively reduced the infiltration of immunosuppressive cell types, including regulatory T cells and myeloid-derived suppressor cells. This favorable remodeling of the TME substantially inhibited the progression and metastasis of HCC post-iRFA. Collectively, our study presented a promising paradigm for enhancing HCC treatment efficacy by integrating radiofrequency ablation with advanced immune modulation strategies.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
| | - Tinghua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Qin Wang
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Kangning Yan
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Shanshan Ma
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Yuan Lin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Guichun Zeng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, No.87 Dingjiaqiao, Nanjing 224001, P. R. China
| |
Collapse
|
19
|
Babaei S, Fadaee M, Abbasi-Kenarsari H, Shanehbandi D, Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun Signal 2024; 22:527. [PMID: 39482766 PMCID: PMC11526674 DOI: 10.1186/s12964-024-01906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
The malignant form of melanoma is one of the deadliest human cancers that accounts for almost all of the skin tumor-related fatalities in its later stages. Achieving an exhaustive understanding of reliable cancer-specific markers and molecular pathways can provide numerous practical techniques and direct the way toward the development of rational curative medicines to increase the lifespan of patients. Immunotherapy has significantly enhanced the treatment of metastatic and late-stage melanoma, resulting in an incredible increase in positive responses to therapy. Despite the increasing occurrence of melanoma, the median survival rate for patients with advanced, inoperable terminal disease has increased from around six months to almost six years. The current knowledge of the tumor microenvironment (TME) and its interaction with the immune system has resulted in the swift growth of innovative immunotherapy treatments. Exosomes are small extracellular vesicles (EVs), ranging from 30 to 150 nm in size, that the majority of cells released them. Exosomes possess natural advantages such as high compatibility with living organisms and low potential for causing immune reactions, making them practical for delivering therapeutic agents like chemotherapy drugs, nucleic acids, and proteins. This review highlights recent advancements in using exosomes as an approach to providing medications for the treatment of melanoma.
Collapse
Affiliation(s)
- Shabnam Babaei
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dariush Shanehbandi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146.
| |
Collapse
|
20
|
Han S, Zou J, Xiao F, Xian J, Liu Z, Li M, Luo W, Feng C, Kong N. Nanobiotechnology boosts ferroptosis: opportunities and challenges. J Nanobiotechnology 2024; 22:606. [PMID: 39379969 PMCID: PMC11460037 DOI: 10.1186/s12951-024-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2024] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, necrosis, and autophagy, is a unique type of cell death driven by iron-dependent phospholipid peroxidation. Since ferroptosis was defined in 2012, it has received widespread attention from researchers worldwide. From a biochemical perspective, the regulation of ferroptosis is strongly associated with cellular metabolism, primarily including iron metabolism, lipid metabolism, and redox metabolism. The distinctive regulatory mechanism of ferroptosis holds great potential for overcoming drug resistance-a major challenge in treating cancer. The considerable role of nanobiotechnology in disease treatment has been widely reported, but further and more systematic discussion on how nanobiotechnology enhances the therapeutic efficacy on ferroptosis-associated diseases still needs to be improved. Moreover, while the exciting therapeutic potential of ferroptosis in cancer has been relatively well summarized, its applications in other diseases, such as neurodegenerative diseases, cardiovascular and cerebrovascular diseases, and kidney disease, remain underreported. Consequently, it is necessary to fill these gaps to further complete the applications of nanobiotechnology in ferroptosis. In this review, we provide an extensive introduction to the background of ferroptosis and elaborate its regulatory network. Subsequently, we discuss the various advantages of combining nanobiotechnology with ferroptosis to enhance therapeutic efficacy and reduce the side effects of ferroptosis-associated diseases. Finally, we analyze and discuss the feasibility of nanobiotechnology and ferroptosis in improving clinical treatment outcomes based on clinical needs, as well as the current limitations and future directions of nanobiotechnology in the applications of ferroptosis, which will not only provide significant guidance for the clinical applications of ferroptosis and nanobiotechnology but also accelerate their clinical translations.
Collapse
Affiliation(s)
- Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jianhua Zou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jing Xian
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Ziwei Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Meng Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Chan Feng
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China.
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
21
|
Chen ZK, Zheng S, Long Y, Wang KM, Xiao BL, Li JB, Zhang W, Song H, Chen G. High-throughput screening identifies ibuprofen as an sEV PD-L1 inhibitor for synergistic cancer immunotherapy. Mol Ther 2024; 32:3580-3596. [PMID: 39217416 PMCID: PMC11489553 DOI: 10.1016/j.ymthe.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2024] [Revised: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Programmed death-ligand 1 (PD-L1) on tumor-derived small extracellular vesicles (sEVs) limits therapeutic effectiveness by interacting with the PD-1 receptor on host immune cells. Targeting the secretion of sEV PD-L1 has emerged as a promising strategy to enhance immunotherapy. However, the lack of small-molecule inhibitors poses a challenge for clinical translation. In this study, we developed a target and phenotype dual-driven high-throughput screening strategy that combined virtual screening with nanoflow-based experimental verification. We identified ibuprofen (IBP) as a novel inhibitor that effectively targeted sEV PD-L1 secretion. IBP disrupted the biogenesis and secretion of PD-L1+ sEVs in tumor cells by physically interacting with a critical regulator of sEV biogenesis, hepatocyte growth factor-regulated tyrosine kinase substrate. Notably, the mechanism of action of IBP is distinct from its commonly known targets, cyclooxygenases. Administration of IBP stimulated antitumor immunity and enhanced the efficacy of anti-PD-1 therapy in melanoma and oral squamous cell carcinoma mouse models. To address potential adverse effects, we further developed an IBP gel for topical application, which demonstrated remarkable therapeutic efficacy when combined with anti-PD-1 treatment. The discovery of this specific small inhibitor provides a promising avenue for establishing durable, systemic antitumor immunity.
Collapse
Affiliation(s)
- Zhuo-Kun Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Yan Long
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Kui-Ming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bo-Lin Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jin-Bang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China.
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
22
|
Ham S, Choi BH, Kwak MK. NRF2 signaling and amino acid metabolism in cancer. Free Radic Res 2024; 58:648-661. [PMID: 39540796 DOI: 10.1080/10715762.2024.2423690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Alterations in amino acid metabolism have emerged as a critical component in cancer biology, influencing various aspects of tumor initiation, progression, and metastasis. This review explores how amino acids, beyond their role as protein building blocks, are essential for redox balance, cell proliferation, metastasis, signaling/epigenetic regulation, and tumor microenvironment modulation in cancer. We particularly focus on the intricate relationship between amino acid metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling, a master regulator of oxidative stress response that frequently hyperactivated in cancer. Increasing evidence indicates that NRF2 is a key player in amino acid metabolism, orchestrating metabolism of cysteine, glutamine, and serine/glycine to promote cancer cell survival and growth. This comprehensive analysis provides insights into potential therapeutic strategies targeting the NRF2-amino acid metabolism axis, offering new avenues for cancer treatment that address multiple aspects of tumor biology.
