1
|
Li X, Chen X, Zhu Q, Zhang P, Nan S, Lv L, Qi S. D-mannose alleviates chronic periodontitis in rats by regulating the functions of neutrophils. BMC Oral Health 2024; 24:1336. [PMID: 39487474 PMCID: PMC11529006 DOI: 10.1186/s12903-024-05080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease characterized by the destruction of the components of the periodontium. It significantly impacts oral health and has been linked to systemic conditions like cardiovascular disease and diabetes. The critical role of neutrophils in the occurrence and development of chronic periodontitis has been paid increasing attention. The study aimed to explore the protective effects of D-mannose on chronic periodontitis and determine whether its underlying mechanisms is related to neutrophils. METHODS To explore the protective effects of D-mannose on chronic periodontitis, the eight-week-old Sprague Dawley rat model of lipopolysaccharide (LPS)-induced periodontitis was established, followed by D-mannose treatment by oral gavage. To evaluate the protective effects of D-mannose against periodontal bone loss, methylene blue staining, hematoxylin and eosin (H&E) staining, and micro-CT scanning were utilized. Then, immunofluorescence (IF), Western Blot, and RT-PCR were applied to assess the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and IL-17), anti-inflammatory cytokine (IL-10), tumor necrosis factor-alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), ten-eleven translocation 2 (TET2), and key glycolytic enzymes (HK1, HK2, PFKFB3), and to examine D-mannose's impact on the recruitment and activation of neutrophils in the gingiva. Additionally, neutrophils isolated from the peripheral blood of healthy rats were treated with LPS and D-mannose, and changes in the expression levels of myeloperoxidase (MPO), IL-1β, IL-6, IL-17, IL-10, and TET2 were observed via IF. RESULTS In vivo, D-mannose inhibited LPS-induced alveolar bone resorption in rats. After D-mannose treatment, the expression levels of IL-17 (p<0.01) and TET2 (p<0.01) were suppressed by IF, and the expression levels of IL-1β (p<0.05), IL-17 (p<0.05) and TET2 (p<0.01) were downregulated by WB. The results of qPCR showed that D-mannose reduced the expression levels of IL-1β (p<0.05), IL-6 (p<0.01), IL-17 (p<0.01), TNF-α (p<0.01), G-CSF (p<0.01), GM-CSF (p<0.01), TET2 (p<0.01), HK1 (p<0.01), HK2 (p<0.01), and PFKFB3 (p<0.01). D-mannose also inhibited the recruitment and activation of neutrophils in LPS-treated rat gingival tissues. In vitro, the results of IF showed that D-mannose inhibited the activation of neutrophils stimulated by LPS, downregulated the expression of IL-1β (p < 0.05), IL-6, IL-17 (p < 0.01), and TET2 (p < 0.01), and upregulated the expression of IL-10 (p < 0.01). CONCLUSIONS D-mannose can alleviate chronic periodontitis in rats by regulating the functions of neutrophils, potentially associated with the expression of TET2 and glycolysis, providing new insights into the potential application of D-mannose to chronic periodontitis.
Collapse
Affiliation(s)
- Xue Li
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Xueting Chen
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Qingyu Zhu
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Pengye Zhang
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Shunxue Nan
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Lei Lv
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Shengcai Qi
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Tavares SJS, Pereira CR, Fortes RAM, Alves BES, Fonteles CSR, Wong DVT, Lima-Júnior RCP, Moraes MO, Lima V. Umbelliferone reduces inflammation and ligature-induced osteoclastic alveolar bone resorption in mice. J Periodontal Res 2024; 59:982-992. [PMID: 38742802 DOI: 10.1111/jre.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
AIMS This study aimed to investigate the effects of Umbelliferone (UMB) on the inflammation underlying alveolar bone resorption in mouse periodontitis. METHODS Male Swiss mice subjected to a ligature of molars were grouped as non-treated (NT), received UMB (15, 45, or 135 mg/kg) or saline daily for 7 days, respectively, and were compared with naïve mice as control. Gingival tissues were evaluated by myeloperoxidase (MPO) activity and interleukin-1β level by ELISA. The bone resorption was directly assessed on the region between the cement-enamel junction and the alveolar bone crest. Microscopically, histomorphometry of the furcation region, immunofluorescence for nuclear factor-kappa B (NF-ĸB), and immunohistochemistry for tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were performed. Systemically, body mass variation and leukogram were analyzed. RESULTS Periodontitis significantly increased MPO activity, interleukin-1β level, and NF-ĸB+ immunofluorescence, and induced severe alveolar bone and furcation resorptions, besides increased TRAP+ and CTSK+ cells compared with naïve. UMB significantly prevented the inflammation by reducing MPO activity, interleukin-1β level, and NF-ĸB+ intensity, besides reduction of resorption of alveolar bone and furcation area, and TRAP+ and CTSK+ cells compared with the NT group. Periodontitis or UMB treatment did not affect the animals systemically. CONCLUSION UMB improved periodontitis by reducing inflammation and bone markers.
Collapse
Affiliation(s)
- Samia Jessica Silva Tavares
- Faculty of Pharmacy, Dentistry and Nursing, Course of Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | - Camila Rodrigues Pereira
- Faculty of Pharmacy, Dentistry and Nursing, Course of Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | | | - Bianca Elen Souza Alves
- Faculty of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Center for Drug Research and Development, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Sá Roriz Fonteles
- Faculty of Pharmacy, Dentistry and Nursing, Course of Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | - Deysi Viviana Tenazoa Wong
- Faculty of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Center for Drug Research and Development, Federal University of Ceará, Fortaleza, Brazil
| | - Roberto César Pereira Lima-Júnior
- Faculty of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Center for Drug Research and Development, Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico Moraes
- Faculty of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Center for Drug Research and Development, Federal University of Ceará, Fortaleza, Brazil
| | - Vilma Lima
- Faculty of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Center for Drug Research and Development, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
3
|
Gopinath D, Pandiar D, Li Z, Panda S. Rodent models for oral microbiome research: considerations and challenges- a mini review. FRONTIERS IN ORAL HEALTH 2024; 5:1439091. [PMID: 39421460 PMCID: PMC11484444 DOI: 10.3389/froh.2024.1439091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Rodent models have been commonly employed in oral microbiota research to investigate the relationship between bacteria and oral disease. Nevertheless, to apply the knowledge acquired from studies conducted on rodents to a human context, it is crucial to consider the significant spatial and temporal parallels and differences between the oral microbiota of mice and humans. Initially, we outline the comparative physiology and microbiology of the oral cavity of rodents and humans. Additionally, we highlight the strong correlation between the oral microbiome of rodents and genetic makeup, which is influenced by factors including vendor, husbandry practices, and environmental conditions. All of these factors potentially impact the replicability of studies on rodent microbiota and the resulting conclusions. Next, we direct our attention toward the diversity in the microbiome within mice models of disease and highlight the diversity that may potentially affect the characteristics of diseases and, in turn, alter the ability to replicate research findings and apply them to real-world situations. Furthermore, we explore the practicality of oral microbial models for complex oral microbial diseases in future investigations by examining the concept of gnotobiotic and germ-free mouse models. Finally, we stress the importance of investigating suitable techniques for characterizing and managing genetically modified organisms. Future research should consider these aspects to improve oral microbiome research's translational potential.
Collapse
Affiliation(s)
- Divya Gopinath
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| |
Collapse
|
4
|
Marruganti C, Gaeta C, Falciani C, Cinotti E, Rubegni P, Alovisi M, Scotti N, Baldi A, Bellan C, Defraia C, Fiorino F, Valensin S, Bellini E, De Rosa A, D'Aiuto F, Grandini S. Are periodontitis and psoriasis associated? A pre-clinical murine model. J Clin Periodontol 2024; 51:1044-1053. [PMID: 38699834 DOI: 10.1111/jcpe.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
AIM To investigate the bidirectional influence between periodontitis and psoriasis, using the respective experimental models of ligature- and imiquimod-induced diseases on murine models. MATERIALS AND METHODS Thirty-two C57/BL6J mice were randomly allocated to four experimental groups: control (P- Pso-), ligature-induced periodontitis (P+ Pso-), imiquimod-induced psoriasis (P- Pso+) and periodontitis and psoriasis (P+ Pso+). Samples (maxilla, dorsal skin and blood) were harvested immediately after death. Measures of periodontitis (distance between the cemento-enamel junction and alveolar bone crest [CEJ-ABC] and the number of osteoclasts) and psoriasis (epidermal thickness and infiltrate cell [/0.03mm2]) severity as well as systemic inflammation (IL-6, IL-17A, TNF-α) were collected. RESULTS The P+ Pso+ group exhibited the most severe experimental periodontitis and psoriasis, with the highest values of CEJ-ABC, number of osteoclasts, epidermal thickness and infiltrate cells in the dorsal skin, as well as the highest blood cytokine concentration. The P+ Pso- group presented with higher cell infiltrate (/0.03mm2) compared to the control group (p <.05), while the P- Pso+ group showed substantially higher alveolar bone loss (CEJ-ABC) than the control group (p <.05). CONCLUSIONS Experimental periodontitis may initiate and maintain psoriasiform skin inflammation and, vice versa, experimental psoriasis may contribute to the onset of periodontitis. In a combined model of the diseases, we propose a bidirectional association between periodontitis and psoriasis via systemic inflammation.
Collapse
Affiliation(s)
- Crystal Marruganti
- Unit of Periodontology, Endodontology and Restorative Dentistry, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Periodontology Unit, UCL Eastman Dental Institute and Hospital, University College London, London, UK
| | - Carlo Gaeta
- Unit of Periodontology, Endodontology and Restorative Dentistry, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Cinotti
- Unit of Dermatology, Department of Medical, Surgical and Neurological Science, University of Siena, Siena, Italy
| | - Pietro Rubegni
- Unit of Dermatology, Department of Medical, Surgical and Neurological Science, University of Siena, Siena, Italy
| | - Mario Alovisi
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Nicola Scotti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Andrea Baldi
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Cristiana Bellan
- Unit of Anatomical Pathology, Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | - Chiara Defraia
- Unit of Anatomical Pathology, Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
- LUM University "Giuseppe Degennaro", Casamassima (Bari)
| | | | | | | | - Francesco D'Aiuto
- Periodontology Unit, UCL Eastman Dental Institute and Hospital, University College London, London, UK
| | - Simone Grandini
- Unit of Periodontology, Endodontology and Restorative Dentistry, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Wichienrat W, Surisaeng T, Sa-Ard-Iam N, Chanamuangkon T, Mahanonda R, Wisitrasameewong W. Alveolar Bone Loss in a Ligature-Induced Periodontitis Model in Rat Using Different Ligature Sizes. Eur J Dent 2024; 18:933-941. [PMID: 38442914 PMCID: PMC11290929 DOI: 10.1055/s-0044-1779426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVES Ligature-induced periodontitis model has been widely used as a preclinical stage for investigating new treatment modalities. However, the effect of different ligature sizes on alveolar bone loss has never been studied. Therefore, we examined alveolar bone loss in this rat model using different sizes of silk ligatures, as well as healing after ligature removal. MATERIALS AND METHODS Left maxillary second molars of Sprague-Dawley rats were ligated with 3-0, 4-0, or 5-0 silk ligatures (n = 4-5/group) for 14 days before harvested maxillae and gingival tissues. For subsequent experiment, animals were ligated for 14 days using the ligature size that induced the most alveolar bone loss before ligature removal and sacrificed at 0, 7 and 14 days (n = 5-6/group). All maxillae and gingival tissues were harvested to evaluate alveolar bone level, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels. STATISTICAL ANALYSIS Data was analyzed using SPSS Statistics 23.0 software (SPSS Inc., Chicago, Illinois, United States). Data from all experiments were tested for normality using Shapiro-Wilk test. Data between ligatured and nonligatured teeth were compared using Student's t-test or Wilcoxon signed-rank test. Differences among different ligature sizes were analyzed by analysis of variance followed by multiple comparisons with post-hoc test. A p-value less than 0.05 was considered statistically significant. RESULTS The alveolar bone loss of ligated teeth was substantially higher than that of control after 14 days of ligation. While 3-0 and 4-0 resulted in significantly greater bone loss than 5-0 silk, the 3-0 group had the lowest rate of ligature loss. Therefore, alveolar bone healing postligature removal was investigated further using 3-0 silk. The results showed no significant bone level change at 2 weeks after ligature removal. In term of IL-1β and TNF-α levels, there was no statistically significant difference in IL-1β level between groups at any time point, while TNF-α was undetectable. CONCLUSION These data showed that 3-0 silk was the most effective ligature size in promoting alveolar bone loss comparing with 4-0 and 5-0 silk. During the 2-week period following ligature removal, spontaneous bone healing was not observed.
