1
|
Giaouris E. Comparing Gene Expression Between Planktonic and Biofilm Cells of Foodborne Bacterial Pathogens Through RT-qPCR. Methods Mol Biol 2025; 2852:143-158. [PMID: 39235742 DOI: 10.1007/978-1-0716-4100-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Like most microorganisms, important foodborne pathogenic bacteria, such as Salmonella enterica, Listeria monocytogenes, and several others as well, can attach to surfaces, of either abiotic or biotic nature, and create biofilms on them, provided the existence of supportive environmental conditions (e.g., permissive growth temperature, adequate humidity, and nutrient presence). Inside those sessile communities, the enclosed bacteria typically present a gene expression profile that differs from the one that would be displayed by the same cells growing planktonically in liquid media (free-swimming cells). This altered gene expression has important consequences on cellular physiology and behavior, including stress tolerance and induction of virulence. In this chapter, the methodology to use reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to monitor and comparatively quantify expression changes in preselected genes of bacteria between planktonic and biofilm growth modes is presented.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece.
| |
Collapse
|
2
|
Moodley D, Botes A. A carboxymethyl cellulase from the yeast Cryptococcus gattii WM276: Expression, purification and characterisation. Protein Expr Purif 2025; 225:106594. [PMID: 39197672 DOI: 10.1016/j.pep.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Cryptococcus gattii and its medical implications have been extensively studied. There is, however, a significant knowledge gap regarding cryptococcal survival in its environmental niche, namely woody material, which is glaring given that infection is linked to environmental populations. A gene from C. gattii (WM276), the predominant global molecular type (VGI), has been sequenced and annotated as a putative cellulase. It is therefore, of both medical and industrial intertest to delineate the structure and function of this enzyme. A homology model of the enzyme was constructed as a fusion protein to a maltose binding protein (MBP). The CGB_E4160W gene was overexpressed as an MBP fusion enzyme in Escherichia coli T7 cells and purified to homogeneity using amylose affinity chromatography. The structural and functional character of the enzyme was investigated using fluorescence spectroscopy and enzyme activity assays, respectively. The optimal enzyme pH and temperature were found to be 6.0 and 50 °C, respectively, with an optimal salt concentration of 500 mM. Secondary structure analysis using Far-UV CD reveals that the MBP fusion protein is primarily α-helical with some β-sheets. Intrinsic tryptophan fluorescence illustrates that the MBP-cellulase undergoes a conformational change in the presence of its substrate, CMC-Na+. The thermotolerant and halotolerant nature of this particular cellulase, makes it useful for industrial applications, and adds to our understanding of the pathogen's environmental physiology.
Collapse
Affiliation(s)
- Dylan Moodley
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Angela Botes
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
3
|
Huynh DT, Nolfi E, Medfai L, van Ulsen P, Jong WSP, Sijts AJAM, Luirink J. Intranasal delivery of Salmonella OMVs decorated with Chlamydia trachomatis antigens induces specific local and systemic immune responses. Hum Vaccin Immunother 2024; 20:2330768. [PMID: 38517203 PMCID: PMC10962599 DOI: 10.1080/21645515.2024.2330768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen responsible for the most prevalent bacterial sexually transmitted disease globally. The high prevalence of chlamydial infections underscores the urgent need for licensed and effective vaccines to prevent transmission in populations. Bacterial outer membrane vesicles (OMVs) have emerged as promising mucosal vaccine carriers due to their inherent adjuvant properties and the ability to display heterologous antigens. In this proof-of-concept study, we evaluated the immunogenicity of Salmonella OMVs decorated with C. trachomatis MOMP-derived CTH522 or HtrA antigens in mice. Following a prime-boost intranasal vaccination approach, two OMV-based C. trachomatis vaccines elicited significant humoral responses specific to the antigens in both systemic and vaginal compartments. Furthermore, we demonstrated strong antigen-specific IFN-γ and IL17a responses in splenocytes and cervical lymph node cells of vaccinated mice, indicating CD4+ Th1 and Th17 biased immune responses. Notably, the OMV-CTH522 vaccine also induced the production of spleen-derived CD8+ T cells expressing IFN-γ. In conclusion, these results highlight the potential of OMV-based C. trachomatis vaccines for successful use in future challenge studies and demonstrate the suitability of our modular OMV platform for intranasal vaccine applications.