Collapse
Affiliation(s)
- Suji Ham
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
23
|
Hou Q, Ouyang S, Xie Z, He Y, Deng Y, Guo J, Yu P, Tan X, Ma W, Li P, Yu J, Mo Q, Zhang Z, Chen D, Lin X, Liu Z, Chen X, Peng T, Li L, Xie W. Exosome is a Fancy Mobile Sower of Ferroptosis. J Cardiovasc Transl Res 2024; 17:1067-1082. [PMID: 38776048 DOI: 10.1007/s12265-024-10508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/04/2024] [Accepted: 04/01/2024] [Indexed: 10/29/2024]
Abstract
Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.
Collapse
Affiliation(s)
- Qin Hou
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yinling He
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yunong Deng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiamin Guo
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Panpan Yu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qinger Mo
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhixia Zhang
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dandan Chen
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiyang Liu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
24
|
Li Z, Chen Z, Shi K, Huang P, Zeng W, Huang Q, Peng J, Yang L, Chen H, Zhao Y, Zeng X. Polyphenol-Based Self-Assembled Nanomedicine for a Three-Pronged Approach to Reversing Tumor Immunosuppression. Adv Healthc Mater 2024:e2402127. [PMID: 39344218 DOI: 10.1002/adhm.202402127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Indexed: 10/01/2024]
Abstract
The challenges of multi-pathway immune resistance and systemic toxicity caused by the direct injection of immune checkpoint inhibitors are critical factors that compromise the effectiveness of clinical immune checkpoint blockade therapy. In this context, natural polyphenols have been employed as the primary component to construct a targeted and acid-responsive PD-L1 antibody (αPD-L1) delivery nanoplatform. This platform incorporates garcinol, an inhibitor of the Nuclear Factor Kappa-B (NF-κB) signaling pathway, to regulate pro-tumor immune escape cytokines and regulatory T cells. Additionally, the nanoplatform has been verified to induce immunogenic cell death (ICD), which promotes the maturation of dendritic cells and enhances the activity of cytotoxic T lymphocytes. In vivo and in vitro experimental results demonstrated that the nanoplatform can boost the immune response through a PD-L1 and NF-κB blocking/ICD inducing three-pronged strategy, thereby effectively combating tumor growth and metastasis.
Collapse
Affiliation(s)
- Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zirui Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Kexin Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ping Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenfeng Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
25
|
Liu J, Qin J, Liang L, Zhang X, Gao J, Hao Y, Zhao P. Novel insights into the regulation of exosomal PD-L1 in cancer: From generation to clinical application. Eur J Pharmacol 2024; 979:176831. [PMID: 39047964 DOI: 10.1016/j.ejphar.2024.176831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Programmed cell death ligand 1 (PD-L1) interacts with programmed cell death 1 (PD-1), leading to T cell exhaustion and promoting tumor cell survival, ultimately mediating immunosuppression. While FDA-approved monoclonal antibodies targeting the PD-1/PD-L1 interaction have shown success in cancer treatment, some patients experience limited and short-lived therapeutic outcomes. Recent studies have identified PD-L1 expression not only on tumor cell surfaces but also on exosomes, with secretion pathways including both conventional and unconventional endocytosis routes, presenting a unique therapeutic opportunity. Emerging evidence suggests that exosomal PD-L1 contributes to systemic immunosuppression, potentially counteracting the effects of anti-PD-1 checkpoint therapies. However, the significance of exosomal PD-L1 in clinical cancer patients unresponsive to anti-PD-1/PD-L1 immunotherapy, as well as the factors regulating its generation, remain unclear. Moreover, the mechanisms underlying PD-L1 expression on exosomes and its regulation in cancer are yet to be fully elucidated. This review primarily focuses on the mechanisms modulating exosomal PD-L1 generation in cancer, while also outlining its involvement in immunosuppression, tumor proliferation, and response to cancer immunotherapy. Additionally, we explore the potential of exosomal PD-L1 as a cancer biomarker and therapeutic target, aiming to provide a comprehensive overview of this emerging field and its implications for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Jie Liu
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China; Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Junxia Qin
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Lili Liang
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xinzhong Zhang
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Jie Gao
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Youwei Hao
- Department of Cardiology, Taiyuan People's Hospital, Taiyuan, 030000, China
| | - Peng Zhao
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|
26
|
Fang F, Chen X. Carrier-Free Nanodrugs: From Bench to Bedside. ACS NANO 2024; 18:23827-23841. [PMID: 39163559 DOI: 10.1021/acsnano.4c09027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 08/22/2024]
Abstract
Carrier-free nanodrugs with extraordinary active pharmaceutical ingredient (API) loading (even 100%), avoidable carrier-induced toxicity, and simple synthetic procedures are considered as one of the most promising candidates for disease theranostics. Substantial studies and the commercial success of "carrier-free" nanocrystals have demonstrated their strong clinical potential. However, their practical translations remain challenging and are impeded by unpredictable assembly processes, insufficient delivery efficiency, and an unclear in vivo fate. In this Perspective, we systematically outline the contemporary and emerging carrier-free nanodrugs based on diverse APIs, as well as highlight their opportunities and challenges in clinical translation. Looking ahead, further improvements in design and preparation, drug delivery, in vivo efficacy, and safety of carrier-free nanomedicines are essential to facilitate their translation from the bench to bedside.
Collapse
Affiliation(s)
- Fang Fang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
27
|
Chen Y, Yang X, Li H, Wu X, Wu W, Chen J, Wu A, Wang X. Self-Assembled Fe-Phenolic Acid Network Synergizes with Ferroptosis to Enhance Tumor Nanotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402073. [PMID: 38686676 DOI: 10.1002/smll.202402073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Natural polyphenolic compound rosmarinic acid (RA) has good antitumor activity. However, the distinctive tumor microenvironment, characterized by low pH and elevated levels of glutathione (GSH), enhances the tolerance of tumors to the singular anti-tumor treatment mode using RA, resulting in unsatisfactory therapeutic efficacy. Targeting nonapoptotic programmed cell death processes may provide another impetus to inhibit tumor growth. RA possesses the capability to coordinate with metal elements. To solve the effect restriction of the above single treatment mode, it is proposed to construct a self-assembled nanocomposite, Fe-RA. Under tumor microenvironment, Fe-RA nanocomposite exerts the characteristics of POD-like enzyme activity and depletion of GSH, producing a large amount of hydroxyl radical (·OH) while disrupting the antioxidant defense system of tumor cells. Moreover, due to the enhanced permeability and retention effect (EPR), Fe-RA can transport Fe2+ to a greater extent to tumor cells and increase intracellular iron content. Causing an imbalance in iron metabolism in tumor cells and promoting cell ferroptosis. The results of the synchrotron X-ray absorption spectroscopy (XAS) and high-resolution mass spectrometry (HRMS) prove the successful complexation of Fe-RA nanocomposite. Density functional theory (DFT) explains the efficient catalytic mechanism of its peroxide-like enzyme activity and the reaction principle with GSH.