Collapse
Affiliation(s)
- Warintorn Wichienrat
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Theeraphat Surisaeng
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Iam
- Center of Excellence in Periodontal Disease and Dental Implant, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Theerapat Chanamuangkon
- Biomaterial Testing Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Rangsini Mahanonda
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wichaya Wisitrasameewong
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Ballı U, Bozkurt Doğan Ş, Öngöz Dede F, Gülle K, Çölgeçen H, Avcı B, Akpolat Ferah M, Kurtiş MB. Effects of Coriander on the Repair Process of Experimentally-induced Periodontitis in Rats. J Vet Dent 2024:8987564241232862. [PMID: 38470443 DOI: 10.1177/08987564241232862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The aim of this study was to evaluate the effects of Coriandrum sativum L. (CSL) seed extract on gingival levels of antioxidant enzymes, pro-inflammatory cytokines and on alveolar bone and attachment levels after experimental periodontitis induction in rats and compare it with low-dose doxycycline (LDD). Forty adult male Wistar Albino rats were divided randomly into 5 groups as follows: 1 = periodontally healthy (control); 2 = periodontitis; 3 = periodontitis + CSL (32 mg/kg); 4 = periodontitis + CSL (200 mg/kg); and 5 = periodontitis + LDD (6 mg/kg). Gingival superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) levels were evaluated by enzyme-linked immunosorbent assay. The presence of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1βeta (IL-1β) immunoreactivity was detected immunohistochemically. Alveolar bone area in the furcation space (ABA), alveolar bone loss (ABL), and attachment loss (AL) were evaluated histomorphometrically. The SOD level was lower in group 5 than in groups 2, 3, and 4. The IL-1β level was highest in group 4. The TNF-α level was statistically higher in groups 2 and 4 than in groups 1, 3, and 5. The IL-6 level was highest in group 4. Its level was higher in groups 2 and 3 than in group 5. ABA was less in groups 2, 3, and 4 compared to groups 1 and 5. ABL was less in group 5 than in groups 2, 3, and 4. AL was greater in group 4 than in group 5. The use of 200 mg/kg CSL showed a pro-inflammatory effect and IL-1β and TNF-α levels decreased after 32 mg/kg CSL application in the treatment of periodontitis.
Collapse
Affiliation(s)
- Umut Ballı
- Department of Periodontology, Yüreğir Karşıyaka Ağız ve Diş Sağlığı Hastanesi, Adana, Turkey
| | - Şeyma Bozkurt Doğan
- Department of Periodontology, Faculty of Dentistry, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Figen Öngöz Dede
- Department of Periodontology, Faculty of Dentistry, Ordu University, Ordu, Turkey
| | - Kanat Gülle
- Department of Medical Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Hatice Çölgeçen
- Department of Biology, Faculty of Sciences and Arts, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Bahattin Avcı
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Meryem Akpolat Ferah
- Department of Medical Histology and Embryology, Faculty of Medicine, Bülent Ecevit University, Zonguldak, Turkey
| | - M Bülent Kurtiş
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Li S, Zeng W, Liu G, Zang J, Yu X. Evaluation of morphological, histological, and immune-related cellular changes in ligature-induced experimental periodontitis in mice. J Dent Sci 2023; 18:1716-1722. [PMID: 37799858 PMCID: PMC10547956 DOI: 10.1016/j.jds.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Background/purpose The ligature-induced periodontitis model is an effective approach to induce inflammation and bone loss similar to that of human periodontitis. Previous clinical and in vitro studies have shown the involvement of lymphocytes in periodontitis, while, the local and systemic profile of immune cells associated with periodontitis in the ligature-induced periodontitis model in mice remains unclear. Materials and methods Experimental periodontitis was constructed in mice by ligating around the maxillary second molars for 14 and 28 days, respectively. Alveolar bone loss was assessed by micro-computed tomography (micro-CT). Hematoxylin and eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining were used to evaluate the histological changes in the periodontal tissues. B and T cells in the cervical lymph nodes, spleen, and peripheral blood were analyzed by flow cytometry. Results The 14-day ligation effectively induced significant periodontal inflammation and alveolar bone loss in C57BL/6J mice, which were progressive and maintained for a relatively long-term period until day 28. In addition, CD3+ T cells and CD19+ B cells were the dominant population in both health and disease, and the B cell population within the cervical lymph nodes (LN) increased significantly under periodontitis condition, while, no significant differences of the T and B cell population among the spleen and peripheral blood were observed. Conclusion The ligature-induced periodontitis mice model was established to perform a longitudinal assessment of changes in periodontal tissues morphologically and histologically, meanwhile, explore the local and systemic changes of the predominant immune-associated cells.
Collapse
Affiliation(s)
- Shiyi Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenmin Zeng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Guojing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jing Zang
- Department of Periodontology, Peking University Third Hospital, Beijing, China
| | - Xiaoqian Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
8
|
Ancuta DL, Alexandru DM, Crivineanu M, Coman C. Induction of Periodontitis Using Bacterial Strains Isolated from the Human Oral Microbiome in an Experimental Rat Model. Biomedicines 2023; 11:2098. [PMID: 37626595 PMCID: PMC10452127 DOI: 10.3390/biomedicines11082098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontal disease is that condition resulting in the destruction of periodontal tissues, bone resorption, and tooth loss, the etiology of which is linked to immunological and microbiological factors. The aim of this study was to evaluate the potential trigger of periodontal disease in a rat model using bacterial species incriminated in the pathology of human periodontitis and to establish their optimal concentrations capable of reproducing the disease, with the idea of subsequently developing innovative treatments for the condition. In this study, we included 15 male Wistar rats, aged 20 weeks, which we divided into three groups. In each group, we applied ligatures with gingival retraction wire on the maxillary incisors. The ligature and the gingival sac were contaminated by oral gavage with a mixture of fresh cultures of Aggregatibacter actinomycetemcomitans (A.a), Fusobacterium nucleatum (F.n) and Streptococcus oralis (S.o) in concentrations of 108, 109, and 1010 CFU/mL each for 5 days a week for 4 weeks. During the clinical monitoring period of 28 days, overlapped with the period of oral contamination, we followed the expression of clinical signs specific to periodontitis. We also monitored the evolution of body weight and took weekly samples from the oral cavity for the microbiological identification of the tested bacteria and blood samples for hematological examination. At the end of the study, the animals were euthanized, and the ligated incisors were taken for histopathological analysis. The characteristic symptomatology of periodontal disease was expressed from the first week of the study and was maintained until the end, and we were able to identify the bacteria during each examination. Hematologically, the number of neutrophils decreased dramatically (p < 0.0001) in the case of the 109 group, unlike the other groups, as did the number of lymphocytes. Histopathologically, we identified neutrophilic infiltrate in all groups, as well as the presence of coccobacilli, periodontal tissue hyperplasia, and periodontal lysis. In the 109 group, we also observed pulpal tissue with necrotic bone fragments and pyogranulomatous inflammatory reaction. By corroborating the data, we can conclude that for the development of periodontal disease using A.a, F.n, and S.o, a concentration of 109 or 1010 CFU/mL is required, which must necessarily contaminate a ligature thread applied to the level of the rat's dental pack.
Collapse
Affiliation(s)
- Diana Larisa Ancuta
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Diana Mihaela Alexandru
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
| | - Maria Crivineanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
| | - Cristin Coman
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
9
|
DA Silva WPP, Delanora LA, Rios BR, Barbosa S, Simon MEDS, Sukotjo C, Faverani LP. Feasible low bone density condition for assessing bioactivity in ex-in vivo and in vivo studies. J Appl Oral Sci 2023; 31:e20220411. [PMID: 37436279 DOI: 10.1590/1678-7757-2022-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/29/2023] [Indexed: 07/13/2023] Open
Abstract
OBJECTIVE To choose a critical animal model for assessments of bone repair with implant installation by comparing senile rats (SENIL) to young ovariectomized rats (OXV). METHODOLOGY For the ex-in vivo study, the femurs were precursors for bone marrow mesenchymal stem cells. Cellular responses were performed, including cell viability, gene expression of osteoblastic markers, bone sialoprotein immunolocalization, alkaline phosphatase activity, and mineralized matrix formation. For the in vivo study, the animals received implants in the region of the bilateral tibial metaphysis for histometric, microtomography, reverse torque, and confocal microscopy. RESULTS Cell viability showed that the SENIL group had lower growth than OVX. Gene expression showed more critical responses for the SENIL group (p<0.05). The alkaline phosphatase activity obtained a lower expression in the SENIL group, as for the mineralization nodules (p<0.05). The in vivo histological parameters and biomechanical analysis showed lower data for the SENIL group. The confocal microscopy indicated the presence of a fragile bone in the SENIL group. The microtomography was similar between the groups. The histometry of the SENIL group showed the lowest values (p<0.05). CONCLUSION In experimental studies with assessments of bone repair using implant installation, the senile model promotes the most critical bone condition, allowing a better investigation of the properties of biomaterials and topographic changes.
Collapse
Affiliation(s)
- William Phillip Pereira DA Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| | - Leonardo Alan Delanora
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| | - Barbara Ribeiro Rios
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| | - Stéfany Barbosa
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| | - Maria Eloise de Sá Simon
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| | - Cortino Sukotjo
- University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, Chicago, Illinois, United States
| | - Leonardo P Faverani
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| |
Collapse
|
10
|
da Silva Barbirato D, Fogacci MF, Guimarães TC, de Carvalho DP, Rurr JC, Takiya CM, Scharfstein J, da Costa Leitão AA. Protective effect of Chromobacterium violaceum and violacein against bone resorption by periodontitis. Clin Oral Investig 2023; 27:2175-2186. [PMID: 36809354 DOI: 10.1007/s00784-023-04891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the potential protective effect of Chromobacterium violaceum and violacein against periodontitis, in experimental models. MATERIALS AND METHODS A double-blind experimental study on the exposure to C. violaceum or violacein in experimentally ligature-induced periodontitis, as preventive factors against alveolar bone loss by periodontitis. Bone resorption was assessed by morphometry. Antibacterial potential of violacein was assessed in an in vitro assay. Its cytotoxicity and genotoxicity were evaluated using the Ames test and SOS Chromotest assay, respectively. RESULTS The potential of C. violaceum to prevent/limit bone resorption by periodontitis was confirmed. Daily exposure to 106 cells/ml in water intake since birth and only during the first 30 days of life significantly reduced bone loss from periodontitis in teeth with ligature. Violacein extracted from C. violaceum was efficient in inhibiting or limiting bone resorption and had a bactericidal effect against Porphyromonas gingivalis in the in vitro assay. CONCLUSIONS We conclude that C. violaceum and violacein have the potential to prevent or limit the progression of periodontal diseases, in an experimental model. CLINICAL RELEVANCE The effect of an environmental microorganism with potential action against bone loss in animal models with ligature-induced periodontitis represents the possibility of understanding the etiopathogenesis of periodontal diseases in populations exposed to C. violaceum and the possibility of new probiotics and antimicrobials. This would imply new preventive and therapeutic possibilities.
