1
|
|
Mulla J, Katti R, Scott MJ. The Role of Gasdermin-D-Mediated Pryoptosis in Organ Injury and Its Therapeutic Implications. Organogenesis 2023;19. [PMID: 36967609 DOI: 10.1080/15476278.2023.2177484] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/25/2023] Open
Abstract
Gasdermin-D (GSDMD) belongs to the Gasdermin family (GSDM), which are pore-forming effector proteins that facilitate inflammatory cell death, also known as pyroptosis. This type of programmed cell death is dependent on inflammatory caspase activation, which cleaves gasdermin-D (GSDMD) to form membrane pores and initiates the release of pro-inflammatory cytokines. Pyroptosis plays an important role in achieving immune regulation and homeostasis within various organ systems. The role of GSDMD in pyroptosis has been extensively studied in recent years. In this review, we summarize the role of GSDMD in cellular and organ injury mediated by pyroptosis. We will also provide an outlook on GSDMD therapeutic targets in various organ systems.
Collapse
|
2
|
|
Dai C, Tan M, Meng X, Dong J, Zhang Y. Effects of potassium channel knockdown on peripheral blood T lymphocytes and NFAT signaling pathway in Xinjiang Kazak patients with hypertension. Clin Exp Hypertens 2023;45:2169449. [PMID: 36691302 DOI: 10.1080/10641963.2023.2169449] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/25/2023]
Abstract
BACKGROUD AND AIM T lymphocytes are involved in the occurrence and development of essential hypertension, and potassium channels are thought to be critical for lymphocyte activation. This study is to examine the roles of the voltage-gated potassium channels (Kv1.3) and calcium-activated potassium channels (KCa3.1) in peripheral blood T lymphocytes in Kazakh hypertensive patients of Xinjiang, China, mainly focusing on the effects of these channels on nuclear factor of activated T cells (NFAT) and inflammatory cytokines of T lymphocytes. METHOD Kv1.3 and KCa3.1 gene silencing were performed in cultured T lymphocytes from Kazakh patients with severe hypertension. T cell proliferation after gene silencing was measured using CCK-8. The mRNA and protein expression levels were measured using RT-qPCR and Western blot analysis, respectively. Nuclear translocation of NFAT was observed using laser confocal fluorescence microscopy. Inflammatory cytokine levels were detected with ELISA. RESULTS Compared with control group, gene silencing of Kv1.3 and KCa3.1 respectively inhibited the proliferation of T cells. Moreover, compared with the control group, the mRNA expression levels of NFAT, IL-6 and IFN-γ were significantly decreased after gene silencing. Furthermore, the NFAT protein expression level was significantly down-regulated. In addition, the levels of IFN-γ and IL-6 in the cell culture supernatant were significantly decreased. CONCLUSION Both Kv1.3 and KCa3.1 potassium channels activated T lymphocytes and enhanced the cytokine secretion possibly through CaN/NFAT signaling pathway, which may in turn induce micro-inflammatory responses and trigger the occurrence and progression of hypertension.
Collapse
|
3
|
|
Zhou X, Lu H, Sang M, Qiu S, Yuan Y, Wu T, Chen J, Sun Z. Impaired antibody response to inactivated COVID-19 vaccines in hospitalized patients with type 2 diabetes. Hum Vaccin Immunother 2023;19:2184754. [PMID: 36864628 DOI: 10.1080/21645515.2023.2184754] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/04/2023] Open
Abstract
Patients with type 2 diabetes (T2D) are at an increased risk of morbidity and mortality of coronavirus disease 2019 (COVID-19). Data on the antibody response to COVID-19 vaccines in T2D patients are less studied. This study aimed to evaluate IgG antibody response to inactivated COVID-19 vaccines in hospitalized T2D patients. Hospitalized patients with no history of COVID-19 and received two doses of inactivated COVID-19 vaccines (Sinopharm or CoronaVac) were included in this study from March to October 2021. SARS-CoV-2 specific IgG antibodies were measured 14-60 days after the second vaccine dose. A total of 209 participants, 96 with T2D and 113 non-diabetes patients, were included. The positive rate and median titer of IgG antibody against receptor-binding domain (anti-RBD) of spike (S) protein of SARS-CoV-2 in T2D group were lower than in control group (67.7% vs 83.2%, p = .009; 12.93 vs 17.42 AU/ml, p = .014) respectively. Similarly, seropositivity and median titers of IgG antibody against the nucleocapsid (N) and S proteins of SARS-CoV-2 (anti-N/S) in T2D group were lower than in control group (68.8% vs 83.2%, p = .032; 18.81 vs 29.57 AU/mL, p = .012) respectively. After adjustment for age, sex, BMI, vaccine type, days after the second vaccine dose, hypertension, kidney disease, and heart disease, T2D was identified as an independent risk factor for negative anti-RBD and anti-N/S seropositivity, odd ratio 0.42 (95% confidence interval 0.19, 0.89) and 0.42 (95% CI 0.20, 0.91), respectively. T2D is associated with impaired antibody response to inactivated COVID-19 vaccine.
