1
|
Navien TN, Thevendran R, Citartan M. In silico selection against progesterone receptor DNA-binding domain. Anal Biochem 2025; 699:115752. [PMID: 39719189 DOI: 10.1016/j.ab.2024.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Progesterone receptor is one of the markers used in antibody-based immunohistochemistry for the diagnostics of breast cancer. The shortcomings of antibodies raise the need to focus on alternative molecular recognition. Aptamers are chosen due to their many advantages as compared to antibodies. However, the rigor of conventional SELEX intensifies the efforts to select DNA aptamers using in silico-docking approach. In this study, we performed in silico selection and experimental validation of DNA aptamers against the progesterone receptor DNA binding domain (PR DBD) using the ssDNA sequences derived from human progesterone response elements (PREs). Firstly, a library of sixty-four different ssDNA was subjected to secondary and tertiary structural determination prior to docking using PatchDock. PRDBDapt17 appeared to be the best candidate, with the highest docking scores of 11334. Molecular dynamic simulation also substantiates PRDBDapt17 as the most potent aptamer. This aptamer, PRDBDapt17 was validated by using direct ELASA. Direct ELASA demonstrated a limit of detection of 3.91 nM while the equilibrium dissociation constant was estimated at 366.6 nM. As PRDBDapt17 also interacts with estrogen receptor and androgen receptor, it can also be a potential universal binder of steroid hormone receptors. PRDBDapt17 can be used in the diagnostics of breast cancer.
Collapse
Affiliation(s)
- Tholasi Nadhan Navien
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Ramesh Thevendran
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Chaichian S, Nikfar B, Bidgoli SA, Moazzami B. The Role of Genistein and its Derivatives in Ovarian Cancer: New Perspectives for Molecular Mechanisms and Clinical Applications. Curr Med Chem 2025; 32:907-922. [PMID: 37921172 DOI: 10.2174/0109298673251713231019091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Revised: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023]
Abstract
Genistein (GEN) is a member of the polyphenol family, known chiefly for its effects on metabolic diseases and gynecological disorders. GEN has anti-cancer properties by inhibiting tumor proliferation, tumor metastasis, invasion, migration, and inducing apoptosis. Ovarian cancer (OC) is ranked 7th among the most common gynecological cancers. Despite its low incidence compared to other cancers, it is the first cause of death among gynecologic malignancies. Surgery and chemotherapy are the main options for treating this fatal cancer. Therefore, further investigations into GEN may aid in the discovery of novel therapeutics for preventing and/or treating OC. In this review, we aim to investigate the role of GEN in ovarian cancer. We investigate the anti-tumor effects of GEN on OC cell lines, including inducing apoptosis, suppressing tumor growth, and inhibiting metastasis. Also, we review the studies investigating GEN's roles as an adjuvant in therapeutic regimens with other chemotherapeutic agents (e.g., cisplatin, quercetin, and gemcitabine).
Collapse
Affiliation(s)
- Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Arbabi Bidgoli
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University, Tehran, Iran
| | - Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Hetherington K, Thomas J, Nicholls SJ, Barsha G, Bubb KJ. Unique cardiometabolic factors in women that contribute to modified cardiovascular disease risk. Eur J Pharmacol 2024; 984:177031. [PMID: 39369878 DOI: 10.1016/j.ejphar.2024.177031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Major risk factors of cardiovascular disease (CVD) include hypertension, obesity, diabetes mellitus and metabolic syndrome; all of which are considered inflammatory conditions. Women are disproportionately affected by inflammatory conditions, with sex differences emerging as early as adolescence. Hormonal fluctuations associated with reproductive events such as menarche, pregnancy and menopause, are hypothesized to promote a pro-inflammatory state in women. Moreover, women who have experienced inflammatory-type conditions such as polycystic ovarian syndrome (PCOS), gestational diabetes or pre-eclampsia, have a cardiometabolic phenotype that pre-disposes to increased risk of myocardial infarction, stroke and coronary heart disease. Women with no notable CVD risk factors are often relatively protected from CVD pre-menopause; but overtake men in risk of major cardiovascular events when the cardiovascular protective effects of oestrogen begin to wane. Sex differences and female-specific factors have long been considered challenging to study and this has led to an underrepresentation of females in clinical trials and lack of female-specific data from pre-clinical studies. However, there is now a clear prerogative to include females at all stages of research, despite inherent complexities and potential variability in data. This review explores recent advancements in our understanding of CVD in women. We summarise the underlying factors unique to women that can promote CVD risk factors, ultimately contributing to CVD burden and the emerging therapies aimed to combat this.
Collapse
Affiliation(s)
- Kara Hetherington
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3800, Australia; Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria, 3168, Australia
| | - Jordyn Thomas
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3800, Australia; Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria, 3168, Australia
| | - Stephen J Nicholls
- Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria, 3168, Australia
| | - Giannie Barsha
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3800, Australia; Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria, 3168, Australia
| | - Kristen J Bubb
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3800, Australia; Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
4
|
Lariz FJ, Botero PB, Shoffstall I, Houston KD. Insulin-like growth factor binding protein-6 modulates proliferative antagonism in response to progesterone in breast cancer. Front Endocrinol (Lausanne) 2024; 15:1450648. [PMID: 39698031 PMCID: PMC11652171 DOI: 10.3389/fendo.2024.1450648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/17/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Breast cancer is one of the most diagnosed cancers worldwide. The insulin-like growth factor (IGF) system promotes proliferation and survival in breast cancer cells and is regulated by 6 insulin-like growth factor binding proteins (IGFBPs). The IGFBPs sequester IGFs to prolong their half-life and attenuate binding to insulin-like growth factor 1 receptor (IGF1R). While IGFBP-6 has been studied in some cancers it has not been studied extensively in hormone receptor positive breast cancer. Survival analysis using available databases indicated that high IGFBP-6 levels improve overall survival in progesterone receptor positive breast cancers. IGFBP-6 is transcriptionally induced by progesterone in T47D breast cancer cells resulting in increased intracellular and extracellular IGFBP-6 protein. Knockdown of IGFBP-6 resulted in reduced proliferative antagonism when estradiol stimulated T47D cells were cotreated with progesterone and protein levels of both progesterone receptor isoforms (PR-A and PR-B) were decreased following knockdown of IGFBP-6. P21(Cip1/Waf1), which is progesterone responsive, was not induced in response to progesterone following knockdown of IGFBP-6. Cyclin E2, a cell cycle regulator, is induced by progesterone only when IGFBP-6 is knocked down. Stable overexpression of IGFBP-6 in MCF-7 cells resulted in an increase in Epidermal Growth Factor Receptor (EGFR) and this expression was further enhanced when cells were cotreated with progesterone and estradiol. These results indicate that IGFBP-6 is a regulator of progesterone action, and that PR is required for the observed protective effects of IGFBP-6 in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Kevin D. Houston
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, NM, United States
| |
Collapse
|
5
|
Gabrielson M, Hammarström M, Bergqvist J, Lång K, Rosendahl AH, Borgquist S, Hellgren R, Czene K, Hall P. Baseline breast tissue characteristics determine the effect of tamoxifen on mammographic density change. Int J Cancer 2024; 155:339-351. [PMID: 38554131 DOI: 10.1002/ijc.34939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024]
Abstract
Tamoxifen prevents recurrence of breast cancer and is also approved for preventive, risk-reducing, therapy. Tamoxifen alters the breast tissue composition and decreases the mammographic density. We aimed to test if baseline breast tissue composition influences tamoxifen-associated density change. This biopsy-based study included 83 participants randomised to 6 months daily intake of placebo, 20, 10, 5, 2.5, or 1 mg tamoxifen. The study is nested within the double-blinded tamoxifen dose-determination trial Karolinska Mammography Project for Risk Prediction of Breast Cancer Intervention (KARISMA) Study. Ultrasound-guided core-needle breast biopsies were collected at baseline before starting treatment. Biopsies were quantified for epithelial, stromal, and adipose distributions, and epithelial and stromal expression of proliferation marker Ki67, oestrogen receptor (ER) and progesterone receptor (PR). Mammographic density was measured using STRATUS. We found that greater mammographic density at baseline was positively associated with stromal area and inversely associated with adipose area and stromal expression of ER. Premenopausal women had greater mammographic density and epithelial tissue, and expressed more epithelial Ki67, PR, and stromal PR, compared to postmenopausal women. In women treated with tamoxifen (1-20 mg), greater density decrease was associated with higher baseline density, epithelial Ki67, and stromal PR. Women who responded to tamoxifen with a density decrease had on average 17% higher baseline density and a 2.2-fold higher PR expression compared to non-responders. Our results indicate that features in the normal breast tissue before tamoxifen exposure influences the tamoxifen-associated density decrease, and that the age-associated difference in density change may be related to age-dependant differences in expression of Ki67 and PR.
Collapse
Affiliation(s)
- Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Hammarström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Bergqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Breast Centre, Department of Surgery, Capio St Görans Hospital, Stockholm, Sweden
| | - Kristina Lång
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Lund, Sweden
| | - Ann H Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Oncology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | | | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, South General Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Tsai CC, Yang YN, Wang K, Chen YCE, Chen YF, Yang JC, Li ZL, Huang HM, Pedersen JZ, Incerpi S, Lee SY, Lin HY, Whang-Peng J. Progesterone modulates cell growth via integrin αvβ3-dependent pathway in progesterone receptor-negative MDA-MB-231 cells. Heliyon 2024; 10:e34006. [PMID: 39071644 PMCID: PMC11283053 DOI: 10.1016/j.heliyon.2024.e34006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Progesterone (P4) plays a pivotal role in regulating the cancer progression of various types, including breast cancer, primarily through its interaction with the P4 receptor (PR). In PR-negative breast cancer cells, P4 appears to function in mediating cancer progression, such as cell growth. However, the mechanisms underlying the roles of P4 in PR-negative breast cancer cells remain incompletely understood. This study aimed to investigate the effects of P4 on cell proliferation, gene expression, and signal transduction in PR-negative MDA-MB-231 breast cancer cells. P4-activated genes, associated with proliferation in breast cancer cells, exhibit a stimulating effect on cell growth in PR-negative MDA-MB-231 cells, while demonstrating an inhibitory impact in PR-positive MCF-7 cells. The use of arginine-glycine-aspartate (RGD) peptide successfully blocked P4-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, aligning with computational models of P4 binding to integrin αvβ3. Disrupting integrin αvβ3 binding with RGD peptide or anti-integrin αvβ3 antibody altered P4-induced expression of proliferative genes and modified P4-induced cell growth in breast cancer cells. In conclusion, integrin αvβ3 appears to mediate P4-induced ERK1/2 signal pathway to regulate proliferation via alteration of proliferation-related gene expression in PR-negative breast cancer cells.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Ning Yang
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chun E. Chen
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jens Z. Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome 00133, Italy
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany 12203, NY, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jaqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Hugh JC, Haddon LSJ, Githaka JM. DREAM On, DREAM Off: A Review of the Estrogen Paradox in Luminal A Breast Cancers. Biomedicines 2024; 12:1300. [PMID: 38927507 PMCID: PMC11201522 DOI: 10.3390/biomedicines12061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
It is generally assumed that all estrogen-receptor-positive (ER+) breast cancers proliferate in response to estrogen and, therefore, examples of the estrogen-induced regression of ER+ cancers are paradoxical. This review re-examines the estrogen regression paradox for the Luminal A subtype of ER+ breast cancers. The proliferative response to estrogen is shown to depend on the level of ER. Mechanistically, a window of opportunity study of pre-operative estradiol suggested that with higher levels of ER, estradiol could activate the DREAM-MMB (Dimerization partner, Retinoblastoma-like proteins, E2F4, and MuvB-MYB-MuvB) pathway to decrease proliferation. The response of breast epithelium and the incidence of breast cancers during hormonal variations that occur during the menstrual cycle and at the menopausal transition, respectively, suggest that a single hormone, either estrogen, progesterone or androgen, could activate the DREAM pathway, leading to reversible cell cycle arrest. Conversely, the presence of two hormones could switch the DREAM-MMB complex to a pro-proliferative pathway. Using publicly available data, we examine the gene expression changes after aromatase inhibitors and ICI 182,780 to provide support for the hypothesis. This review suggests that it might be possible to integrate all current hormonal therapies for Luminal A tumors within a single theoretical schema.