Collapse
Affiliation(s)
- Davi da Silva Barbirato
- Laboratory of Molecular Radiobiology - Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 373 Carlos Chagas Filho Avenue, G1-003, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Mariana Fampa Fogacci
- Department of Clinical and Preventive Dentistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Taísa Coelho Guimarães
- Department of Integrated Clinic, Division of Periodontics, Dental School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Denise Pires de Carvalho
- Laboratory of Endocrine Physiology Doris Rosenthal - Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Janine Cardoso Rurr
- Laboratory of Radiation in Biology - Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina Maeda Takiya
- Laboratory of Immunopathology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julio Scharfstein
- Laboratory of Molecular Immunology - Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alvaro Augusto da Costa Leitão
- Laboratory of Molecular Radiobiology - Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 373 Carlos Chagas Filho Avenue, G1-003, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
11
|
Local and systemic effects produced in different models of experimental periodontitis in mice: a systematic review. Arch Oral Biol 2022; 143:105528. [DOI: 10.1016/j.archoralbio.2022.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022]
|
12
|
Frandsen Lau E, Peterson DE, Leite FRM, Nascimento GG, Robledo‐Sierra J, Porat Ben Amy D, Kerr R, Lopez R, Baelum V, Lodi G, Varoni EM. Embracing multi‐causation of periodontitis: Why aren’t we there yet? Oral Dis 2021; 28:1015-1021. [DOI: 10.1111/odi.14107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Ellen Frandsen Lau
- Section for Periodontology Department of Dentistry and Oral Health Faculty of Health Aarhus University Aarhus C Denmark
| | - Douglas E. Peterson
- Section of Oral Medicine Department of Oral Health and Diagnostic Sciences School of Dental Medicine UConn Health Farmington Connecticut USA
| | - Fabio R. M. Leite
- Section for Periodontology Department of Dentistry and Oral Health Faculty of Health Aarhus University Aarhus C Denmark
| | - Gustavo G. Nascimento
- Section for Periodontology Department of Dentistry and Oral Health Faculty of Health Aarhus University Aarhus C Denmark
| | | | - Dalit Porat Ben Amy
- Oral Medicine Unit Department of Oral & Maxillofacial Surgery The Baruch Padeh Medical Center Poriya Israel
| | - Ross Kerr
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine New York University College of Medicine New York City New York USA
| | - Rodrigo Lopez
- Section for Periodontology Department of Dentistry and Oral Health Faculty of Health Aarhus University Aarhus C Denmark
| | - Vibeke Baelum
- Department of Dentistry and Oral Health Faculty of Health Aarhus University Aarhus C Denmark
| | - Giovanni Lodi
- Department of Biomedical Surgical and Dental Sciences University of Milan Milano Italy
| | - Elena M. Varoni
- Department of Biomedical Surgical and Dental Sciences University of Milan Milano Italy
| |
Collapse
|
13
|
Kusakcı-Seker B, Ozdemir H, Karadeniz-Saygili S. Evaluation of the protective effects of non-thermal atmospheric plasma on alveolar bone loss in experimental periodontitis. Clin Oral Investig 2021; 25:6949-6959. [PMID: 34585260 DOI: 10.1007/s00784-021-04203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The inhibition of bone destruction is one of the main goals of periodontitis treatment. The aim of this study was to investigate the protective effects of non-thermal atmospheric plasma (NTAP) on alveolar bone loss radiographically, histomorphometrically, and histologically in experimental periodontitis in rats. MATERIALS AND METHODS A total of twenty-eight rats were randomly divided into three groups: control group (CG) (n = 8), periodontitis group (PG) (n = 10), and NTAP group (NTAPG) (n = 10). In PG and NTAPG, experimental periodontitis was created with ligating. The kINPen 11 plasma jet was applied around the ligatured teeth in NTAPG. The samples from each group were radiographically assessed with microcomputed tomography (micro-CT); then, histological (presence of osteoclasts and inflammatory cells) and immunohistochemical (immunoreactive of OCN and ALP) findings were compared. RESULTS The results revealed a significant increase in alveolar bone loss in the PG compared with CG and NTAPG (p < 0.05). Inflammation, alveolar resorption, and cement damage were reduced significantly in the group treated with NTAP compared to the PG (p < 0.05). Significantly higher levels of osteoclasts were detected in the PG in comparison with both CG and NTAPG (p < 0.05). The lowest osteocalcin and ALP values were determined in PG, and the differences between PG and both groups were also significant (p < 0.05). CONCLUSION Within the limitations of the present study, we can say that NTAP may enhance the bone remodeling process by inhibiting inflammation and preventing alveolar bone destruction. CLINICAL RELEVANCE NTAP has clinical potential for accelerating and treating periodontitis with the inflammatory response modulation, osteoblast differentiation, and alveolar bone loss reduction.
Collapse
Affiliation(s)
- Basak Kusakcı-Seker
- Faculty of Dentistry, Department of Periodontology, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Hakan Ozdemir
- Faculty of Dentistry, Department of Periodontology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Suna Karadeniz-Saygili
- Faculty of Medicine, Department of Histology and Embryology, Kütahya Health Science University, Kütahya, Turkey
| |
Collapse
|
14
|
Flörke C, Eisenbeiß AK, Metz U, Gülses A, Acil Y, Wiltfang J, Naujokat H. Introducing a Novel Experimental Model for Osseo-Disintegration of Titanium Dental Implants Induced by Monobacterial Contamination: An In-Vivo Feasibility Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7076. [PMID: 34832476 PMCID: PMC8623268 DOI: 10.3390/ma14227076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/19/2022]
Abstract
Background and Objectives: The aim of the current study was to establish an osseo-disintegration model initiated with a single microorganism in mini-pigs. Materials and Methods: A total of 36 titanium dental implants (3.5 mm in diameter, 9.5 mm in length) was inserted into frontal bone (n: 12) and the basis of the corpus mandible (n: 24). Eighteen implants were contaminated via inoculation of Enterococcus faecalis. Six weeks after implant insertion, bone-to-implant contact (BIC) ratio, interthread bone density (ITBD), and peri-implant bone density (PIBD) were examined. In addition to that, new bone formation was assessed via fluorescence microscopy, histomorphometry, and light microscopical examinations. Results: Compared to the sterile implants, the contaminated implants showed significantly reduced BIC (p < 0.001), ITBD (p < 0.001), and PBD (p < 0.001) values. Around the sterile implants, the green and red fluorophores were overlapping and surrounding the implant without gaps, indicating healthy bone growth on the implant surface, whereas contaminated implants were surrounded by connective tissue. Conclusions: The current experimental model could be a feasible option to realize a significant alteration of dental-implant osseointegration and examine novel surface decontamination techniques without impairing local and systemic inflammatory complications.
Collapse
Affiliation(s)
- Christian Flörke
- Department of Oral and Maxillofacial Surgery, UKSH, Christian-Albrechts-University, 24105 Kiel, Germany; (A.-K.E.); (U.M.); (Y.A.); (J.W.); (H.N.)
| | | | | | - Aydin Gülses
- Department of Oral and Maxillofacial Surgery, UKSH, Christian-Albrechts-University, 24105 Kiel, Germany; (A.-K.E.); (U.M.); (Y.A.); (J.W.); (H.N.)
| | | | | | | |
Collapse
|
15
|
Pinheiro LS, Kopper PMP, Quintana RM, Scarparo RK, Grecca FS. Does MTA provide a more favourable histological response than other materials in the repair of furcal perforations? A systematic review. Int Endod J 2021; 54:2195-2218. [PMID: 34418122 DOI: 10.1111/iej.13617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND There is no consensus on which furcal perforation repair material induces a more favourable histological response. This systematic review of laboratory studies provides an overview of the studies comparing repair materials in animal models. OBJECTIVES To evaluate whether mineral trioxide aggregate (MTA) yields a more favourable histological response than other materials when used to repair furcal perforations in animal experimental models. METHODS This review followed the PRISMA checklist. The studies included various materials used to repair furcal perforations and compared the histological responses with MTA. An electronic search was conducted in EMBASE, PubMed, Scopus and Web of Science up to 2 September 2020, with no language or publication date restrictions. Studies whose full text was unavailable were excluded. The ARRIVE and SYRCLE tools were used to assess the methodological quality and risk of bias (RoB) of the studies. RESULTS The studies included in the qualitative synthesis were conducted in rat (n = 3) and dog (n = 17) models. They were classified as having a low quality, high methodological heterogeneity and high RoB. MTA and Biodentine, the materials most often compared, reduced the inflammatory reaction to mild over time. In addition, a mineralized tissue was formed in all studies. The response yielded by MTA was better than or equivalent to that of the other tested materials. DISCUSSION This review confirmed that MTA is the reference standard material for furcal perforation repair. However, research using animal models has inherent limitations, and the substantial methodological heterogeneity across the studies included should be considered. Therefore, the knowledge generated by this systematic review should be translated into clinical practice cautiously. CONCLUSIONS Features described in the report and quality assessment guidelines, such as PRIASE, ARRIVE and SYRCLE, should guide researchers. Despite the high RoB and the low methodological quality of the studies included, findings indicated that MTA yields a more favourable histological response than other materials in the repair of furcal perforations. REGISTRATION PROSPERO (CRD42020181297).
Collapse
Affiliation(s)
- Lucas Siqueira Pinheiro
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Maria Poli Kopper
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ramiro Martins Quintana
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Fabiana Soares Grecca
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
16
|
Miyoshi T, Oge S, Nakata S, Ueno Y, Ukita H, Kousaka R, Miura Y, Yoshinari N, Yoshida A. Gemella haemolysans inhibits the growth of the periodontal pathogen Porphyromonas gingivalis. Sci Rep 2021; 11:11742. [PMID: 34083694 PMCID: PMC8175725 DOI: 10.1038/s41598-021-91267-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/25/2021] [Indexed: 02/04/2023] Open
Abstract
The oral microbiome plays an important role in the human microbial community and in maintaining the health of an individual. Imbalances in the oral microbiome may contribute to oral and systemic diseases. The progression of periodontal disease is closely related to the growth of bacteria, such as Porphyromonas gingivalis, in the oral cavity. However, the pathogen growth mechanism specific to periodontal disease remains unknown. This study aimed to identify bacteria associated with periodontal health by focusing on hemolytic bacteria. Unstimulated saliva samples were collected from ten periodontitis patients and five healthy subjects to detect and identify the presence of hemolytic bacteria. The saliva of healthy subjects contained a higher proportion of G. haemolysans than saliva samples from patients with periodontitis. Growth inhibition assays indicated that the protein components contained in the culture supernatant of G. haemolysans directly suppressed the growth of P. gingivalis. This study shows that the presence of G. haemolysans in saliva is associated with periodontal health and that it inhibits the growth of P. gingivalis in vitro.