Collapse
|
4
|
|
Abou-raya A, Rizk M, Abdelghani E, Abdelmegid N. Identification of serum micro-RNAs of early knee osteoarthritis in a cohort of Egyptian patients. Alexandria Journal of Medicine 2023;59:1-14. [DOI: 10.1080/20905068.2022.2140987] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/13/2022] Open
|
5
|
|
Baron KJ, Turnquist HR. Clinical Manufacturing of Regulatory T Cell Products For Adoptive Cell Therapy and Strategies to Improve Therapeutic Efficacy. Organogenesis 2023;19:2164159. [PMID: 36681905 DOI: 10.1080/15476278.2022.2164159] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/23/2023] Open
Abstract
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.
Collapse
|
6
|
|
Yu Z, Sun X, He Y, Gu J, Jin Y. PD-1 monoclonal antibodies enhance the cryoablation-induced antitumor immune response: a breast cancer murine model research. Int J Hyperthermia 2023;40. [PMID: 36966808 DOI: 10.1080/02656736.2022.2164625] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND It has been demonstrated that cryoablation (Cryo) causes specific T-cell immune responses in the body; however, it is not sufficient to prevent tumor recurrence and metastasis. In this report, we evaluated changes in the tumor immune microenvironment (TIME) in distant tumor tissues after Cryo and investigated the immunosuppressive mechanisms that limit the efficacy of Cryo. METHODS Bilateral mammary tumor models were established in mice, and we first observed the dynamic changes in immune cells and cytokines at different time points after Cryo. Then, we confirmed that the upregulation of PD-1 and PD-L1 signaling in the contralateral tumor tissue was closely related to the immunosuppressive state in the TIME at the later stage after Cryo. Finally, we also evaluated the synergistic antitumor effects of Cryo combined with PD-1 monoclonal antibody (mAb) in the treatment of breast cancer (BC) mouse. RESULTS We found that Cryo can stimulate the body's immune response, but it also induces immunosuppression. The elevated PD-1/PD-L1 expression in distant tumor tissues at the later stage after Cryo was closely related to the immunosuppressive state in the TIME but also created the conditions for Cryo combined with PD-1 mAb for BC mouse treatment. Cryo + PD-1 mAb could improve the immunosuppressive state of tumors and enhance the Cryo-induced immune response, thus exerting a synergistic antitumor effect. CONCLUSIONS The PD-1/PD-L1 axis plays an important role in suppressing Cryo-induced antitumor immune responses. This study provides a theoretical basis for Cryo combined with PD-1 mAb therapy in clinical BC patients.
Collapse
|
7
|
|
Vunnam N, Young MC, Liao EE, Lo CH, Huber E, Been M, Thomas DD, Sachs JN. Nimesulide, a COX-2 inhibitor, sensitizes pancreatic cancer cells to TRAIL-induced apoptosis by promoting DR5 clustering †. Cancer Biol Ther 2023;24:2176692. [PMID: 36775838 DOI: 10.1080/15384047.2023.2176692] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/14/2023] Open
Abstract
Nimesulide is a nonsteroidal anti-inflammatory drug and a COX-2 inhibitor with antitumor and antiproliferative activities that induces apoptosis in oral, esophagus, breast, and pancreatic cancer cells. Despite being removed from the market due to hepatotoxicity, nimesulide is still an important research tool being used to develop new anticancer drugs. Multiple studies have been done to modify the nimesulide skeleton to develop more potent anticancer agents and related compounds are promising scaffolds for future development. As such, establishing a mechanism of action for nimesulide remains an important part of realizing its potential. Here, we show that nimesulide enhances TRAIL-induced apoptosis in resistant pancreatic cancer cells by promoting clustering of DR5 in the plasma membrane. In this way, nimesulide acts like a related compound, DuP-697, which sensitizes TRAIL-resistant colon cancer cells in a similar manner. Our approach applies a time-resolved FRET-based biosensor that monitors DR5 clustering and conformational states in the plasma membrane. We show that this tool can be used for future high-throughput screens to identify novel, nontoxic small molecule scaffolds to overcome TRAIL resistance in cancer cells.