Collapse
Affiliation(s)
- Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiujuan Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoran Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xinyue Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junzhou Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
28
|
Chen X, Wang J, Yang P, Liu HY, Zhong S, Lu C, Gao M, Liu D, Zhang J, Wang J, Ma S, Wang W, Zhu H, Zhang X, Liu Y. SENP3 sensitizes macrophages to ferroptosis via de-SUMOylation of FSP1. Redox Biol 2024; 75:103267. [PMID: 39025016 PMCID: PMC11301343 DOI: 10.1016/j.redox.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis, driven by an imbalance in redox homeostasis, has recently been identified to regulate macrophage function and inflammatory responses. SENP3 is a redox-sensitive de-SUMOylation protease that plays an important role in macrophage function. However, doubt remains on whether SENP3 and SUMOylation regulate macrophage ferroptosis. For the first time, the results of our study suggest that SENP3 sensitizes macrophages to RSL3-induced ferroptosis. We showed that SENP3 promotes the ferroptosis of M2 macrophages to decrease M2 macrophage proportion in vivo. Mechanistically, we identified the ferroptosis repressor FSP1 as a substrate for SUMOylation and confirmed that SUMOylation takes place mainly at its K162 site. We found that SENP3 sensitizes macrophages to ferroptosis by interacting with and de-SUMOylating FSP1 at the K162 site. In summary, our study describes a novel type of posttranslational modification for FSP1 and advances our knowledge of the biological functions of SENP3 and SUMOylation in macrophage ferroptosis.
Collapse
Affiliation(s)
- Xuelian Chen
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hsin-Ying Liu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Zhong
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghao Lu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Gao
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqiang Wang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Ma
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenao Wang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanting Zhu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Zhang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Nan K, Zhang M, Geng Z, Zhang Y, Liu L, Yang Z, Xu P. Exploring Unique Extracellular Vesicles Associated Signatures: Prognostic Insights, Immune Microenvironment Dynamics, and Therapeutic Responses in Pancreatic Adenocarcinoma. Mediators Inflamm 2024; 2024:2825971. [PMID: 39220187 PMCID: PMC11366062 DOI: 10.1155/2024/2825971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2023] [Revised: 01/09/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Extracellular vesicles play an important role in the progression of pancreatic adenocarcinoma (PAAD) through the transfer of proteins, mRNAs, and long noncoding RNAs (lncRNAs). However, the intricate interplay between extracellular vesicles-related lncRNAs and the tumor microenvironment (TME) remains poorly elucidated. Consequently, our investigation aimed to delineate the association between extracellular vesicles-related lncRNAs and the PAAD microenvironment. Initially, we identified differentially expressed lncRNAs (DELs) from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project datasets. Subsequently, we validated the expression of these DELs within extracellular vesicles and assessed their prognostic implications in PAAD using the GSE133684 and TCGA datasets. Multiomics data were analyzed comprehensively, including genomic landscape, functional annotation, immune profiles, and therapeutic responses. Differential expression of selected lncRNAs in both cellular and exosomal fractions of PAAD was further confirmed through quantitative polymerase chain reaction (qPCR). Eight DELs were identified from TCGA and GTEx datasets, and two exosomal lncRNAs exhibited a significant correlation with overall survival, warranting further investigation. Specifically, elevated expression of LINC00996 correlated positively with immune infiltration and enhanced response to immunotherapy. Conversely, heightened expression of TRHED-AS1 was associated with compromised immune cell infiltration and diminished responsiveness to immunotherapy. Our study establishes a compelling link between two extracellular vesicles-related gene signatures, prognosis, and immune infiltration in PAAD. Notably, these signatures serve as robust prognostic indicators for PAAD patients, offering valuable insights for the strategic selection of immunotherapeutic interventions.
Collapse
Affiliation(s)
- Kai Nan
- Department of Joint SurgeryHongHui HospitalXi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Ming Zhang
- Department of General PracticeHonghui HospitalXi'an Jiao Tong University, Xi'an 710054, Shaanxi, China
| | - Zilong Geng
- Department of OrthopaedicsThe Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Yuankai Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Lin Liu
- Department of Joint SurgeryHongHui HospitalXi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zhi Yang
- Department of Joint SurgeryHongHui HospitalXi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Peng Xu
- Department of Joint SurgeryHongHui HospitalXi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| |
Collapse
|
30
|
Jeon TJ, Kim OH, Kang H, Lee HJ. Preadipocytes potentiate melanoma progression and M2 macrophage polarization in the tumor microenvironment. Biochem Biophys Res Commun 2024; 721:150129. [PMID: 38762933 DOI: 10.1016/j.bbrc.2024.150129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Melanoma, the deadliest skin cancer, originates from epidermal melanocytes. The influence of preadipocytes on melanoma is less understood. We co-cultured mouse melanoma B16 cells with 3T3L1 preadipocytes to form mixed spheroids and observed increased melanoma proliferation and growth compared to B16-only spheroids. Metastasis-related proteins YAP, TAZ, and PD-L1 levels were also higher in mixed spheroids. Treatment with exosome inhibitor GW4869 halted melanoma growth and reduced expression of these proteins, suggesting exosomal crosstalk between B16 and 3T3L1 cells. MiR-155 expression was significantly higher in mixed spheroids, and GW4869 reduced its levels. Additionally, co-culturing with Raw264.7 macrophage cells increased M2 markers IL-4 and CD206 in Raw264.7 cells, effects that were diminished by GW4869. These results indicate that preadipocytes may enhance melanoma progression and metastasis via exosomal interactions.