Collapse
Affiliation(s)
- Judith C. Hugh
- Department of Laboratory Medicine and Pathology, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Lacey S. J. Haddon
- Department of Chemistry, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada;
| | - John Maringa Githaka
- Department of Biochemistry, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
8
|
Szucio W, Bernaczyk P, Ponikwicka-Tyszko D, Milewska G, Pawelczyk A, Wołczyński S, Rahman NA. Progesterone signaling in uterine leiomyoma biology: Implications for potential targeted therapy. Adv Med Sci 2024; 69:21-28. [PMID: 38278085 DOI: 10.1016/j.advms.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Uterine leiomyomas (ULs) are the most common benign smooth muscle cell steroid-dependent tumors that occur in women of reproductive age. Progesterone (P4) is a major hormone that promotes the ULs development and growth. P4 action in ULs is mediated mainly by its nuclear progesterone receptors (PGRs), although rapid non-genomic responses have also been observed. Data on the membrane progesterone receptors (mPRs) regulated signaling pathways in ULs in the available literature is still very limited. One of the essential characteristics of ULs is the excessive production of extracellular matrix (ECM). P4 has been shown to stimulate ECM production and collagen synthesis in ULs. Recent research demonstrated that, despite their benign nature, ULs may present with abnormal vasculature. P4 has been shown to regulate angiogenesis in ULs through the upregulation of vascular endothelial growth factor (VEGF) and by controlling the secretion of permeability factors. This review summarizes the key findings regarding the role of PGRs and mPRs in ULs, especially highlighting the potential ECM and angiogenesis modulation by P4. An increased understanding of this mechanistic role of nuclear and specifically mPRs in the biology of P4-modulated ECM and angiogenesis in the growth of ULs could turn out to be fundamental for developing effective targeted therapies for ULs.
Collapse
Affiliation(s)
- Weronika Szucio
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Bernaczyk
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Adam Pawelczyk
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Nafis A Rahman
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
9
|
Bakhshi P, Ho JQ, Zanganeh S. Sex-specific outcomes in cancer therapy: the central role of hormones. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1320690. [PMID: 38362126 PMCID: PMC10867131 DOI: 10.3389/fmedt.2024.1320690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| | - Jim Q. Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Steven Zanganeh
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| |
Collapse
|
10
|
Diep CH, Mauro LJ, Lange CA. Navigating a plethora of progesterone receptors: Comments on the safety/risk of progesterone supplementation in women with a history of breast cancer or at high-risk for developing breast cancer. Steroids 2023; 200:109329. [PMID: 37884178 PMCID: PMC10842046 DOI: 10.1016/j.steroids.2023.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Progesterone and progestin agonists are potent steroid hormones. There are at least three major types of progesterone receptor (PR) families that interact with and respond to progesterone or progestin ligands. These receptors include ligand-activated transcription factor isoforms (PR-A and PR-B) encoded by the PGR gene, often termed classical or nuclear progesterone receptor (nPR), membrane-spanning progesterone receptor membrane component proteins known as PGRMC1/2, and a large family of progestin/adipoQreceptors or PAQRs (also called membrane PRs or mPRs). Cross-talk between mPRs and nPRs has also been reported. The complexity of progesterone actions via a plethora of diverse receptors warrants careful consideration of the clinical applications of progesterone, which primarily include birth control formulations in young women and hormone replacement therapy following menopause. Herein, we focus on the benefits and risk of progesterone/progestin supplementation. We conclude that progesterone-only supplementation is considered safe for most reproductive-age women. However, women who currently have ER + breast cancer or have had such cancer in the past should not take sex hormones, including progesterone. Women at high-risk for developing breast or ovarian cancer, either due to their family history or known genetic factors (such as BRCA1/2 mutation) or hormonal conditions, should avoid exogenous sex hormones and proceed with caution when considering using natural hormones to mitigate menopausal symptoms and/or improve quality of life after menopause. These individuals are urged to consult with a qualified OB-GYN physician to thoroughly assess the risks and benefits of sex hormone supplementation. As new insights into the homeostatic roles and specificity of highly integrated rapid signaling and nPR actions are revealed, we are hopeful that the benefits of using progesterone use may be fully realized without an increased risk of women's cancer.
Collapse
Affiliation(s)
- Caroline H Diep
- Department of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Laura J Mauro
- Department of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA; Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Carol A Lange
- Department of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Mauro LJ, Spartz A, Austin JR, Lange CA. Reevaluating the Role of Progesterone in Ovarian Cancer: Is Progesterone Always Protective? Endocr Rev 2023; 44:1029-1046. [PMID: 37261958 PMCID: PMC11048595 DOI: 10.1210/endrev/bnad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/16/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
Ovarian cancer (OC) represents a collection of rare but lethal gynecologic cancers where the difficulty of early detection due to an often-subtle range of abdominal symptoms contributes to high fatality rates. With the exception of BRCA1/2 mutation carriers, OC most often manifests as a post-menopausal disease, a time in which the ovaries regress and circulating reproductive hormones diminish. Progesterone is thought to be a "protective" hormone that counters the proliferative actions of estrogen, as can be observed in the uterus or breast. Like other steroid hormone receptor family members, the transcriptional activity of the nuclear progesterone receptor (nPR) may be ligand dependent or independent and is fully integrated with other ubiquitous cell signaling pathways often altered in cancers. Emerging evidence in OC models challenges the singular protective role of progesterone/nPR. Herein, we integrate the historical perspective of progesterone on OC development and progression with exciting new research findings and critical interpretations to help paint a broader picture of the role of progesterone and nPR signaling in OC. We hope to alleviate some of the controversy around the role of progesterone and give insight into the importance of nPR actions in disease progression. A new perspective on the role of progesterone and nPR signaling integration will raise awareness to the complexity of nPRs and nPR-driven gene regulation in OC, help to reveal novel biomarkers, and lend critical knowledge for the development of better therapeutic strategies.
Collapse
Affiliation(s)
- Laura J Mauro
- Department of Animal Science-Physiology, University of Minnesota, Saint Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Spartz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia R Austin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Departments of Medicine (Division of Hematology, Oncology & Transplantation) and Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Liu J, Wang Z, Zhou J, Wang J, He X, Wang J. Role of steroid receptor-associated and regulated protein in tumor progression and progesterone receptor signaling in endometrial cancer. Chin Med J (Engl) 2023; 136:2576-2586. [PMID: 37144734 PMCID: PMC10617922 DOI: 10.1097/cm9.0000000000002537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2022] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Steroid receptor-associated and regulated protein (SRARP) suppresses tumor progression and modulates steroid receptor signaling by interacting with estrogen receptors and androgen receptors in breast cancer. In endometrial cancer (EC), progesterone receptor (PR) signaling is crucial for responsiveness to progestin therapy. The aim of this study was to investigate the role of SRARP in tumor progression and PR signaling in EC. METHODS Ribonucleic acid sequencing data from the Cancer Genome Atlas, Clinical Proteomic Tumor Analysis Consortium, and Gene Expression Omnibus were used to analyze the clinical significance of SRARP and its correlation with PR expression in EC. The correlation between SRARP and PR expression was validated in EC samples obtained from Peking University People's Hospital. SRARP function was investigated by lentivirus-mediated overexpression in Ishikawa and HEC-50B cells. Cell Counting Kit-8 assays, cell cycle analyses, wound healing assays, and Transwell assays were used to evaluate cell proliferation, migration, and invasion. Western blotting and quantitative real-time polymerase chain reaction were used to evaluate gene expression. The effects of SRARP on the regulation of PR signaling were determined by co-immunoprecipitation, PR response element (PRE) luciferase reporter assay, and PR downstream gene detection. RESULTS Higher SRARP expression was significantly associated with better overall survival and disease-free survival and less aggressive EC types. SRARP overexpression suppressed growth, migration, and invasion in EC cells, increased E-cadherin expression, and decreased N-cadherin and Wnt family member 7A ( WNT7A ) expression. SRARP expression was positively correlated with PR expression in EC tissues. In SRARP -overexpressing cells, PR isoform B (PRB) was upregulated and SRARP bound to PRB. Significant increases in PRE-based luciferase activity and expression levels of PR target genes were observed in response to medroxyprogesterone acetate. CONCLUSIONS This study illustrates that SRARP exerts a tumor-suppressive effect by inhibiting the epithelial-mesenchymal transition via Wnt signaling in EC. In addition, SRARP positively modulates PR expression and interacts with PR to regulate PR downstream target genes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Zhiqi Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Jingyi Zhou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Jiaqi Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Xiangjun He
- Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
13
|
Shchelkunova TA, Levina IS, Morozov IA, Rubtsov PM, Goncharov AI, Kuznetsov YV, Zavarzin IV, Smirnova OV. Effects of Progesterone and Selective Ligands of Membrane Progesterone Receptors in HepG2 Cells of Human Hepatocellular Carcinoma. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1920-1932. [PMID: 38105209 DOI: 10.1134/s0006297923110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/02/2022] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Progesterone exerts multiple effects in different tissues through nuclear receptors (nPRs) and through membrane receptors (mPRs) of adiponectin and progestin receptor families. The effect of progesterone on the cells through different types of receptors can vary significantly. At the same time, it affects the processes of proliferation and apoptosis in normal and tumor tissues in a dual way, stimulating proliferation and carcinogenesis in some tissues, suppressing them and stimulating cell death in others. In this study, we have shown the presence of high level of mPRβ mRNA and protein in the HepG2 cells of human hepatocellular carcinoma. Expression of other membrane and classical nuclear receptors was not detected. It could imply that mPRβ has an important function in the HepG2 cells. The main goal of the work was to study functions of this protein and mechanisms of its action in human hepatocellular carcinoma cells. Previously, we have identified selective mPRs ligands, compounds LS-01 and LS-02, which do not interact with nuclear receptors. Their employment allows differentiating the effects of progestins mediated by different types of receptors. Effects of progesterone, LS-01, and LS-02 on proliferation and death of HepG2 cells were studied in this work, as well as activating phosphorylation of two kinases, p38 MAPK and JNK, under the action of three steroids. It was shown that all three progestins after 72 h of incubation with the cells suppressed their viability and stimulated appearance of phosphatidylserine on the outer surface of the membranes, which was detected by binding of annexin V, but they did not affect DNA fragmentation of the cell nuclei. Progesterone significantly reduced expression of the proliferation marker genes and stimulated expression of the p21 protein gene, but had a suppressive effect on the expression of some proapoptotic factor genes. All three steroids activated JNK in these cells, but had no effect on the p38 MAPK activity. The effects of progesterone and selective mPRs ligands in HepG2 cells were the same in terms of suppression of proliferation and stimulation of apoptotic changes in outer membranes, therefore, they were mediated through interaction with mPRβ. JNK is a member of the signaling cascade activated in these cells by the studied steroids.