Collapse
|
8
|
|
Long L, Huang X, Yu S, Fan J, Li X, Xu R, Zhang X, Huang H. The research status and prospects of MUC1 in immunology. Hum Vaccin Immunother 2023;19:2172278. [PMID: 36744407 DOI: 10.1080/21645515.2023.2172278] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023] Open
Abstract
In immune processes, molecular - molecular interactions are complex. As MUC1 often appears to be an important molecule in inflammation and tumor immunity, it is necessary to summarize the leading countries, authors, journals, and the cooperation among these entities and, most importantly, to determine the main research directions related to MUC1 in this field and the associated research frontiers. A total of 3,397 related studies published from 2012-2021 were retrieved from the Web of Science core database. The search strategy is TS= (MUC1 OR Mucin-1) refined by WEB OF SCIENCE CATEGORY (IMMUNOLOGY) AND [excluding] PUBLICATION YEARS: (2022) AND DOCUMENT TYPES: (ARTICLE OR REVIEW) AND LANGUAGES: (ENGLISH) AND WEB OF SCIENCE INDEX: (Web of Science Core Collection. SCI), with a timespan of 2012 to 2021. Documented bibliometric visual analysis was performed by CiteSpace and VOSviewer. The number of studies has increased every year. There are 1,982 articles and 1,415 reviews from 89 countries and regions, 3,722 organizations, 1,042 journals, and 17,948 authors. The United States, China, and Germany are the major countries producing publications on this issue. The most published author is Finn OJ and the most influential author is June CH. The key words "chimeric antigen receptor" and "T-cell" highlight the current hot spots and future trends in this field. Research on MUC1 in the field of immunology is still evolving. Through the bibliometric analysis of the existing publications, the current research hotspots and future development trends in this field can be obtained.
Collapse
|
9
|
|
You J, Li X, Dai F, Liu J, Zhang Q, Guo W. GSDMD-mediated pyroptosis promotes cardiac remodeling in pressure overload. Clin Exp Hypertens 2023;45:2189138. [PMID: 36906959 DOI: 10.1080/10641963.2023.2189138] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/14/2023]
Abstract
BACKGROUND Gasdermin D (GSDMD) forms membrane pores to execute pyroptosis. But the mechanism of how cardiomyocyte pyroptosis induces cardiac remodeling in pressure overload remains unclear. We investigated the role of GSDMD-mediated pyroptosis in the pathogenesis of cardiac remodeling in pressure overload. METHODS Wild-type (WT) and cardiomyocyte-specific GSDMD-deficient (GSDMD-CKO) mice were subjected to transverse aortic constriction (TAC) to induce pressure overload. Four weeks after surgery, left ventricular structure and function were evaluated by echocardiographic, invasive hemodynamic and histological analysis. Pertinent signaling pathways related to pyroptosis, hypertrophy and fibrosis were investigated by histochemistry, RT-PCR and western blotting. The serum levels of GSDMD and IL-18 collected from healthy volunteers or hypertensive patients were measured by ELISA. RESULTS We found TAC induced cardiomyocyte pyroptosis and release of pro-inflammatory cytokines IL-18. The serum GSDMD level was significantly higher in hypertensive patients than in healthy volunteers, and induced more dramatic release of mature IL-18. GSDMD deletion remarkably mitigated TAC-induced cardiomyocyte pyroptosis. Furthermore, GSDMD deficiency in cardiomyocytes significantly reduced myocardial hypertrophy and fibrosis. The deterioration of cardiac remodeling by GSDMD-mediated pyroptosis was associated with activating JNK and p38 signaling pathways, but not ERK or Akt signaling pathway. CONCLUSION In conclusion, our results demonstrate that GSDMD serves as a key executioner of pyroptosis in cardiac remodeling induced by pressure overload. GSDMD-mediated pyroptosis activates JNK and p38 signaling pathways, and this may provide a new therapeutic target for cardiac remodeling induced by pressure overload.