Collapse
Affiliation(s)
- Tae Jin Jeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, South Korea
| | - Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Hana Kang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, South Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, South Korea; Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
31
|
Yu L, Huang K, Liao Y, Wang L, Sethi G, Ma Z. Targeting novel regulated cell death: Ferroptosis, pyroptosis and necroptosis in anti-PD-1/PD-L1 cancer immunotherapy. Cell Prolif 2024; 57:e13644. [PMID: 38594879 PMCID: PMC11294428 DOI: 10.1111/cpr.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
Chemotherapy, radiotherapy, and immunotherapy represent key tumour treatment strategies. Notably, immune checkpoint inhibitors (ICIs), particularly anti-programmed cell death 1 (PD1) and anti-programmed cell death ligand 1 (PD-L1), have shown clinical efficacy in clinical tumour immunotherapy. However, the limited effectiveness of ICIs is evident due to many cancers exhibiting poor responses to this treatment. An emerging avenue involves triggering non-apoptotic regulated cell death (RCD), a significant mechanism driving cancer cell death in diverse cancer treatments. Recent research demonstrates that combining RCD inducers with ICIs significantly enhances their antitumor efficacy across various cancer types. The use of anti-PD-1/PD-L1 immunotherapy activates CD8+ T cells, prompting the initiation of novel RCD forms, such as ferroptosis, pyroptosis, and necroptosis. However, the functions and mechanisms of non-apoptotic RCD in anti-PD1/PD-L1 therapy remain insufficiently explored. This review summarises the emerging roles of ferroptosis, pyroptosis, and necroptosis in anti-PD1/PD-L1 immunotherapy. It emphasises the synergy between nanomaterials and PD-1/PD-L1 inhibitors to induce non-apoptotic RCD in different cancer types. Furthermore, targeting cell death signalling pathways in combination with anti-PD1/PD-L1 therapies holds promise as a prospective immunotherapy strategy for tumour treatment.
Collapse
Affiliation(s)
- Li Yu
- Health Science CenterYangtze UniversityJingzhouHubeiChina
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Ke Huang
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| | - Yixiang Liao
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Lingzhi Wang
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
32
|
He XQ, Wu YJ. Engineered small extracellular vesicle-mediated ferroptosis: A new frontier in cancer immunotherapy. Int Immunopharmacol 2024; 139:112621. [PMID: 39013216 DOI: 10.1016/j.intimp.2024.112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Ferroptosis is a novel iron-dependent form of cell death discovered in recent years, characterized by the accumulation of ferrous iron, the production of reactive oxygen species (ROS) through the Fenton reaction, and lipid peroxidation, ultimately leading to the disruption of the antioxidant system and cell membrane damage. Extensive research has found that ferroptosis plays a significant role in regulating tumor cell immune evasion, tumor development, and remodeling the tumor microenvironment. Small Extracellular vesicles (sEVs), carrying various bioactive molecules (ncRNA, DNA, proteins), are key nanoscale mediators of intercellular communication. Increasing evidence confirms that EVs can regulate the ferroptosis pathway in tumors, promoting tumor cell immune evasion and reshaping the tumor microenvironment. This article aims to comprehensively review the key mechanisms by which sEVs mediate ferroptosis in cancer and provide new insights into targeting tumor immunotherapy.
Collapse
Affiliation(s)
- Xiao-Qi He
- Department of Pharmacy, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China
| | - Ya-Jun Wu
- Department of Pharmacy, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China.
| |
Collapse
|
33
|
Chen A, Zhang W, Jiang C, Jiang Z, Tang D. The engineered exosomes targeting ferroptosis: A novel approach to reverse immune checkpoint inhibitors resistance. Int J Cancer 2024; 155:7-18. [PMID: 38533694 DOI: 10.1002/ijc.34934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have been extensively used in immunological therapy primarily due to their ability to prolong patient survival. Although ICIs have achieved success in cancer treatment, the resistance of ICIs should not be overlooked. Ferroptosis is a newly found cell death mode characterized by the accumulation of reactive oxygen species (ROS), glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inactivation, which has been demonstrated to be beneficial to immunotherapy and combining ferroptosis and ICIs to exploit new immunotherapies may reverse ICIs resistance. Exosomes act as mediators in cell-to-cell communication that may regulate ferroptosis to influence immunotherapy through the secretion of biological molecules. Thus, utilizing exosomes to target ferroptosis has opened up exciting possibilities for reversing ICIs resistance. In this review, we summarize the mechanisms of ferroptosis improving ICIs therapy and how exosomes regulate ferroptosis through adjusting iron metabolism, blocking the ROS accumulation, controlling ferroptosis defense systems, and influencing classic signaling pathways and how engineered exosomes target ferroptosis and improve ICIs efficiency.
Collapse
Affiliation(s)
- Anqi Chen
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, China
| | - Chuwen Jiang
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhengting Jiang
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
34
|
Wu B, Dou X, Zhao Y, Wang X, Zhao C, Xia J, Xing C, He S, Feng C. Chiral Supramolecular Nanofibers Regulated Tumor-Derived Exosomes Secretion for Constructing an Anti-Tumor Extracellular Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308335. [PMID: 38420895 DOI: 10.1002/smll.202308335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/21/2023] [Revised: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Tumor-derived exosomes (TDEs) induced extracellular microenvironment has recently been validated to be critical for tumor progression and metastasis, however, remodeling it for oncotherapy still remains a major challenge due to difficulty in regulation of TDEs secretion. Herein, the supramolecular chiral nanofibers, composed of L/D-phenylalanine derivates (L/D-Phe) and linear hyaluronic acid (HA), are successfully employed to construct TDEs induced anti-tumor extracellular microenvironment. The left-handed L-Phe @HA nanofibers significantly inhibit TDEs secretion into extracellular microenvironment, which results in suppression of tumor proliferation and metastasis in vitro and vivo. Biological assays and theoretical modeling reveal that these results are mainly attributed to strong adsorption of the key exosomes transporters (Ras-related protein Rab-27A and synaptosome-associated protein 23) on left-handed L-Phe @HA nanofibers via enhanced stereoselective interaction, leading to degradation and phosphorylated dropping of exosomes transporters. Subsequently, transfer function of exosomes transporters is limited, which causes remarkable inhibition of TDEs secretion. These findings provide a promising novel insight of chiral functional materials to establish an anti-tumor extracellular microenvironment via regulation of TDEs secretion.
