1
|
Reed C, Kalbfleisch JF, Turkett JA, Trombley TA, Spearing PK, Haymer DH, Quitalig M, Dickerson JW, Foster DJ, Blobaum AL, Boutaud O, Cho HP, Niswender CM, Rook JM, Priepke H, Sommer H, Scheuerer S, Ursu D, Conn PJ, Melancon BJ, Lindsley CW. Further Optimization of the mGlu 1 PAM VU6024578/BI02982816: Discovery and Characterization of VU6033685. ACS Chem Neurosci 2025; 16:745-752. [PMID: 39907715 PMCID: PMC11843613 DOI: 10.1021/acschemneuro.5c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Herein, we report the further chemical optimization of the metabotropic glutamate receptor subtype 1 (mGlu1) positive allosteric modulator (PAM) VU6024578/BI02982816 and the discovery of VU6033685/BI1752. PAM VU6033685/BI1752 was developed through an iterative process wherein, after the furanyl moiety (a potential toxicophore) was replaced by an N-linked pyrazole, a diversity screen identified a quinoline core, which was further truncated to a pyridine scaffold. PAM VU6033685/BI1752 proved to be a potent and selective mGlu1 PAM with efficacy in both amphetamine-induced hyperlocomotion (AHL) and novel object recognition (NOR) with a clear pharmacokinetic-pharmacodynamic (PK/PD) relationship. VU6024578/BI02982816 was efficacious and well tolerated in rats but not dogs, whereas VU6033685/BI1752 elicited adverse events (AEs) in both rats and dogs. These AEs, noted in two distinct mGlu1 PAM chemotypes, cast a shadow on an otherwise promising molecular target to address multiple symptom clusters in schizophrenic patients.
Collapse
Affiliation(s)
- Carson
W. Reed
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jacob F. Kalbfleisch
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jeremy A. Turkett
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Trevor A. Trombley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Paul K. Spearing
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Daniel H. Haymer
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Marc Quitalig
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jonathan W. Dickerson
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Daniel J. Foster
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Annie L. Blobaum
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Jerri M. Rook
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Henning Priepke
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach Germany
| | - Heiko Sommer
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach Germany
| | - Stefan Scheuerer
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach Germany
| | - Daniel Ursu
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach Germany
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Bruce J. Melancon
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Reed CW, Kalbfleisch JF, Turkett JA, Trombley TA, Nastase AF, Spearing PK, Haymer DH, Sarwar MM, Quitalig M, Dickerson JW, Blobaum AL, Boutaud O, Voehringer P, Schuelert N, Cho HP, Niswender CM, Rook JM, Priepke H, Ursu D, Conn PJ, Melancon BJ, Lindsley CW. Discovery of VU6024578/BI02982816: An mGlu 1 Positive Allosteric Modulator with Efficacy in Preclinical Antipsychotic and Cognition Models. J Med Chem 2024; 67:22291-22312. [PMID: 39665415 DOI: 10.1021/acs.jmedchem.4c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we report progress toward a metabotropic glutamate receptor subtype 1 (mGlu1) positive allosteric modulator (PAM) clinical candidate and the discovery of VU6024578/BI02982816. From a weak high-throughput screening hit (VU0538160, EC50 > 10 μM, 71% Glumax), optimization efforts improved functional potency over 185-fold to deliver the selective (inactive on mGlu2-5,7,8) and CNS penetrant (rat Kp = 0.99, Kp,uu = 0.82; MDCK-MDR1 ER = 1.7, Papp = 73 × 10-6 cm/s) mGlu1 PAM (VU6024578/BI02982816, EC50 = 54 nM, 83% Glumax). An excellent rat pharmacokinetic profile allowed the evaluation of VU6024578/BI02982816 in both amphetamine-induced hyperlocomotion (minimum effective dose (MED) = 3 mg/kg, p.o.) and MK-801 induced disruptions of novel object recognition (MED = 10 mg/kg p.o.), thus providing efficacy in preclinical models of psychosis and cognition. However, unanticipated AEs in dog prevented further consideration as a candidate. Thus, VU6024578/BI02982816 can serve as a best-in-class in vivo rodent tool to study selective mGlu1 activation.
Collapse
Affiliation(s)
- Carson W Reed
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Jacob F Kalbfleisch
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Jeremy A Turkett
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Trevor A Trombley
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Anthony F Nastase
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Paul K Spearing
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Daniel H Haymer
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Mohammad Moshin Sarwar
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Marc Quitalig
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | | | - Annie L Blobaum
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Olivier Boutaud
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Patrizia Voehringer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach 88397, Germany
| | - Niklas Schuelert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach 88397, Germany
| | - Hyekyung P Cho
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Colleen M Niswender
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Jerri M Rook
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Henning Priepke
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach 88397, Germany
| | - Daniel Ursu
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach 88397, Germany
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | - Bruce J Melancon
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37067, Unites States
| | | |
Collapse
|
3
|
Wang Y, Muraleetharan A, Langiu M, Gregory KJ, Hellyer SD. SCA44- and SCAR13-associated GRM1 mutations affect metabotropic glutamate receptor 1 function through distinct mechanisms. Br J Pharmacol 2024; 181:4514-4530. [PMID: 39030902 DOI: 10.1111/bph.16510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/18/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Metabotropic glutamate receptor 1 (mGlu1) is a promising therapeutic target for neurodegenerative CNS disorders including spinocerebellar ataxias (SCAs). Clinical reports have identified naturally-occurring mGlu1 mutations in rare SCA subtypes and linked symptoms to mGlu1 mutations. However, how mutations alter mGlu1 function remains unknown, as does amenability of receptor function to pharmacological rescue. Here, we explored SCA-associated mutation effects on mGlu1 cell surface expression, canonical signal transduction and allosteric ligand pharmacology. EXPERIMENTAL APPROACH Orthosteric agonists, positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs) were assessed at two functional endpoints (iCa2+ mobilisation and inositol 1-phosphate [IP1] accumulation) in FlpIn Trex HEK293A cell lines expressing five mutant mGlu1 subtypes. Key pharmacological parameters including ligand potency, affinity and cooperativity were derived using operational models of agonism and allostery. KEY RESULTS mGlu1 mutants exhibited differential impacts on mGlu1 expression, with a C-terminus truncation significantly reducing surface expression. Mutations differentially influenced orthosteric ligand affinity, efficacy and functional cooperativity between allosteric and orthosteric ligands. Loss-of-function mutations L454F and N885del reduced orthosteric affinity and efficacy, respectively. A gain-of-function Y792C mutant mGlu1 displayed enhanced constitutive activity in IP1 assays, which manifested as reduced orthosteric agonist activity. The mGlu1 PAMs restored glutamate potency in iCa2+ mobilisation for loss-of-function mutations and mGlu1 NAMs displayed enhanced inverse agonist activity at Y792C relative to wild-type mGlu1. CONCLUSION AND IMPLICATIONS Collectively, these data highlight distinct mechanisms by which mGlu1 mutations affect receptor function and show allosteric modulators may present a therapeutic strategy to restore aberrant mGlu1 function in rare SCA subtypes.
Collapse
Affiliation(s)
- Yuyang Wang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ashwin Muraleetharan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Monica Langiu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Shane D Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Teli B, Mubarak MM, Ahmad Z, Bhat BA. Trifluoroacetic acid-mediated synthesis of xanthene constructs and their extensive anti-tuberculosis evaluation. RSC Med Chem 2024; 15:1295-1306. [PMID: 38665820 PMCID: PMC11042163 DOI: 10.1039/d3md00518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 04/28/2024] Open
Abstract
A diverse range of 9-substituted 1,8-dioxohexahydroxanthenes was conceptualized and synthesized through a TFA-mediated approach in near quantitative yields without the use of column chromatography. From a series of 25 compounds, we found that compounds 14c and 14r exhibited promising anti-tuberculosis potential against avirulent and virulent strains of Mycobacterium tuberculosis with a Minimal Inhibitory Concentration (MIC) of 8 μg ml-1, achieving 99% bactericidal activity at the same concentration. This series of compounds was found to be inactive against common Gram-positive and Gram-negative pathogens, indicating that the activity is mycobacteria-specific. Since the strategies for treating tuberculosis employ a combinatorial therapy, we tested and observed that the two lead compounds displayed synergistic behavior with known anti-TB drugs (ATDs) and a significant (16-32 fold) decrease in MIC values of both leads was observed in combination with either RIF or INH. Interestingly the lead molecule 14c displayed only time-dependent kill kinetics and sterilized the whole culture of Mycobacterium tuberculosis H37Rv in just 48 hours.