Collapse
|
10
|
|
Kuan Y, Tsai C, Sakakibara S, Standley DM, Kikutani H. External stimulation induces the secretion of autophagosome-like vesicles by B cells. Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2023.2179287] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/23/2023]
|
11
|
|
Chen C, Jiang X, Zhao Z. Inhibition or promotion, the potential role of arginine metabolism in immunotherapy for colorectal cancer. All Life 2023;16. [DOI: 10.1080/26895293.2022.2163306] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/19/2023] Open
|
12
|
|
Liu A, Sun J, Tiwari S, Wong J, Wang H, Tang D, Han Z. Effect of Chinese herbal formulae (BU-SHEN-YI-QI granule) treatment on thrombin expression after ischemia/reperfusion. All Life 2023;16. [DOI: 10.1080/26895293.2023.2173311] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/09/2023] Open
|
13
|
|
Kim JK, Silwal P, Kim YJ, Jeon SM, Kim IS, Lee J, Heo JY, Lee S, Bae J, Kim J, Park JB, Jo E. Gamma-aminobutyric acid type A receptor alpha 4 coordinates autophagy, inflammation, and immunometabolism to promote innate immune activation. Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2023.2181915] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023]
|
14
|
|
Dibajnia P, Cardenas LM, Lalani AA. The emerging landscape of neo/adjuvant immunotherapy in renal cell carcinoma. Hum Vaccin Immunother 2023;19:2178217. [PMID: 36775257 DOI: 10.1080/21645515.2023.2178217] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/14/2023] Open
Abstract
Adjuvant and neoadjuvant therapies that reduce the risk of renal cell carcinoma (RCC) recurrence remain an area of unmet need. Advances have been made in metastatic RCC recently by leveraging PD-1/PD-L1 immune checkpoint inhibitors (ICIs). These agents are currently being investigated in the adjuvant and neoadjuvant settings to determine if intervention early in the disease trajectory offers a clinically meaningful benefit. While a disease-free survival benefit has been demonstrated with pembrolizumab, results from other ICI studies have not been positive to date. More mature data from these studies are needed to determine whether there is a survival benefit to ICIs in the curative-intent setting. The success of ICIs has also ushered a new wave of studies combining ICIs with other agents such as targeted therapies and vaccines, which are in early stages of investigation. We review the current state of adjuvant/neoadjuvant therapy in RCC and highlight opportunities for ongoing study.
Collapse
|
15
|
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Lopes Alberto Duque T, He CY, Heussler V, Le Roch KG, Li F, Perrone Bezerra de Menezes J, Menna-barreto RFS, Mottram JC, Schmuckli-maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2022.2149211] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/12/2023]
|
16
|
|
Lu Y, Zhang X, Ning J, Zhang M. Immune checkpoint inhibitors as first-line therapy for non-small cell lung cancer: A systematic evaluation and meta-analysis. Hum Vaccin Immunother 2023;19:2169531. [PMID: 36715018 DOI: 10.1080/21645515.2023.2169531] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/31/2023] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs) present promising application prospects in treating non-small cell lung cancer (NSCLC). This study aimed to investigate optimal treatment strategy by comparing the first-line treatment strategies with ICIs in NSCLC. We retrieved relevant studies on first-line therapy of NSCLC with ICIs. Primary outcomes were overall survival (OS) and progression-free survival (PFS). Secondary outcomes were treatment-related serious adverse events (tr-SAEs) with grade 3 or higher and objective response rate (ORR). We also conducted a Bayesian network meta-analysis. We included 14 studies involving 7,823 patients and compared seven different interventions. In PD-L1 nonselective NSCLC, nivolumab+ipilimumab had good PFS and ORR, pembrolizumab significantly prolonged OS, and nivolumab had the fewest adverse events (AEs). For PD-L1-positive patients, nivolumab remarkably prolonged OS. For those with negative PD-L1, nivolumab+ipilimumab also showed an advantage. In addition, nivolumab+ipilimumab significantly prolonged the PFS in both PD-L1-negative and -positive patients. For patients with PD-L1 tumor proportion score (TPS) within 1-49%, atezolizumab+chemotherapy remarkably prolonged PFS and OS. For those with PD-L1 TPS ≥50%, pembrolizumab prolonged OS and atezolizumab+chemotherapy significantly prolonged PFS. Nivolumab combined with ipilimumab showed advantages in OS, PFS and ORR in most patients. Nivolumab+ipilimumab may be the optimal first-line therapy for NSCLC.