Collapse
Affiliation(s)
| | - Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey I Goncharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Yury V Kuznetsov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
14
|
Cartwright M, Louw-du Toit R, Jackson H, Janse van Vuuren M, Africander D. Progesterone receptor isoform ratios influence the transcriptional activity of progestins via the progesterone receptor. J Steroid Biochem Mol Biol 2023; 232:106348. [PMID: 37315868 DOI: 10.1016/j.jsbmb.2023.106348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Progestins (synthetic progestogens) are progesterone receptor (PR) ligands used globally by women in both hormonal contraception and menopausal hormone therapy. Although four generations of unique progestins have been developed, studies seldom distinguish between the activities of progestins via the two functionally distinct PR isoforms, PR-A and PR-B. Moreover, not much is known about the action of progestins in breast cancer tumors where PR-A is mostly overexpressed relative to PR-B. Understanding progestin action in breast cancer is crucial since the clinical use of some progestins has been associated with an increased risk of developing breast cancer. This study directly compared the agonist activities of selected progestins from all four generations for transactivation and transrepression via either PR-A or PR-B, and when PR-A and PR-B were co-expressed at ratios comparable to those detected in breast cancer tumors. Comparative dose-response analysis showed that earlier generation progestins mostly displayed similar efficacies for transactivation on a minimal progesterone response element via the PR isoforms, while most of the 4th generation progestins, similar to the natural progestogen, progesterone (P4), were more efficacious via PR-B. Most of the progestogens were however more potent via PR-A. We are the first to show that the efficacies of the selected progestogens via the individual PR isoforms were generally decreased when PR-A and PR-B were co-expressed, irrespective of the ratio of PR-A:PR-B. While the potencies of most progestogens via PR-B were enhanced when the ratio of PR-A relative to PR-B was increased, those via PR-A were minimally influenced. This study is also the first to report that all progestogens evaluated, except 1st generation medroxyprogesterone acetate and 4th generation drospirenone, displayed similar agonist activity for transrepression via PR-A and PR-B on a minimal nuclear factor kappa B containing promoter. Moreover, we showed that the progestogen activity for transrepression was significantly increased when PR-A and PR-B were co-expressed. Taken together, our results highlight that PR agonists (progestogens) do not always display the same activity via PR-A and PR-B, or when PR-A and PR-B are co-expressed at ratios mimicking those found in breast cancer tumors. These results suggest that biological responses are progestogen- and PR isoform-dependent and may differ in target tissues expressing varying PR-A:PR-B ratios.
Collapse
Affiliation(s)
- Meghan Cartwright
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Hayley Jackson
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Melani Janse van Vuuren
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
15
|
Chang YH, Wu KC, Wang KH, Ding DC. Effects of the Overexpression of Progesterone Receptors on a Precancer p53 and Rb-Defective Human Fallopian Tube Epithelial Cell Line. Int J Mol Sci 2023; 24:11823. [PMID: 37511582 PMCID: PMC10380282 DOI: 10.3390/ijms241411823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of progesterone receptors A (PRA) and B (PRB) on proliferation, migration, invasion, anchorage-independent growth (AIG), and apoptosis of FE25 cells, a precancer p53- and retinoblastoma-defective human fallopian tube epithelial cell line. We observed that the transfection of PRA (FE25-PRA) or PRB (FE25-PRB) into FE25 cells significantly increased the expression of PRA or PRB at both RNA and protein levels without affecting cell morphology. The FE25-PRA cells exhibited slower proliferation, whereas FE25-PRB showed faster cell proliferation than the control cells. In contrast, the FE25-PRA cells showed the highest migration and invasion abilities, whereas the FE25-PRB cells showed the lowest migration and invasion abilities. After treatment with progesterone, all cell types showed decreased AIG levels, increased apoptotic rates in Terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling assay (TUNEL) staining, and increased levels of apoptotic proteins ascertained based on cleaved caspase-3 levels. The half-maximal inhibitory concentration of carboplatin increased in FE25-PRB cells, but that of paclitaxel remained unchanged. Overall, this study suggests that PRA and PRB have distinct roles in regulating the behavior of FE25 cells, and targeting these receptors could be a potential therapeutic strategy for ovarian cancer treatment. If PRA or PRB overexpression is observed in high-grade serous carcinoma, progesterone could be considered as an adjuvant therapy for these specific cancer patients. However, further research is needed to confirm these findings and investigate the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
16
|
Sharma A, Sharma I. In vitro chemo-preventive efficacy of synthetic progestin Norethindrone in human epithelial ovarian cancer. Med Oncol 2023; 40:195. [PMID: 37270458 DOI: 10.1007/s12032-023-02061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Progestin-only based oral contraceptives are majorly used as 'minipill' to prevent unintended pregnancy and treat conditions like polycystic ovary syndrome, hirsutism, and acne. However, the dearth of literature has constrained our comprehension of the exogenous progestin in relation to ovarian cancer progression. Therefore, the aim of the present study was to evaluate the chemo-preventive potential of synthetic progestin Norethindrone (NET) in epithelial ovarian cancer in vitro. Briefly, SKOV3 cells were treated with 1, 10 and 100 µM concentrations of NET for seven days period. The assays for cell viability, wound-healing, cell cycle progression, detection of reactive oxygen species (ROS) and apoptosis were executed to illustrate the protective role of NET. To further clarify the underlying process, quantitative analysis of mRNA levels of oncogenes linked to angiogenesis, inflammation, proliferation, and metastasis (VEGF, HIF-1α, COX-2, and PGRMC1) and tumour suppressor (TP53) genes was conducted. Our study revealed that NET treatment significantly reduced SKOV3 cell growth by inducing cell cycle arrest at G2/M phase, elevating ROS levels, triggering cell death via apoptosis and necrosis, and inhibiting cell migration in a dose-dependent manner. Notably, NET also upregulated TP53 expression while concurrently downregulating VEGF, HIF-1α, COX-2, and PGRMC1 expression. Our results demonstrated that the chemo-preventive effect of Norethindrone may originate from the interaction of genes which exert a protective effect against ovarian carcinogenesis. The current findings also support further investigation, which may lead to changes in prescription practices or health-related advice for women.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Indu Sharma
- Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Ge Y, Zhan Z, Ye M, Jin X. The crosstalk between ubiquitination and endocrine therapy. J Mol Med (Berl) 2023; 101:461-486. [PMID: 36961537 DOI: 10.1007/s00109-023-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/25/2023]
Abstract
Endocrine therapy (ET), also known as hormone therapy, refers to the treatment of tumors by regulating and changing the endocrine environment and hormone levels. Its related mechanism is mainly through reducing hormone levels and blocking the binding of hormones to corresponding receptors, thus blocking the signal transduction pathway to stimulate tumor growth. However, with the application of ET, some patients show resistance to ET, which is attributed to abnormal accumulation of hormone receptors (HRs) and the production of multiple mutants of HRs. The targeted degradation of abnormal accumulation protein mediated by ubiquitination is an important approach that regulates the protein level and function of intracellular proteins in eukaryotes. Here, we provide a brief description of the traditional and novel drugs available for ET in this review. Then, we introduce the link between ubiquitination and ET. In the end, we elaborate the clinical application of ET combined with ubiquitination-related molecules. KEY MESSAGES: • A brief description of the traditional and novel drugs available for endocrine therapy (ET). • The link between ubiquitination and ET. • The clinical application of ET combined with ubiquitination-related molecules.
Collapse
Affiliation(s)
- Yidong Ge
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ziqing Zhan
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Meng Ye
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xiaofeng Jin
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
18
|
Bergsten TM, Li K, Lantvit DD, Murphy BT, Burdette JE. Kaempferol, a Phytoprogestin, Induces a Subset of Progesterone-Regulated Genes in the Uterus. Nutrients 2023; 15:1407. [PMID: 36986136 PMCID: PMC10051346 DOI: 10.3390/nu15061407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Progesterone functions as a steroid hormone involved in female reproductive physiology. While some reproductive disorders manifest with symptoms that can be treated by progesterone or synthetic progestins, recent data suggest that women also seek botanical supplements to alleviate these symptoms. However, botanical supplements are not regulated by the U.S. Food and Drug Administration and therefore it is important to characterize and quantify the inherent active compounds and biological targets of supplements within cellular and animal systems. In this study, we analyzed the effect of two natural products, the flavonoids, apigenin and kaempferol, to determine their relationship to progesterone treatment in vivo. According to immunohistochemical analysis of uterine tissue, kaempferol and apigenin have some progestogenic activity, but do not act in exactly the same manner as progesterone. More specifically, kaempferol treatment did not induce HAND2, did not change proliferation, and induced ZBTB16 expression. Additionally, while apigenin treatment did not appear to dramatically affect transcripts, kaempferol treatment altered some transcripts (44%) in a similar manner to progesterone treatment but had some unique effects as well. Kaempferol regulated primarily unfolded protein response, androgen response, and interferon-related transcripts in a similar manner to progesterone. However, the effects of progesterone were more significant in regulating thousands of transcripts making kaempferol a selective modifier of signaling in the mouse uterus. In summary, the phytoprogestins, apigenin and kaempferol, have progestogenic activity in vivo but also act uniquely.
Collapse
Affiliation(s)
| | | | | | | | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
19
|
Wang L, Lv Q, Wu P, Luo S, Liu S, Chen X, Luo X. RNA-seq and ATAC-seq analysis of CD163 + macrophage-induced progestin-insensitive endometrial cancer cells. Cancer Med 2023; 12:5964-5978. [PMID: 36373483 PMCID: PMC10028121 DOI: 10.1002/cam4.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Progestins are used as fertility-sparing regimens for young patients with stage 1A endometrioid endometrial cancer (EEC) and atypical endometrial hyperplasia (AEH). CD163+ macrophages promote estrogen-dependent EEC development, but whether they induce progestin insensitivity remains unclear. This study aimed to investigate the possible effects of CD163+ macrophages on progestin response in AEH/EEC patients. METHODS The number of infiltrating CD163+ macrophages in progestin-insensitive and -sensitive endometrial lesions was compared. The effects of CD163+ macrophages on progestin responses and progesterone receptor (PR) expression in EC cells were evaluated in vitro. ATAC-seq and RNA-seq were combined to identify molecular/biological changes induced by CD163+ macrophages in progestin-insensitive EC cells. RESULTS Increased CD163+ macrophage infiltration was significantly associated with progestin insensitivity and longer treatment durations in AEH/EEC patients. Additionally, the number of CD163+ macrophages was negatively correlated with PR expression in AEH/EEC tissues. Furthermore, the CD163+ macrophage-mediated microenvironment and secreted cytokines downregulated PR expression and impaired the response of EC cells to medroxyprogesterone acetate (MPA). RNA-seq analysis demonstrated that CD163+ macrophages antagonized PR signaling by blocking or even reversing MPA-regulated differential gene expression. Based on RNA-seq and ATAC-seq analyses, extracellular matrix (ECM) signaling and ECM-related transcription factors, FOXF2, POU1F1, and RUNX1were identified to potentially be involved in CD163+ macrophage-induced progestin insensitivity in endometrial cancer patients. CONCLUSIONS We identified CD163+ macrophages as an important mediator of progestin desensitization and an unfavorable factor for the efficacy of fertility-preserving treatment in AEH/EEC patients.