Collapse
Affiliation(s)
- Dung T. Huynh
- R&D department, Abera Bioscience AB, Uppsala, Sweden
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emanuele Nolfi
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lobna Medfai
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter van Ulsen
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Alice J. A. M. Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joen Luirink
- R&D department, Abera Bioscience AB, Uppsala, Sweden
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Wang H, Gou R, Chen J, Wang Q, Li X, Chang J, Chen H, Wang X, Wan G. Catalase-positive Staphylococcus epidermidis based cryo-millineedle platform facilitates the photo-immunotherapy against colorectal cancer via hypoxia improvement. J Colloid Interface Sci 2024; 676:506-520. [PMID: 39047378 DOI: 10.1016/j.jcis.2024.07.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The synergistic anti-tumor impact of phototherapy and a cascading immune response are profoundly limited by hypoxia and a weakened immune response. Intravenous and intratumoral injection of therapeutic drugs also cause pain, rapid drug clearance and low utilization rates. Here, a novel cryo-millineedle platform for intratumoral delivery of a phototherapy system, S.epi@IR820, is developed in this work, combining the properties of Staphylococcus epidermidis (S. epidermidis) and IR820 for photo-immunotherapy of colorectal cancer. In this cryo-millineedle platform, S. epidermidis enhances the near-infrared absorption and light stability of IR820 and catalyzes the decomposition of H2O2 into O2 via an endogenous catalase to relieve tumor hypoxia, improve phototherapy and enhance immunogenic cell death (ICD). More interestingly, the native immunogenicity of S. epidermidis and ICD elicited by phototherapy achieved a potent anti-tumor immune response. To the best of our knowledge, this is the first study to utilize native S. epidermidis to relieve hypoxia and facilitate phototherapy. Both in vitro and in vivo experiments showed that the millineedle based phototherapy system can efficiently catalyse the decomposition of H2O2 into O2, facilitate phototherapeutic killing of CT26 tumor cells by S.epi@IR820 and enhance ICD, thus successfully activated the immune response and achieved the photo-immunotherapy against colorectal cancer. In conclusion, this study provides a novel strategy for enhanced anti-tumor efficiency of photo-immunotherapy, and develops an effective method for orthotopic administration of tumors.
Collapse
Affiliation(s)
- Haijiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ruiling Gou
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiayu Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoyu Li
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaxin Chang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China.
| | - Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
5
|
Zhu Z, Ding X, Rang J, Xia L. Application and research progress of ARTP mutagenesis in actinomycetes breeding. Gene 2024; 929:148837. [PMID: 39127415 DOI: 10.1016/j.gene.2024.148837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Atmospheric and room temperature plasma (ARTP) is an emerging artificial mutagenesis breeding technology. In comparison to traditional physical and chemical methods, ARTP technology can induce DNA damage more effectively and obtain mutation strains with stable heredity more easily after screening. It possesses advantages such as simplicity, safety, non-toxicity, and cost-effectiveness, showing high application value in microbial breeding. This article focuses on ARTP mutagenesis breeding of actinomycetes, specifically highlighting the application of ARTP mutagenesis technology in improving the performance of strains and enhancing the biosynthetic capabilities of actinomycetes. We analyzed the advantages and challenges of ARTP technology in actinomycetes breeding and summarized the common features, specific mutation sites and metabolic pathways of ARTP mutagenic strains, which could give guidance for genetic modification. It suggested that the future research work should focus on the establishment of high throughput rapid screening methods and integrate transcriptomics, proteomics, metabonomics and other omics to delve into the genetic regulations and synthetic mechanisms of the bioactive substances in ARTP mutated actinomycetes. This article aims to provide new perspectives for actinomycetes breeding through the establishment and application of ARTP mutagenesis technology, thereby promoting source innovation and the sustainable industrial development of actinomycetes.
Collapse
Affiliation(s)
- Zirong Zhu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jie Rang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
6
|
Tang X, Wu S, Hua X, Fan Y, Li X. Ferulic acid triggering a co-production of 4-vinyl guaiacol and fumaric acid from lignocellulose-based carbon source by Rhizopus oryzae. Food Chem 2024; 461:140799. [PMID: 39154464 DOI: 10.1016/j.foodchem.2024.140799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Plant secondary metabolites have attracted considerable attention due to the increasing demand for finite fossil resources and environmental concerns. However, the biosynthesis of aromatic aldehydes or alcohols from renewable resources remains challenging and costly. This study explores a novel approach performed by the aromatic catabolizing organism Rhizopus oryzae, which enables a ferulic acid-activated co-production of 4-vinyl guaiacol (4-VG) and fumaric acid. The strain produced 4.60 g/L 4-VG and 11.25 g/L fumaric acid from a mixed carbon source of glucose and xylose, suggesting that this new pathway allows the potential production of natural 4-VG from low-cost substrates. This green route, which utilizes Rhizopus oryzae's ability to efficiently convert various renewable resources into valuable chemicals, paves the way for improved catalytic efficiency in 4-VG production.