Collapse
Affiliation(s)
- Beibei Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Yu Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Xueqian Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Jingyi Xia
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Chao Xing
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Sijia He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| |
Collapse
|
35
|
Su Y, Liu B, Wang B, Chan L, Xiong C, Lu L, Zhang X, Zhan M, He W. Progress and Challenges in Tumor Ferroptosis Treatment Strategies: A Comprehensive Review of Metal Complexes and Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310342. [PMID: 38221682 DOI: 10.1002/smll.202310342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ferroptosis is a new form of regulated cell death featuring iron-dependent lipid peroxides accumulation to kill tumor cells. A growing body of evidence has shown the potential of ferroptosis-based cancer therapy in eradicating refractory malignancies that are resistant to apoptosis-based conventional therapies. In recent years, studies have reported a number of ferroptosis inducers that can increase the vulnerability of tumor cells to ferroptosis by regulating ferroptosis-related signaling pathways. Encouraged by the rapid development of ferroptosis-driven cancer therapies, interdisciplinary fields that combine ferroptosis, pharmaceutical chemistry, and nanotechnology are focused. First, the prerequisites and metabolic pathways for ferroptosis are briefly introduced. Then, in detail emerging ferroptosis inducers designed to boost ferroptosis-induced tumor therapy, including metal complexes, metal-based nanoparticles, and metal-free nanoparticles are summarized. Subsequently, the application of synergistic strategies that combine ferroptosis with apoptosis and other regulated cell death for cancer therapy, with emphasis on the use of both cuproptosis and ferroptosis to induce redox dysregulation in tumor and intracellular bimetallic copper/iron metabolism disorders during tumor treatment is discussed. Finally, challenges associated with clinical translation and potential future directions for potentiating cancer ferroptosis therapies are highlighted.
Collapse
Affiliation(s)
- Yanhong Su
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Binghan Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Chan Xiong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|
36
|
Zhou H, Cheng Y, Huang Q, Xiao J. Regulation of ferroptosis by nanotechnology for enhanced cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:921-943. [PMID: 39014916 DOI: 10.1080/17425247.2024.2379937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION This review explores the innovative intersection of ferroptosis, a form of iron-dependent cell death, with cancer immunotherapy. Traditional cancer treatments face limitations in efficacy and specificity. Ferroptosis as a new paradigm in cancer biology, targets metabolic peculiarities of cancer cells and may potentially overcome such limitations, enhancing immunotherapy. AREA COVERED This review centers on the regulation of ferroptosis by nanotechnology to augment immunotherapy. It explores how nanoparticle-modulated ferroptotic cancer cells impact the TME and immune responses. The dual role of nanoparticles in modulating immune response through ferroptosis are also discussed. Additionally, it investigates how nanoparticles can be integrated with various immunotherapeutic strategies, to optimize ferroptosis induction and cancer treatment efficacy. The literature search was conducted using PubMed and Google Scholar, covering articles published up to March 2024. EXPERT OPINION The manuscript underscores the promising yet intricate landscape of ferroptosis in immunotherapy. It emphasizes the need for a nuanced understanding of ferroptosis' impact on immune cells and the TME to develop more effective cancer treatments, highlighting the potential of nanoparticles in enhancing the efficacy of ferroptosis and immunotherapy. It calls for deeper exploration into the molecular mechanisms and clinical potential of ferroptosis to fully harness its therapeutic benefits in immunotherapy.
Collapse
Affiliation(s)
- Haohan Zhou
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| |
Collapse
|
37
|
Zhou J, Li L, Pu Y, Li H, Wu X, Wang Z, Sun J, Song Q, Zhou L, Ma X, Yang L, Ji Q. Astragaloside IV inhibits colorectal cancer metastasis by reducing extracellular vesicles release and suppressing M2-type TAMs activation. Heliyon 2024; 10:e31450. [PMID: 38831823 PMCID: PMC11145472 DOI: 10.1016/j.heliyon.2024.e31450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Ethnopharmacological relevance Tumour-derived extracellular vesicles (TEVs) have been confirmed to facilitate colorectal cancer (CRC) metastasis by remodelling the tumour microenvironment (TME). Drugs targeted TEVs is considered as a promising therapeutic strategy for cancer treatment. Traditional Chinese medicine (TCM) plays a vital role in improving the prognosis of CRC patients and eventually CRC patients with distant metastasis. Although the anti-tumour effects of active compounds from TCM prescriptions are observed widely, the molecular mechanisms remain unknown. Aim of the study This study aims to investigate the effects of active compounds in our library of TCM on preventing CRC metastasis, and also explore the potential mechanisms from the perspective of TEVs. Materials and methods: The effects of active compounds on the proliferation of CRC cells were determined by CCK-8 assay. TEVs were extracted from MC38 cells by ultracentrifugation and characterized by electron microscopy, Nanosight NS300 and western blotting. The TEV particles were quantified by Nanosight NS300. The potential mechanism by which astragaloside IV (ASIV) reduced TEV secretion was determined by western blotting. RAW264.7 cells were cocultured with the conditioned medium (CM) of MC38 cells treated with or without ASIV, and the activation of tumour-associated macrophages (TAMs) was assessed by immunofluorescence and quantitative polymerase chain reaction (qPCR). The migration of CRC cells was measured by wound healing and Transwell assay. A spleen-to-liver metastasis model of colorectal cancer was used to confirm the efficiency of ASIV in vivo. Liver metastatic tumours of the mice were used for liver weight measures and H&E staining. Immunofluorescence was applied to observe the infiltration of TAMs, the expression of neutral sphingomyelinase 2 (nSMase2) and Rab27a. Results By screening our TCM monomer library, we found that ASIV, which is mainly extracted from Radix Astragali, reduced the release of TEVs from CRC cells in a time- and concentration-dependent manner. Mechanistically, ASIV inhibited the production and secretion of TEVs by downregulating nSMase2 and Rab27a expression in CRC cells. CM from ASIV-treated CRC cells reshaped the polarization of TAMs by decreasing M2-type polarization, increasing M1-type polarization. Consequently, the repolarization of M2-type to M1-type macrophages led to reduced invasion and migration of CRC cells. Moreover, we confirmed that ASIV inhibited the liver metastasis of CRC, reduced M2-type macrophage infiltration and decreased the expression of nSMase2 and Rab27a in liver metastases. Conclusions ASIV inhibited CRC metastasis by reducing EVs release and suppressing M2-type TAMs activation. All these findings reveal a new insight into the mechanisms of ASIV in preventing CRC progression and provide a promising approach for anti-tumour therapy.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, 315000, China
| | - Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haoze Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinnan Wu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Sun
- Department of Peripheral Vascular Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215007, China
| | - Lihong Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinwen Ma
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Department of Oncology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
38
|
Li L, Bo W, Wang G, Juan X, Xue H, Zhang H. Progress and application of lung-on-a-chip for lung cancer. Front Bioeng Biotechnol 2024; 12:1378299. [PMID: 38854856 PMCID: PMC11157020 DOI: 10.3389/fbioe.2024.1378299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a malignant tumour with the highest incidence and mortality worldwide. Clinically effective therapy strategies are underutilized owing to the lack of efficient models for evaluating drug response. One of the main reasons for failure of anticancer drug therapy is development of drug resistance. Anticancer drugs face severe challenges such as poor biodistribution, restricted solubility, inadequate absorption, and drug accumulation. In recent years, "organ-on-a-chip" platforms, which can directly regulate the microenvironment of biomechanics, biochemistry and pathophysiology, have been developed rapidly and have shown great potential in clinical drug research. Lung-on-a-chip (LOC) is a new 3D model of bionic lungs with physiological functions created by micromachining technology on microfluidic chips. This approach may be able to partially replace animal and 2D cell culture models. To overcome drug resistance, LOC realizes personalized prediction of drug response by simulating the lung-related microenvironment in vitro, significantly enhancing therapeutic effectiveness, bioavailability, and pharmacokinetics while minimizing side effects. In this review, we present an overview of recent advances in the preparation of LOC and contrast it with earlier in vitro models. Finally, we describe recent advances in LOC. The combination of this technology with nanomedicine will provide an accurate and reliable treatment for preclinical evaluation.