Collapse
Affiliation(s)
- Tomohiro Miyoshi
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan.
| | - Shogo Oge
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Satoshi Nakata
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Yuji Ueno
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Hidehiko Ukita
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Reiko Kousaka
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Yuki Miura
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Nobuo Yoshinari
- Department of Periodontology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Akihiro Yoshida
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan.
| |
Collapse
|
17
|
de Almeida JM, Matheus HR, Fiorin LG, Furquim EMA, Gusman DJR. Influence of immunosuppression on the progression of experimental periodontitis and on healthy periodontal tissue: A rat in vivo study. J Dent Res Dent Clin Dent Prospects 2021; 15:94-99. [PMID: 34386179 PMCID: PMC8346707 DOI: 10.34172/joddd.2021.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background. The potent anti-inflammatory and immunosuppressive properties of glucocorticoids (GCs) might influence the progression of some disorders, such as periodontitis. Hence, this study aimed to investigate the influence of dexamethasone (DEX) on the alveolar bone loss (ABL) of healthy and periodontally compromised molars in rats. Methods. Thirty male rats were randomly assigned to two groups: physiological saline solution (PSS) and DEX. The animals received subcutaneous injections of either 0.5 mL of PSS) (group PSS) or 2 mg/kg of DEX (group DEX) from one day before experimental periodontitis (EP) induction until euthanasia. EP was induced through ligature placement around the mandibular lower first molars at day 0. Contralateral molars remained unligated. Ten animals per period were euthanized on days 3, 7, and 14. Morphometric analysis was performed to access the ABL. Data were statistically analyzed with ANOVA followed by post hoc Tukey tests (P ≤ 0.05). Results. Higher ABL was observed in both groups on days 7 and 14 than on day 3 (P ≤ 0.05). Concerning periodontitis, higher ABL was observed in group DEX on days 3, 7, and 14 days than group PSS at the same time intervals (P ≤ 0.05). Also, even in the contralateral unligated molars, group DEX exhibited higher ABL on days 3, 7, and 14 days than group PSS at the same time intervals (P ≤ 0.05). Conclusions. Collectively, it can be concluded that DEX aggravates EP and induces spontaneous ABL in the healthy periodontium.
Collapse
Affiliation(s)
- Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Sao Paulo, Brazil
| | - Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Sao Paulo, Brazil
| | - Luiz Guilherme Fiorin
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Sao Paulo, Brazil
| | - Elisa Mara Abreu Furquim
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Sao Paulo, Brazil
| | | |
Collapse
|
18
|
Iova GM, Calniceanu H, Popa A, Szuhanek CA, Marcu O, Ciavoi G, Scrobota I. The Antioxidant Effect of Curcumin and Rutin on Oxidative Stress Biomarkers in Experimentally Induced Periodontitis in Hyperglycemic Wistar Rats. Molecules 2021; 26:molecules26051332. [PMID: 33801378 PMCID: PMC7958623 DOI: 10.3390/molecules26051332] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background: There is a growing interest in the correlation between antioxidants and periodontal disease. In this study, we aimed to investigate the effect of oxidative stress and the impact of two antioxidants, curcumin and rutin, respectively, in the etiopathology of experimentally induced periodontitis in diabetic rats. Methods: Fifty Wistar albino rats were randomly divided into five groups and were induced with diabetes mellitus and periodontitis: (1) (CONTROL)—control group, (2) (DPP)—experimentally induced diabetes mellitus and periodontitis, (3) (DPC)—experimentally induced diabetes mellitus and periodontitis treated with curcumin (C), (4) (DPR)—experimentally induced diabetes mellitus and periodontitis treated with rutin (R) and (5) (DPCR)—experimentally induced diabetes mellitus and periodontitis treated with C and R. We evaluated malondialdehyde (MDA) as a biomarker of oxidative stress and reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG and catalase (CAT) as biomarkers of the antioxidant capacity in blood harvested from the animals we tested. The MDA levels and CAT activities were also evaluated in the gingival tissue. Results: The control group effect was statistically significantly different from any other groups, regardless of whether or not the treatment was applied. There was also a significant difference between the untreated group and the three treatment groups for variables MDA, GSH, GSSG, GSH/GSSG and CAT. There was no significant difference in the mean effect for the MDA, GSH, GSSG, GSH/GSSG and CAT variables in the treated groups of rats with curcumin, rutin and the combination of curcumin and rutin. Conclusions: The oral administration of curcumin and rutin, single or combined, could reduce the oxidative stress and enhance the antioxidant status in hyperglycemic periodontitis rats.
Collapse
Affiliation(s)
- Gilda M. Iova
- Dental Medicine Department, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (G.M.I.); (G.C.); (I.S.)
| | - Horia Calniceanu
- Department of Periodontology Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Periodontal and Periimplant Diseases Research Center “Prof. Dr. Anton Sculean”, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Correspondence: (H.C.); (A.P.); Tel.: +40-745-322-649 (H.C.); +40-751-119-437 (A.P.)
| | - Adelina Popa
- Department of Orthodontics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Correspondence: (H.C.); (A.P.); Tel.: +40-745-322-649 (H.C.); +40-751-119-437 (A.P.)
| | - Camelia A. Szuhanek
- Department of Orthodontics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Olivia Marcu
- Preclinics Department, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Gabriela Ciavoi
- Dental Medicine Department, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (G.M.I.); (G.C.); (I.S.)
| | - Ioana Scrobota
- Dental Medicine Department, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (G.M.I.); (G.C.); (I.S.)
| |
Collapse
|
19
|
Martínez M, Martín-Hernández D, Virto L, MacDowell KS, Montero E, González-Bris Á, Marín MJ, Ambrosio N, Herrera D, Leza JC, Sanz M, García-Bueno B, Figuero E. Periodontal diseases and depression: A pre-clinical in vivo study. J Clin Periodontol 2021; 48:503-527. [PMID: 33432590 DOI: 10.1111/jcpe.13420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
AIM To analyse, through a pre-clinical in vivo model, the possible mechanisms linking depression and periodontitis at behavioural, microbiological and molecular levels. MATERIALS AND METHODS Periodontitis (P) was induced in Wistar:Han rats (oral gavages with Porphyromonas gingivalis and Fusobacterium nucleatum) during 12 weeks, followed by a 3-week period of Chronic Mild Stress (CMS) induction. Four groups (n = 12 rats/group) were obtained: periodontitis and CMS (P+CMS+); periodontitis without CMS; CMS without periodontitis; and control. Periodontal clinical variables, alveolar bone levels (ABL), depressive-like behaviour, microbial counts and expression of inflammatory mediators in plasma and brain frontal cortex (FC), were measured. ANOVA tests were applied. RESULTS The highest values for ABL occurred in the P+CMS+ group, which also presented the highest expression of pro-inflammatory mediators (TNF-α, IL-1β and NF-kB) in frontal cortex, related to the lipoprotein APOA1-mediated transport of bacterial lipopolysaccharide to the brain and the detection of F. nucleatum in the brain parenchyma. A dysregulation of the hypothalamic-pituitary-adrenal stress axis, reflected by the increase in plasma corticosterone and glucocorticoid receptor levels in FC, was also found in this group. CONCLUSIONS Neuroinflammation induced by F. nucleatum (through a leaky mouth) might act as the linking mechanism between periodontal diseases and depression.
Collapse
Affiliation(s)
- María Martínez
- Postgraduate program in Periodontology, Faculty of Dentistry, Complutense University, Madrid (UCM), Madrid, Spain
| | - David Martín-Hernández
- Department of Child and Adolescent Psychiatry, Hospital Gregorio Marañón Research Institute (IiSGM), Madrid, Spain.,Department of Pharmacology and Toxicology, Faculty of Medicine UCM, Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM, IUIN, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - Karina S MacDowell
- Department of Pharmacology and Toxicology, Faculty of Medicine UCM, Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM, IUIN, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - Álvaro González-Bris
- Department of Pharmacology and Toxicology, Faculty of Medicine UCM, Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM, IUIN, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - María José Marín
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - Nagore Ambrosio
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - Juan Carlos Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine UCM, Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM, IUIN, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine UCM, Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM, IUIN, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| |
Collapse
|
20
|
Firkova EI. In vivo animal models in periodontal research - focus on rodents. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Periodontal research has developed very fast in the last two decades. Although at this stage of science a lot of genetic and molecular-based trials are performed in order to elucidate the complex etiology, pathophysiology, biofilm-host interactions and responses on genetic and cellular level, in vivo animal models are still used. In many ways, in vivo experiments are superior to in vitro tests when the dynamics of the immune-inflammatory nature of the periodontal disease and peri-implantitis and the specific healing of soft and hard tissues is concerned. Screening the efficacy, mechanisms of action and application of different biomaterials requires in vivo experiments, be-fore the data translation to clinical settings. A number of small animals like rodents and large species like dogs and nonhuman primates are involved in periodontal research. As live creatures are used, the design of the studies must be well defined, with regard to the type of the animals, most suitable for the tested hypothesis, observation period, sample size, study power, critical size defects, and specific testing sites.
Collapse
|
21
|
Commensal Bacterium Rothia aeria Degrades and Detoxifies Gluten via a Highly Effective Subtilisin Enzyme. Nutrients 2020; 12:nu12123724. [PMID: 33276655 PMCID: PMC7761627 DOI: 10.3390/nu12123724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Celiac disease is characterized by a chronic immune-mediated inflammation of the small intestine, triggered by gluten contained in wheat, barley, and rye. Rothia aeria, a gram-positive natural colonizer of the oral cavity and the upper digestive tract is able to degrade and detoxify gluten in vitro. The objective of this study was to assess gluten-degrading activity of live and dead R. aeria bacteria in vitro, and to isolate the R. aeria gluten-degrading enzyme. METHODS After an overnight fast, Balb/c mouse were fed a 1 g pellet of standard chow containing 50% wheat (and 4% gliadin) with or without 1.6 × 107 live R. aeria bacteria. After 2 h, in vivo gluten degradation was assessed in gastric contents by SDS-PAGE and immunoblotting, and immunogenic epitope neutralization was assessed with the R5 gliadin ELISA assay. R. aeria enzyme isolation and identification was accomplished by separating proteins in the bacterial cell homogenate by C18 chromatography followed by gliadin zymography and mass spectrometric analysis of excised bands. RESULTS In mice fed with R. aeria, gliadins and immunogenic epitopes were reduced by 20% and 33%, respectively, as compared to gluten digested in control mice. Killing of R. aeria bacteria in ethanol did not abolish enzyme activity associated with the bacteria. The gluten degrading enzyme was identified as BAV86562.1, here identified as a member of the subtilisin family. CONCLUSION This study shows the potential of R. aeria to be used as a first probiotic for gluten digestion in vivo, either as live or dead bacteria, or, alternatively, for using the purified R. aeria enzyme, to benefit the gluten-intolerant patient population.