Collapse
Affiliation(s)
- Xueyu Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Shanshan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xia Hua
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
7
|
Fialho S, Trieu-Cuot P, Ferreira P, Oliveira L. Could P2X7 receptor be a potencial target in neonatal sepsis? Int Immunopharmacol 2024; 142:112969. [PMID: 39241519 DOI: 10.1016/j.intimp.2024.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
The United Nations Inter-Agency Group for Child Mortality Estimation (UNIGME) estimates that every year 2.5 million neonates die in their first month of life, accounting for nearly one-half of deaths in children under 5 years of age. Neonatal sepsis is the third leading cause of neonatal mortality. The worldwide burden of bacterial sepsis is expected to increase in the next decades due to the lack of effective molecular therapies to replace the administration of antibiotics whose efficacy is compromised by the emergence of resistant strains. In addition, prolonged exposure to antibiotics can have negative effects by increasing the risk of infection by other organisms. With the global burden of sepsis increasing and no vaccine nor other therapeutic approaches proved efficient, the World Health Organization (WHO) stresses the need for new therapeutic targets for sepsis treatment and infection prevention (WHO, A73/32). In response to this unresolved clinical issue, the P2X7 receptor (P2X7R), a key component of the inflammatory cascade, has emerged as a potential target for treating inflammatory/infection diseases. Indeed numerous studies have demonstrated the relevance of the purinergic system as a pharmacological target in addressing immune-mediated inflammatory diseases by regulating immunity, inflammation, and organ function. In this review, we analyze key features of sepsis immunopathophysiology focusing in neonatal sepsis and on how the immunomodulatory role of P2X7R could be a potential pharmacological target for reducing the burden of neonatal sepsis.
Collapse
Affiliation(s)
- Sales Fialho
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal
| | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, Unité de Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Paula Ferreira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Institute of Research and Innovation in Health (i3S), University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Laura Oliveira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP)/Rise Health, University of Porto, Portugal.
| |
Collapse
|
8
|
Chen J, Wei C, Huang S, Wu S, He R, Chen T, Qin X, Wei W, Qin B, Wu S, Zhu J, Huang C, Feng S, Zhou Z, Zhang B, Xue J, Mo S, Zhou C, Qin Y, Zhan X, Liu C. Elucidating the causal nexus between antibody-mediated immunity and autoimmune diseases: Insights from bidirectional mendelian randomization, gene expression profiling, and drug sensitivity analysis. Int Immunopharmacol 2024; 142:113027. [PMID: 39216119 DOI: 10.1016/j.intimp.2024.113027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to elucidate the causal relationships between antibodies and autoimmune diseases using Mendelian randomization (MR). METHODS Data on 46 antibodies were obtained from genome-wide association studies (GWAS). Autoimmune disease data were sourced from the FinnGen consortium and the IEU OpenGWAS project. Inverse-variance weighted (IVW) analysis was the primary method, supplemented by heterogeneity and sensitivity analyses. We also examined gene expression near significant SNPs and conducted drug sensitivity analyses. RESULTS Antibodies and autoimmune diseases exhibit diverse interactions. Antibodies produced after Polyomavirus infection tend to increase the risk of several autoimmune diseases, while those following Human herpesvirus 6 infection generally reduce it. The impact of Helicobacter pylori infection varies, with different antibodies affecting autoimmune diseases in distinct ways. Overall, antibodies significantly influence the risk of developing autoimmune diseases, whereas autoimmune diseases have a lesser impact on antibody levels. Gene expression and drug sensitivity analyses identified multiple genes and drugs as potential treatment options for ankylosing spondylitis (AS), with the AIF1 gene being particularly promising. CONCLUSIONS Bidirectional MR analysis confirms complex causal relationships between various antibodies and autoimmune diseases, revealing intricate patterns of post-infection antibody interactions. Several drugs and genes, notably AIF1, show potential as candidates for AS treatment, offering new avenues for research. Further exploration of the underlying mechanisms is necessary.