Collapse
Affiliation(s)
- Bisma Teli
- Natural Products and Medicinal Chemistry, CSIR-IIIM Sanatnagar Srinagar 190005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Mohamad Mosa Mubarak
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Clinical Microbiology and PK/PD Division, CSIR-IIIM Sanatnagar Srinagar 190005 India
| | - Zahoor Ahmad
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Clinical Microbiology and PK/PD Division, CSIR-IIIM Sanatnagar Srinagar 190005 India
| | - Bilal A Bhat
- Natural Products and Medicinal Chemistry, CSIR-IIIM Sanatnagar Srinagar 190005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
5
|
Muraleetharan A, Wang Y, Rowe MC, Gould A, Gregory KJ, Hellyer SD. Rigorous Characterization of Allosteric Modulation of the Human Metabotropic Glutamate Receptor 1 Reveals Probe- and Assay-Dependent Pharmacology. Mol Pharmacol 2023; 103:325-338. [PMID: 36921922 DOI: 10.1124/molpharm.122.000664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Allosteric modulation of metabotropic glutamate receptor subtype 1 (mGlu1) represents a viable therapeutic target for treating numerous central nervous system disorders. Although multiple chemically distinct mGlu1 positive (PAMs) and negative (NAMs) allosteric modulators have been identified, drug discovery paradigms have not included rigorous pharmacological analysis. In the present study, we hypothesized that existing mGlu1 allosteric modulators possess unappreciated probe-dependent or biased pharmacology. Using human embryonic kidney 293 (HEK293A) cells stably expressing human mGlu1, we screened mGlu1 PAMs and NAMs from divergent chemical scaffolds for modulation of different mGlu1 orthosteric agonists in intracellular calcium (iCa2+) mobilization and inositol monophosphate (IP1) accumulation assays. Operational models of agonism and allosterism were used to derive estimates for important pharmacological parameters such as affinity, efficacy, and cooperativity. Modulation of glutamate and quisqualate-mediated iCa2+ mobilization revealed probe dependence at the level of affinity and cooperativity for both mGlu1 PAMs and NAMs. We also identified the previously described mGlu5 selective NAM PF-06462894 as an mGlu1 NAM with a different pharmacological profile from other NAMs. Differential profiles were also observed when comparing ligand pharmacology between iCa2+ mobilization and IP1 accumulation. The PAMs Ro67-4853 and CPPHA displayed apparent negative cooperativity for modulation of quisqualate affinity, and the NAMs CPCCOEt and PF-06462894 had a marked reduction in cooperativity with quisqualate in IP1 accumulation and upon extended incubation in iCa2+ mobilization assays. These data highlight the importance of rigorous assessment of mGlu1 modulator pharmacology to inform future drug discovery programs for mGlu1 allosteric modulators. SIGNIFICANCE STATEMENT: Metabotropic glutamate receptor subtype 1 (mGlu1) positive and negative allosteric modulators have therapeutic potential in multiple central nervous system disorders. We show that chemically distinct modulators display differential pharmacology with different orthosteric ligands and across divergent signaling pathways at human mGlu1. Such complexities in allosteric ligand pharmacology should be considered in future mGlu1 allosteric drug discovery programs.
Collapse
Affiliation(s)
- Ashwin Muraleetharan
- Drug Discovery Biology (A.M., Y.W., M.C.R., A.G., K.J.G., S.D.H.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (K.J.G.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yuyang Wang
- Drug Discovery Biology (A.M., Y.W., M.C.R., A.G., K.J.G., S.D.H.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (K.J.G.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Matthew C Rowe
- Drug Discovery Biology (A.M., Y.W., M.C.R., A.G., K.J.G., S.D.H.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (K.J.G.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ashleigh Gould
- Drug Discovery Biology (A.M., Y.W., M.C.R., A.G., K.J.G., S.D.H.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (K.J.G.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology (A.M., Y.W., M.C.R., A.G., K.J.G., S.D.H.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (K.J.G.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Shane D Hellyer
- Drug Discovery Biology (A.M., Y.W., M.C.R., A.G., K.J.G., S.D.H.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (K.J.G.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Qin D, Lei Y, Xie W, Zheng Q, Peng Z, Liu Y, Dai B, Ma T, Wei P, Gao C, Guo X, Gao J, Zhao J, Du J, Zeng Q, Zhang Z, Dong X, Shen H. Methionine sulfoxide suppresses adipogenic differentiation by regulating the mitogen-activated protein kinase signaling pathway. Cell Biol Int 2023; 47:648-659. [PMID: 36448374 DOI: 10.1002/cbin.11964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
In this study, methionine sulfoxide (MetO) was identified as an active metabolite that suppresses adipogenesis after screening obese individuals versus the normal population. MetO suppressed the gene and protein expression of CCAAT/enhancer binding protein (C/EBP) α, adipocyte fatty acid binding protein 4 (FABP4), and the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) during human preadipocyte (HPA) differentiation. Adipogenesis decreased following MetO treatment; however, the preadipocyte number, proliferation, and apoptosis were unaffected. The activity of phosphorylated extracellular signal-related kinase (P-ERK) of the mitogen-activated protein kinase (MAPK) pathway was significantly inhibited in HPA after MetO treatment. Furthermore, treatment of preadipocytes with the selective P-ERK1/2 agonist Ro 67-7476 abolished the effect of MetO against adipogenesis suggesting that MetO function is dependent on the MAPK pathway. The mechanistic insights of adipogenesis suppression by MetO presented in this study shows its potential as an antiobesity drug.
Collapse
Affiliation(s)
- Dani Qin
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Yong Lei
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Wen Xie
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Qiuju Zheng
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Zhou Peng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biao Dai
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Tieliang Ma
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Ping Wei
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing, China
| | - Xirong Guo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Gao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Du
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyi Zeng
- Shenzhen Bay Laboratory, Bayray Innovation Center, Shenzhen, China
| | - Zhongxiao Zhang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Dong
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiping Shen
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| |
Collapse
|
7
|
Xiang G, Acosta-Ruiz A, Radoux-Mergault A, Kristt M, Kim J, Moon JD, Broichhagen J, Inoue A, Lee FS, Stoeber M, Dittman JS, Levitz J. Control of Gα q signaling dynamics and GPCR cross-talk by GRKs. SCIENCE ADVANCES 2022; 8:eabq3363. [PMID: 36427324 PMCID: PMC9699688 DOI: 10.1126/sciadv.abq3363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/06/2022] [Indexed: 05/04/2023]
Abstract
Numerous processes contribute to the regulation of G protein-coupled receptors (GPCRs), but relatively little is known about rapid mechanisms that control signaling on the seconds time scale or regulate cross-talk between receptors. Here, we reveal that the ability of some GPCR kinases (GRKs) to bind Gαq both drives acute signaling desensitization and regulates functional interactions between GPCRs. GRK2/3-mediated acute desensitization occurs within seconds, is rapidly reversible, and can occur upon local, subcellular activation. This rapid desensitization is kinase independent, insensitive to pharmacological inhibition, and generalizable across receptor families and effectors. We also find that the ability of GRK2 to bind G proteins also enables it to regulate the extent and timing of Gαq-dependent signaling cross-talk between GPCRs. Last, we find that G protein/GRK2 interactions enable a novel form of GPCR trafficking cross-talk. Together, this work reveals potent forms of Gαq-dependent GPCR regulation with wide-ranging pharmacological and physiological implications.
Collapse
Affiliation(s)
- Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jared D. Moon
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | | | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jeremy S. Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
Orgován Z, Ferenczy GG, Keserű GM. Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem 2021; 16:81-93. [PMID: 32686363 PMCID: PMC7818470 DOI: 10.1002/cmdc.202000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlu) are class C G protein-coupled receptors of eight subtypes that are omnipresently expressed in the central nervous system. mGlus have relevance in several psychiatric and neurological disorders, therefore they raise considerable interest as drug targets. Allosteric modulators of mGlus offer advantages over orthosteric ligands owing to their increased potential to achieve subtype selectivity, and this has prompted discovery programs that have produced a large number of reported allosteric mGlu ligands. However, the optimization of allosteric ligands into drug candidates has proved to be challenging owing to induced-fit effects, flat or steep structure-activity relationships and unexpected changes in theirpharmacology. Subtle structural changes identified as molecular switches might modulate the functional activity of allosteric ligands. Here we review these switches discovered in the metabotropic glutamate receptor family..
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| |
Collapse
|
9
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
10
|
Orgován Z, Ferenczy GG, Keserű GM. Fragment-Based Approaches for Allosteric Metabotropic Glutamate Receptor (mGluR) Modulators. Curr Top Med Chem 2019; 19:1768-1781. [PMID: 31393248 DOI: 10.2174/1568026619666190808150039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022]
Abstract
Metabotropic glutamate receptors (mGluR) are members of the class C G-Protein Coupled Receptors (GPCR-s) and have eight subtypes. These receptors are responsible for a variety of functions in the central and peripheral nervous systems and their modulation has therapeutic utility in neurological and psychiatric disorders. It was previously established that selective orthosteric modulation of these receptors is challenging, and this stimulated the search for allosteric modulators. Fragment-Based Drug Discovery (FBDD) is a viable approach to find ligands binding at allosteric sites owing to their limited size and interactions. However, it was also observed that the structure-activity relationship of allosteric modulators is often sharp and inconsistent. This can be attributed to the characteristics of the allosteric binding site of mGluRs that is a water channel where ligand binding is accompanied with induced fit and interference with the water network, both playing a role in receptor activation. In this review, we summarize fragment-based drug discovery programs on mGluR allosteric modulators and their contribution identifying of new mGluR ligands with better activity and selectivity.