Collapse
|
22
|
Borges JS, Paranhos LR, de Souza GL, de Souza Matos F, de Macedo Bernardino Í, Moura CCG, Soares PBF. Does systemic oral administration of curcumin effectively reduce alveolar bone loss associated with periodontal disease? A systematic review and meta-analysis of preclinical in vivo studies. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
23
|
Almoshari Y, Ren R, Zhang H, Jia Z, Wei X, Chen N, Li G, Ryu S, Lele SM, Reinhardt RA, Wang D. GSK3 inhibitor-loaded osteotropic Pluronic hydrogel effectively mitigates periodontal tissue damage associated with experimental periodontitis. Biomaterials 2020; 261:120293. [PMID: 32877763 DOI: 10.1016/j.biomaterials.2020.120293] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/16/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Periodontitis is a chronic inflammatory disease caused by complex interactions between the host immune system and pathogens that affect the integrity of periodontium. To prevent disease progression and thus preserve alveolar bone structure, simultaneous anti-inflammatory and osteogenic intervention are essential. Hence, a glycogen synthase kinase 3 beta inhibitor (BIO) was selected as a potent inflammation modulator and osteogenic agent to achieve this treatment objective. BIO's lack of osteotropicity, poor water solubility, and potential long-term systemic side effects, however, have hampered its clinical applications. To address these limitations, pyrophosphorylated Pluronic F127 (F127-PPi) was synthesized and mixed with regular F127 to prepare an injectable and thermoresponsive hydrogel formulation (PF127) of BIO, which could adhere to hard tissue and gradually release BIO to exert its therapeutic effects locally. Comparing to F127 hydrogel, PF127 hydrogels exhibited stronger binding to hydroxyapatite (HA). Additionally, BIO's solubility in PF127 solution was dramatically improved over F127 solution and the improvement was proportional to the polymer concentration. When evaluated on a rat model of periodontitis, PF127-BIO hydrogel treatment was found to be very effective in preserving alveolar bone and ligament, and preventing periodontal inflammation, as shown by the micro-CT and histological data, respectively. Altogether, these findings suggested that the thermoresponsive PF127 hydrogel is an effective local drug delivery system for better clinical management of periodontitis and associated pathologies.
Collapse
Affiliation(s)
- Yosif Almoshari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Rongguo Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Haipeng Zhang
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Guojuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, NE, 68588, USA
| | - Subodh M Lele
- Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Richard A Reinhardt
- Department of Surgical Specialties, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
24
|
Nishimi M, Nakamura K, Hisada A, Endo K, Ushimura S, Yoshimura Y, Yawaka Y. Effects of N-acetylcysteine on root resorption after tooth replantation. PEDIATRIC DENTAL JOURNAL 2020. [DOI: 10.1016/j.pdj.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Gusman DJR, Ervolino E, Theodoro LH, Garcia VG, Nagata MJH, Alves BES, de Araujo NJ, Matheus HR, de Almeida JM. Antineoplastic agents exacerbate periodontal inflammation and aggravate experimental periodontitis. J Clin Periodontol 2019; 46:457-469. [PMID: 30854670 DOI: 10.1111/jcpe.13101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/22/2018] [Accepted: 03/02/2019] [Indexed: 12/15/2022]
Abstract
AIM This study evaluated the effects of 5-fluorouracil (5-FU) and cisplatin (CIS) in healthy periodontal tissues and in the early stages of experimental periodontitis (EP) in rats. METHODS One hundred and eighty male rats were divided into three groups, which were submitted to the following systemic treatments: physiological saline solution (PSS); CIS and 5FU. Each group was subdivided into two subgroups: without (NEP) and with (EP) induction of EP. Animals were euthanized at 3, 5 and 7 days post-treatment. Histological, histometric (percentage of bone in the furcation [PBF]) and immunohistochemical (for tumour necrosis factor-α, interleukin-1β and receptor activator of nuclear factor-κB ligand) analyses were performed. Data were statistically analysed. RESULTS CIS-NEP and 5FU-NEP showed more inflammation than PSS-NEP at 3, 5 and 7 days. CIS-EP and 5FU-EP showed more inflammation and lower PBF than PSS-EP at all periods of evaluation. 5FU-EP showed lower PBF than CIS-EP at 5 and 7 days. CONCLUSION 5-FU and CIS exacerbated periodontal inflammation and aggravated the progression of EP in its early stages.
Collapse
Affiliation(s)
- David Jonathan Rodrigues Gusman
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.,Department of Periodontics, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Letícia Helena Theodoro
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Valdir Gouveia Garcia
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Maria José Hitomi Nagata
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Breno Edson Sendão Alves
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.,Department of Periodontics, Maringa University Center (UNINGA), Maringá, Paraná, Brazil
| | - Nathalia Januario de Araujo
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Henrique Rinaldi Matheus
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Juliano Milanezi de Almeida
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
26
|
Sun J, Eberhard J, Glage S, Held N, Voigt H, Schwabe K, Winkel A, Stiesch M. Development of a peri‐implantitis model in the rat. Clin Oral Implants Res 2019; 31:203-214. [DOI: 10.1111/clr.13556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jingqing Sun
- Affiliated Hospital of Stomatology School of Medicine Zhejiang University Hangzhou China
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| | - Joerg Eberhard
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
- Faculty of Dentistry University of Sydney Sydney NSW Australia
| | - Silke Glage
- Institution for Laboratory Animal Science Hannover Medical School Hannover Germany
| | - Nadine Held
- Institution for Laboratory Animal Science Hannover Medical School Hannover Germany
| | - Henning Voigt
- Department of Otorhinolaryngology Hannover Medical School Hannover Germany
| | - Kerstin Schwabe
- Department of Neurosurgery Hannover Medical School Hannover Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| |
Collapse
|
27
|
Gürkan ÇG, Keleș GÇ, Kurt S, Çiftçi A, Ayas B, Güler Ş, Çetinkaya BÖ. Histopathological and biochemical evaluation of paeoniflorin administration in an experimental periodontitis model. J Oral Sci 2019; 61:554-557. [PMID: 31588098 DOI: 10.2334/josnusd.18-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to evaluate the effects of administered Paeoniflorin (Pae) on periodontal tissues within an experimental periodontitis model. Forty male Wistar rats were used in this study and experimental periodontitis was created in all rats except in the control group (n = 10, first group). In the periodontitis group, experimental periodontitis was created but no other application was performed (n = 10, second group). In the other groups created experimental periodontitis, systemic Pae (n = 10, third group) or saline (n = 10, fourth group) was applied. A biochemical analysis of the gingival vascular endothelial growth factor (VEGF) levels and a histomorphometric analysis (measurements of the area of alveolar bone, alveolar bone resorption, and attachment loss) were performed. In the Pae group, the area of the alveolar bone was increased, while alveolar bone resorption and attachment loss decreased. Gingival VEGF levels increased in all groups that created experimental periodontitis and the greatest increase seen in the Pae group. Histomorphometric and biochemical analyses in this study suggest that Pae has a curative effect on periodontal tissues. However, additional studies are needed to confirm these results.
Collapse
Affiliation(s)
| | - Gonca Çayır Keleș
- Department of Periodontology, Faculty of Dentistry, İstanbul Okan University
| | - Sevda Kurt
- Department of Periodontology, Faculty of Dentistry, Recep Tayyip Erdoğan University
| | - Alper Çiftçi
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayıs University
| | - Bülent Ayas
- Department of Histology and Embriology, Faculty of Medicine, Ondokuz Mayıs University
| | - Şevki Güler
- Department of Periodontology, Faculty of Dentistry, Abant İzzet Baysal University
| | | |
Collapse
|
28
|
Messer JG, La S, Kipp DE, Castillo EJ, Yarrow JF, Jorgensen M, Wnek RD, Kimmel DB, Aguirre JI. Diet-induced Generalized Periodontitis in Lewis Rats. Comp Med 2019; 69:384-400. [PMID: 31575381 DOI: 10.30802/aalas-cm-18-000113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Periodontitis is an important public health concern worldwide. Because rodents from the genus Rattus are resistant to spontaneous periodontitis, experimental periodontitis must be initiated by mechanical procedures and interventions. Due to their exacerbated Th1 response and imbalanced Th17 regulatory T-cell responses, Lewis rats are highly susceptible to inducible inflammatory and autoimmune diseases. We hypothesized that feeding Lewis rats a diet high in sucrose and casein (HSC) would alter the oral microenvironment and induce inflammation and the development of periodontitis lesions without mechanical intervention. A baseline group (BSL, n = 8) was euthanized at age 6 wk. Beginning at 6 wk of age, 2 groups of Lewis rats were fed standard (STD, n = 12) or HSC (n = 20) chow and euthanized at 29 wk of age. We evaluated the degree of periodontitis through histology and μCT of maxillae and mandibles. The HSC-induced inflammatory response of periodontal tissues was assessed by using immunohistochemistry. Gene expression analysis of inflammatory cytokines associated with Th1 and Th17 responses, innate immunity cytokines, and tissue damage in response to bacteria were assessed also. The potential systemic effects of HSC diet were evaluated by assessing body composition and bone densitometry endpoints; serum leptin and insulin concentrations; and gene expression of inflammatory cytokines in the liver. Placing Lewis rats on HSC diet for 24 wk induced a host Th1-immune response in periodontal tissues and mild to moderate, generalized periodontitis characterized by inflammatory cell infiltration (predominantly T cells and macrophages), osteoclast resorption of alveolar bone, and hyperplasia and migration of the gingival epithelium. HSC-fed Lewis rats developed periodontitis without mechanical intervention in the oral cavity and in the absence of any noteworthy metabolic abnormalities. Consequently, the rat model we described here may be a promising approach for modeling mild to moderate periodontitis that is similar in presentation to the human disease.