Collapse
Affiliation(s)
- Jiarui Chen
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Cheng Wei
- Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People's Republic of China; Key Laboratory of Molecular Pathology in Tumors of GuangxiHigher Education Institutions, Baise, Guangxi, 533000, People's Republic of China
| | - Shengsheng Huang
- Spine Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shaofeng Wu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Rongqing He
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tianyou Chen
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaopeng Qin
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wendi Wei
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Boli Qin
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Songze Wu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jichong Zhu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chengqian Huang
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Sitan Feng
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhongxian Zhou
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Bin Zhang
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiang Xue
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Sen Mo
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chenxing Zhou
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yingying Qin
- Emergency Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People's Republic of China
| | - Xinli Zhan
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chong Liu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
9
|
Hernández-García L, Manzanares P, Marcos JF, Martínez-Culebras PV. Effect of antifungal proteins (AFPs) on the viability of heat-resistant fungi (HRFs) and the preservation of fruit juices. Int J Food Microbiol 2024; 425:110886. [PMID: 39214027 DOI: 10.1016/j.ijfoodmicro.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The control of heat-resistant fungi (HRFs), which cause spoilage of heat-treated fruit products, is considered a challenge for the fruit juice and beverage industry and requires new strategies for the development of antifungal compounds. In this study, four antifungal proteins (AFPs) from Penicillium digitatum (PdAfpB) and Penicillium expansum (PeAfpA, PeAfpB and PeAfpC), were evaluated against conidia from a representative collection of HRFs. A total of 19 strains from 16 different species belonging to the genera Aspergillus, Hamigera, Paecilomyces, Rasamsonia, Sarocladium, Talaromyces and Thermoascus were included in the study. PeAfpA and PdAfpB exhibited potent antifungal activity in synthetic media, completely inhibiting the growth of most of the fungi evaluated in the range of 0.5-32 μg/mL. The efficacy of the four AFPs was also tested in fruit juices against ascospores of five HRFs relevant to the food industry, including P. fulvus, P. niveus, P. variotii, A. fischeri and T. flavus. PdAfpB was the most effective protein in fruit juices, since it completely inhibited the growth of the five species tested in at least one of the fruit juices evaluated. This is the first study to demonstrate the activity of AFPs against fungal ascospores. Finally, a challenge test study showed that PdAfpB, at a concentration of 32 μg/mL, protected apple fruit juice artificially inoculated with ascospores of P. variotii for 17 days, highlighting the potential of the protein as a preservative in the fruit juice industry.
Collapse
Affiliation(s)
- Laura Hernández-García
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Paloma Manzanares
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Jose F Marcos
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Pedro V Martínez-Culebras
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain; Departamento de Medicina Preventiva y Salud Pública, Ciencias de la Alimentación, Bromatología, Toxicología y Medicina Legal, Universitat de València, Vicente Andrès Estellès s/n, Burjassot 46100, Valencia, Spain.
| |
Collapse
|
10
|
Neggazi I, Colás-Medà P, Viñas I, Bainotti MB, Alegre I. Influence of physicochemical characteristics on the growth and guaiacol production of Alicyclobacillus acidoterrestris in fruit juices. Int J Food Microbiol 2024; 425:110856. [PMID: 39214026 DOI: 10.1016/j.ijfoodmicro.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Alicyclobacillus acidoterrestris is a bacterium known for causing spoilage in the taste and odour of fruit juices due to its thermoacidophilic nature. Its spoilage is attributed to the formation of guaiacol, which requires the presence of suitable precursors in the juices that A. acidoterrestris can metabolize. Therefore, A. acidoterrestris could exhibit different behaviour depending on the physicochemical characteristics the juice. In this study, we aimed to evaluate the behaviour of five A. acidoterrestris strains in seven different fruit juices by monitoring total cell and spore populations and quantifying guaiacol production. Also, physicochemical and phenolic profile, focusing on antimicrobials and guaiacol precursors, were analysed to better understand differences. Results showed growth in orange, apple, and plum juices for all the tested strains, with total cell populations reaching approximately 7 log cfu/mL, except for plum juice. In persimmon juice, growth was only observed in 3 out of 5 strains, for both total cells and spores. In contrast, all strains were inhibited in peach, black grape, and strawberry juices, maintaining a consistent population around 4 log cfu/mL. A strong negative correlation was observed between bacterial population and compounds such as kaempferol (for strains R3, R111, and P1), cyanidin chloride (for strains R111 and P1), and p-coumaric acid (for strain 7094 T). Regarding guaiacol production, orange and persimmon juices exhibited the highest guaiacol levels, with strain P1 (362.3 ± 12.6 ng/mL) and strain EC1 (325.1 ± 1.4 ng/mL) as the top producers, respectively. Plum, black grape, and strawberry juices showed similar guaiacol concentrations (16.9 ± 2.8 to 105.0 ± 33.7 ng/mL). Vanillin was showed positive correlations with guaiacol production in almost all strains (7094 T, R3, R111, and P1), with correlation coefficients of 0.97, 0.99, 0.82, and 0.87, respectively. We have reported different behaviour of A. acidoterrestris strains depending on juice type. Despite growth inhibition observed in some juices, enough guaiacol quantities to spoil the juice can be produced. This highlights the necessity of exploring strategies to prevent guaiacol production, even under growth restriction.
Collapse
Affiliation(s)
- Isma Neggazi
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Pilar Colás-Medà
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Inmaculada Viñas
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Maria Belén Bainotti
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Isabel Alegre
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
11
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway invol |