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| |
Collapse
|
11
|
Llinas Del Torrent C, Pérez-Benito L, Tresadern G. Computational Drug Design Applied to the Study of Metabotropic Glutamate Receptors. Molecules 2019; 24:molecules24061098. [PMID: 30897742 PMCID: PMC6470756 DOI: 10.3390/molecules24061098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors are a family of eight GPCRs that are attractive drug discovery targets to modulate glutamate action and response. Here we review the application of computational methods to the study of this family of receptors. X-ray structures of the extracellular and 7-transmembrane domains have played an important role to enable structure-based modeling approaches, whilst we also discuss the successful application of ligand-based methods. We summarize the literature and highlight the areas where modeling and experiment have delivered important understanding for mGlu receptor drug discovery. Finally, we offer suggestions of future areas of opportunity for computational work.
Collapse
Affiliation(s)
- Claudia Llinas Del Torrent
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain.
| | - Laura Pérez-Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
12
|
O'Brien DE, Shaw DM, Cho HP, Cross AJ, Wesolowski SS, Felts AS, Bergare J, Elmore CS, Lindsley CW, Niswender CM, Conn PJ. Differential Pharmacology and Binding of mGlu 2 Receptor Allosteric Modulators. Mol Pharmacol 2018; 93:526-540. [PMID: 29545267 PMCID: PMC5894801 DOI: 10.1124/mol.117.110114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023] Open
Abstract
Allosteric modulation of metabotropic glutamate receptor 2 (mGlu2) has demonstrated efficacy in preclinical rodent models of several brain disorders, leading to industry and academic drug discovery efforts. Although the pharmacology and binding sites of some mGlu2 allosteric modulators have been characterized previously, questions remain about the nature of the allosteric mechanism of cooperativity with glutamate and whether structurally diverse allosteric modulators bind in an identical manner to specific allosteric sites. To further investigate the in vitro pharmacology of mGlu2 allosteric modulators, we developed and characterized a novel mGlu2 positive allosteric modulator (PAM) radioligand in parallel with functional studies of a structurally diverse set of mGlu2 PAMs and negative allosteric modulators (NAMs). Using an operational model of allosterism to analyze the functional data, we found that PAMs affect both the affinity and efficacy of glutamate at mGlu2, whereas NAMs predominantly affect the efficacy of glutamate in our assay system. More importantly, we found that binding of a novel mGlu2 PAM radioligand was inhibited by multiple structurally diverse PAMs and NAMs, indicating that they may bind to the mGlu2 allosteric site labeled with the novel mGlu2 PAM radioligand; however, further studies suggested that these allosteric modulators do not all interact with the radioligand in an identical manner. Together, these findings provide new insights into the binding sites and modes of efficacy of different structurally and functionally distinct mGlu2 allosteric modulators and suggest that different ligands either interact with distinct sites or adapt different binding poses to shared allosteric site(s).
Collapse
Affiliation(s)
- Daniel E O'Brien
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| | - Douglas M Shaw
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| | - Hyekyung P Cho
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| | - Alan J Cross
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| | - Steven S Wesolowski
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| | - Andrew S Felts
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| | - Jonas Bergare
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| | - Charles S Elmore
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts (A.J.C., S.S.W.); and AstraZeneca Pharmaceutical Sciences, AstraZeneca, Mölndal, Sweden (J.B., C.S.E.)
| |
Collapse
|
13
|
Hellyer SD, Albold S, Wang T, Chen ANY, May LT, Leach K, Gregory KJ. "Selective" Class C G Protein-Coupled Receptor Modulators Are Neutral or Biased mGlu 5 Allosteric Ligands. Mol Pharmacol 2018; 93:504-514. [PMID: 29514854 DOI: 10.1124/mol.117.111518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/01/2018] [Indexed: 02/14/2025] Open
Abstract
Numerous positive and negative allosteric modulators (PAMs and NAMs) of class C G protein-coupled receptors (GPCRs) have been developed as valuable preclinical pharmacologic tools and therapeutic agents. Although many class C GPCR allosteric modulators have undergone subtype selectivity screening, most assay paradigms have failed to perform rigorous pharmacologic assessment. Using mGlu5 as a representative class C GPCR, we tested the hypothesis that allosteric modulator selectivity was based on cooperativity rather than affinity. Specifically, we aimed to identify ligands that bound to mGlu5 but exhibited neutral cooperativity with mGlu5 agonists. We additionally evaluated the potential for these ligands to exhibit biased pharmacology. Radioligand binding, intracellular calcium (iCa2+) mobilization, and inositol monophosphate (IP1) accumulation assays were undertaken in human embryonic kidney cells expressing low levels of rat mGlu5 (HEK293A-mGlu5-low) for diverse allosteric chemotypes. Numerous "non-mGlu5" class C GPCR allosteric modulators incompletely displaced allosteric mGlu5 radioligand [3H]methoxy-PEPy binding, consistent with a negative allosteric interaction. Affinity estimates for CPCCOEt (mGlu1 ligand), PHCCC (mGlu4 ligand), GS39783 (GABAB ligand), AZ12216052 (mGlu8 ligand), and CGP7930 (GABAB ligand) at mGlu5 were within 10-fold of their target receptor. Most class C GPCR allosteric modulators had neutral cooperativity with both orthosteric and allosteric mGlu5 agonists in functional assays; however, NPS2143 (calcium-sensing receptor (CaSR) NAM), cinacalcet (CaSR PAM), CGP7930, and AZ12216052 were partial mGlu5 agonists for IP1 accumulation, but not iCa2+ mobilization. By using mGlu5 as a model class C GPCR, we find that for many class C GPCR allosteric modulators, subtype selectivity is driven by cooperativity and misinterpreted owing to unappreciated bias.
Collapse
Affiliation(s)
- Shane D Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Sabine Albold
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Taide Wang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Amy N Y Chen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
14
|
mGlu1 receptor as a drug target for treatment of substance use disorders: time to gather stones together? Psychopharmacology (Berl) 2017; 234:1333-1345. [PMID: 28285325 DOI: 10.1007/s00213-017-4581-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Modulation of the mGlu1 receptor was repeatedly shown to inhibit various phenomena associated with exposure to abused drugs. Efficacy in preclinical models was observed with both positive and negative allosteric modulators (PAMs and NAMs, respectively) using essentially non-overlapping sets of experimental methods. Taken together, these data indicate that the mGlu1 receptor certainly plays a significant role in the plasticity triggered by the exposure to abused drugs and is involved in the maintenance of drug-seeking and drug-taking behaviors. Understanding whether modulation of the mGlu1 receptor activity can also affect drug-seeking and drug-taking in humans could have a significant impact on the future development of medications in this field. We argue that the mGlu1 receptor NAMs have a significant value as potential tools for human experimental pharmacology that could help to validate methods used in preclinical research. Compared with the PAMs, the mGlu1 receptor NAMs appear to be better candidates for this role due to the following: (1) a number of highly potent, selective, and chemically diverse mGlu1 receptor NAMs to choose from; (2) availability of high-quality PET ligands to monitor target exposure; and (3) a rich pharmacological profile with a number of effects that can complement anti-addictive action (e.g., anxiolytic/antidepressant) and may also serve as additional pharmacodynamic readouts during the preclinical-to-clinical translation. We believe that the mGlu1 receptor NAMs have a significant value as potential tools for human experimental pharmacology that could help to validate methods used in preclinical research.
Collapse
|
15
|
Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca 2. Int J Mol Sci 2017; 18:ijms18030672. [PMID: 28335551 PMCID: PMC5372683 DOI: 10.3390/ijms18030672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/24/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) associated with the slow phase of the glutamatergic signaling pathway in neurons of the central nervous system have gained importance as drug targets for chronic neurodegenerative diseases. While extracellular Ca2+ was reported to exhibit direct activation and modulation via an allosteric site, the identification of those binding sites was challenged by weak binding. Herein, we review the discovery of extracellular Ca2+ in regulation of mGluRs, summarize the recent developments in probing Ca2+ binding and its co-regulation of the receptor based on structural and biochemical analysis, and discuss the molecular basis for Ca2+ to regulate various classes of drug action as well as its importance as an allosteric modulator in mGluRs.