Collapse
Affiliation(s)
- Jonathan G Messer
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Stephanie La
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, North Carolina
| | - Deborah E Kipp
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, North Carolina
| | - Evelyn J Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Joshua F Yarrow
- Department of Research Service, Veterans Affairs Medical Center, North Florida-South Georgia Veteran Health System, Gainesville, Florida
| | - Marda Jorgensen
- Department of Pediatrics, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Florida, Gainesville, Florida
| | - Russell D Wnek
- Department of Research Service, Veterans Affairs Medical Center, North Florida-South Georgia Veteran Health System, Gainesville, Florida
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - José Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, Florida;,
| |
Collapse
|
29
|
Balci Yuce H, Toker H, Yildirim A, Tekin MB, Gevrek F, Altunbas N. The effect of luteolin in prevention of periodontal disease in Wistar rats. J Periodontol 2019; 90:1481-1489. [DOI: 10.1002/jper.18-0584] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hatice Balci Yuce
- Department of PeriodontologyFaculty of DentistryGaziosmanpasa University Tokat Turkey
| | - Hulya Toker
- Department of PeriodontologyGülhane Faculty of DentistryUniversity of Medical Sciences Ankara Turkey
| | - Ali Yildirim
- Department of PeriodontologyFaculty of DentistryCumhuriyet University Sivas Turkey
| | - Mehmet Bugrul Tekin
- Department of PeriodontologyFaculty of DentistryCumhuriyet University Sivas Turkey
| | - Fikret Gevrek
- Department of Histology and EmbryologyFaculty of MedicineGaziosmanpasa University Tokat Turkey
| | - Nilufer Altunbas
- Department of PeriodontologyFaculty of DentistryCumhuriyet University Sivas Turkey
| |
Collapse
|
30
|
The effect of vanillic acid on ligature-induced periodontal disease in Wistar rats. Arch Oral Biol 2019; 103:1-7. [DOI: 10.1016/j.archoralbio.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 11/21/2022]
|
31
|
de Molon RS, Park CH, Jin Q, Sugai J, Cirelli JA. Characterization of ligature-induced experimental periodontitis. Microsc Res Tech 2018; 81:1412-1421. [PMID: 30351474 DOI: 10.1002/jemt.23101] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/27/2018] [Accepted: 06/30/2018] [Indexed: 01/17/2023]
Abstract
We sought to better characterize the progression of periodontal tissue breakdown in rats induced by a ligature model of experimental periodontal disease (PD). A total of 60 male Sprague-Dawley rats were evenly divided into an untreated control group and a PD group induced by ligature bilaterally around first and second maxillary molars. Animals were sacrificed at 1, 3, 5, 7, 14, and 21 days after the induction of PD. Alveolar bone loss was evaluated by histomorphometry and microcomputed tomography (μCT). The immune-inflammatory process in the periodontal tissue was assessed using descriptive histologic analysis and quantitative polymerase chain reaction (qPCR). This ligature model resulted in significant alveolar bone loss and increased inflammatory process of the periodontal tissues during the initial periods of evaluation (0-14 days). A significant increase in the gene expression of pro-inflammatory cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and proteins involved in osteoclastogenesis, receptor activator of nuclear factor-k B ligand (RANKL) and osteoprotegerin (OPG) was observed in the first week of analysis. In the later periods of evaluation (14-21 days), no significant alterations were noted with regard to inflammatory processes, bone resorption, and expression of cytokine genes. The ligature-induced PD model resulted in progressive alveolar bone resorption with two different phases: Acute (0-14 days), characterized by inflammation and rapid bone resorption, and chronic (14-21 days) with no significant progression of bone loss. Furthermore, the gene expressions of IL-6, IL-1β, TNF-α, RANKL, and OPG were highly increased during the progress of PD in the early periods. RESEARCH HIGHLIGHTS: Ligature-induced bone resorption in rats occurred in the initial periods after disease induction The bone resorption was characterized by two distinct phases: Acute (0-14 days), with pronounced inflammation and alveolar bone loss Chronic phase (14-21 days): No further disease progression Several pro-inflammatory cytokines were increased during the progress of periodontitis.
Collapse
Affiliation(s)
- Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, Brazil
| | - Chan Ho Park
- Department of Dental Biomaterials, College of Dentistry, Institute for Biomaterials Research and Development, Kyungpook National University, Daegu, Republic of Korea
| | - Qiming Jin
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Jim Sugai
- Department of Periodontics and Oral Medicine and Center for Craniofacial Regeneration, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
32
|
Fontana CR, Grecco C, Bagnato VS, de Freitas LM, Boussios CI, Soukos NS. Molecular analyses of two bacterial sampling methods in ligature-induced periodontitis in rats. Clin Exp Dent Res 2018; 4:19-24. [PMID: 29744211 PMCID: PMC5813890 DOI: 10.1002/cre2.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 01/23/2023] Open
Abstract
The prevalence profile of periodontal pathogens in dental plaque can vary as a function of the detection method; however, the sampling technique may also play a role in determining dental plaque microbial profiles. We sought to determine the bacterial composition comparing two sampling methods, one well stablished and a new one proposed here. In this study, a ligature-induced periodontitis model was used in 30 rats. Twenty-seven days later, ligatures were removed and microbiological samples were obtained directly from the ligatures as well as from the periodontal pockets using absorbent paper points. Microbial analysis was performed using DNA probes to a panel of 40 periodontal species in the checkerboard assay. The bacterial composition patterns were similar for both sampling methods. However, detection levels for all species were markedly higher for ligatures compared with paper points. Ligature samples provided more bacterial counts than paper points, suggesting that the technique for induction of periodontitis could also be applied for sampling in rats. Our findings may be helpful in designing studies of induced periodontal disease-associated microbiota.
Collapse
Affiliation(s)
- Carla Raquel Fontana
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências FarmacêuticasAraraquaraSPBrazil
| | - Clovis Grecco
- Instituto de Física‐Grupo de Óptica–Universidade de Sao Paulo, USPSPBrazil
| | | | - Laura Marise de Freitas
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências FarmacêuticasAraraquaraSPBrazil
| | - Constantinos I. Boussios
- Laboratory for Information and Decision SystemsMassachusetts Institute of Technology, MITMassachusettsUSA
| | | |
Collapse
|
33
|
Donos N, Park JC, Vajgel A, de Carvalho Farias B, Dereka X. Description of the periodontal pocket in preclinical models: limitations and considerations. Periodontol 2000 2017; 76:16-34. [DOI: 10.1111/prd.12155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/13/2022]
|
34
|
Balci Yuce H, Lektemur Alpan A, Gevrek F, Toker H. Investigation of the effect of astaxanthin on alveolar bone loss in experimental periodontitis. J Periodontal Res 2017; 53:131-138. [PMID: 29044575 DOI: 10.1111/jre.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Astaxanthin is a keto-carotenoid that has a strong antioxidant effect. The purpose of this study was to evaluate the effects of astaxanthin on alveolar bone loss and histopathological changes in ligature-induced periodontitis in rats. MATERIAL AND METHODS Wistar rats were divided into four experimental groups: non-ligated (C, n = 6); ligature only (L, n = 6); ligature and astaxanthin (1 mg/kg/day astaxanthin, AS1 group, n = 8); ligature and astaxanthin (5 mg/kg/day astaxanthin, AS5 group, n = 8). Silk ligatures were placed at the gingival margin of lower first molars of the mandibular quadrant. The study duration was 11 days and the animals were killed at the end of this period. Changes in alveolar bone levels were clinically measured and tissues were immunohistochemically examined, osteocalcin, bone morphogenic protein-2, inducible nitric oxide synthase, Bax and bcl-2 levels in alveolar bone and tartrate-resistant acid phosphatase-positive osteoclast cells, osteoblast and inflammatory cell counts were determined. RESULTS Alveolar bone loss was highest in the L group and the differences among the L, AS1 and AS5 groups were also significant (P < .05). Both doses of astaxanthin decreased tartrate-resistant acid phosphatase-positive+ osteoclast cell and increased osteoblast cell counts (P < .05). The inflammation in the L group was also higher than those of the C and AS1 groups were (P < .05) indicating the anti-inflammatory effect of astaxanthin. Although inducible nitric oxide synthase, osteocalcin, bone morphogenic protein-2 and bax staining percentages were all highest in the AS5 group and bcl-2 staining percentage was highest in the AS1 group, values were close to each other (P > .05). CONCLUSION Within the limits of this study, it can be suggested that astaxanthin administration may reduce alveolar bone loss by increasing osteoblastic activity and decrease osteoclastic activity in experimental periodontitis model.
Collapse
Affiliation(s)
- H Balci Yuce
- Department of Periodontology, Faculty of Dentistry, Gaziosmanpasa University, Tokat, Turkey
| | - A Lektemur Alpan
- Department of Periodontology, Pamukkale University Faculty of Dentistry, Denizli, Turkey
| | - F Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - H Toker
- Department of Periodontology, Faculty of Dentistry, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
35
|
Virto L, Cano P, Jiménez-Ortega V, Fernández-Mateos P, González J, Esquifino AI, Sanz M. Obesity and Periodontitis. An Experimental Study to Evaluate the Periodontal and Systemic Effects of the Co-Morbidity. J Periodontol 2017; 89:176-185. [DOI: 10.1902/jop.2017.170355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/03/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Leire Virto
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Pilar Cano
- Faculty of Medicine, Department of Biochemistry and Molecular Biology III, University Complutense, Madrid, Spain
| | - Vanesa Jiménez-Ortega
- Faculty of Medicine, Department of Biochemistry and Molecular Biology III, University Complutense, Madrid, Spain
| | - Pilar Fernández-Mateos
- Faculty of Medicine, Department of Cellular Biology, University Complutense, Madrid, Spain
| | - Jerián González
- Faculty of Odontology, Section of graduate Periodontology, University Complutense, Madrid, Spain
| | - Ana Isabel Esquifino
- Faculty of Medicine, Department of Biochemistry and Molecular Biology III, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
36
|
Yu X, Gong Z, Lin Q, Wang W, Liu S, Li S. Denervation effectively aggravates rat experimental periodontitis. J Periodontal Res 2017. [PMID: 28621056 DOI: 10.1111/jre.12472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- X. Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Department of Periodontology; School and Hospital of Stomatology; Shandong University; Jinan Shandong China
- Department of Endodontics; Jinan Stomatological Hospital; Jinan Shandong China
| | - Z. Gong
- Department of Endodontics; Jinan Stomatological Hospital; Jinan Shandong China
| | - Q. Lin
- Department of Endodontics; Jinan Stomatological Hospital; Jinan Shandong China
| | - W. Wang
- Department of Endodontics; Jinan Stomatological Hospital; Jinan Shandong China
| | - S. Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Department of Periodontology; School and Hospital of Stomatology; Shandong University; Jinan Shandong China
| | - S. Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Department of Periodontology; School and Hospital of Stomatology; Shandong University; Jinan Shandong China
| |
Collapse
|
37
|
Santos BFE, Souza EQM, Brigagão MRPL, Lima DCD, Fernandes LA. Local application of statins in the treatment of experimental periodontal disease in rats. J Appl Oral Sci 2017; 25:168-176. [PMID: 28403357 PMCID: PMC5393537 DOI: 10.1590/1678-77572016-0149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/09/2016] [Indexed: 05/16/2023] Open
Abstract
Objective The objective of this study was to evaluate the local effects of statins as adjuvants for treatment by scaling and root planing (SRP) of periodontal disease induced in rats. Material and Methods Ninety rats were used in the present experiment. Periodontal disease was induced in all animals using a cotton thread placed in the left first mandibular molar. After 7 days of induction, the bandage was removed and the animals were divided into three groups: 1) NT group (n=30), no treatment; 2) SRP group (n=30): SRP and irrigation with control gel; 3) S group (n=30) - SRP and irrigation with Simvastatin. Ten animals from each group were euthanized at 7, 15 and 30 days after treatment. Gingival biopsy specimens were processed to analyze the expression of matrix metalloproteinase 8 (MMP-8). The mandibles were removed and submitted to radiographic and laboratory processing for histometric analysis. Results The S group showed a significantly lower expression of MMP-8 compared to NT and SRP groups in all experimental periods. In the radiographic and histometric analyses between the groups, S group showed a significantly lower bone loss (BL) compared to NT and SRP groups in all experimental periods. Conclusions Within the limits of this study, it can be concluded that locally applied statin was effective as an adjuvant treatment for SRP in rats with induced periodontal disease.
Collapse
Affiliation(s)
| | | | | | - Daniela Coelho de Lima
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| | - Leandro Araújo Fernandes
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| |
Collapse
|
38
|
Kantarci A, Hasturk H, Van Dyke TE. Animal models for periodontal regeneration and peri-implant responses. Periodontol 2000 2017; 68:66-82. [PMID: 25867980 DOI: 10.1111/prd.12052] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
Abstract
Translation of experimental data to the clinical setting requires the safety and efficacy of such data to be confirmed in animal systems before application in humans. In dental research, the animal species used is dependent largely on the research question or on the disease model. Periodontal disease and, by analogy, peri-implant disease, are complex infections that result in a tissue-degrading inflammatory response. It is impossible to explore the complex pathogenesis of periodontitis or peri-implantitis using only reductionist in-vitro methods. Both the disease process and healing of the periodontal and peri-implant tissues can be studied in animals. Regeneration (after periodontal surgery), in response to various biologic materials with potential for tissue engineering, is a continuous process involving various types of tissue, including epithelia, connective tissues and alveolar bone. The same principles apply to peri-implant healing. Given the complexity of the biology, animal models are necessary and serve as the standard for successful translation of regenerative materials and dental implants to the clinical setting. Smaller species of animal are more convenient for disease-associated research, whereas larger animals are more appropriate for studies that target tissue healing as the anatomy of larger animals more closely resembles human dento-alveolar architecture. This review focuses on the animal models available for the study of regeneration in periodontal research and implantology; the advantages and disadvantages of each animal model; the interpretation of data acquired; and future perspectives of animal research, with a discussion of possible nonanimal alternatives. Power calculations in such studies are crucial in order to use a sample size that is large enough to generate statistically useful data, whilst, at the same time, small enough to prevent the unnecessary use of animals.