Collapse
Affiliation(s)
- Lantao Li
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Guangyan Wang
- Department of General Internal Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Juan
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyi Xue
- Department of Intensive Care Unit, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hongwei Zhang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
39
|
Lu MM, Yang Y. Exosomal PD-L1 in cancer and other fields: recent advances and perspectives. Front Immunol 2024; 15:1395332. [PMID: 38726017 PMCID: PMC11079227 DOI: 10.3389/fimmu.2024.1395332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
PD-1/PD-L1 signaling is a key factor of local immunosuppression in the tumor microenvironment. Immune checkpoint inhibitors targeting PD-1/PD-L1 signaling have achieved tremendous success in clinic. However, several types of cancer are particularly refractory to the anti-PD-1/PD-L1 treatment. Recently, a series of studies reported that IFN-γ can stimulate cancer cells to release exosomal PD-L1 (exoPD-L1), which possesses the ability to suppress anticancer immune responses and is associated with anti-PD-1 response. In this review, we introduce the PD-1/PD-L1 signaling, including the so-called 'reverse signaling'. Furthermore, we summarize the immune treatments of cancers and pay more attention to immune checkpoint inhibitors targeting PD-1/PD-L1 signaling. Additionally, we review the action mechanisms and regulation of exoPD-L1. We also introduce the function of exoPD-L1 as biomarkers. Finally, we review the methods for analyzing and quantifying exoPD-L1, the therapeutic strategies targeting exoPD-L1 to enhance immunotherapy and the roles of exoPD-L1 beyond cancer. This comprehensive review delves into recent advances of exoPD-L1 and all these findings suggest that exoPD-L1 plays an important role in both cancer and other fields.
Collapse
Affiliation(s)
- Man-Man Lu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
40
|
Ogawa T, Ono K, Ryumon S, Kawai H, Nakamura T, Umemori K, Yoshida K, Kanemoto H, Obata K, Yoshioka N, Okui T, Okamoto K, Nagatsuka H, Ibaragi S. Novel mechanism of cisplatin resistance in head and neck squamous cell carcinoma involving extracellular vesicles and a copper transporter system. Head Neck 2024; 46:636-650. [PMID: 38164660 DOI: 10.1002/hed.27620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2023] [Revised: 11/10/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Cisplatin (CDDP) plays a central role in chemotherapy for head and neck squamous cell carcinoma (HNSCC), but drug resistance in HNSCC chemotherapy remains a problem, and the mechanism of CDDP resistance is unclear. We investigated CDDP-resistance mechanisms mediated by extracellular vesicles (EVs) and ATPase copper transporting beta (ATP7B) in HNSCC. METHODS We established CDDP-resistant sublines of HNSCC cells and verified their ATP7B expression. We used an EV secretion inhibitor (GW4869) and ATP7B short hairpin (sh)RNA transfection to examine the correlation between EV secretion and ATP7B expression. RESULTS The CDDP-resistant HNSCC sublines showed decreased CDDP sensitivity and increased ATP7B expression. GW4869 suppressed ATP7B expression, and ATP7B shRNA transfection suppressed EV secretion. The suppressions of EV secretion and ATP7B expression both enhanced CDDP's cell-killing effect. CONCLUSIONS EVs were involved in the ATP7B-mediated mechanism underlying CDDP resistance. Further clarification of the EV-induced CDDP-resistance mechanism may lead to novel therapeutic strategies for HNSCC.
Collapse
Affiliation(s)
- Tatsuo Ogawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shoji Ryumon
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoya Nakamura
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koki Umemori
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kunihiro Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hideka Kanemoto
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Norie Yoshioka
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
41
|
Li T, Huang HY, Qian B, Wang WH, Yuan Q, Zhang HY, He J, Ni KJ, Wang P, Zhao ZY, He JL, Fu SW, Xu L, Lin YC, Lin ZN. Interventing mitochondrial PD-L1 suppressed IFN-γ-induced cancer stemness in hepatocellular carcinoma by sensitizing sorafenib-induced ferroptosis. Free Radic Biol Med 2024; 212:360-374. [PMID: 38171407 DOI: 10.1016/j.freeradbiomed.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Evidence recently showed that pleiotropic cytokine interferon-gamma (IFN-γ) in the tumor microenvironment (TME) plays a positive role in hepatocellular carcinoma (HCC) progression through the regulation of liver cancer stem cells (LCSCs) in HCC. The present study explored the role and potential mechanism of mitochondrial programmed cell death-ligand 1 (PD-L1) and its regulation of ferroptosis in modulating the cancer stemness of LCSCs. It was shown that mimicking TME IFN-γ exposure increased the LCSCs ratio and cancer stemness phenotypes in HCC cells. IFN-γ exposure inhibited sorafenib (Sora)-induced ferroptosis by enhancing glutathione peroxidase 4 (GPX4) expression as well reactive oxygen species (ROS) and lipid peroxidation (LPO) generation in LCSCs. Furthermore, IFN-γ exposure upregulated PD-L1 expression and its mitochondrial translocation, inducing dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and correlating with glycolytic metabolism reprogramming in LCSCs. The genetic intervention of PD-L1 promoted ferroptosis-dependent anti-tumor effects of Sora, reduced glycolytic metabolism reprogramming, and inhibited cancer stemness of HCC in vitro and in vivo. Our results revealed a novel mechanism that IFN-γ exposure-induced mitochondrial translocation of PD-L1 enhanced glycolytic reprogramming to mediate the GPX4-dependent ferroptosis resistance and cancer stemness in LCSCs. This study provided new insights into the role of mitochondrial PD-L1-Drp1-GPX4 signal axis in regulating IFN-γ exposure-associated cancer stemness in LCSCs and verified that PD-L1-targeted intervention in combination with Sora might achieve promising synergistic anti-HCC effects.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hai-Yan Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bo Qian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wei-Hua Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Han-Yu Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jie He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ke-Jian Ni
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Pan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhuo-Ying Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jun-Lin He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shi-Wei Fu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ling Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yu-Chun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
42
|
WANG WEIXUE, WANG TONGTONG, ZHANG YAN, DENG TING, ZHANG HAIYANG, BA YI. Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells. Oncol Res 2024; 32:489-502. [PMID: 38370339 PMCID: PMC10874472 DOI: 10.32604/or.2023.046676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 02/20/2024] Open
Abstract