Collapse
|
16
|
Leach K, Gregory KJ. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Pharmacol Res 2017; 116:105-118. [DOI: 10.1016/j.phrs.2016.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
|
17
|
Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chem Rev 2016; 116:6707-41. [PMID: 26882314 PMCID: PMC4988345 DOI: 10.1021/acs.chemrev.5b00656] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulation of GPCRs has initiated a new era of basic and translational discovery, filled with therapeutic promise yet fraught with caveats. Allosteric ligands stabilize unique conformations of the GPCR that afford fundamentally new receptors, capable of novel pharmacology, unprecedented subtype selectivity, and unique signal bias. This review provides a comprehensive overview of the basics of GPCR allosteric pharmacology, medicinal chemistry, drug metabolism, and validated approaches to address each of the major challenges and caveats. Then, the review narrows focus to highlight recent advances in the discovery of allosteric ligands for metabotropic glutamate receptor subtypes 1-5 and 7 (mGlu1-5,7) highlighting key concepts ("molecular switches", signal bias, heterodimers) and practical solutions to enable the development of tool compounds and clinical candidates. The review closes with a section on late-breaking new advances with allosteric ligands for other GPCRs and emerging data for endogenous allosteric modulators.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
18
|
Garcia-Barrantes PM, Cho HP, Starr TM, Blobaum AL, Niswender CM, Conn PJ, Lindsley CW. Re-exploration of the mGlu₁ PAM Ro 07-11401 scaffold: Discovery of analogs with improved CNS penetration despite steep SAR. Bioorg Med Chem Lett 2016; 26:2289-92. [PMID: 27013388 DOI: 10.1016/j.bmcl.2016.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 12/14/2022]
Abstract
This letter describes the re-exploration of the mGlu1 PAM Ro 07-11401 scaffold through a multi-dimensional, iterative parallel synthesis approach. Unlike recent series of mGlu1 PAMs with robust SAR, the SAR around the Ro 07-11401 structure was incredibly steep (only ∼6 of 200 analogs displayed mGlu1 PAM activity), and reminiscent of the CPPHA mGlu5 PAM scaffold. Despite the steep SAR, two new thiazole derivatives were discovered with improved in vitro DMPK profiles and ∼3- to 4-fold improvement in CNS exposure (Kps 1.01-1.19); albeit, with a ∼3-fold diminution in mGlu1 PAM potency, yet comparable efficacy (∼5-fold leftward shift of the glutamate concentration-response curve at 10μM). Thus, this effort has provided additional CNS penetrant mGlu1 PAM tools in a different chemotype than the VU0486321 scaffold. These compounds will permit a better understanding of the pharmacology and therapeutic potential of selective mGlu1 activation, while highlighting the steep SAR challenges that can often be encountered in GPCR allosteric modulator discovery.
Collapse
Affiliation(s)
- Pedro M Garcia-Barrantes
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hyekyung P Cho
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tahj M Starr
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Garcia-Barrantes PM, Cho HP, Niswender CM, Byers FW, Locuson CW, Blobaum AL, Xiang Z, Rook JM, Conn PJ, Lindsley CW. Development of Novel, CNS Penetrant Positive Allosteric Modulators for the Metabotropic Glutamate Receptor Subtype 1 (mGlu1), Based on an N-(3-Chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide Scaffold, That Potentiate Wild Type and Mutant mGlu1 Receptors Found in Schizophrenics. J Med Chem 2015; 58:7959-71. [PMID: 26426481 DOI: 10.1021/acs.jmedchem.5b00727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The therapeutic potential of selective mGlu1 activation is vastly unexplored relative to the other group I mGlu receptor, mGlu5; therefore, our lab has focused considerable effort toward developing mGlu1 positive allosteric modulators (PAMs) suitable as in vivo proof of concept tool compounds. Optimization of a series of mGlu1 PAMs based on an N-(3-chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide scaffold provided 17e, a potent (mGlu1 EC50 = 31.8 nM) and highly CNS penetrant (brain to plasma ratio (Kp) of 1.02) mGlu1 PAM tool compound, that potentiated not only wild-type human mGlu1 but also mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenic patients. Moreover, both electrophysiological and in vivo studies indicate the mGlu1 ago-PAMs/PAMs do not possess the same epileptiform adverse effect liability as mGlu5 ago-PAMs/PAMs and maintain temporal activity suggesting a broader therapeutic window.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Craig W Lindsley
- Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
20
|
Gregory KJ, Conn PJ. Molecular Insights into Metabotropic Glutamate Receptor Allosteric Modulation. Mol Pharmacol 2015; 88:188-202. [PMID: 25808929 PMCID: PMC4468636 DOI: 10.1124/mol.114.097220] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/24/2015] [Indexed: 12/21/2022] Open
Abstract
The metabotropic glutamate (mGlu) receptors are a group of eight family C G protein-coupled receptors that are expressed throughout the central nervous system (CNS) and periphery. Within the CNS the different subtypes are found in neurons, both pre- and/or postsynaptically, where they mediate modulatory roles and in glial cells. The mGlu receptor family provides attractive targets for numerous psychiatric and neurologic disorders, with the majority of discovery programs focused on targeting allosteric sites, with allosteric ligands now available for all mGlu receptor subtypes. However, the development of allosteric ligands remains challenging. Biased modulation, probe dependence, and molecular switches all contribute to the complex molecular pharmacology exhibited by mGlu receptor allosteric ligands. In recent years we have made significant progress in our understanding of this molecular complexity coupled with an increased understanding of the structural basis of mGlu allosteric modulation.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Vanderbilt Center for Neuroscience Drug Discovery & Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C)
| | - P Jeffrey Conn
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Vanderbilt Center for Neuroscience Drug Discovery & Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C)
| |
Collapse
|
21
|
Farinha A, Lavreysen H, Peeters L, Russo B, Masure S, Trabanco AA, Cid J, Tresadern G. Molecular determinants of positive allosteric modulation of the human metabotropic glutamate receptor 2. Br J Pharmacol 2015; 172:2383-96. [PMID: 25571949 DOI: 10.1111/bph.13065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The activation of the metabotropic glutamate receptor 2 (mGlu2 ) reduces glutamatergic transmission in brain regions where excess excitatory signalling is implicated in disorders such as anxiety and schizophrenia. Positive allosteric modulators (PAMs) can provide a fine-tuned potentiation of these receptors' function and are being investigated as a novel therapeutic approach. An extensive set of mutant human mGlu2 receptors were used to investigate the molecular determinants that are important for positive allosteric modulation at this receptor. EXPERIMENTAL APPROACH Site-directed mutagenesis, binding and functional assays were employed to identify amino acids important for the activity of nine PAMs. The data from the radioligand binding and mutagenesis studies were used with computational docking to predict a binding mode at an mGlu2 receptor model based on the recent structure of the mGlu1 receptor. KEY RESULTS New amino acids in TM3 (R635, L639, F643), TM5 (L732) and TM6 (W773, F776) were identified for the first time as playing an important role in the activity of mGlu2 PAMs. CONCLUSIONS AND IMPLICATIONS This extensive study furthers our understanding of positive allosteric modulation of the mGlu2 receptor and can contribute to improved future design of mGlu2 PAMs.
Collapse
Affiliation(s)
- A Farinha
- Neuroscience Discovery, Janssen Research and Development, Division of Janssen Pharmaceutica, Beerse, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cho H, Garcia-Barrantes PM, Brogan JT, Hopkins CR, Niswender CM, Rodriguez AL, Venable DF, Morrison RD, Bubser M, Daniels JS, Jones CK, Conn PJ, Lindsley CW. Chemical modulation of mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenics. ACS Chem Biol 2014; 9:2334-46. [PMID: 25137254 PMCID: PMC4201332 DOI: 10.1021/cb500560h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a complex and highly heterogeneous psychiatric disorder whose precise etiology remains elusive. While genome-wide association studies (GWAS) have identified risk genes, they have failed to determine if rare coding single nucleotide polymorphisms (nsSNPs) contribute in schizophrenia. Recently, two independent studies identified 12 rare, deleterious nsSNPS in the GRM1 gene, which encodes the metabotropic glutamate receptor subtype 1 (mGlu1), in schizophrenic patients. Here, we generated stable cell lines expressing the mGlu1 mutant receptors and assessed their pharmacology. Using both the endogenous agonist glutamate and the synthetic agonist DHPG, we found that several of the mutant mGlu1 receptors displayed a loss of function that was not due to a loss in plasma membrane expression. Due to a lack of mGlu1 positive allosteric modulators (PAM) tool compounds active at human mGlu1, we optimized a known mGlu4 PAM/mGlu1 NAM chemotype into a series of potent and selective mGlu1 PAMs by virtue of a double "molecular switch". Employing mGlu1 PAMs from multiple chemotypes, we demonstrate that the mutant receptors can be potentiated by small molecules and in some cases efficacy restored to that comparable to wild type mGlu1 receptors, suggesting deficits in patients with schizophrenia due to these mutations may be amenable to intervention with an mGlu1 PAM. However, in wild type animals, mGlu1 negative allosteric modulators (NAMs) are efficacious in classic models predictive of antipsychotic activity, whereas we show that mGlu1 PAMs have no effect to slight potentiation in these models. These data further highlight the heterogeneity of schizophrenia and the critical role of patient selection strategies in psychiatric clinical trials to match genotype with therapeutic mechanism.
Collapse
Affiliation(s)
- Hyekyung
P. Cho
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Pedro M. Garcia-Barrantes
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - John T. Brogan
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232 United States
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Alice L. Rodriguez
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Daryl F. Venable
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Ryan D. Morrison
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Michael Bubser
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - J. Scott Daniels
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Carrie K. Jones
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Craig W. Lindsley
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232 United States
| |
Collapse
|
23
|
Conn PJ, Lindsley CW, Meiler J, Niswender CM. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 2014; 13:692-708. [PMID: 25176435 PMCID: PMC4208620 DOI: 10.1038/nrd4308] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel allosteric modulators of G protein-coupled receptors (GPCRs) are providing fundamental advances in the development of GPCR ligands with high subtype selectivity and novel modes of efficacy that have not been possible with traditional approaches. As new allosteric modulators are advancing as drug candidates, we are developing an increased understanding of the major advantages and broad range of activities that can be achieved with these agents through selective modulation of specific signalling pathways, differential effects on GPCR homodimers versus heterodimers, and other properties. This understanding creates exciting opportunities, as well as unique challenges, in the optimization of novel therapeutic agents for disorders of the central nervous system.