Collapse
Affiliation(s)
- Lulu Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qiaoying Lv
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Pengfei Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuhan Luo
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Sijia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xuezhen Luo
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Erzurumlu Y, Dogan HK, Catakli D. Progesterone regulates the endoplasmic reticulum-associated degradation and Unfolded Protein Response axis by mimicking the androgenic stimulation in prostate cancer cells. Mol Biol Rep 2023; 50:1253-1265. [PMID: 36445513 DOI: 10.1007/s11033-022-08065-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Today, androgen receptor (AR)-mediated signaling mechanisms in prostate cancer are intensively studied. However, the roles of other steroid hormones in prostate cancer and their effects on androgenic signaling still remain a mystery. Recent studies focused on the androgen-mediated regulation of protein quality control mechanisms such as endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) in prostate cancer cells. Present study, we investigated the action of progesterone signaling on ERAD and UPR mechanisms and analyzed the crosstalk of progesterone signaling with androgenic signal in prostate cancer cells. METHODS AND RESULTS The mode of action of progesterone on ERAD, UPR and AR signaling in prostate cancer was investigated by cell culture studies using LNCaP and 22Rv1 cells. To this aim qRT-PCR, western-blotting assay, immunofluorescent microscopy, nuclear fractionation and bioinformatic analysis were used. Our results indicated that progesterone positively regulates mRNA and protein levels of ERAD components in LNCaP cells. Also, it induced the IRE⍺ and PERK branches of UPR signaling. Progesterone receptor antagonist effectively antagonized the progesterone-induced responses. We also had similar results in 22Rv1 cells. Also, we tested the effect of the pharmacologically reducing of IRE⍺ and PERK signaling on progesterone-induced ERAD. Additionally, we determined the presence of putative progesterone response elements (PREs) in the promoter regions of ERAD members by bioinformatic tool. More strikingly, we found progesterone regulates AR signaling by modulating the nuclear transactivation of AR. CONCLUSION Herein, we defined that progesterone hormone positively regulates ERAD and UPR mechanisms in prostate cancer cells and that progesterone contributes to the molecular biology of prostate cancer by regulating androgenic signaling. Mode of Action of Progesteron on Androgen sensitive prostate cancer cells.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Isparta, Turkey.
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey
| |
Collapse
|
21
|
Cartwright M, Toit RLD, Africander D. The transcriptional activity of progestins used in contraception and menopausal hormone therapy via progesterone receptor A is dependent on the density of the receptor. Biochem Biophys Res Commun 2023; 639:70-76. [PMID: 36470074 PMCID: PMC9876880 DOI: 10.1016/j.bbrc.2022.11.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Studies directly comparing the efficacies and potencies of multiple progestins used in contraception and menopausal hormone therapy (MHT) in parallel via human progesterone receptor isoform A (PR-A) in the same model system are limited, and how these parameters are influenced by the density of PR-A are unclear. This is surprising as it is known that the expression levels of PR-A vary in different tissues and diseases. We thus determined for the first time the relative efficacies and potencies for transactivation of the natural PR ligand, progesterone (P4), the PR-specific agonist promegestone (R5020), and selected progestins from all four generations in parallel via different densities of PR-A overexpressed in the MDA-MB-231 breast cancer cell line. Comparative dose-response analysis showed that P4, R5020, the 1st generation progestins medroxyprogesterone acetate and norethisterone, 2nd generation progestin levonorgestrel, 3rd generation progestin gestodene, as well as 4th generation progestins nesterone, nomegestrol acetate and drospirenone display differential agonist efficacies and potencies via PR-A. Moreover, we showed that the agonist efficacies and potencies of the progestins via PR-A were modulated in a density- and progestin-specific manner. Our finding that the potencies of the progestins via PR-A, at all densities, do not exceed reported progestin serum concentrations in women, suggest that these progestins are likely to elicit similar effects in vivo. We are the first to report that P4 and the selected progestins display similar agonist activity for transrepression via PR-A, and that the density of PR-A enhances the transrepression activity of some, but not all progestogens. Collectively, our findings provide proof of concept that the effects of the selected progestins via PR-A is progestin-specific and dependent on the density of the receptor, suggesting differential progestin responses in women using these progestins in contraception and MHT.
Collapse
Affiliation(s)
- Meghan Cartwright
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
22
|
Yu X, Yi P, Panigrahi AK, Lumahan LEV, Lydon JP, Lonard DM, Lutdke SJ, Wang Z, O'Malley BW. Spatial definition of the human progesterone receptor-B transcriptional complex. iScience 2022; 25:105321. [PMID: 36325049 PMCID: PMC9618773 DOI: 10.1016/j.isci.2022.105321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 01/09/2023] Open
Abstract
We report the quaternary structure of core transcriptional complex for the full-length human progesterone receptor-B (PR-B) homodimer with primary coactivator steroid receptor coactivator-2 (SRC-2) and the secondary coactivator p300/CREB-binding protein (CBP). The PR-B homodimer engages one SRC-2 mainly through its activation function 1 (AF1) in N-terminus. SRC-2 is positioned between PR-B and p300 leaving space for direct interaction between PR-B and p300 through PR-B's C-terminal AF2 and its unique AF3. Direct AF3/p300 interaction provides long-desired structural insights into the known functional differences between PR-B and the PR-A isoform lacking AF3. We reveal the contributions of each AF and demonstrate their structural basis in forming the PR-B dimer interface and PR-B/coactivator complex. Comparison of the PR-B/coactivator complex with other steroid receptor (estrogen receptor and androgen receptor) complexes also shows that each receptor has its unique mechanism for recruiting coactivators due to the highly variable N-termini among receptors.
Collapse
Affiliation(s)
- Xinzhe Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Nuclear Receptor and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Anil K Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lance Edward V Lumahan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Lutdke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,CryoEM/ET Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,CryoEM/ET Core, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Vetter M, Stadlmann S, Bischof E, Georgescu Margarint EL, Schötzau A, Singer G, Heinzelmann-Schwarz V, Montavon C. Hormone Receptor Expression in Primary and Recurrent High-Grade Serous Ovarian Cancer and Its Implications in Early Maintenance Treatment. Int J Mol Sci 2022; 23:ijms232214242. [PMID: 36430718 PMCID: PMC9692716 DOI: 10.3390/ijms232214242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Endocrine therapy is an effective treatment for low-grade serous ovarian cancer. However, the role of estrogen and progesterone receptors as biomarkers for high-grade serous ovarian cancer (HGSOC) is yet to be elucidated because not all estrogen and progesterone receptor-positive tumors benefit from anti-estrogen therapy. The degree of expression is presumed to play a vital role; however, that role is not well-defined in ovarian cancer. We aimed to determine the role of estrogen and progesterone receptor expression in primary and paired relapsed HGSOC. In this study, primary and matched relapsed tumor samples were collected from 80 patients with International Federation of Gynecology and Obstetrics Stage II-IV HGSOC. Tissue microarray was conducted and immunohistochemistry for estrogen and progesterone receptor expression was performed. Two independent pathologists performed the tissue microarray analysis with the Immunoreactive Score and Allred Total score. In the paired analysis, no significant difference in estrogen receptor expression was observed. However, progesterone receptor expression was significantly lower in patients with recurrent platinum-sensitive HGSOC. We conclude that anti-estrogen therapy targeting estrogen receptor positive HGSOC could be administered in primary and relapsed settings. The use of endocrine maintenance with an aromatase inhibitor in patients with estrogen receptor positive HGSOC needs to be further evaluated and validated in a randomized controlled trial.
Collapse
Affiliation(s)
- Marcus Vetter
- Gynecologic Cancer Center, University Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Sylvia Stadlmann
- Department of Pathology, Kantonsspital Baden AG, Im Ergel 1, 5404 Baden, Switzerland
| | - Evelyne Bischof
- Department of Basic and Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Andreas Schötzau
- Ovarian Cancer Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Gad Singer
- Department of Pathology, Kantonsspital Baden AG, Im Ergel 1, 5404 Baden, Switzerland
| | - Viola Heinzelmann-Schwarz
- Gynecologic Cancer Center, University Basel, Spitalstrasse 21, 4031 Basel, Switzerland
- Ovarian Cancer Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Céline Montavon
- Gynecologic Cancer Center, University Basel, Spitalstrasse 21, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-(0)61-2652525; Fax: +41-(0)61-2659199
| |
Collapse
|
24
|
Li Y, Zhou W, Meng X, Murray SD, Li L, Fronk A, Lazaro-Camp VJ, Wen KK, Wu M, Dupuy A, Leslie KK, Yang S. Utilizing an Endogenous Progesterone Receptor Reporter Gene for Drug Screening and Mechanistic Study in Endometrial Cancer. Cancers (Basel) 2022; 14:4883. [PMID: 36230806 PMCID: PMC9561963 DOI: 10.3390/cancers14194883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Expression of progesterone receptor (PR) is a favorable prognostic marker for multiple solid tumors. However, PR expression is reduced or lost in malignant tumors. Thus, monitoring and restoring functional PR expression is important in order to sensitize tumor cells to progesterone therapy in endometrial cancer. We developed stable PR reporter gene containing endometrial cancer cell lines monitoring the endogenous PR expression by inserting mCherry and hygromycin resistant gene at the endogenous PR gene locus by CRISPR/Cas9-mediated genome editing technique. This allows efficient, real-time monitoring of PR expression in its native epigenetic landscape. Reporter gene expression faithfully reflects and amplifies PR expression following treatment with drugs known to induce PR expression. Small molecular PR inducers have been identified from the FDA-approved 1018 drug library and tested for their ability to restore PR expression. Additionally, several candidate PR repressors have been identified by screening the genome-wide CRISPR knockout (GeCKO) library. This novel endogenous PR reporter gene system facilitates the discovery of a new treatment strategy to enhance PR expression and further sensitize progestin therapy in endometrial cancer. These tools provide a systematic, unbiased approach for monitoring target gene expression, allowing for novel drug discovery and mechanistic exploration.
Collapse
Affiliation(s)
- Yiyang Li
- Department of Obstetrics and Gynecology, The University of Iowa, Iowa City, IA 52242, USA
| | - Wei Zhou
- Department of Obstetrics and Gynecology, The University of Iowa, Iowa City, IA 52242, USA
| | - Xiangbing Meng
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Sarina D. Murray
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Long Li
- Department of Obstetrics and Gynecology, The University of Iowa, Iowa City, IA 52242, USA
| | - Abby Fronk
- Department of Obstetrics and Gynecology, The University of Iowa, Iowa City, IA 52242, USA
| | - Vanessa J. Lazaro-Camp
- Department of Obstetrics and Gynecology, The University of Iowa, Iowa City, IA 52242, USA
| | - Kuo-kuang Wen
- High Throughput Screening Facility at University of Iowa (UIHTS), Iowa City, IA 52242, USA or or
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Meng Wu
- High Throughput Screening Facility at University of Iowa (UIHTS), Iowa City, IA 52242, USA or or
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Adam Dupuy
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Kimberly K. Leslie
- Department of Obstetrics and Gynecology, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Shujie Yang
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Cheng Y, Xie L, Xu Z, Hao M, Yang B, Shan W, Wang Y, Lv Q, Chen X. NrCAM secreted by endometrial stromal cells enhances the progestin sensitivity of endometrial cancer cells through epigenetic modulation of PRB. Cancer Gene Ther 2022; 29:1452-1462. [PMID: 35388173 PMCID: PMC9576598 DOI: 10.1038/s41417-022-00467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2021] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
Progestin is one of the main hormone treatment regimens for early-stage estrogen receptor- and progesterone receptor (PR)-positive endometrial cancer (EC). However, the response rate of EC to progestins is unsatisfactory. Investigating the mechanisms related to progestin treatment could help improve treatment efficacy. Studies have demonstrated that normal endometrial stromal cells (ESCs) increase the inhibitory effect of progestin on EC cell proliferation via paracrine signaling, but the mechanisms involved remain unclear. In this study, we found that ESCs had different morphological features between progestin-sensitive and -insensitive EC tissues. ESCs presented typical decidualization changes in progestin-sensitive cases, while they remained slim in progestin-insensitive EC lesions, indicating no response. Furthermore, ESCs enhanced the inhibitory effect of medroxyprogesterone acetate (MPA) on EC cell proliferation by secreting neuron cell adhesion molecule (NrCAM). MPA treatment enhanced NrCAM secretion by ESCs. EC xenografts in BALB/C nude mice demonstrated that MPA combined with NrCAM had an increased tumor inhibitory effect compared with MPA or NrCAM alone. Mechanistically, MPA upregulated NrCAM expression in ESCs through PR. Specifically, NrCAM increased PR expression in EC cells through TET1-induced hydroxymethylation of the PRB gene promoter region. These findings indicate that NrCAM or NrCAM combined with progestins could be a new EC treatment.