Collapse
|
39
|
Kirschneck C, Fanghänel J, Wahlmann U, Wolf M, Roldán JC, Proff P. Interactive effects of periodontitis and orthodontic tooth movement on dental root resorption, tooth movement velocity and alveolar bone loss in a rat model. Ann Anat 2016; 210:32-43. [PMID: 27838559 DOI: 10.1016/j.aanat.2016.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/05/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Many adult orthodontic patients suffer from chronic periodontitis with recurrent episodes of active periodontal inflammation. As their number is steadily increasing, orthodontists are more and more frequently challenged by respective treatment considerations. However, little is currently known regarding interactive effects on undesired dental root resorption (DRR), tooth movement velocity, periodontal bone loss and the underlying cellular and tissue reactions. MATERIAL AND METHODS A total of 63 male Fischer344 rats were used in three consecutive experiments employing 21 animals each (A/B/C), randomly assigned to 3 experimental groups (n=7, 1/2/3), respectively: (A) CBCT; (B) histology/serology; (C) RT-qPCR-(1) control; (2) orthodontic tooth movement (OTM) of the first/second upper left molars (NiTi coil spring, 0.25N); (3) OTM with experimentally induced periodontitis (cervical silk ligature). After 14days of OTM, we quantified blood leukocyte level, DRR, osteoclast activity and relative gene expression of inflammatory and osteoclast marker genes within the dental-periodontal tissue as well as tooth movement velocity and periodontal bone loss after 14 and 28 days. RESULTS The experimentally induced periodontal bone loss was significantly increased by concurrent orthodontic force application. Periodontal inflammation during OTM on the other hand significantly augmented the extent of DRR, relative expression of inflammatory/osteoclast marker genes, blood leukocyte level and periodontal osteoclast activity. In addition, contrary to previous studies, we observed a significant increase in tooth movement velocity. CONCLUSIONS Although accelerated tooth movement would be favourable for orthodontic treatment, our results suggest that orthodontic interventions should only be performed after successful systematic periodontal therapy and paused in case of recurrent active inflammation.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Jochen Fanghänel
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Ulrich Wahlmann
- Department of Maxillofacial Surgery, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Michael Wolf
- Department of Orthodontics, Rheinische Friedrich Wilhelm University of Bonn, Welschnonnenstraße 17, D-53111 Bonn, Germany.
| | - J Camilo Roldán
- Director of the Division of Pediatric Facial Plastic Surgery and Craniofacial Anomalies, Catholic Children's Hospital Wilhelmstift, Liliencronstraße 130, D-22149 Hamburg, Germany; Lecturer at the Department of Cranio-Maxillofacial Surgery, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
40
|
Frade TIC, Dos Reis DC, Cassali GD, Bakhle YS, de Francischi JN. Tissue-selective inflammation in the oral cavity of the rat. Inflammopharmacology 2016; 24:145-53. [PMID: 27324249 DOI: 10.1007/s10787-016-0269-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
Abstract
In the current study, carrageenan (CG; 100-1000 μg/site) was injected intraorally in the cheeks of Holtzman or Wistar rats to evaluate the consequences of administration of a non-immunogenic stimulus in the orofacial region. Subsequent inflammation was measured as oedema (increased thickness of the cheek wall using digital calipers), relative to the other cheek injected with saline. Oedema formation and tissue collection for histopathological studies were assessed at 0.5, 1, 2, 3, 4, 6, 24, 48, 72, 96, 120 and 144 h after injection. In parallel, other groups of rats were injected with CG in the hind paw, to provide a reference response. The inhibitor of prostaglandin biosynthesis, indomethacin, and antagonists of histamine, serotonin and NK1 receptors were injected s.c., 0.5 h before CG. CG induced a dose-related oedema more rapidly from 0 to 2 h which lasted for at least 72 h, showing a biphasic profile (peak at 2 and 24 h), compared with the monophasic oedema induced in rat paws (maximal duration of 24 h). Histopathological analysis of the CG-injected cheek revealed oedema formation with little leukocyte recruitment at 1-3 h, mast cell degranulation at 6 h, and a mixed polymorphonuclear and mononuclear cell infiltrate by 24 h. Histamine and serotonin antagonists and indomethacin, but not the NK1 antagonist, decreased cheek oedema in the first 4 h following carrageenan. Taken together, our data indicated important differences in the pattern of inflammation between the oral cavity and the paw which will determine the therapeutic approach to the treatment of inflammatory conditions in the oral cavity.
Collapse
Affiliation(s)
| | - Diego Carlos Dos Reis
- General Pathology Department of Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- General Pathology Department of Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Janetti Nogueira de Francischi
- Pharmacology Department of Biological Sciences Institute (ICB), Federal University of Minas Gerais, Av. Antonio Carlos 6627, Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
41
|
Fogacci MF, Barbirato DDS, Amaral CDSF, da Silva PG, Coelho MDO, Bertozi G, de Carvalho DP, Leão ATT. No association between periodontitis, preterm birth, or intrauterine growth restriction: experimental study in Wistar rats. Am J Obstet Gynecol 2016; 214:749.e1-749.e11. [PMID: 26694136 DOI: 10.1016/j.ajog.2015.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/14/2015] [Accepted: 12/07/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND The biologic plausibility of the possible association between periodontitis and adverse pregnancy outcomes has been assessed with the use of different experimental models. However, most experimental studies did not induce periodontitis in the animals but promoted an acute microbial challenge with selected periodontal pathogens or their products subcutaneous or intravenous or intraamniotic. The present study was then conducted to verify the biologic plausibility of such association by experimentally inducing periodontitis in Wistar rats. OBJECTIVE An experimental study on an animal model by the induction of periodontitis in 50% of sites and assessment of the presence of cytokines in the gingival tissue, serum, placenta, cord, and amniotic fluid was designed to test the null hypothesis that experimental periodontitis that is induced on rats does not result in adverse pregnancy outcomes. STUDY DESIGN Forty female Wistar rats were included in 2 groups: a periodontally healthy (without ligatures) and an experimentally induced periodontitis group (test, with ligatures). Forty-five days after the induction, the mating was initiated. Males were placed with females in the ratio of 1:2 for a period of 12 hours. The bodyweight of the female, from then on, was recorded daily. When the pregnancy was confirmed on day 20, laparotomy was performed. The amniotic fluid, placenta, umbilical cord, blood (serum) and maternal and gingival tissue samples were subjected to quantitative analysis for interleukin 1α, -6, -10, -4, -12p70, and -17a, tumor necrosis factor-α, and interferon-γ by multiplex methods. Mean scores, standard deviations, and standard errors for estimated measures were calculated. For cytokines analyses, the Mann-Whitney test was conducted to compare the concentration of the analytes from control and test groups in the different tissues samples. For comparison of cytokines reduction from gingival tissue to serum and from serum to placenta, the Wilcoxon Test was performed. Spearman's correlation was conducted among cytokines in the 5 different tissues that were evaluated. RESULTS The induced periodontitis in Wistar rats did not result in adverse outcomes of pregnancy. There were no statistically significant differences between groups in relation to prematurity, fetal, or birth weight. Regarding cytokines, there were no statistically significant differences in concentrations that were measured in each tissue between the groups with periodontitis and controls. Furthermore, all cytokine levels in the placenta, except interleukin-6, were diminished compared with the amniotic fluid or maternal serum, which suggested that the cytokines cannot easily be transferred via this tissue in maternal-fetal or fetomaternal direction. The fertility rate was reduced significantly in the group with periodontitis. CONCLUSION Periodontitis that is induced in rats is not a risk factor for preterm birth or low birthweight.
Collapse
Affiliation(s)
- Mariana Fampa Fogacci
- Department of Dental Clinic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Davi da Silva Barbirato
- Department of Dental Clinic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Environmental Biogeochemistry Wolfgang C. Pfeiffer Laboratory, Federal University of Rondonia (UNIR)
| | - Cristine da Silva Furtado Amaral
- Department of Dental Clinic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Psychology and Dental Clinic, Veiga de Almeida University, Rio de Janeiro, Brazil
| | | | | | - Giuliana Bertozi
- Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Denise Pires de Carvalho
- Division of Graduate Periodontics, and the Laboratory of Endocrine Physiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
42
|
Kırzıoğlu FY, Fentoğlu Ö, Bulut MT, Doğan B, Özdem M, Özmen Ö, Çarsancaklı SA, Ergün AG, Orhan H. Is a Cholestrol-Enriched Diet a Risk Factor for Alveolar Bone Loss? J Periodontol 2016; 87:529-38. [DOI: 10.1902/jop.2016.150509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Balli U, Cetinkaya BO, Keles GC, Keles ZP, Guler S, Sogut MU, Erisgin Z. Assessment of MMP-1, MMP-8 and TIMP-2 in experimental periodontitis treated with kaempferol. J Periodontal Implant Sci 2016; 46:84-95. [PMID: 27127689 PMCID: PMC4848383 DOI: 10.5051/jpis.2016.46.2.84] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/28/2016] [Indexed: 11/10/2022] Open
Abstract
Purpose The objective of this study was to investigate the effect of a dietary flavonoid, kaempferol, which has been shown to possess antiallergic, anti-inflammatory, anticarcinogenic, and antioxidant activities on the periodontium by histomorphometric analysis and on gingival tissue matrix metalloproteinase-1 (MMP-1), MMP-8, and tissue inhibitor of metalloproteinase-2 (TIMP-2) by biochemical analysis of rats after experimental periodontitis induction. Methods Sixty Wistar rats were randomly divided into six groups of ten rats each, and silk ligatures were placed around the cervical area of the mandibular first molars for 15 days, except in the healthy control rats. In the experimental periodontitis groups, systemic kaempferol (10 mg/kg/2d) and saline were administered by oral gavage at two different periods (with and without the presence of dental biofilm) to all rats except for the ten non-medicated rats. Alveolar bone area, alveolar bone level, and attachment level were determined by histomorphometric analysis, and gingival tissue levels of MMP-1, MMP-8, and TIMP-2 were detected by biochemical analysis. Results Significantly greater bone area and significantly less alveolar bone and attachment loss were observed in the kaempferol application groups compared to the control groups (P<0.05). In addition, gingival tissue MMP-1 and -8 levels were significantly lower in the kaempferol application groups compared to the control groups and the periodontitis group (P<0.001). There were no statistically significant differences in TIMP-2 levels between the kaempferol and saline application groups (P>0.05). Conclusions Kaempferol application may be useful in decreasing alveolar bone resorption, attachment loss, and MMP-1 and -8 production in experimental periodontitis.