Collapse
Affiliation(s)
- P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| |
Collapse
|
24
|
Cho HP, Engers DW, Venable DF, Niswender CM, Lindsley CW, Conn PJ, Emmitte KA, Rodriguez AL. A novel class of succinimide-derived negative allosteric modulators of metabotropic glutamate receptor subtype 1 provides insight into a disconnect in activity between the rat and human receptors. ACS Chem Neurosci 2014; 5:597-610. [PMID: 24798819 DOI: 10.1021/cn5000343] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recent progress in the discovery of mGlu₁ allosteric modulators has suggested the modulation of mGlu₁ could offer possible treatment for a number of central nervous system disorders; however, the available chemotypes are inadequate to fully investigate the therapeutic potential of mGlu₁ modulation. To address this issue, we used a fluorescence-based high-throughput screening assay to screen an allosteric modulator-biased library of compounds to generate structurally diverse mGlu₁ negative allosteric modulator hits for chemical optimization. Herein, we describe the discovery and characterization of a novel mGlu₁ chemotype. This series of succinimide negative allosteric modulators, exemplified by VU0410425, exhibited potent inhibitory activity at rat mGlu₁ but was, surprisingly, inactive at human mGlu₁. VU0410425 and a set of chemically diverse mGlu₁ negative allosteric modulators previously reported in the literature were utilized to examine this species disconnect between rat and human mGlu₁ activity. Mutation of the key transmembrane domain residue 757 and functional screening of VU0410425 and the literature compounds suggests that amino acid 757 plays a role in the activity of these compounds, but the contribution of the residue is scaffold specific, ranging from critical to minor. The operational model of allosterism was used to estimate the binding affinities of each compound to compare to functional data. This novel series of mGlu₁ negative allosteric modulators provides valuable insight into the pharmacology underlying the disconnect between rat and human mGlu₁ activity, an issue that must be understood to progress the therapeutic potential of allosteric modulators of mGlu₁.
Collapse
Affiliation(s)
| | | | | | | | - Craig W. Lindsley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | | - Kyle A. Emmitte
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
25
|
Dhanya RP, Sheffler DJ, Dahl R, Davis M, Lee PS, Yang L, Nickols HH, Cho HP, Smith LH, D'Souza MS, Conn PJ, Der-Avakian A, Markou A, Cosford NDP. Design and synthesis of systemically active metabotropic glutamate subtype-2 and -3 (mGlu2/3) receptor positive allosteric modulators (PAMs): pharmacological characterization and assessment in a rat model of cocaine dependence. J Med Chem 2014; 57:4154-72. [PMID: 24735492 PMCID: PMC4033659 DOI: 10.1021/jm5000563] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
As
part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor
positive allosteric modulator (PAM) research, we performed structure–activity
relationship (SAR) studies around a series of group II mGlu PAMs.
Initial analogues exhibited weak activity as mGlu2 receptor
PAMs and no activity at mGlu3. Compound optimization led
to the identification of potent mGlu2/3 selective PAMs
with no in vitro activity at mGlu1,4–8 or 45 other
CNS receptors. In vitro pharmacological characterization of representative
compound 44 indicated agonist-PAM activity toward mGlu2 and PAM activity at mGlu3. The most potent mGlu2/3 PAMs were characterized in assays predictive of ADME/T
and pharmacokinetic (PK) properties, allowing the discovery of systemically
active mGlu2/3 PAMs. On the basis of its overall profile,
compound 74 was selected for behavioral studies and was
shown to dose-dependently decrease cocaine self-administration in
rats after intraperitoneal administration. These mGlu2/3 receptor PAMs have significant potential as small molecule tools
for investigating group II mGlu pharmacology.
Collapse
Affiliation(s)
- Raveendra-Panickar Dhanya
- Cell Death and Survival Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute , 10901 N. Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yin S, Niswender CM. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications. Cell Signal 2014; 26:2284-97. [PMID: 24793301 DOI: 10.1016/j.cellsig.2014.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/27/2014] [Indexed: 12/24/2022]
Abstract
The metabotropic glutamate (mGlu) receptors are a group of Class C seven-transmembrane spanning/G protein-coupled receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non-G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission both in the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, and especially during the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members.
Collapse
Affiliation(s)
- Shen Yin
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| |
Collapse
|
27
|
Engers DW, Lindsley CW. Allosteric modulation of Class C GPCRs: a novel approach for the treatment of CNS disorders. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e269-76. [PMID: 24050278 DOI: 10.1016/j.ddtec.2012.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Allosteric modulation has emerged as an innovative pharmacological approach to selectively activate or inhibit several Class C GPCRs. Of the Class C GPCRs, metabotropic glutamate (mGlu) receptors represent the most promising candidates for clinical success, and both positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs) of mGluRs have demonstrated therapeutic potential for a range of psychiatric and neurological disorders such as pain, depression, anxiety, cognition, Fragile X syndrome, Parkinson’s disease and schizophrenia.
Collapse
|
28
|
Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 2014; 344:58-64. [PMID: 24603153 DOI: 10.1126/science.1249489] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.
Collapse
Affiliation(s)
- Huixian Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nickols HH, Conn PJ. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 2014; 61:55-71. [PMID: 24076101 PMCID: PMC3875303 DOI: 10.1016/j.nbd.2013.09.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 12/14/2022] Open
Abstract
The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction.
Collapse
Key Words
- (+)-6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one
- (1-(4-cyano-4-(pyridine-2-yl)piperidine-1-yl)methyl-4-oxo-4H-quinolizine-3-carboxylic acid)
- (1S,2S)-N(1)-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide
- (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid
- (3,4-dihydro-2H-pyrano[2,3]b quinolin-7-yl)(cis-4-methoxycyclohexyl) methanone
- (3aS,5S,7aR)-methyl 5-hydroxy-5-(m-tolylethynyl)octahydro-1H-indole-1-carboxylate
- 1-(1′-(2-methylbenzyl)-1,4′-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one
- 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone
- 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine
- 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1Himidazol-4-yl)ethynyl)pyridine
- 2-methyl-6-(2-phenylethenyl)pyridine
- 2-methyl-6-(phenylethynyl)-pyridine
- 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide
- 3-cyclohexyl-5-fluoro-6-methyl-7-(2-morpholin-4-ylethoxy)-4H-chromen-4-one
- 3[(2-methyl-1,3-thiazol-4-yl)ethylnyl]pyridine
- 4-((E)-styryl)-pyrimidin-2-ylamine
- 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide
- 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine
- 5-methyl-6-(phenylethynyl)-pyridine
- 5MPEP
- 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one
- 6-OHDA
- 6-hydroxydopamine
- 6-methyl-2-(phenylazo)-3-pyridinol
- 77-LH-28-1
- 7TMR
- AC-42
- ACPT-1
- AChE
- AD
- ADX71743
- AFQ056
- APP
- Allosteric modulator
- Alzheimer's disease
- BINA
- BQCA
- CDPPB
- CFMMC
- CNS
- CPPHA
- CTEP
- DA
- DFB
- DHPG
- Drug discovery
- ERK1/2
- FMRP
- FTIDC
- FXS
- Fragile X syndrome
- GABA
- GPCR
- JNJ16259685
- L-AP4
- L-DOPA
- Lu AF21934
- Lu AF32615
- M-5MPEP
- MMPIP
- MPEP
- MPTP
- MTEP
- Metabotropic glutamate receptor
- Muscarinic acetylcholine receptor
- N-[4-chloro-2[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl]-2-hydrobenzamide
- N-methyl-d-aspartate
- N-phenyl-7-(hydroxylimino)cyclopropa[b]chromen-1a-carboxamide
- NAM
- NMDA
- PAM
- PCP
- PD
- PD-LID
- PET
- PHCCC
- PQCA
- Parkinson's disease
- Parkinson's disease levodopa-induced dyskinesia
- SAM
- SIB-1757
- SIB-1893
- TBPB
- [(3-fluorophenyl)methylene]hydrazone-3-fluorobenzaldehyde
- acetylcholinesterase
- amyloid precursor protein
- benzylquinolone carboxylic acid
- central nervous system
- dihydroxyphenylglycine
- dopamine
- extracellular signal-regulated kinase 1/2
- fragile X mental retardation protein
- l-(+)-2-amino-4-phosphonobutyric acid
- l-3,4-dihydroxyphenylalanine
- mGlu
- metabotropic glutamate receptor
- negative allosteric modulator
- phencyclidine
- positive allosteric modulator
- positron emission tomography
- potassium 30-([(2-cyclopentyl-6-7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5yl)oxy]methyl)biphenyl l-4-carboxylate
- seven transmembrane receptor
- silent allosteric modulator
- γ-aminobutyric acid
Collapse
Affiliation(s)
- Hilary Highfield Nickols
- Division of Neuropathology, Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
30
|
Jiang JY, Nagaraju M, Meyer RC, Zhang L, Hamelberg D, Hall RA, Brown EM, Conn PJ, Yang JJ. Extracellular calcium modulates actions of orthosteric and allosteric ligands on metabotropic glutamate receptor 1α. J Biol Chem 2013; 289:1649-61. [PMID: 24280223 DOI: 10.1074/jbc.m113.507665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metabotropic glutamate receptor 1α (mGluR1α), a member of the family C G protein-coupled receptors, is emerging as a potential drug target for various disorders, including chronic neuronal degenerative diseases. In addition to being activated by glutamate, mGluR1α is also modulated by extracellular Ca(2+). However, the underlying mechanism is unknown. Moreover, it has long been challenging to develop receptor-specific agonists due to homologies within the mGluR family, and the Ca(2+)-binding site(s) on mGluR1α may provide an opportunity for receptor-selective targeting by therapeutics. In the present study, we show that our previously predicted Ca(2+)-binding site in the hinge region of mGluR1α is adjacent to the site where orthosteric agonists and antagonists bind on the extracellular domain of the receptor. Moreover, we found that extracellular Ca(2+) enhanced mGluR1α-mediated intracellular Ca(2+) responses evoked by the orthosteric agonist l-quisqualate. Conversely, extracellular Ca(2+) diminished the inhibitory effect of the mGluR1α orthosteric antagonist (S)-α-methyl-4-carboxyphenylglycine. In addition, selective positive (Ro 67-4853) and negative (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) allosteric modulators of mGluR1α potentiated and inhibited responses to extracellular Ca(2+), respectively, in a manner similar to their effects on the response of mGluR1α to glutamate. Mutations at residues predicted to be involved in Ca(2+) binding, including E325I, had significant effects on the modulation of responses to the orthosteric agonist l-quisqualate and the allosteric modulator Ro 67-4853 by extracellular Ca(2+). These studies reveal that binding of extracellular Ca(2+) to the predicted Ca(2+)-binding site in the extracellular domain of mGluR1α modulates not only glutamate-evoked signaling but also the actions of both orthosteric ligands and allosteric modulators on mGluR1α.