Collapse
Affiliation(s)
- Yali Cheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Liying Xie
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Zhiying Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Mengxin Hao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Bingyi Yang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Weiwei Shan
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Yiqin Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qiaoying Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China.
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
26
|
Perrone E, Tudisco R, Pafundi PC, Guido D, Ciucci A, Martinelli E, Zannoni GF, Piermattei A, Spadola S, Ferrante G, Marchetti C, Scambia G, Fagotti A, Gallo D. What’s beyond BRCA Mutational Status in High Grade Serous Ovarian Cancer? The Impact of Hormone Receptor Expression in a Large BRCA-Profiled Ovarian Cancer Patient Series: A Retrospective Cohort Study. Cancers (Basel) 2022; 14:cancers14194588. [PMID: 36230510 PMCID: PMC9559459 DOI: 10.3390/cancers14194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Ovarian hormones are involved in ovarian cancer pathogenesis. However, few reports have investigated the hormone receptor pattern according to BRCA mutational status. The aim of this single-center, observational, retrospective study was to explore the relationship between hormone receptor status and BRCA1/2 mutation in a cohort of 207 high-grade serous ovarian carcinoma (HGSOC) patients. Interesting differences emerged between BRCA-mutated and BRCA wild-type women, in terms of pattern of receptor expression and its association to the outcome. On the whole, our findings, though needing further validation, extend our understanding of the complex interplay between BRCA1/2 protein and hormone signaling, suggesting new pathways to be exploited in order to develop future personalized therapy. Abstract Several studies have explored the prognostic role of hormone receptor status in high-grade serous ovarian cancer (HGSOC) patients. However, few reports have investigated their expression according to BRCA mutational status. The aim of this single-center, observational, retrospective study was to explore the hormone receptor pattern and its potential prognostic role in a cohort of 207 HGSOC women stratified for BRCA mutational status. To this end, ERα, ERβ1, ERβ2, ERβ5, PR, and AR expression were assessed by immunohistochemistry in 135 BRCA-wild type (BRCA-wt) and 72 BRCA1/2 mutation carriers (BRCA-mut). No significant difference emerged in hormone receptor expression between the two sub-samples, except for a significantly lower ERα expression observed in pre-menopausal BRCA1/2-mut as compared to BRCA-wt patients (p = 0.02). None of the examined hormone receptors has revealed a significant prognostic role in the whole sample, apart from the ratio ERα/ERβ5 nuclear, for which higher values disclosed a positive role on the outcome in BRCA-wt subgroup (HR 0.77; CI 0.61–0.96; p = 0.019). Conversely, it negatively affected overall survival in the presence of BRCA1/2-mut (HR 1.41; CI 1.06–1.87; p = 0.020). Finally, higher PR levels were associated with platinum sensitivity in the whole sample (p = 0.019). Our data, though needing further validation, suggest a potential role of oestrogen-mediated pathways in BRCA1/2-associated HGSOC tumorigenesis, thus revealing a possible therapeutic potential for targeting this interaction.
Collapse
Affiliation(s)
- Emanuele Perrone
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Riccardo Tudisco
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Pia Clara Pafundi
- Epidemiology and Biostatistics Facility Core Research, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Davide Guido
- Bioinformatics Facility Core Research, Gemelli Science and Technology Park (GSTeP) Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessandra Ciucci
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Enrica Martinelli
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gian Franco Zannoni
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessia Piermattei
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Saveria Spadola
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giulia Ferrante
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Claudia Marchetti
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Anna Fagotti
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Daniela Gallo
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
27
|
Perkins MS, Louw-du Toit R, Jackson H, Simons M, Africander D. Upregulation of an estrogen receptor-regulated gene by first generation progestins requires both the progesterone receptor and estrogen receptor alpha. Front Endocrinol (Lausanne) 2022; 13:959396. [PMID: 36187129 PMCID: PMC9519895 DOI: 10.3389/fendo.2022.959396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/02/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Progestins, synthetic compounds designed to mimic the activity of natural progesterone (P4), are used globally in menopausal hormone therapy. Although the older progestins medroxyprogesterone acetate (MPA) and norethisterone (NET) have been implicated in increased breast cancer risk, little is known regarding newer progestins, and no significant risk has been associated with P4. Considering that breast cancer is the leading cause of mortality in women, establishing which progestins increase breast cancer incidence and elucidating the underlying mechanisms is a global priority. We showed for the first time that the newer-generation progestin drospirenone (DRSP) is the least potent progestin in terms of proliferation of the estrogen-responsive MCF-7 BUS breast cancer cell line, while NET and P4 have similar potencies to estradiol (E2), the known driver of breast cancer cell proliferation. Notably, MPA, the progestin most frequently associated with increased breast cancer risk, was significantly more potent than E2. While all the progestogens enhanced the anchorage-independent growth of the MCF-7 BUS cell line, MPA promoted a greater number of colonies than P4, NET or DRSP. None of the progestogens inhibited E2-induced proliferation and anchorage-independent growth. We also showed that under non-estrogenic conditions, MPA and NET, unlike P4 and DRSP, increased the expression of the estrogen receptor (ER) target gene, cathepsin D, via a mechanism requiring the co-recruitment of ERα and the progesterone receptor (PR) to the promoter region. In contrast, all progestogens promoted the association of the PR and ERα on the promoter of the PR target gene, MYC, thereby increasing its expression under non-estrogenic and estrogenic conditions. These results suggest that progestins differentially regulate the way the PR and ER converge to modulate the expression of PR and ER-regulated genes. Our novel findings indicating similarities and differences between P4 and the progestins, emphasize the importance of comparatively investigating effects of individual progestins rather than grouping them as a class. Further studies are required to underpin the clinical relevance of PR/ERα crosstalk in response to different progestins in both normal and malignant breast tissue, to either confirm or refute their suitability in combination therapy for ER-positive breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
28
|
Taheri M, Ghafouri-Fard S, Najafi S, Kallenbach J, Keramatfar E, Atri Roozbahani G, Heidari Horestani M, Hussen BM, Baniahmad A. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer. Cancer Cell Int 2022; 22:258. [PMID: 35974340 PMCID: PMC9380309 DOI: 10.1186/s12935-022-02678-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Naturally, in somatic cells chromosome ends (telomeres) shorten during each cell division. This process ensures to limit proliferation of somatic cells to avoid malignant proliferation; however, it leads to proliferative senescence. Telomerase contains the reverse transcriptase TERT, which together with the TERC component, is responsible for protection of genome integrity by preventing shortening of telomeres through adding repetitive sequences. In addition, telomerase has non-telomeric function and supports growth factor independent growth. Unlike somatic cells, telomerase is detectable in stem cells, germ line cells, and cancer cells to support self-renewal and expansion. Elevated telomerase activity is reported in almost all of human cancers. Increased expression of hTERT gene or its reactivation is required for limitless cellular proliferation in immortal malignant cells. In hormonally regulated tissues as well as in prostate, breast and endometrial cancers, telomerase activity and hTERT expression are under control of steroid sex hormones and growth factors. Also, a number of hormones and growth factors are known to play a role in the carcinogenesis via regulation of hTERT levels or telomerase activity. Understanding the role of hormones in interaction with telomerase may help finding therapeutical targets for anticancer strategies. In this review, we outline the roles and functions of several steroid hormones and growth factors in telomerase regulation, particularly in hormone regulated cancers such as prostate, breast and endometrial cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Elmira Keramatfar
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | | | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| |
Collapse
|
29
|
Molecular characterization of low-grade serous ovarian carcinoma identifies genomic aberrations according to hormone receptor expression. NPJ Precis Oncol 2022; 6:47. [PMID: 35768582 PMCID: PMC9242985 DOI: 10.1038/s41698-022-00288-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2021] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Hormone receptor expression is a characteristic of low-grade serous ovarian carcinoma (LGSOC). Studies investigating estrogen receptor (ER) and progesterone receptor (PR) expression levels suggest its prognostic and predictive significance, although their associations with key molecular aberrations are not well understood. As such, we sought to describe the specific genomic profiles associated with different ER/PR expression patterns and survival outcomes in a cohort of patients with advanced disease. The study comprised fifty-five advanced-staged (III/IV) LGSOCs from the Canadian Ovarian Experimental Unified Resource (COEUR) for which targeted mutation sequencing, copy-number aberration, clinical and follow-up data were available. ER, PR, and p16 expression were assessed by immunohistochemistry. Tumors were divided into low and high ER/PR expression groups based on Allred scoring. Copy number analysis revealed that PR-low tumors (Allred score <2) had a higher fraction of the genome altered by copy number changes compared to PR-high tumors (p = 0.001), with cancer genes affected within specific loci linked to altered peptidyl-tyrosine kinase, MAP-kinase, and PI3-kinase signaling. Cox regression analysis showed that ER-high (p = 0.02), PR-high (p = 0.03), stage III disease (p = 0.02), low residual disease burden (p = 0.01) and normal p16 expression (p<0.001) were all significantly associated with improved overall survival. This study provides evidence that genomic aberrations are linked to ER/PR expression in primary LGSOC.
Collapse
|
30
|
Li N, Jiang P, Huang Y, Tu Y, Kong W, Jiang S, Zhang J, Wu Y, Zhang X, Xie Q, Yuan R. Estrogen Receptor- And Progesterone Receptor-Positive Thresholds in Predicting the Recurrence of Early Low-Risk Endometrial Cancer. Clin Med Insights Oncol 2022; 16:11795549221103200. [PMID: 35721388 PMCID: PMC9203725 DOI: 10.1177/11795549221103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Estrogen receptors (ER) and progesterone receptors (PR) have important prognostic value in endometrial cancer, but there is no recognized positive immunohistochemical threshold for predicting the recurrence of early low-risk endometrial cancer. The purpose of this study was to clarify the optimal positive thresholds of the immunohistochemical parameters the ER and PR in early low-risk endometrial cancer. Methods A total of 332 patients with stage IA endometrial cancer were enrolled from the First Affiliated Hospital of Chongqing Medical University and People's Hospital of Sha ping ba District in Chongqing between January 2013 and December 2018. First, univariate and multivariate Cox regression analyses were used to analyze the correlation between various clinical factors and the prognosis of early low-risk endometrial cancer. Then, the receiver operating characteristic curve (ROC curve) and Youden index were used to determine the positive thresholds of ER and PR. Results The positive thresholds of ER and PR for predicting the recurrence of early low-risk endometrial cancer were 12% and 8%, respectively. Multivariate analysis showed that ER (P = 0.004), PR (P = 0.026), and p53 (P = 0.021) were risk factors for the prognosis of patients with early low-risk endometrial cancer. The recurrence-free survival and the overall survival in the low ER group and PR group were much lower than those in the high ER group and PR group (P < 0.001 of all). Conclusions ER and PR positive thresholds of 12% and 8%, respectively, are the most suitable for predicting the recurrence of early low-risk endometrial cancer.