Collapse
Affiliation(s)
- Umut Balli
- Department of Periodontology, Bulent Ecevit University Faculty of Dentistry, Zonguldak, Turkey
| | - Burcu Ozkan Cetinkaya
- Department of Periodontology, Ondokuzmayis University Faculty of Dentistry, Samsun, Turkey
| | - Gonca Cayir Keles
- Department of Periodontology, Ondokuzmayis University Faculty of Dentistry, Samsun, Turkey
| | - Zeynep Pinar Keles
- Department of Periodontology, Ondokuzmayis University Faculty of Dentistry, Samsun, Turkey
| | - Sevki Guler
- Department of Periodontology, Ondokuzmayis University Faculty of Dentistry, Samsun, Turkey
| | - Mehtap Unlu Sogut
- Ondokuzmayis University Samsun High School of Health, Samsun, Turkey
| | - Zuleyha Erisgin
- Department of Histology and Embryology, Giresun University Faculty of Medicine, Giresun, Turkey
| |
Collapse
|
44
|
De Almeida J, Ervolino E, Bonfietti LH, Novaes VCN, Theodoro LH, Fernandes LA, Martins TM, Faleiros PL, Garcia VG. Adjuvant Therapy With Sodium Alendronate for the Treatment of Experimental Periodontitis in Rats. J Periodontol 2015; 86:1166-75. [DOI: 10.1902/jop.2015.150166] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin Oral Investig 2015; 20:1203-16. [PMID: 26411857 DOI: 10.1007/s00784-015-1607-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate in long-term periods the destruction of periodontal tissues and bacterial colonization induced by oral gavage with periodontopathogens or ligature experimental periodontal disease models. MATERIAL AND METHODS Forty-eight C57BL/6 J mice were divided into four groups: group C: negative control; group L: ligature; group G-Pg: oral gavage with Porphyromonas gingivalis; and group G-PgFn: oral gavage with Porphyromonas gingivalis associated with Fusobacterium nucleatum. Mice were infected by oral gavage five times in 2-day intervals. After 45 and 60 days, animals were sacrificed and the immune-inflammatory response in the periodontal tissue was assessed by stereometric analysis. The alveolar bone loss was evaluated by live microcomputed tomography and histometric analysis. qPCR was used to confirm the bacterial colonization in all the groups. Data were analyzed using the Kruskal-Wallis, Wilcoxon, and ANOVA tests, at 5 % of significance level. RESULTS Ligature model induced inflammation and bone resorption characterized by increased number of inflammatory cells and decreased number of fibroblasts, followed by advanced alveolar bone loss at 45 and 60 days (p < 0.05). Bacterial colonization in groups G-Pg and G-PgFn was confirmed by qPCR but inflammation and bone resorption were not observed (p < 0.05). CONCLUSIONS The ligature model but not the oral gavage models were effective to induce inflammation and bone loss in long-term periods. Pg colonization was observed in all models of experimental periodontal disease induction, independent of tissue alterations. These mice models of periodontitis validates, compliments, and enhances published PD models that utilize ligature or oral gavage and supports the importance of a successful colonization of a susceptible host, a bacterial invasion into vulnerable tissue, and host-bacterial interactions that lead to tissue destruction. CLINICAL RELEVANCE The ligature model was an effective approach to induce inflammation and bone loss similar to human periodontitis, but the oral gavage models were not efficient in inducing periodontal inflammation and tissue destruction in the conditions studied. Ligature models can provide a basis for future interventional studies that contribute to the understanding of the disease pathogenesis and the complex host response to microbial challenge.
Collapse
|
46
|
Delayed tooth replantation following root canal filling with calcium hydroxide and MTA: Histomorphometric study in rats. Arch Oral Biol 2015; 60:1254-62. [DOI: 10.1016/j.archoralbio.2015.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/28/2014] [Accepted: 02/02/2015] [Indexed: 01/04/2023]
|
47
|
Sculean A, Chapple ILC, Giannobile WV. Wound models for periodontal and bone regeneration: the role of biologic research. Periodontol 2000 2015; 68:7-20. [PMID: 25867976 PMCID: PMC4441284 DOI: 10.1111/prd.12091] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 12/24/2022]
Abstract
The ultimate goals of periodontal therapy remain the complete regeneration of those periodontal tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that possess the same structure and function, and the re-establishment of a sustainable health-promoting biofilm from one characterized by dysbiosis. This volume of Periodontology 2000 discusses the multiple facets of a transition from therapeutic empiricism during the late 1960s, toward regenerative therapies, which is founded on a clearer understanding of the biophysiology of normal structure and function. This introductory article provides an overview on the requirements of appropriate in vitro laboratory models (e.g. cell culture), of preclinical (i.e. animal) models and of human studies for periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights into basic mechanisms involved in wound repair and regeneration but also suffer from a unidimensional and simplistic approach that does not account for the complexities of the in vivo situation, in which multiple cell types and interactions all contribute to definitive outcomes. Therefore, such laboratory studies require validatory research, employing preclinical models specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation to human disease scenarios. Small animal models provide the most economic and logistically feasible preliminary approaches but the outcomes do not necessarily translate to larger animal or human models. The advantages and limitations of all periodontal-regeneration models need to be carefully considered when planning investigations to ensure that the optimal design is adopted to answer the specific research question posed. Future challenges lie in the areas of stem cell research, scaffold designs, cell delivery and choice of growth factors, along with research to ensure appropriate gingival coverage in order to prevent gingival recession during the healing phase.
Collapse
|
48
|
Garcia VG, Knoll LR, Longo M, Novaes VCN, Assem NZ, Ervolino E, de Toledo BEC, Theodoro LH. Effect of the probiotic Saccharomyces cerevisiae on ligature-induced periodontitis in rats. J Periodontal Res 2015; 51:26-37. [PMID: 25918871 DOI: 10.1111/jre.12274] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE This study assessed the effects of the local use of Saccharomyces cerevisiae as monotherapy and as an adjuvant to the mechanical treatment of ligature-induced periodontitis in rats. MATERIAL AND METHODS Periodontitis was induced in 72 rats via the installation of a ligature around the mandibular first molar. After 7 d, the ligature was removed and the rats were placed in one of the following groups: no treatment (C; n = 18); scaling and root planing (SRP; n = 18); local irrigation with probiotics (PRO; n = 18); and SRP followed by local irrigation with probiotics (SRP/PRO; n = 18). Six rats from each group were killed at 7, 15 and 30 d. The histological characteristics, alveolar bone loss (ABL) and immunolabeling of tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), interleukin-10 (IL-10) and TRAP on the furcation area of the first molar were assessed. RESULTS The PRO group showed features of acceleration of the tissue-repair process during the entire experiment. On day 15, there was less ABL in the SRP/PRO group compared with the C group. There were fewer TRAP-positive cells in the SRP and SRP/PRO groups at 30 d. There was less immunostaining for TNF-α in the PRO and SRP/PRO groups and less immunostaining for IL-1β in the PRO group. However, there was more immunostaining for IL-10 in the PRO group on day 15. CONCLUSION Local use of the probiotic did not result in any adverse effects on periodontal tissues. When used as monotherapy or as an adjuvant, the probiotic was effective at controlling periodontitis in rats.
Collapse
Affiliation(s)
- V G Garcia
- Group of Research and Study on Laser in Dentistry (GEPLO), Division of Periodontics, Department of Surgery and Integrated Clinic, University Estadual Paulista (UNESP), Araçatuba, Brazil.,Master Course, Barretos Dental School, University Center of the Educational Foundation of Barretos (UNIFEB), Barretos, Brazil
| | - L R Knoll
- Master Course, Barretos Dental School, University Center of the Educational Foundation of Barretos (UNIFEB), Barretos, Brazil
| | - M Longo
- Group of Research and Study on Laser in Dentistry (GEPLO), Division of Periodontics, Department of Surgery and Integrated Clinic, University Estadual Paulista (UNESP), Araçatuba, Brazil
| | - V C N Novaes
- Group of Research and Study on Laser in Dentistry (GEPLO), Division of Periodontics, Department of Surgery and Integrated Clinic, University Estadual Paulista (UNESP), Araçatuba, Brazil
| | - N Z Assem
- Group of Research and Study on Laser in Dentistry (GEPLO), Division of Periodontics, Department of Surgery and Integrated Clinic, University Estadual Paulista (UNESP), Araçatuba, Brazil
| | - E Ervolino
- Department of Basic Science, University Estadual Paulista (UNESP), Araçatuba, Brazil
| | - B E C de Toledo
- Master Course, Barretos Dental School, University Center of the Educational Foundation of Barretos (UNIFEB), Barretos, Brazil
| | - L H Theodoro
- Group of Research and Study on Laser in Dentistry (GEPLO), Division of Periodontics, Department of Surgery and Integrated Clinic, University Estadual Paulista (UNESP), Araçatuba, Brazil
| |
Collapse
|
49
|
Zhang W, Ju J, Rigney T, Tribble G. Porphyromonas gingivalis infection increases osteoclastic bone resorption and osteoblastic bone formation in a periodontitis mouse model. BMC Oral Health 2014; 14:89. [PMID: 25027664 PMCID: PMC4108595 DOI: 10.1186/1472-6831-14-89] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/10/2014] [Indexed: 11/27/2022] Open
Abstract
Background Porphyromonas gingivalis has been shown to invade osteoblasts and inhibit their differentiation and mineralization in vitro. However, it is unclear if P. gingivalis can invade osteoblasts in vivo and how this would affect alveolar osteoblast/osteoclast dynamics. This study aims to answer these questions using a periodontitis mouse model under repetitive P. gingivalis inoculations. Methods For 3-month-old BALB/cByJ female mice, 109 CFU of P. gingivalis were inoculated onto the gingival margin of maxillary molars 4 times at 2-day intervals. After 2 weeks, another 4 inoculations at 2-day intervals were applied. Calcein was injected 7 and 2 days before sacrificing animals to label the newly formed bone. Four weeks after final inoculation, mice were sacrificed and maxilla collected. Immunohistochemistry, micro-CT, and bone histomorphometry were performed on the specimens. Sham infection with only vehicle was the control. Results P. gingivalis was found to invade gingival epithelia, periodontal ligament fibroblasts, and alveolar osteoblasts. Micro-CT showed alveolar bone resorption and significant reduction of bone mineral density and content in the infected mice compared to the controls. Bone histomorphometry showed a decrease in osteoblasts, an increase in osteoclasts and bone resorption, and a surprisingly increased osteoblastic bone formation in the infected mice compared to the controls. Conclusions P. gingivalis invades alveolar osteoblasts in the periodontitis mouse model and cause alveolar bone loss. Although P. gingivalis appears to suppress osteoblast pool and enhance osteoclastic bone resorption, the bone formation capacity is temporarily elevated in the infected mice, possibly via some anti-microbial compensational mechanisms.
Collapse
Affiliation(s)
- Wenjian Zhang
- Department of Diagnostic and Biomedical Sciences, 7500 Cambridge Street, Suite 5366, Houston 77054, TX, USA.
| | | | | | | |
Collapse
|
50
|
Macri E, Lifshitz F, Ramos C, Orzuza R, Costa O, Zago V, Boyer P, Friedman S. Atherogenic cholesterol-rich diet and periodontal disease. Arch Oral Biol 2014; 59:679-86. [DOI: 10.1016/j.archoralbio.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/22/2014] [Accepted: 03/12/2014] [Indexed: 01/20/2023]
|