Different from necrosis, apoptosis, autophagy and other forms of cell death, ferroptosis is a mechanism that catalyzes lipid peroxidation of polyunsaturated fatty acids under the action of iron divalent or lipoxygenase, leading to cell death. Apatinib is currently used in the third-line standard treatment of advanced gastric cancer, targeting the anti-angiogenesis pathway. However, Apatinib-mediated ferroptosis in vascular endothelial cells has not been reported yet. Tumor-secreted exosomes can be taken up into target cells to regulate tumor development, but the mechanism related to vascular endothelial cell ferroptosis has not yet been discovered. Here, we show that exosomes secreted by gastric cancer cells carry miR-214-3p into vascular endothelial cells and directly target zinc finger protein A20 to negatively regulate ACSL4, a key enzyme of lipid peroxidation during ferroptosis, thereby inhibiting ferroptosis in vascular endothelial cells and reducing the efficiency of Apatinib. In conclusion, inhibition of miR-214-3p can increase the sensitivity of vascular endothelial cells to Apatinib, thereby promoting the antiangiogenic effect of Apatinib, suggesting a potential combination therapy for advanced gastric cancer.
Collapse
Affiliation(s)
| | | | - YAN ZHANG
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - TING DENG
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - HAIYANG ZHANG
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - YI BA
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
43
|
Wang M, Xia D, Xu D, Yin Y, Xu F, Zhang B, Li K, Yang Z, Zou J. Neovascularization directed by CAVIN1/CCBE1/VEGFC confers TMZ-resistance in glioblastoma. Cancer Lett 2024; 582:216593. [PMID: 38092144 DOI: 10.1016/j.canlet.2023.216593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Acquisition of resistance to temozolomide (TMZ) poses a significant challenge in glioblastoma (GBM) therapy. Neovascularization, a pivotal process in tumorigenesis and development, remains poorly understood in its contribution to chemoresistance in GBMs. This study unveils aberrant vascular networks within TMZ-resistant (TMZ-R) GBM tissues and identifies the extracellular matrix (ECM) protein CCBE1 as a potential mediator. Through in vivo and in vitro experiments involving gain and loss of function assessments, we demonstrate that high expression of CCBE1 promotes hyper-angiogenesis and orchestrates partial endothelial-to-mesenchymal transition (EndMT) in human microvascular endothelial cells (HCMEC/d3) within GBM. This is likely driven by VEGFC/Rho signaling. Intriguingly, CCBE1 overexpression substantially fails to promote tumor growth, but endows resistance to GBM cells in a vascular endothelial cell-dependent manner. Mechanically, the constitutive phosphorylation of SP1 at Ser101 drives the upregulation of CCBE1 transcription in TMZ resistant tumors, and the excretion of CCBE1 depends on caveolae associated protein 1 (CAVIN1) binding and assembling. Tumor cells derived CCBE1 promotes VEGFC maturation, activates VEGFR2/VEGFR3/Rho signaling in vascular endothelial cells, and ultimately results in hyper-angiogenesis in TMZ-R tumors. Collectively, the current study uncovers the cellular and molecular basis of abnormal angiogenesis in a chemo resistant microenvironment, implying that curbing CCBE1 is key to reversing TMZ resistance.
Collapse
Affiliation(s)
- Mei Wang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Die Xia
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Daxing Xu
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Ying Yin
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Fei Xu
- Department of Nuclear Medicine, T Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Bo Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Koukou Li
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Zhenkun Yang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
44
|
Liu N, Chen M. Crosstalk between ferroptosis and cuproptosis: From mechanism to potential clinical application. Biomed Pharmacother 2024; 171:116115. [PMID: 38181713 DOI: 10.1016/j.biopha.2023.116115] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis and cuproptosis, regulated forms of cell death resulting from metal ion accumulation, are closely related in terms of occurrence, cell metabolism, signaling pathways, and drug resistance. Notably, it is now understood that these processes play crucial roles in regulating physiological and pathological processes, especially in tumor development. Consequently, ferroptosis and cuproptosis have gained increasing significance as potential targets for anti-cancer drug development. This article systematically outlines the molecular mechanisms and cross-talk components of both ferroptosis and cuproptosis, elucidating their impacts on cancer. Furthermore, it investigates the clinical perspective of targeted ferroptosis and cuproptosis in cancer chemotherapy, immunotherapy, and radiotherapy. Our discussion extends to a comparative analysis of nanoparticles developed based on the mechanisms of ferroptosis and cuproptosis in cancer, contrasting them with current conventional therapies. Opportunities and challenges in cancer treatment are explored, emphasizing the potential therapeutic direction of co-targeting ferroptosis and cuproptosis. The article also attempts to analyze the clinical applications of this co-targeting approach for cancer treatment while summarizing the existing barriers that require overcoming.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
45
|
Zhang C, Qin C, Dewanjee S, Bhattacharya H, Chakraborty P, Jha NK, Gangopadhyay M, Jha SK, Liu Q. Tumor-derived small extracellular vesicles in cancer invasion and metastasis: molecular mechanisms, and clinical significance. Mol Cancer 2024; 23:18. [PMID: 38243280 PMCID: PMC10797874 DOI: 10.1186/s12943-024-01932-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
The production and release of tumor-derived small extracellular vesicles (TDSEVs) from cancerous cells play a pivotal role in the propagation of cancer, through genetic and biological communication with healthy cells. TDSEVs are known to orchestrate the invasion-metastasis cascade via diverse pathways. Regulation of early metastasis processes, pre-metastatic niche formation, immune system regulation, angiogenesis initiation, extracellular matrix (ECM) remodeling, immune modulation, and epithelial-mesenchymal transition (EMT) are among the pathways regulated by TDSEVs. MicroRNAs (miRs) carried within TDSEVs play a pivotal role as a double-edged sword and can either promote metastasis or inhibit cancer progression. TDSEVs can serve as excellent markers for early detection of tumors, and tumor metastases. From a therapeutic point of view, the risk of cancer metastasis may be reduced by limiting the production of TDSEVs from tumor cells. On the other hand, TDSEVs represent a promising approach for in vivo delivery of therapeutic cargo to tumor cells. The present review article discusses the recent developments and the current views of TDSEVs in the field of cancer research and clinical applications.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Moumita Gangopadhyay
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, 700126, West Bengal, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, Delhi, 110008, India.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China.