Collapse
Affiliation(s)
- Ning Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gynecology, People's Hospital of Shapingba District, Chongqing, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhen Huang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Tu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Kong
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingni Zhang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yijun Wu
- Department of Gynecology, People's Hospital of Shapingba District, Chongqing, China
| | - Xiaorong Zhang
- Department of Gynecology, People's Hospital of Shapingba District, Chongqing, China
| | - Qingning Xie
- Department of Gynecology, People's Hospital of Shapingba District, Chongqing, China
| | - Rui Yuan
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Milionis C, Ilias I, Koukkou E. Progesterone in gender-affirming therapy of trans women. World J Biol Chem 2022; 13:66-71. [PMID: 35721880 PMCID: PMC10558402 DOI: 10.4331/wjbc.v13.i3.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Progesterone is an endogenous steroid hormone with an important role for the physiology of the female reproductive system and the mammary gland. It has additional significant actions in other tissues, such as the cardiovascular system, the central nervous system, and bones. The present article explores potential clinical implications from the addition of bioidentical progesterone to gender-affirming treatment of trans women. For this purpose, it provides an overview of the physiological action of progesterone in target tissues and speculates on possible benefits for gender transitioning. Progesterone is expected to exert moderate anti-androgen action through suppression of the hypothalamic-pituitary-gonadal axis and inhibition of the conversion of testosterone to dihydrotestosterone. It may also contribute to breast maturation. In the long-term, progesterone could prevent bone loss and protect cardiovascular health. The potential benefits are mainly inferred by extrapolating evidence from biological actions in cisgender women and medical assumptions and hence, clinicians need to be cautious when applying these data into practice. Further research is needed to ascertain the efficacy and safety of progesterone in current hormonal regimens.
Collapse
Affiliation(s)
- Charalampos Milionis
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Ioannis Ilias
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Eftychia Koukkou
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens GR-11521, Greece
| |
Collapse
|
32
|
Wang S, Ma Y, Ma C, Liu K, Huo Z, Shang Y. A supramolecular nanofiber formed by enzyme-instructed self-assembly for SKBR-3 cell selective inhibition. Chem Asian J 2022; 17:e202200301. [PMID: 35510693 DOI: 10.1002/asia.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Indexed: 11/06/2022]
Abstract
Cell-targeted peptides are recommended for precision cancer treatment due to their comparable targeting properties, small molecular size and good biocompatibility. However, unpredictable bioactivity, low penetration rate and poor stability greatly limit its efficacy. Supramolecular self-assembly based on synthetic peptide has great potential to solve related problems and achieve better therapeutic effects. Herein, we report and compare the effects of two different assembly pathway, heating-cooling and enzyme instruction, on the penetrability of SKBR-3 cell targeted peptides. It was found that enzyme-instructed self-assembly (EISA) resulted in hydrogels composed of uniform supramolecular nanofibers, whereas heating-cooling resulted in solutions and precipitations composed of slightly different nanoparticles. The nanofibers formed by EISA showed enhanced cellular uptake (2.54 μM), which was significantly higher than the 1.06 μM of the nanoparticles formed by temperature regulation. Thus, EISA is a promising strategy to improve the cell penetration rate of targeted peptides, and could provide a better solution for precision cancer treatment.
Collapse
Affiliation(s)
- Shijiang Wang
- Shandong Cancer Hospital and Institute, Department of Radiotherapy, CHINA
| | - Yan Ma
- Shandong Cancer Hospital and Institute, Department of Gastrointestinal oncology, CHINA
| | - Changsheng Ma
- Shandong Cancer Hospital and Institute, Department of Radiotherapy, CHINA
| | - Kai Liu
- Shandong Cancer Hospital and Institute, Department of Gastrointestinal oncology, CHINA
| | - Zhijun Huo
- Shandong Cancer Hospital and Institute, Breast Cancer Center, CHINA
| | - Yuna Shang
- Tianjin Normal University, College of Chemistry, 393# Binshuixi road, 300387, Tianjin, CHINA
| |
Collapse
|
33
|
Abstract
The steroid hormone progesterone is highly involved in different physiological–pathophysiological processes, including bone formation and cancer progression. Understanding the working mechanisms, especially identifying the receptors of progesterone hormones, is of great value. In the present study, we identified GPR126 as a membrane receptor for both progesterone and 17-hydroxyprogesterone and triggered its downstream G protein signaling. We further characterized the residues of GPR126 that interact with these two ligands and found that progesterone promoted the progression of a triple-negative breast cancer model through GPR126-dependent Gi-SRC signaling. Therefore, developing antagonists targeting GPR126-Gi may provide an alternative therapeutic option for patients with triple-negative breast cancer. GPR126 is a member of the adhesion G protein-coupled receptors (aGPCRs) that is essential for the normal development of diverse tissues, and its mutations are implicated in various pathological processes. Here, through screening 34 steroid hormones and their derivatives for cAMP production, we found that progesterone (P4) and 17-hydroxyprogesterone (17OHP) could specifically activate GPR126 and trigger its downstream Gi signaling by binding to the ligand pocket in the seven-transmembrane domain of the C-terminal fragment of GPR126. A detailed mutagenesis screening according to a computational simulated structure model indicated that K1001ECL2 and F1012ECL2 are key residues that specifically recognize 17OHP but not progesterone. Finally, functional analysis revealed that progesterone-triggered GPR126 activation promoted cell growth in vitro and tumorigenesis in vivo, which involved Gi-SRC pathways in a triple-negative breast cancer model. Collectively, our work identified a membrane receptor for progesterone/17OHP and delineated the mechanisms by which GPR126 participated in potential tumor progression in triple-negative breast cancer, which will enrich our understanding of the functions and working mechanisms of both the aGPCR member GPR126 and the steroid hormone progesterone.
Collapse
|
34
|
Early adulthood overweight and obesity and risk of premenopausal ovarian cancer, and premenopausal breast cancer including receptor status: prospective cohort study of nearly 500,000 Danish women. Ann Epidemiol 2022; 70:61-67. [DOI: 10.1016/j.annepidem.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
|
35
|
Ward AV, Matthews SB, Fettig LM, Riley D, Finlay-Schultz J, Paul KV, Jackman M, Kabos P, MacLean PS, Sartorius CA. Estrogens and Progestins Cooperatively Shift Breast Cancer Cell Metabolism. Cancers (Basel) 2022; 14:1776. [PMID: 35406548 PMCID: PMC8996926 DOI: 10.3390/cancers14071776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming remains largely understudied in relation to hormones in estrogen receptor (ER) and progesterone receptor (PR) positive breast cancer. In this study, we investigated how estrogens, progestins, or the combination, impact metabolism in three ER and PR positive breast cancer cell lines. We measured metabolites in the treated cells using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). Top metabolic processes upregulated with each treatment involved glucose metabolism, including Warburg effect/glycolysis, gluconeogenesis, and the pentose phosphate pathway. RNA-sequencing and pathway analysis on two of the cell lines treated with the same hormones, found estrogens target oncogenes, such as MYC and PI3K/AKT/mTOR that control tumor metabolism, while progestins increased genes associated with fatty acid metabolism, and the estrogen/progestin combination additionally increased glycolysis. Phenotypic analysis of cell energy metabolism found that glycolysis was the primary hormonal target, particularly for the progestin and estrogen-progestin combination. Transmission electron microscopy found that, compared to vehicle, estrogens elongated mitochondria, which was reversed by co-treatment with progestins. Progestins promoted lipid storage both alone and in combination with estrogen. These findings highlight the shift in breast cancer cell metabolism to a more glycolytic and lipogenic phenotype in response to combination hormone treatment, which may contribute to a more metabolically adaptive state for cell survival.
Collapse
Affiliation(s)
- Ashley V. Ward
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Shawna B. Matthews
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Lynsey M. Fettig
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Duncan Riley
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Jessica Finlay-Schultz
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Kiran V. Paul
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.V.P.); (P.K.)
| | - Matthew Jackman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.); (P.S.M.)
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.V.P.); (P.K.)
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.); (P.S.M.)
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| |
Collapse
|
36
|
Moini A, Salari E, Rashidi H, Maajani K, Abedi M, Bayani L, Alipour S. Evaluation of the association of endometriosis and mammographic breast density, a cross-sectional study. BMC Womens Health 2022; 22:81. [PMID: 35313883 PMCID: PMC8935711 DOI: 10.1186/s12905-022-01663-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Endometriosis is a common benign but painful gynecologic condition. Studies suggest that the risk of some types of malignancies such as breast cancer is higher in women with endometriosis. Mammographic breast density (MBD) is known as an important predictor for breast cancer. The present study aimed to investigate the potential relationship between endometriosis and MBD. Methods This cross-sectional study was conducted on 370 women over 40 years of age. Laparoscopic surgery was carried out for the diagnosis of endometriosis. MBD was classified into four categories according to the ACR BI-RADS classification. Statistical analysis was performed using SPSS software to evaluate the potential association between variables. Results The mean age of all participants was 47.2 ± 6.4 years, and most participants (76.8%) were premenopausal. Multivariate analysis of the potential predictors of MBD, including age, body mass index, oral contraceptive consumption, progesterone consumption, family history of breast cancer and endometriosis showed that age (P value = 0.002), history of progesterone consumption (P value = 0.004) and endometriosis (P value = 0.006) were independent factors for MBD. Conclusion This study indicated that endometriosis had an inverse association with MBD. Age and history of progesterone use were also independent influential factors for MBD. This finding shows that the positive association between breast cancer and endometriosis is not mediated through MBD.
Collapse
Affiliation(s)
- Ashraf Moini
- Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran.,Department of Surgery, Arash Women's Hospital, Tehran University of Medical Sciences, Shahid Baghdarnia (North Rashid) Street, Ressalat Street, 1653915911, Tehran, Iran.,Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elnaz Salari
- Department of Surgery, Arash Women's Hospital, Tehran University of Medical Sciences, Shahid Baghdarnia (North Rashid) Street, Ressalat Street, 1653915911, Tehran, Iran
| | - Hadi Rashidi
- Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Khadije Maajani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Abedi
- Department of Radiology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Bayani
- Department of Radiology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadaf Alipour
- Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran. .,Department of Surgery, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Effect of Steroid Hormones, Prostaglandins (E2 and F2α), Oxytocin, and Tumor Necrosis Factor Alpha on Membrane Progesterone (P4) Receptors Gene Expression in Bovine Myometrial Cells. Animals (Basel) 2022; 12:ani12040519. [PMID: 35203226 PMCID: PMC8868417 DOI: 10.3390/ani12040519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Myometrium tissue shows the expression of non-genomic membrane progesterone (P4) receptors, such as progesterone receptor membrane components (PGRMC) 1 and 2 and membrane progestin receptors (mPR) alpha (mPRα), beta (mPRβ), and gamma (mPRγ). Their variable expression in the bovine uterus during the estrous cycle and early pregnancy suggests that ovarian steroids and luteotropic and/or luteolytic factors may regulate the expression of these receptors in the myometrium. Therefore, this study aimed to examine the effect of P4, estradiol (E2), P4 with E2, prostaglandins (PG) E2 and F2α, oxytocin (OT), and tumor necrosis factor α (TNFα) on the gene expression of PGRMC1, PGRMC2, serpine-1 mRNA-binding protein (SERBP1), and mPRα, mPRβ, and mPRγ in bovine myometrial cells from days 6 to 10 and 11 to 16 of the estrous cycle. The PGE2 concentration and mRNA expression were determined by EIA and real-time PCR, respectively. The data indicated that P4 and E2 can affect the mRNA expression of all studied receptors and SERPB1. However, PGE2, OT, and TNFα could only modulate the expression of PGRMC1, PGRMC2, and SERPB1, respectively. Steroids/factors changed the expression of PGRMC and mPR genes depending on the dose, the stage of the estrous cycle, and the types of receptors. This suggests that the local hormonal milieu may influence the activity of these receptors and P4 action in myometrial cells during the estrous cycle.