Collapse
Affiliation(s)
- Jason Y Jiang
- From the Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kumari R, Castillo C, Francesconi A. Agonist-dependent signaling by group I metabotropic glutamate receptors is regulated by association with lipid domains. J Biol Chem 2013; 288:32004-19. [PMID: 24045944 DOI: 10.1074/jbc.m113.475863] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, play critical functions in forms of activity-dependent synaptic plasticity and synapse remodeling in physiological and pathological states. Importantly, in animal models of fragile X syndrome, group I mGluR activity is abnormally enhanced, a dysfunction that may partly underlie cognitive deficits in the condition. Lipid rafts are cholesterol- and sphingolipid-enriched membrane domains that are thought to form transient signaling platforms for ligand-activated receptors. Many G protein-coupled receptors, including group I mGluRs, are present in lipid rafts, but the mechanisms underlying recruitment to these membrane domains remain incompletely understood. Here, we show that mGluR1 recruitment to lipid rafts is enhanced by agonist binding and is supported at least in part by an intact cholesterol recognition/interaction amino acid consensus (CRAC) motif in the receptor. Substitutions of critical residues in the motif reduce mGluR1 association with lipid rafts and agonist-induced, mGluR1-dependent activation of extracellular-signal-activated kinase1/2 MAP kinase (ERK-MAPK). We find that alteration of membrane cholesterol content or perturbation of lipid rafts regulates agonist-dependent activation of ERK-MAPK by group I mGluRs, suggesting a potential function for cholesterol as a positive allosteric modulator of receptor function(s). Together, these findings suggest that drugs that alter membrane cholesterol levels or directed to the receptor-cholesterol interface could be employed to modulate abnormal group I mGluR activity in neuropsychiatric conditions, including fragile X syndrome.
Collapse
Affiliation(s)
- Ranju Kumari
- From the Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
32
|
Xiong Y, Swaminath G, Cao Q, Yang L, Guo Q, Salomonis H, Lu J, Houze JB, Dransfield PJ, Wang Y, Liu JJ, Wong S, Schwandner R, Steger F, Baribault H, Liu L, Coberly S, Miao L, Zhang J, Lin DCH, Schwarz M. Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol Cell Endocrinol 2013; 369:119-29. [PMID: 23403053 DOI: 10.1016/j.mce.2013.01.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/03/2013] [Accepted: 01/14/2013] [Indexed: 01/04/2023]
Abstract
FFA1 (GPR40) and GPR120 are G-protein-coupled receptors activated by long-chain fatty acids. FFA1 is expressed in pancreatic β-cells, where it regulates glucose-dependent insulin secretion, and GPR120 has been implicated in mediating GLP-1 secretion. We show here that FFA1 co-localizes with GLP-1 in enteroendocrine cells and plays a critical role in glucose management by mediating GLP-1 secretion in vivo. Corn oil induces GLP-1 secretion in wild type mice and in GPR120-/- mice, but not in FFA1-/- mice. α-Linolenic acid, an endogenous ligand of FFA1, induces GLP-1 secretion in GLUTag cells and in primary fetal mouse intestinal cells. Synthetic partial FFA1 agonists do not stimulate GLP-1 secretion in mice, but partial and full agonists combined function cooperatively to enhance receptor activation and GLP-1 secretion both in vitro and in vivo. We conclude that allosterism at FFA1 can contribute to postprandial glucose management by stimulating insulin secretion via an extrapancreatic mechanism of action, and that GPR120 in GLP-1 secretion requires further investigation.
Collapse
Affiliation(s)
- Yumei Xiong
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pharmacology of metabotropic glutamate receptor allosteric modulators: structural basis and therapeutic potential for CNS disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:61-121. [PMID: 23415092 DOI: 10.1016/b978-0-12-394587-7.00002-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The metabotropic glutamate receptors (mGlus) mediate a neuromodulatory role throughout the brain for the major excitatory neurotransmitter, glutamate. Seven of the eight mGlu subtypes are expressed within the CNS and are attractive targets for a variety of psychiatric and neurological disorders including anxiety, depression, schizophrenia, Parkinson's disease, and Fragile X syndrome. Allosteric modulation of these class C 7-transmembrane spanning receptors represents a novel approach to facilitate development of mGlu subtype-selective probes and therapeutics. Allosteric modulators that interact with sites topographically distinct from the endogenous ligand-binding site offer a number of advantages over their competitive counterparts. In particular for CNS therapeutics, allosteric modulators have the potential to maintain the spatial and temporal aspects of endogenous neurotransmission. The past 15 years have seen the discovery of numerous subtype-selective allosteric modulators for the majority of the mGlu family members, including positive, negative, and neutral allosteric modulators, with a number of mGlu allosteric modulators now in clinical trials.
Collapse
|
34
|
Targeting metabotropic glutamate receptors in neuroimmune communication. Neuropharmacology 2012; 63:501-6. [PMID: 22640632 DOI: 10.1016/j.neuropharm.2012.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 01/13/2023]
Abstract
L-Glutamate (L-Glu) is the principal excitatory neurotransmitter in the Central Nervous System (CNS), where it regulates cellular and synaptic activity, neuronal plasticity, cell survival and other relevant functions. Glutamatergic neurotransmission is complex and involves both ionotropic (ligand-gated ion channels; iGluRs) and metabotropic receptors (G-protein coupled receptors). Recent evidence suggests that glutamatergic receptors are also expressed by immune cells, regulating the degree of cell activation. In this review we primarily focus on mGluRs and their role in the crosstalk between the central nervous and immune systems during neuroinflammation.
Collapse
|
35
|
Hendricson A, Matchett M, Ferrante M, Ferrante C, Hunnicutt E, Westphal R, Kostich W, Huang Y, Masias N, Hong D, Bertekap R, Burford N, Watson J, Alt A, Myslik J, Zhang L, Knox R. Design of an Automated Enhanced-Throughput Platform for Functional Characterization of Positive Allosteric Modulator-Induced Leftward Shifts in Apparent Agonist Potency In Vitro. ACTA ACUST UNITED AC 2012; 17:104-15. [DOI: 10.1177/2211068211435301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
3-Phenyl-5-isothiazole carboxamides with potent mGluR1 antagonist activity. Bioorg Med Chem Lett 2012; 22:2514-7. [DOI: 10.1016/j.bmcl.2012.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/17/2022]
|
37
|
Abstract
The G-protein-coupled receptors (GPCRs) are one of the largest super families of cell-surface receptors and play crucial roles in virtually every organ system. One particular family of GPCRs, the class C GPCRs, is distinguished by a characteristically large extracellular domain and constitutive dimerization. The structure and activation mechanism of this family result in potentially unique ligand recognition sites, thereby offering a variety of possibilities by which receptor activity might be modulated using novel compounds. In the present article, we aim to provide an overview of the exact sites and structural features involved in ligand recognition of the class C GPCRs. Furthermore, we demonstrate the precise steps that occur during the receptor activation process, which underlie the possibilities by which receptor function may be altered by different approaches. Finally, we use four typical family members to illustrate orthosteric and allosteric sites with representative ligands and their corresponding therapeutic potential.
