1
|
Chen Y, Bai X, Zhang Y, Zhao Y, Ma H, Yang Y, Wang M, Guo Y, Li X, Wu T, Zhang Y, Kong H, Zhao Y, Qu H. Zingiberis rhizoma-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice. Artif Cells Nanomed Biotechnol 2024; 52:12-22. [PMID: 37994799 DOI: 10.1080/21691401.2023.2276770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
Chinese herbs contain substances that regulate female hormones. Our study confirmed that Zingiberis rhizoma carbonisata contains Zingiberis rhizoma-based carbon dots (ZR-CDs), which exert regulatory effects on serum oestradiol and FSH in mice and show impacts on endometrial growth and follicular development that potentially affect the ability of female fertility. ZR-CDs were characterized to clarify the microstructure, optical features, and functional group characteristics. It shows that ZR-CDs are spherical carbon nanostructures ranging from 0.97 to 2.3 nm in diameter, with fluorescent properties and a surface rich in functional groups. We further investigated the impact of ZR-CDs on oestradiol and FSH in serum, growth, and the development of ovarian and uterine using normal female mice and exogenous oestradiol intervention model. It was observed that ZR-CDs accelerated oestrogen metabolism and attenuated oestradiol-induced endometrial hyperplasia. Simultaneously, ZR-CDs triggered an increase in FSH, even in the presence of high-serum oestradiol that inhibits FSH secretion. Our findings suggest that ZR-CDs could be a potential therapeutic treatment for anovulatory menstruation.
Collapse
Affiliation(s)
- Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huagen Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yunbo Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meijun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yinghui Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaopeng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huaihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Zheng CY, Yu YX, Bai X. Polycystic ovary syndrome and related inflammation in radiomics; relationship with patient outcome. Semin Cell Dev Biol 2024; 154:328-333. [PMID: 36933953 DOI: 10.1016/j.semcdb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/19/2023]
Abstract
Polycystic ovary syndrome (PCOS) refers to a condition that often has 'poly' liquid containing sacks around ovaries. It affects reproductive-aged females giving rise to menstrual and related reproductive issues. PCOS is marked by hormonal imbalance often resulting in hyperandrogenism. Inflammation is now considered a central manifestation of this disease with several inflammatory biomarkers such as TNF-α, C-reactive protein and Interleukins-6/18 found to be particularly elevated in PCOS patients. Diagnosis is often late, and MRI-based diagnosis, along with blood-based analyses, are still the best bet for a definitive diagnosis. Radiomics also offers several advantages and should be exploited to the maximum. The mechanisms of PCOS onset and progression are not very well known but pituitary dysfunction and elevated gonadotrophin releasing hormone resulting in high levels of luteinizing hormone are indicative of an activated hypothalamic-pituitary-ovarian axis in PCOS. A number of studies have also identified signaling pathways such as PI3K/Akt, NF-κB and STAT in PCOS etiology. The links of these signaling pathways to inflammation further underline the importance of inflammation in PCOS, which needs to be resolved for improving patient outcomes.
Collapse
Affiliation(s)
- Chun-Yang Zheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, No. 83, Zhongshan Road, Heping District, Shenyang 110000, Liaoning Province, China
| | - Yue-Xin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xue Bai
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
3
|
Conti M, Kunitomi C. A genome-wide perspective of the maternal mRNA translation program during oocyte development. Semin Cell Dev Biol 2024; 154:88-98. [PMID: 36894378 DOI: 10.1016/j.semcdb.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Transcriptional and post-transcriptional regulations control gene expression in most cells. However, critical transitions during the development of the female gamete relies exclusively on regulation of mRNA translation in the absence of de novo mRNA synthesis. Specific temporal patterns of maternal mRNA translation are essential for the oocyte progression through meiosis, for generation of a haploid gamete ready for fertilization and for embryo development. In this review, we will discuss how mRNAs are translated during oocyte growth and maturation using mostly a genome-wide perspective. This broad view on how translation is regulated reveals multiple divergent translational control mechanisms required to coordinate protein synthesis with progression through the meiotic cell cycle and with development of a totipotent zygote.