Collapse
|
38
|
Li K, Diakite D, Austin J, Lee J, Lantvit DD, Murphy BT, Burdette JE. The Flavonoid Baicalein Negatively Regulates Progesterone Target Genes in the Uterus in Vivo. JOURNAL OF NATURAL PRODUCTS 2022; 85:237-247. [PMID: 34935393 PMCID: PMC9164990 DOI: 10.1021/acs.jnatprod.1c01008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
Baicalein is a flavonoid extracted from the root of Scutellaria baicalensis (Chinese skullcap) and is consumed as part of this botanical dietary supplement to reduce oxidative stress, pain, and inflammation. We previously reported that baicalein can also modify receptor signaling through the progesterone receptor (PR) and glucocorticoid receptor (GR) in vitro, which is interesting due to the well-established roles of both PR and GR in reducing inflammation. To understand the effects of baicalein on PR and GR signaling in vivo in the uterus, ovariectomized CD-1 mice were treated with DMSO, progesterone (P4), baicalein, P4 with baicalein, and P4 with RU486, a PR antagonist, for a week. The uteri were collected for histology and RNA sequencing. Our results showed that baicalein attenuated the antiproliferative effect of P4 on luminal epithelium as well as on the PR target genes HAND2 and ZBTB16. Baicalein did not change levels of PR or GR RNA or protein in the uterus. RNA sequencing data indicated that many transcripts significantly altered by baicalein were regulated in the opposite direction by P4. Similarly, a large portion of GO/KEGG terms and GSEA gene sets were altered in the opposite direction by baicalein as compared to P4 treatment. Treatment of baicalein did not change body weight, organ weight, or blood glucose level. In summary, baicalein functioned as a PR antagonist in vivo and therefore may oppose P4 action under certain conditions such as uterine hyperplasia, fibroids, and uterine cancers.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Djeneba Diakite
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Julia Austin
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jeongho Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D. Lantvit
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
39
|
Pereira G, Guo Y, Silva E, Bevilacqua C, Charpigny G, Lopes-da-Costa L, Humblot P. Progesterone differentially affects the transcriptomic profiles of cow endometrial cell types. BMC Genomics 2022; 23:82. [PMID: 35086476 PMCID: PMC8793221 DOI: 10.1186/s12864-022-08323-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
Background The endometrium is a heterogeneous tissue composed of luminal epithelial (LE), glandular epithelial (GE), and stromal cells (ST), experiencing progesterone regulated dynamic changes during the estrous cycle. In the cow, this regulation at the transcriptomic level was only evaluated in the whole tissue. This study describes specific gene expression in the three types of cells isolated from endometrial biopsies following laser capture microdissection and the transcriptome changes induced by progesterone in GE and ST cells. Results Endometrial LE, GE, and ST cells show specific transcriptomic profiles. Most of the differentially expressed genes (DEGs) in response to progesterone are cell type-specific (96%). Genes involved in cell cycle and nuclear division are under-expressed in the presence of progesterone in GE, highlighting the anti-proliferative action of progesterone in epithelial cells. Elevated progesterone concentrations are also associated with the under-expression of estrogen receptor 1 (ESR1) in GE and oxytocin receptor (OXTR) in GE and ST cells. In ST cells, transcription factors such as SOX17 and FOXA2, known to regulate uterine epithelial-stromal cross-talk conveying to endometrial receptivity, are over-expressed under progesterone influence. Conclusions The results from this study show that progesterone regulates endometrial function in a cell type-specific way, which is independent of the expression of its main receptor PGR. These novel insights into uterine physiology present the cell compartment as the physiological unit rather than the whole tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08323-z.
Collapse
Affiliation(s)
- Gonçalo Pereira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| | - Elisabete Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gilles Charpigny
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | - Luís Lopes-da-Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| | - Patrice Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| |
Collapse
|
40
|
KITA C, CHAMBERS JK, TANABE M, IRIE M, YAMASAKI H, UCHIDA K. Immunohistochemical features of canine ovarian papillary adenocarcinoma and utility of cell block technique for detecting neoplastic cells in body cavity effusions. J Vet Med Sci 2022; 84:406-413. [PMID: 35110458 PMCID: PMC8983287 DOI: 10.1292/jvms.21-0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Dogs with ovarian papillary adenocarcinoma occasionally present with ascites and/or pleural effusion. These aspirated fluids often contain a large number of cells, and distinction between
neoplastic cells and activated mesothelial cells can be difficult. In this study, 7 cases of canine ovarian papillary adenocarcinoma, including 3 with ascites and pleural effusion, were
immunohistochemically examined. Ovarian tumor cells were positive for cytokeratin CAM5.2 (CAM5.2), Wilms’ tumor 1 (WT-1) and progesterone receptor (PR) in all 7 cases. A metastatic lesion of
the mediastinum in one case was also positive for CAM5.2, WT-1 and PR. Immunohistochemistry on cell blocks obtained from ascites and/or pleural effusion of 2 cases revealed the presence of
PR-positive epithelial cells. Whereas, activated mesothelial cells in ascites or pleural effusion collected from dogs without neoplastic lesions were negative for PR. In addition, surface
epithelium and subsurface epithelial structures (SES) of normal canine ovaries, that are considered to be the cell of origin for ovarian papillary adenocarcinoma, were also positive for
CAM5.2, WT-1 and PR. These results indicate that, together with CAM5.2, WT-1 and PR is a useful diagnostic marker for canine ovarian papillary adenocarcinoma. Expression of PR may be
associated with progesterone-dependent nature of canine ovarian papillary adenocarcinoma.
Collapse
Affiliation(s)
| | - James K. CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | | | | | | | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
41
|
Austin JR, Li K, Rodríguez RR, Lantvit DD, Murphy BT, Burdette JE. Irilone, a Red Clover Isoflavone, Combined with Progesterone Enhances PR Signaling through the Estrogen and Glucocorticoid Receptors. JOURNAL OF NATURAL PRODUCTS 2021; 84:3090-3099. [PMID: 34813298 PMCID: PMC9152987 DOI: 10.1021/acs.jnatprod.1c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Trifolium pratense L. (red clover) is a popular botanical supplement used for women's health. Irilone isolated from red clover previously demonstrated progestogenic potentiation activity. In this study, irilone enhanced progesterone signaling was determined to not occur due to post-translational phosphorylation or by reducing progesterone receptor (PR) protein levels but instead increased PR protein levels in T47D breast cancer cells, which could be blocked by estrogen receptor (ER) antagonists, suggesting an ER dependent effect. Further, irilone increased luciferase activity from a hormone responsive element in a cell line that lacked ER and PR but expressed the glucocorticoid receptor (GR). A siRNA knockdown of GR in Ishikawa PR-B endometrial cancer cells reduced irilone's ability to enhance progesterone signaling. In an ovariectomized CD-1 mouse model, irilone did not induce uterine epithelial cell proliferation. The mechanism of action of irilone gives insight into PR crosstalk with other steroid hormone receptors, which can be important for understanding botanicals that are used for women's health.
Collapse
Affiliation(s)
- Julia R. Austin
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kailiang Li
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Rocío Rivera Rodríguez
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D. Lantvit
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
42
|
Tanha K, Mottaghi A, Nojomi M, Moradi M, Rajabzadeh R, Lotfi S, Janani L. Investigation on factors associated with ovarian cancer: an umbrella review of systematic review and meta-analyses. J Ovarian Res 2021; 14:153. [PMID: 34758846 PMCID: PMC8582179 DOI: 10.1186/s13048-021-00911-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2020] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Following cervical and uterine cancer, ovarian cancer (OC) has the third rank in gynecologic cancers. It often remains non-diagnosed until it spreads throughout the pelvis and abdomen. Identification of the most effective risk factors can help take prevention measures concerning OC. Therefore, the presented review aims to summarize the available studies on OC risk factors. A comprehensive systematic literature search was performed to identify all published systematic reviews and meta-analysis on associated factors with ovarian cancer. Web of Science, Cochrane Library databases, and Google Scholar were searched up to 17th January 2020. This study was performed according to Smith et al. methodology for conducting a systematic review of systematic reviews. Twenty-eight thousand sixty-two papers were initially retrieved from the electronic databases, among which 20,104 studies were screened. Two hundred seventy-seven articles met our inclusion criteria, 226 of which included in the meta-analysis. Most commonly reported genetic factors were MTHFR C677T (OR=1.077; 95 % CI (1.032, 1.124); P-value<0.001), BSML rs1544410 (OR=1.078; 95 %CI (1.024, 1.153); P-value=0.004), and Fokl rs2228570 (OR=1.123; 95 % CI (1.089, 1.157); P-value<0.001), which were significantly associated with increasing risk of ovarian cancer. Among the other factors, coffee intake (OR=1.106; 95 % CI (1.009, 1.211); P-value=0.030), hormone therapy (RR=1.057; 95 % CI (1.030, 1.400); P-value<0.001), hysterectomy (OR=0.863; 95 % CI (0.745, 0.999); P-value=0.049), and breast feeding (OR=0.719, 95 % CI (0.679, 0.762) and P-value<0.001) were mostly reported in studies. Among nutritional factors, coffee, egg, and fat intake significantly increase the risk of ovarian cancer. Estrogen, estrogen-progesterone, and overall hormone therapies also are related to the higher incidence of ovarian cancer. Some diseases, such as diabetes, endometriosis, and polycystic ovarian syndrome, as well as several genetic polymorphisms, cause a significant increase in ovarian cancer occurrence. Moreover, other factors, for instance, obesity, overweight, smoking, and perineal talc use, significantly increase the risk of ovarian cancer.
Collapse
Affiliation(s)
- Kiarash Tanha
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Mottaghi
- Research Center for Prevention of Cardiovascular Diseases, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nojomi
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Community and Family Medicine Department, School of Medicine,Iran University of Medical Sciences, Tehran, Iran
- Department of Sociology & Anthropology, Nipissing University, Ontario North Bay, Canada
| | - Marzieh Moradi
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Rajabzadeh
- School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Lotfi
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Imperial Clinical Trials Unit, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
43
|
Goncharov AI, Levina IS, Shliapina VL, Morozov IA, Rubtsov PM, Zavarzin IV, Smirnova OV, Shchelkunova TA. Cytotoxic Effects of the Selective Ligands of Membrane Progesterone Receptors in Human Pancreatic Adenocarcinoma Cells BxPC3. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1446-1460. [PMID: 34906046 DOI: 10.1134/s0006297921110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Progesterone and its synthetic analogues act on cells through different types of receptors, affecting proliferation and apoptosis. These compounds exert their effect through the nuclear receptors and the insufficiently studied membrane progesterone receptors (mPRs) belonging to the progestin and adiponectin Q receptor (PAQR) family. We have identified two selective ligands of mPRs that activate only this type of progesterone receptors - 19-hydroxypregn-4-en-20-one (LS-01) and 19-hydroxy-5β-pregn-3-en-20-one (LS-02). The goal of this work is to study the effect of these compounds on proliferation and death of human pancreatic adenocarcinoma cells BxPC3 and involvement of the two kinases (p38 MAPK and JNK) in signaling pathways activated by progestins through mPRs. It was shown that progesterone and the compound LS-01 significantly (p < 0.05) inhibited the BxPC3 cell viability, with JNK serving as a mediator. The identified targets of these two steroids are the genes of the proteins Ki67, cyclin D1, PCNA, and p21. Progesterone and the compound LS-01 significantly (p < 0.05) stimulate DNA fragmentation, enhancing the cell death. The p38 mitogen-activated protein kinase (MAPK) is a key mediator of this process. The BCL2A1 protein gene was identified as a target of both steroids. The compound LS-02 significantly (p < 0.05) alters membrane permeability and changes the exposure of phosphatidylserine on the outer membrane leaflet, also enhancing the cell death. This compound acts on these processes by activating both kinases, JNK and p38 MAPK. The compound LS-02 targets the genes encoding the proteins HRK, caspase 9, and DAPK.