| |
Collapse
|
46
|
Yang YC, Jiang Q, Yang KP, Wang L, Sethi G, Ma Z. Extracellular vesicle-mediated ferroptosis, pyroptosis, and necroptosis: potential clinical applications in cancer therapy. Cell Death Discov 2024; 10:23. [PMID: 38216595 PMCID: PMC10786909 DOI: 10.1038/s41420-024-01799-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Extracellular vesicles (EVs) have gained increasing recognition as significant regulators of intercellular communication in various physiological and pathological processes. These vesicles play a pivotal role in cancer progression by facilitating the transfer of diverse cargoes, including lipids, proteins, and nucleic acids. Regulated cell death (RCD), the orderly and autonomous death of cells, is controlled by a variety of biomacromolecules and, in turn, influences various biological processes and cancer progression. Recent studies have demonstrated that EV cargoes regulate diverse oncogenes and tumor suppressors to mediate different nonapoptotic forms of RCD, notably ferroptosis, pyroptosis, and necroptosis. Nevertheless, comprehensive exploration of EV-mediated nonapoptotic RCD forms in the context of cancer has not been performed. This review summarizes the progress regarding the biological functions and underlying mechanisms of EVs in mediating nonapoptotic RCD by delivery of cargoes to regulate tumor progression. Additionally, the review delves into the potential clinical applications of EV-mediated cell death and its significance in the areas of cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yi-Chi Yang
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, 434023, Jingzhou, Hubei, China
| | - Qian Jiang
- Honghu Hospital of Traditional Chinese Medicine, 433200, Honghu, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, 434023, Jingzhou, China
| | - Ke-Ping Yang
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, 434023, Jingzhou, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, 117599, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, 117599, Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, 434023, Jingzhou, Hubei, China.
| |
Collapse
|
47
|
Ahmadi M, Abbasi R, Rezaie J. Tumor immune escape: extracellular vesicles roles and therapeutics application. Cell Commun Signal 2024; 22:9. [PMID: 38167133 PMCID: PMC10763406 DOI: 10.1186/s12964-023-01370-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Immune escape, a process by which tumor cells evade immune surveillance, remains a challenge for cancer therapy. Tumor cells produce extracellular vesicles (EVs) that participate in immune escape by transferring bioactive molecules between cells. EVs refer to heterogeneous vesicles that participate in intercellular communication. EVs from tumor cells usually carry tumor antigens and have been considered a source of tumor antigens to induce anti-tumor immunity. However, evidence also suggests that these EVs can accelerate immune escape by carrying heat shock proteins (HSPs), programmed death-ligand 1 (PD-L1), etc. to immune cells, suppressing function and exhausting the immune cells pool. EVs are progressively being evaluated for therapeutic implementation in cancer therapies. EVs-based immunotherapies involve inhibiting EVs generation, using natural EVs, and harnessing engineering EVs. All approaches are associated with advantages and disadvantages. The EVs heterogeneity and diverse physicochemical properties are the main challenges to their clinical applications. SHORT CONCLUSION Although EVs are criminal; they can be useful for overcoming immune escape. This review discusses the latest knowledge on EVs population and sheds light on the function of tumor-derived EVs in immune escape. It also describes EVs-based immunotherapies with a focus on engineered EVs, followed by challenges that hinder the clinical translation of EVs that are essential to be addressed in future investigations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
48
|
Nie W, Jiang A, Ou X, Zhou J, Li Z, Liang C, Huang LL, Wu G, Xie HY. Metal-polyphenol "prison" attenuated bacterial outer membrane vesicle for chemodynamics promoted in situ tumor vaccines. Biomaterials 2024; 304:122396. [PMID: 38043464 DOI: 10.1016/j.biomaterials.2023.122396] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
As natural adjuvants, the bacterial outer membrane vesicles (OMV) hold great potential in cancer vaccines. However, the inherent immunotoxicity of OMV and the rarity of tumor-specific antigens seriously hamper the clinical translation of OMV-based cancer vaccines. Herein, metal-phenolic networks (MPNs) are used to attenuate the toxicity of OMV, meanwhile, provide tumor antigens via the chemodynamic effect induced immunogenic cell death (ICD). Specifically, MPNs are assembled on the OMV surface through the coordination reaction between ferric ions and tannic acid. The iron-based "prison" is locally collapsed in the tumor microenvironment (TME) with both low pH and high ATP features, and thus the systemic toxicity of OMV is significantly attenuated. The released ferric ions in TME promote the ICD of cancer cells through Fenton reaction and then the generation of abundant tumor antigens, which can be used to fabricate in-situ vaccines by converging with OMV. Together with the immunomodulatory effect of OMV, potent tumor repression on a bilateral tumor model is achieved with good biosafety.
Collapse
Affiliation(s)
- Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Anqi Jiang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xu Ou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jiaxin Zhou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zijin Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Li-Li Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
49
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
50
|
Li Y, Guo Y, Zhang K, Zhu R, Chen X, Zhang Z, Yang W. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306580. [PMID: 37984863 PMCID: PMC10797449 DOI: 10.1002/advs.202306580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Cancer immunotherapy has become a mainstream cancer treatment over traditional therapeutic modes. Cancer cells can undergo programmed cell death including ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis which are find to have intrinsic relationships with host antitumor immune response. However, direct use of cell death inducers or regulators may bring about severe side effects that can also be rapidly excreted and degraded with low therapeutic efficacy. Nanomaterials are able to carry them for long circulation time, high tumor accumulation and controlled release to achieve satisfactory therapeutic effect. Nowadays, a large number of studies have focused on nanomedicines-based strategies through modulating cell death modalities to potentiate antitumor immunity. Herein, immune cell types and their function are first summarized, and state-of-the-art research progresses in nanomedicines mediated cell death pathways (e.g., ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis) with immune response provocation are highlighted. Subsequently, the conclusion and outlook of potential research focus are discussed.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450001China
- The center of Infection and ImmunityAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Yichen Guo
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Kaixin Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Rongrong Zhu
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineering, and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Weijing Yang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|