Collapse
Affiliation(s)
- Marco Conti
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.
| | - Chisato Kunitomi
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Ma JY, Xia TJ, Li S, Yin S, Luo SM, Li G. Germline cell de novo mutations and potential effects of inflammation on germline cell genome stability. Semin Cell Dev Biol 2024; 154:316-327. [PMID: 36376195 DOI: 10.1016/j.semcdb.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Uncontrolled pathogenic genome mutations in germline cells might impair adult fertility, lead to birth defects or even affect the adaptability of a species. Understanding the sources of DNA damage, as well as the features of damage response in germline cells are the overarching tasks to reduce the mutations in germline cells. With the accumulation of human genome data and genetic reports, genome variants formed in germline cells are being extensively explored. However, the sources of DNA damage, the damage repair mechanisms, and the effects of DNA damage or mutations on the development of germline cells are still unclear. Besides exogenous triggers of DNA damage such as irradiation and genotoxic chemicals, endogenous exposure to inflammation may also contribute to the genome instability of germline cells. In this review, we summarized the features of de novo mutations and the specific DNA damage responses in germline cells and explored the possible roles of inflammation on the genome stability of germline cells.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tian-Jin Xia
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Shi-Ming Luo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
5
|
Xu Y, Liu X, Zeng W, Zhu Y, Dong J, Wu F, Chen C, Sharma S, Lin Y. DOCK1 insufficiency disrupts trophoblast function and pregnancy outcomes via DUSP4-ERK pathway. Life Sci Alliance 2024; 7:e202302247. [PMID: 37967942 PMCID: PMC10651491 DOI: 10.26508/lsa.202302247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Abnormal trophoblast function is associated with diseases such as recurrent spontaneous abortion, pre-eclampsia, and preterm birth, and endangers maternal and fetal health. However, the underlying regulatory mechanisms remain unclear. In this study, we found DOCK1 expression is decreased in the placental villi of patients with recurrent spontaneous abortion, and that its expression determined the invasive properties of extravillous trophoblasts (EVTs), highlighting a previously unknown role of DOCK1 in regulating EVT function. Furthermore, DOCK1 deficiency disturbed the ubiquitinated degradation of DUSP4, leading to its accumulation. This caused inactivation of the ERK signaling pathway, resulting in inadequate EVT migration and invasion. DOCK1 was implicated in regulating the ubiquitin levels of DUSP4, possibly by modulating the E3 ligase enzyme HUWE1. The results of our in vivo experiments confirmed that the DOCK1 inhibitor TBOPP caused miscarriage in mice by inactivating the DUSP4/ERK pathway. Collectively, our results revealed the crucial role of DOCK1 in the regulation of EVT function via the DUSP4-ERK pathway and a basis for the development of novel treatments for adverse pregnancy outcomes caused by trophoblast dysfunction.
Collapse
Affiliation(s)
- Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihong Zeng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yueyue Zhu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junpeng Dong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cailian Chen
- Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yi Lin
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Gui Y, Ma X, Xiong M, Wen Y, Cao C, Zhang L, Wang X, Liu C, Zhang H, Huang X, Xiong C, Pan F, Yuan S. Transcriptome analysis of meiotic and post-meiotic spermatogenic cells reveals the potential hub genes of aging on the decline of male fertility. Gene 2024; 893:147883. [PMID: 37839768 DOI: 10.1016/j.gene.2023.147883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Genetic and epigenetic changes in sperm caused by male aging may be essential factors affecting semen parameters, but the effects and specific molecular mechanisms of aging on male reproduction have not been fully clarified. In this study, to explore the effect of aging on male fertility and seek the potential molecular etiology, we performed high-throughput RNA-sequencing in isolated spermatogenic cells, including pachytene spermatocytes (marked by the completion of chromosome synapsis) and round spermatids (produced by the separation of sister chromatids) from the elderly and the young men. Functional enrichment analysis of differentially expressed genes (DEGs) in round spermatids between the elderly and young showed that they were significantly enriched in gamete generation, spindle assembly, and cilium movement involved in cell motility. In addition, the expression levels of DEGs in round spermatids (post-meiotic cells) were found to be more susceptible to age. Furthermore, ten genes (AURKA, CCNB1, CDC20, CCNB2, KIF2C, KIAA0101, NR5A1, PLK1, PTTG1, RAD51AP1) were identified to be the hub genes involved in the regulation of sperm quality in the elderly through Protein-Protein Interaction (PPI) network construction and measuring semantic among GO terms and gene products. Our data provide aging-related molecular alterations in meiotic and post-meiotic spermatogenic cells, and the information gained from this study may explain the abnormal aging-related male fertility decline.