Collapse
Affiliation(s)
- Alexey I Goncharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
44
|
Ndhlovu E, Deng H, Dai J, Dong X, Liu L, Chen B. Juvenile granulosa cell tumor in pregnancy: case series and literature review. Arch Gynecol Obstet 2021; 305:1299-1310. [PMID: 34694430 DOI: 10.1007/s00404-021-06283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2020] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pregnancy complicated with juvenile granulosa cell tumor (JGCT) is very rare; thus, the experience on clinical diagnosis and management is limited. CASES Two patients presented with abdominal pain, two were incidentally discovered, one by ultrasonography, and one during a caesarian section. One case received an emergency caesarian section because of tumor rupture at 38th week's gestation, the rest were treated at full term and no abnormalities were detected in the newborns. Three cases received further staging surgery, two of which received postoperative adjuvant chemotherapy. No patient had recurrent disease after a follow-up period spanning from 13 to 57 months. CONCLUSION In the absence of emergency, surgery can be delayed without affecting the fetus. More research is needed to determine the value of chemotherapy in FIGO stage I patients.
Collapse
Affiliation(s)
- Elijah Ndhlovu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Deng
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lili Liu
- Department of Pathology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
45
|
Effect of 17β-Estradiol, Progesterone, and Tamoxifen on Neurons Infected with Toxoplasma gondii In Vitro. Microorganisms 2021; 9:microorganisms9102174. [PMID: 34683495 PMCID: PMC8541540 DOI: 10.3390/microorganisms9102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is the causal agent of toxoplasmosis, which produces damage in the central nervous system (CNS). Toxoplasma-CNS interaction is critical for the development of disease symptoms. T. gondii can form cysts in the CNS; however, neurons are more resistant to this infection than astrocytes. The probable mechanism for neuron resistance is a permanent state of neurons in the interface, avoiding the replication of intracellular parasites. Steroids regulate the formation of Toxoplasma cysts in mice brains. 17β-estradiol and progesterone also participate in the control of Toxoplasma infection in glial cells in vitro. The aim of this study was to evaluate the effects of 17β-estradiol, progesterone, and their specific agonists-antagonists on Toxoplasma infection in neurons in vitro. Neurons cultured were pretreated for 48 h with 17β-estradiol or progesterone at 10, 20, 40, 80, or 160 nM/mL or tamoxifen 1 μM/mL plus 17β-estradiol at 10, 20, 40, 80, and 160 nM/mL. In other conditions, the neurons were pretreated during 48 h with 4,4',4″-(4-propyl-[1H] pyrozole-1,3,5-triyl) trisphenol or 23-bis(4-hydroxyphenyl) propionitrile at 1 nM/mL, and mifepristone 1 µM/mL plus progesterone at 10, 20, 40, 80, and 160 nM/mL. Neurons were infected with 5000 tachyzoites of the T. gondii strain RH. The effect of 17β estradiol, progesterone, their agonists, or antagonists on Toxoplasma infection in neurons was evaluated at 24 and 48 h by immunocytochemistry. T. gondii replication was measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. 17β-Estradiol alone or plus tamoxifen reduced infected neurons (50%) compared to the control at 48 h. Progesterone plus estradiol decreased the number of intracellular parasites at 48 h of treatment compared to the control (p < 0.001). 4,4',4″-(4-propyl-[1H] pyrozole-1,3,5-triyl) trisphenol and 23-bis(4-hydroxyphenyl) propionitrile reduced infected neurons at 48 h of treatment significantly compared to the control (p < 0.05 and p < 0.001, respectively). The Toxoplasma infection process was decreased by the effect of 17β-estradiol alone or combined with tamoxifen or progesterone in neurons in vitro. These results suggest the essential participation of progesterone and estradiol and their classical receptors in the regulation of T. gondii neuron infection.
Collapse
|
46
|
Zhan T, Cui S, Shou H, Gao L, Lu S, Zhang C, Zhuang S. Transcriptome aberration in mice uterus associated with steroid hormone response and inflammation induced by dioxybenzone and its metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117294. [PMID: 33971472 DOI: 10.1016/j.envpol.2021.117294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/27/2021] [Revised: 03/28/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Benzophenone-type UV filters have been implicated in multiple adverse reproductive outcomes, yet the underlying processes and molecular targets on the female reproductive tract remain largely unknown. Herein, we investigated the effect of dioxybenzone, one of the widely used congeners, and its demethylated (M1) and hydroxylated (M2) metabolites on transcriptome profiles of ICR mice uterus and identified potential cellular targets in human endometrial stromal cells (HESCs) separated from normal endometrium tissues. Dioxybenzone, M1 and M2 (20 mg/kg bw/d) significantly induced transcriptome aberration with the induction of 683, 802, and 878 differentially expressed genes mainly involved in cancer, reproductive system disease and inflammatory disease. Compared to dioxybenzone, M1 and M2 exhibited a transcriptome profile more similar to estradiol in mice uterus, and subsequently promoted thicker endometrial columnar epithelial layer through upregulation of estrogen receptor target genes-Sprr2s. Dioxybenzone, M1 and M2 (0.1 or 1 μM) also exhibited estrogenic disrupting effect via increasing the mRNA expressions and production of the growth factors responsible for epithelial proliferation, including Fgfs and Igf-1 in HESCs. Additionally, the mRNA expressions of several inflammatory cytokines especially IL-1β in mice uterus and HESCs was significantly upregulated by dioxybenzone and its metabolites. Overall, we revealed that dioxybenzone and its metabolites triggered transcriptome perturbation dually associated with abnormal steroid hormone response and inflammation, both as key determinants to reproductive health risks.
Collapse
Affiliation(s)
- Tingjie Zhan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shixuan Cui
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huafeng Shou
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Leilei Gao
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Shaoyong Lu
- Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston, Clear Lake, TX, 77058, USA
| | - Shulin Zhuang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Li H, Liu Y, Wang Y, Zhao X, Qi X. Hormone therapy for ovarian cancer: Emphasis on mechanisms and applications (Review). Oncol Rep 2021; 46:223. [PMID: 34435651 PMCID: PMC8424487 DOI: 10.3892/or.2021.8174] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) remains the leading cause of mortality due to gynecological malignancies. Epidemiological studies have demonstrated that steroid hormones released from the hypothalamic-pituitary-ovarian axis can play a role in stimulating or inhibiting OC progression, with gonadotropins, estrogens and androgens promoting OC progression, while gonadotropin-releasing hormone (GnRH) and progesterone may be protective factors in OC. Experimental studies have indicated that hormone receptors are expressed in OC cells and mediate the growth stimulatory or growth inhibitory effects of hormones on these cells. Hormone therapy agents have been evaluated in a number of clinical trials. The majority of these trials were conducted in patients with relapsed or refractory OC with average efficacy and limited side-effects. A better understanding of the mechanisms through which hormones affect cell growth may improve the efficacy of hormone therapy. In the present review article, the role of hormones (GnRH, gonadotropins, androgens, estrogens and progestins) and their receptors in OC tumorigenesis, and hormonal therapy in OC treatment is discussed and summarized.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Liu
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
48
|
McHann MC, Blanton HL, Guindon J. Role of sex hormones in modulating breast and ovarian cancer associated pain. Mol Cell Endocrinol 2021; 533:111320. [PMID: 34033890 PMCID: PMC8263503 DOI: 10.1016/j.mce.2021.111320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 01/18/2023]
Abstract
According to the National Cancer Institute in 2020 there will be an estimated 21,750 new ovarian cancer cases and 276,480 new breast cancer cases. Both breast and ovarian cancer are hormone dependent cancers, meaning they cannot grow without the presence of hormones. The two most studied hormones in these two cancers are estrogen and progesterone, which are also involved in the modulation of pain. The incidence of pain in breast and ovarian cancer is very high. Research about mechanisms involved in modulation of pain by hormones are still being debated, as some studies find estrogen to be anti-nociceptive and others pro-nociceptive in pain studies. Moreover, analgesic treatments for breast and ovarian cancer-associated pain are limited and often ineffective. In this review, we will focus on estrogen and progesterone mechanisms of action in modulation of pain and cancer. We will also discuss new treatment options for these types of cancer and associated-pain.
Collapse
Affiliation(s)
- Melissa C McHann
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA
| | - Henry L Blanton
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA.
| |
Collapse
|
49
|
Mauro LJ, Seibel MI, Diep CH, Spartz A, Perez Kerkvliet C, Singhal H, Swisher EM, Schwartz LE, Drapkin R, Saini S, Sesay F, Litovchick L, Lange CA. Progesterone Receptors Promote Quiescence and Ovarian Cancer Cell Phenotypes via DREAM in p53-Mutant Fallopian Tube Models. J Clin Endocrinol Metab 2021; 106:1929-1955. [PMID: 33755733 PMCID: PMC8499172 DOI: 10.1210/clinem/dgab195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/30/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT The ability of ovarian steroids to modify ovarian cancer (OC) risk remains controversial. Progesterone is considered to be protective; recent studies indicate no effect or enhanced OC risk. Knowledge of progesterone receptor (PR) signaling during altered physiology that typifies OC development is limited. OBJECTIVE This study defines PR-driven oncogenic signaling mechanisms in p53-mutant human fallopian tube epithelia (hFTE), a precursor of the most aggressive OC subtype. METHODS PR expression in clinical samples of serous tubal intraepithelial carcinoma (STIC) lesions and high-grade serous OC (HGSC) tumors was analyzed. Novel PR-A and PR-B isoform-expressing hFTE models were characterized for gene expression and cell cycle progression, emboli formation, and invasion. PR regulation of the DREAM quiescence complex and DYRK1 kinases was established. RESULTS STICs and HGSC express abundant activated phospho-PR. Progestin promoted reversible hFTE cell cycle arrest, spheroid formation, and invasion. RNAseq/biochemical studies revealed potent ligand-independent/-dependent PR actions, progestin-induced regulation of the DREAM quiescence complex, and cell cycle target genes through enhanced complex formation and chromatin recruitment. Disruption of DREAM/DYRK1s by pharmacological inhibition, HPV E6/E7 expression, or DYRK1A/B depletion blocked progestin-induced cell arrest and attenuated PR-driven gene expression and associated OC phenotypes. CONCLUSION Activated PRs support quiescence and pro-survival/pro-dissemination cell behaviors that may contribute to early HGSC progression. Our data support an alternative perspective on the tenet that progesterone always confers protection against OC. STICs can reside undetected for decades prior to invasive disease; our studies reveal clinical opportunities to prevent the ultimate development of HGSC by targeting PRs, DREAM, and/or DYRKs.
Collapse
Affiliation(s)
- Laura J Mauro
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
- University of Minnesota, Department of Animal Science, St. Paul, MN 55108, USA
| | - Megan I Seibel
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Caroline H Diep
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Angela Spartz
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | | | - Hari Singhal
- Northwestern University, Department of Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M Swisher
- University of Washington Seattle, Dept Obstetrics & Gynecology, Division of Gynecologic Oncology, Seattle, WA 98109, USA
| | - Lauren E Schwartz
- University of Pennsylvania, Dept of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Dept Obstetrics & Gynecology, Philadelphia, PA 19104, USA
| | - Siddharth Saini
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Fatmata Sesay
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Larisa Litovchick
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Carol A Lange
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
- University of Minnesota, Dept Medicine, Division of Hematology, Oncology & Transplantation, Minneapolis, MN 55455, USA
| |
Collapse
|
50
|
Progesterone receptors in normal breast development and breast cancer. Essays Biochem 2021; 65:951-969. [PMID: 34061163 DOI: 10.1042/ebc20200163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Progesterone receptors (PR) play a pivotal role in many female reproductive tissues such as the uterus, the ovary, and the mammary gland (MG). Moreover, PR play a key role in breast cancer growth and progression. This has led to the development and study of different progestins and antiprogestins, many of which are currently being tested in clinical trials for cancer treatment. Recent reviews have addressed the role of PR in MG development, carcinogenesis, and breast cancer growth. Thus, in this review, in addition to making an overview on PR action in normal and tumor breast, the focus has been put on highlighting the still unresolved topics on hormone treatment involving PR isoforms and breast cancer prognosis.
Collapse
|