Collapse
|
38
|
Melancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A, Conn PJ, Lindsley CW. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J Med Chem 2012; 55:1445-64. [PMID: 22148748 DOI: 10.1021/jm201139r] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bruce J Melancon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Herman EJ, Bubser M, Conn PJ, Jones CK. Metabotropic glutamate receptors for new treatments in schizophrenia. Handb Exp Pharmacol 2012:297-365. [PMID: 23027420 DOI: 10.1007/978-3-642-25758-2_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) represent exciting targets for the development of novel therapeutic agents for schizophrenia. Recent studies indicate that selective activation of specific mGluR subtypes may provide potential benefits for not only the positive symptoms, but also the negative symptoms and cognitive impairments observed in individuals with schizophrenia. Although optimization of traditional orthosteric agonists may still offer a feasible approach for the activation of mGluRs, important progress has been made in the discovery of novel subtype-selective allosteric ligands, including positive allosteric modulators (PAMs) of mGluR2 and mGluR5. These allosteric mGluR ligands have improved properties for clinical development and have served as key preclinical tools for a more in-depth understanding of the potential roles of these different mGluR subtypes for the treatment of schizophrenia.
Collapse
Affiliation(s)
- E J Herman
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
40
|
Yasumatsu K, Ogiwara Y, Takai S, Yoshida R, Iwatsuki K, Torii K, Margolskee RF, Ninomiya Y. Umami taste in mice uses multiple receptors and transduction pathways. J Physiol 2011; 590:1155-70. [PMID: 22183726 DOI: 10.1113/jphysiol.2011.211920] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The distinctive umami taste elicited by l-glutamate and some other amino acids is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heteromers of taste receptor type 1, members 1 and 3 (T1R1+T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Multiple lines of evidence support the involvement of T1R1+T1R3 in umami responses of mice. Although several studies suggest the involvement of receptors other than T1R1+T1R3 in umami, the identity of those receptors remains unclear. Here, we examined taste responsiveness of umami-sensitive chorda tympani nerve fibres from wild-type mice and mice genetically lacking T1R3 or its downstream transduction molecule, the ion channel TRPM5. Our results indicate that single umami-sensitive fibres in wild-type mice fall into two major groups: sucrose-best (S-type) and monopotassium glutamate (MPG)-best (M-type). Each fibre type has two subtypes; one shows synergism between MPG and inosine monophosphate (S1, M1) and the other shows no synergism (S2, M2). In both T1R3 and TRPM5 null mice, S1-type fibres were absent, whereas S2-, M1- and M2-types remained. Lingual application of mGluR antagonists selectively suppressed MPG responses of M1- and M2-type fibres. These data suggest the existence of multiple receptors and transduction pathways for umami responses in mice. Information initiated from T1R3-containing receptors may be mediated by a transduction pathway including TRPM5 and conveyed by sweet-best fibres, whereas umami information from mGluRs may be mediated by TRPM5-independent pathway(s) and conveyed by glutamate-best fibres.
Collapse
Affiliation(s)
- Keiko Yasumatsu
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi- ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Simon L, Toth J, Molnar L, Agoston DV. MRI analysis of mGluR5 and mGluR1 antagonists, MTEP and R214127 in the cerebral forebrain of awake, conscious rats. Neurosci Lett 2011; 505:155-9. [PMID: 22015763 DOI: 10.1016/j.neulet.2011.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/18/2011] [Accepted: 10/04/2011] [Indexed: 12/18/2022]
Abstract
Metabotropic glutamate receptors mGluR5 and mGluR1 mediate key neuropsychiatric functions in health and disease and their antagonists hold promise to treat anxiety, depression, inflammation, and neuropathic pain. Pharmacological magnetic resonance imaging (phMRI) using a functional MRI approach in awake, conscious rodents can determine the activities of receptor ligands without the potential interference of anesthetics and independent of the specific biochemical mechanism of action of the candidate molecule. In this study we determined the neuronal activation patterns of 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and 1-(3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl0-2phenyl-1-ethanone (R214127), antagonists of mGluR5 and mGluR1 receptors by phMRI. We found that MTEP and R214127 activated specific primary somatosensory, piriform, entorhinal and motor cortices and the caudateputamen each to a different extent and in partly overlapping manners. Additional analysis of the activation data indicated that these brain regions and their connections are involved in mediating neuropathic pain and also, reward and olfaction. Using awake, conscious animals in phMRI can be a useful approach in characterizing candidate mGluR5 and mGlR1 antagonists also allowing a more direct comparison of animal and human phMRI studies.
Collapse
Affiliation(s)
- Laszlo Simon
- Neuronomix Inc., 5620 Sonoma Rd., Bethesda, MD 20817, USA
| | | | | | | |
Collapse
|
42
|
Urwyler S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 2011; 63:59-126. [PMID: 21228259 DOI: 10.1124/pr.109.002501] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Allosteric receptor modulation is an attractive concept in drug targeting because it offers important potential advantages over conventional orthosteric agonism or antagonism. Allosteric ligands modulate receptor function by binding to a site distinct from the recognition site for the endogenous agonist. They often have no effect on their own and therefore act only in conjunction with physiological receptor activation. This article reviews the current status of allosteric modulation at family C G-protein coupled receptors in the light of their specific structural features on the one hand and current concepts in receptor theory on the other hand. Family C G-protein-coupled receptors are characterized by a large extracellular domain containing the orthosteric agonist binding site known as the "venus flytrap module" because of its bilobal structure and the dynamics of its activation mechanism. Mutational analysis and chimeric constructs have revealed that allosteric modulators of the calcium-sensing, metabotropic glutamate and GABA(B) receptors bind to the seven transmembrane domain, through which they modify signal transduction after receptor activation. This is in contrast to taste-enhancing molecules, which bind to different parts of sweet and umami receptors. The complexity of interactions between orthosteric and allosteric ligands is revealed by a number of adequate biochemical and electrophysiological assay systems. Many allosteric family C GPCR modulators show in vivo efficacy in behavioral models for a variety of clinical indications. The positive allosteric calcium sensing receptor modulator cinacalcet is the first drug of this type to enter the market and therefore provides proof of principle in humans.
Collapse
Affiliation(s)
- Stephan Urwyler
- Department of Chemistry and Biochemistry, University of Berne, P/A Weissensteinweg 3, CH-3303 Jegenstorf, Berne, Switzerland.
| |
Collapse
|
43
|
Sheffler DJ, Gregory KJ, Rook JM, Conn PJ. Allosteric modulation of metabotropic glutamate receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:37-77. [PMID: 21907906 DOI: 10.1016/b978-0-12-385952-5.00010-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of receptor subtype-selective ligands by targeting allosteric sites of G protein-coupled receptors (GPCRs) has proven highly successful in recent years. One GPCR family that has greatly benefited from this approach is the metabotropic glutamate receptors (mGlus). These family C GPCRs participate in the neuromodulatory actions of glutamate throughout the CNS, where they play a number of key roles in regulating synaptic transmission and neuronal excitability. A large number of mGlu subtype-selective allosteric modulators have been identified, the majority of which are thought to bind within the transmembrane regions of the receptor. These modulators can either enhance or inhibit mGlu functional responses and, together with mGlu knockout mice, have furthered the establishment of the physiologic roles of many mGlu subtypes. Numerous pharmacological and receptor mutagenesis studies have been aimed at providing a greater mechanistic understanding of the interaction of mGlu allosteric modulators with the receptor, which have revealed evidence for common allosteric binding sites across multiple mGlu subtypes and the presence for multiple allosteric sites within a single mGlu subtype. Recent data have also revealed that mGlu allosteric modulators can display functional selectivity toward particular signal transduction cascades downstream of an individual mGlu subtype. Studies continue to validate the therapeutic utility of mGlu allosteric modulators as a potential therapeutic approach for a number of disorders including anxiety, schizophrenia, Parkinson's disease, and Fragile X syndrome.
Collapse
Affiliation(s)
- Douglas J Sheffler
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
44
|
Rodriguez AL, Grier MD, Jones CK, Herman EJ, Kane AS, Smith RL, Williams R, Zhou Y, Marlo JE, Days EL, Blatt TN, Jadhav S, Menon UN, Vinson PN, Rook JM, Stauffer SR, Niswender CM, Lindsley CW, Weaver CD, Conn PJ. Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol Pharmacol 2010; 78:1105-23. [PMID: 20923853 PMCID: PMC2993468 DOI: 10.1124/mol.110.067207] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/04/2010] [Indexed: 11/22/2022] Open
Abstract
Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl)benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenylethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phencyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl)phenyl)methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.