Collapse
Affiliation(s)
- Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Liang Zhang
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xunbin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Wuhan Tongji Reproductive Hospital, Wuhan, Hubei 430013, China
| | | | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Liu YC, Wang JW, Li J, Guo Y, Han FJ, Lu WH, Wu Q. Mechanism of cryptotanshinone to improve endocrine and metabolic functions in the endometrium of PCOS rats. J Ethnopharmacol 2024; 319:117346. [PMID: 37879506 DOI: 10.1016/j.jep.2023.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cryptotanshinone is the main bioactive component of Salvia miltiorrhiza, with various mechanisms of action, including antioxidant, anti-inflammatory, cardiovascular protection, neuroprotection, and hepatoprotection. Salvia miltiorrhiza is used clinically by gynecologists in China. AIM OF THE STUDY Polycystic ovary syndrome (PCOS) has a significant impact on women's quality of life, leading to infertility and reproductive disorders. Hence, this study aims to assess the pharmacological activity of cryptotanshinone in the treatment of PCOS and investigate its therapeutic mechanism. MATERIALS AND METHODS Human chorionic gonadotropin (HCG) combined with insulin is used to simulate a PCOS-like rat model and attempt to discover the abnormal changes that occur and the means by which the pathway acts in this model. RESULTS The transcriptome sequencing method is used to identify 292 differential genes that undergo significant changes, of which 219 were upregulated and 73 were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the signaling pathways reveals that differential expressed genes are significantly enriched in 23 typical pathways. Estrogen signaling pathways are screened in the cryptotanshinone and model groups, and significant differential changes in Fos, ALOX12, and AQP8 are found. This suggests that these signaling pathways and molecules may be the main signaling targets for regulating the differences in endometrial tissue. CONCLUSION These results indicate that cryptotanshinone has targets for regulating the proliferation of endometrial tissue via estrogen signaling pathways in PCOS-like rats, providing an experimental basis for the clinical application of cryptotanshinone in the treatment of PCOS.
Collapse
Affiliation(s)
- Yi-Chao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China; Harbin Institute of Technology Hospital, Harbin Institute of Technology, Harbin, 150001, China.
| | - Jun-Wen Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
| | - Jia Li
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No.26, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Ying Guo
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No.26, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Feng-Juan Han
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No.26, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Wei-Hong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
8
|
Özcan Ö, den Elzen WPJ, Hillebrand JJ, den Heijer M, van Loendersloot LL, Fischer J, Hamer H, de Jonge R, Heijboer AC. The effect of hormonal contraceptive therapy on clinical laboratory parameters: a literature review. Clin Chem Lab Med 2024; 62:18-40. [PMID: 37419659 DOI: 10.1515/cclm-2023-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Hormonal contraceptives (HC) are widely used among women in reproductive ages. In this review, the effects of HCs on 91 routine chemistry tests, metabolic tests, and tests for liver function, hemostatic system, renal function, hormones, vitamins and minerals were evaluated. Test parameters were differently affected by the dosage, duration, composition of HCs and route of administration. Most studies concerned the effects of combined oral contraceptives (COC) on the metabolic, hemostatic and (sex) steroids test results. Although the majority of the effects were minor, a major increase was seen in angiotensinogen levels (90-375 %) and the concentrations of the binding proteins (SHBG [∼200 %], CBG [∼100 %], TBG [∼90 %], VDBP [∼30 %], and IGFBPs [∼40 %]). Also, there were significant changes in levels of their bound molecules (testosterone, T3, T4, cortisol, vitamin D, IGF1 and GH). Data about the effects of all kinds of HCs on all test results are limited and sometimes inconclusive due to the large variety in HC, administration routes and dosages. Still, it can be concluded that HC use in women mainly stimulates the liver production of binding proteins. All biochemical test results of women using HC should be assessed carefully and unexpected test results should be further evaluated for both methodological and pre-analytical reasons. As HCs change over time, future studies are needed to learn more about the effects of other types, routes and combinations of HCs on clinical chemistry tests.
Collapse
Affiliation(s)
- Ömer Özcan
- Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Wendy P J den Elzen
- Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Jacquelien J Hillebrand
- Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Martin den Heijer
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | |
|