Collapse
Affiliation(s)
- Alice L Rodriguez
- Department of Pharmacology, Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN 37232-0697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gregory KJ, Dong EN, Meiler J, Conn PJ. Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology 2010; 60:66-81. [PMID: 20637216 DOI: 10.1016/j.neuropharm.2010.07.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/28/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) represents a novel approach to the development of probes and therapeutics that is expected to enable subtype-specific regulation of central nervous system target receptors. The metabotropic glutamate receptors (mGlus) are class C GPCRs that play important neuromodulatory roles throughout the brain, as such they are attractive targets for therapeutic intervention for a number of psychiatric and neurological disorders including anxiety, depression, Fragile X Syndrome, Parkinson's disease and schizophrenia. Over the last fifteen years, selective allosteric modulators have been identified for many members of the mGlu family. The vast majority of these allosteric modulators are thought to bind within the transmembrane-spanning domains of the receptors to enhance or inhibit functional responses. A combination of mutagenesis-based studies and pharmacological approaches are beginning to provide a better understanding of mGlu allosteric sites. Collectively, when mapped onto a homology model of the different mGlu subtypes based on the β(2)-adrenergic receptor, the previous mutagenesis studies suggest commonalities in the location of allosteric sites across different members of the mGlu family. In addition, there is evidence for multiple allosteric binding pockets within the transmembrane region that can interact to modulate one another. In the absence of a class C GPCR crystal structure, this approach has shown promise with respect to the interpretation of mutagenesis data and understanding structure-activity relationships of allosteric modulator pharmacophores.
Collapse
Affiliation(s)
- Karen J Gregory
- Department of Pharmacology, Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA.
| | | | | | | |
Collapse
|
46
|
Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50:295-322. [PMID: 20055706 DOI: 10.1146/annurev.pharmtox.011008.145533] [Citation(s) in RCA: 1368] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are family C G-protein-coupled receptors that participate in the modulation of synaptic transmission and neuronal excitability throughout the central nervous system. The mGluRs bind glutamate within a large extracellular domain and transmit signals through the receptor protein to intracellular signaling partners. A great deal of progress has been made in determining the mechanisms by which mGluRs are activated, proteins with which they interact, and orthosteric and allosteric ligands that can modulate receptor activity. The widespread expression of mGluRs makes these receptors particularly attractive drug targets, and recent studies continue to validate the therapeutic utility of mGluR ligands in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's disease, anxiety, depression, and schizophrenia.
Collapse
Affiliation(s)
- Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, USA.
| | | |
Collapse
|
47
|
Abstract
Highly selective positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGluR5) have emerged as a potential approach to treat positive symptoms associated with schizophrenia. mGluR5 plays an important role in both long-term potentiation (LTP) and long-term depression (LTD), suggesting that mGluR5 PAMs may also have utility in improving impaired cognitive function. However, if mGluR5 PAMs shift the balance of LTP and LTD or induce a state in which afferent activity induces lasting changes in synaptic function that are not appropriate for a given pattern of activity, this could disrupt rather than enhance cognitive function. We determined the effect of selective mGluR5 PAMs on the induction of LTP and LTD at the Schaffer collateral-CA1 synapse in the hippocampus. mGluR5-selective PAMs significantly enhanced threshold theta-burst stimulation (TBS)-induced LTP. In addition, mGluR5 PAMs enhanced both DHPG-induced LTD and LTD induced by the delivery of paired-pulse low-frequency stimulation. Selective potentiation of mGluR5 had no effect on LTP induced by suprathreshold TBS or saturated LTP. The finding that potentiation of mGluR5-mediated responses to stimulation of glutamatergic afferents enhances both LTP and LTD and supports the hypothesis that the activation of mGluR5 by endogenous glutamate contributes to both forms of plasticity. Furthermore, two systemically active mGluR5 PAMs enhanced performance in the Morris water maze, a measure of hippocampus-dependent spatial learning. Discovery of small molecules that enhance both LTP and LTD in an activity-appropriate manner shows a unique action on synaptic plasticity that may provide a novel approach for the treatment of impaired cognitive function.
Collapse
|
48
|
Marlo JE, Niswender CM, Days EL, Bridges TM, Xiang Y, Rodriguez AL, Shirey JK, Brady AE, Nalywajko T, Luo Q, Austin CA, Williams MB, Kim K, Williams R, Orton D, Brown HA, Lindsley CW, Weaver CD, Conn PJ. Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol Pharmacol 2009; 75:577-88. [PMID: 19047481 PMCID: PMC2684909 DOI: 10.1124/mol.108.052886] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 12/01/2008] [Indexed: 01/17/2023] Open
Abstract
Activators of M(1) muscarinic acetylcholine receptors (mAChRs) may provide novel treatments for schizophrenia and Alzheimer's disease. Unfortunately, the development of M(1)-active compounds has resulted in nonselective activation of the highly related M(2) to M(5) mAChR subtypes, which results in dose-limiting side effects. Using a functional screening approach, we identified several novel ligands that potentiated agonist activation of M(1) with low micromolar potencies and induced 5-fold or greater leftward shifts of the acetylcholine (ACh) concentration-response curve. These ligands did not compete for binding at the ACh binding site, indicating that they modulate receptor activity by binding to allosteric sites. The two most selective compounds, cyclopentyl 1,6-dimethyl-4-(6-nitrobenzo[d][1,3]-dioxol-5-yl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (VU0090157) and (E)-2-(4-ethoxyphenylamino)-N'-((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide (VU0029767), induced progressive shifts in ACh affinity at M(1) that were consistent with their effects in a functional assay, suggesting that the mechanism for enhancement of M(1) activity by these compounds is by increasing agonist affinity. These compounds were strikingly different, however, in their ability to potentiate responses at a mutant M(1) receptor with decreased affinity for ACh and in their ability to affect responses of the allosteric M(1) agonist, 1-[1'-(2-tolyl)-1,4'-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one. Furthermore, these two compounds were distinct in their abilities to potentiate M(1)-mediated activation of phosphoinositide hydrolysis and phospholipase D. The discovery of multiple structurally distinct positive allosteric modulators of M(1) is an exciting advance in establishing the potential of allosteric modulators for selective activation of this receptor. These data also suggest that structurally diverse M(1) potentiators may act by distinct mechanisms and differentially regulate receptor coupling to downstream signaling pathways.
Collapse
Affiliation(s)
- Joy E Marlo
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Conn PJ, Christopoulos A, Lindsley CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 2009; 8:41-54. [PMID: 19116626 PMCID: PMC2907734 DOI: 10.1038/nrd2760] [Citation(s) in RCA: 843] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite G-protein-coupled receptors (GPCRs) being among the most fruitful targets for marketed drugs, intense discovery efforts for several GPCR subtypes have failed to deliver selective drug candidates. Historically, drug discovery programmes for GPCR ligands have been dominated by efforts to develop agonists and antagonists that act at orthosteric sites for endogenous ligands. However, in recent years, there have been tremendous advances in the discovery of novel ligands for GPCRs that act at allosteric sites to regulate receptor function. These compounds provide high selectivity, novel modes of efficacy and may lead to novel therapeutic agents for the treatment of multiple psychiatric and neurological human disorders.
Collapse
Affiliation(s)
- P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Program in Drug Discovery, Vanderbilt Medical Center, 1215 Light Hall, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
50
|
Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB, Shirey JK, Conn PJ, Lindsley CW. Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 2008; 327:941-53. [PMID: 18772318 PMCID: PMC2745822 DOI: 10.1124/jpet.108.140350] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous clinical and animal studies suggest that selective activators of M(1) and/or M(4) muscarinic acetylcholine receptors (mAChRs) have potential as novel therapeutic agents for treatment of schizophrenia and Alzheimer's disease. However, highly selective centrally penetrant activators of either M(1) or M(4) have not been available, making it impossible to determine the in vivo effects of selective activation of these receptors. We previously identified VU10010 [3-amino-N-(4-chlorobenzyl)-4, 6-dimethylthieno[2,3-b]pyridine-2-carboxamide] as a potent and selective allosteric potentiator of M(4) mAChRs. However, unfavorable physiochemical properties prevented use of this compound for in vivo studies. We now report that chemical optimization of VU10010 has afforded two centrally penetrant analogs, VU0152099 [3-amino-N-(benzo[d][1,3]dioxol-5-ylmethyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide] and VU0152100 [3-amino-N-(4-methoxybenzyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide], that are potent and selective positive allosteric modulators of M(4). VU0152099 and VU0152100 had no agonist activity but potentiated responses of M(4) to acetylcholine. Both compounds were devoid of activity at other mAChR subtypes or at a panel of other GPCRs. The improved physiochemical properties of VU0152099 and VU0152100 allowed in vivo dosing and evaluation of behavioral effects in rats. Interestingly, these selective allosteric potentiators of M(4) reverse amphetamine-induced hyperlocomotion in rats, a model that is sensitive to known antipsychotic agents and to nonselective mAChR agonists. This is consistent with the hypothesis that M(4) plays an important role in regulating midbrain dopaminergic activity and raises the possibility that positive allosteric modulation of M(4) may mimic some of the antipsychotic-like effects of less selective mAChR agonists.
Collapse
Affiliation(s)
- Ashley E Brady
- Department of Pharmacology, Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|