Collapse
|
17
|
|
Wen Z, Fang C, Liu X, Liu Y, Li M, Yuan Y, Han Z, Wang C, Zhang T, Sun C. A recombinant Mycobacterium smegmatis-based surface display system for developing the T cell-based COVID-19 vaccine. Hum Vaccin Immunother 2023;19:2171233. [PMID: 36785935 DOI: 10.1080/21645515.2023.2171233] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/15/2023] Open
Abstract
The immune escape mutations of SARS-CoV-2 variants emerged frequently, posing a new challenge to weaken the protective efficacy of current vaccines. Thus, the development of novel SARS-CoV-2 vaccines is of great significance for future epidemic prevention and control. We herein reported constructing the attenuated Mycobacterium smegmatis (M. smegmatis) as a bacterial surface display system to carry the spike (S) and nucleocapsid (N) of SARS-CoV-2. To mimic the native localization on the surface of viral particles, the S or N antigen was fused with truncated PE_PGRS33 protein, which is a transportation component onto the cell wall of Mycobacterium tuberculosis (M.tb). The sub-cellular fraction analysis demonstrated that S or N protein was exactly expressed onto the surface (cell wall) of the recombinant M. smegmatis. After the immunization of the M. smegmatis-based COVID-19 vaccine candidate in mice, S or N antigen-specific T cell immune responses were effectively elicited, and the subsets of central memory CD4+ T cells and CD8+ T cells were significantly induced. Further analysis showed that there were some potential cross-reactive CTL epitopes between SARS-CoV-2 and M.smegmatis. Overall, our data provided insights that M. smegmatis-based bacterial surface display system could be a suitable vector for developing T cell-based vaccines against SARS-CoV-2 and other infectious diseases.
Collapse
|
18
|
|
Qiu X, Shi Z, Tong F, Lu C, Zhu Y, Wang Q, Gu Q, Qian X, Meng F, Liu B, Du J. Biomarkers for predicting tumor response to PD-1 inhibitors in patients with advanced pancreatic cancer. Hum Vaccin Immunother 2023;19:2178791. [PMID: 36809234 DOI: 10.1080/21645515.2023.2178791] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/23/2023] Open
Abstract
Pancreatic cancer is among the most lethal malignant neoplasms, and few patients with pancreatic cancer benefit from immunotherapy. We retrospectively analyzed advanced pancreatic cancer patients who received PD-1 inhibitor-based combination therapies during 2019-2021 in our institution. The clinical characteristics and peripheral blood inflammatory markers (neutrophil-to-lymphocyte ratio [NLR], platelet-to-lymphocyte ratio [PLR], lymphocyte-to-monocyte ratio [LMR], and lactate dehydrogenase [LDH]) were collected at baseline. Chi-squared and Fisher's exact tests were used to evaluate relationships between the above parameters and tumor response. Cox regression analyses were employed to assess the effects of baseline factors on patients' survival and immune-related adverse events (irAEs). Overall, 67 patients who received at least two cycles of PD-1 inhibitor were considered evaluable. A lower NLR was independent predictor for objective response rate (38.1% vs. 15.2%, P = .037) and disease control rate (81.0% vs. 52.2%, P = .032). In our study population, patients with lower LDH had superior progression-free survival (PFS) and overall survival(OS) (mPFS, 5.4 vs. 2.8 months, P < .001; mOS, 13.3 vs. 3.6 months, P < .001). Liver metastasis was verified to be a negative prognostic factor for PFS (2.4 vs. 7.8 months, P < .001) and OS (5.7 vs. 18.0 months, P < .001). The most common irAEs were hypothyroidism (13.4%) and rash (10.5%). Our study demonstrated that the pretreatment inflammatory markers were independent predictors for tumor response, and the baseline LDH level and liver metastasis were potential prognostic markers of survival in patients with pancreatic cancer treated with PD-1 inhibitors.
Collapse
|
19
|
|
Liton PB, Boesze-battaglia K, Boulton ME, Boya P, Ferguson TA, Ganley IG, Kauppinnen A, Laurie GW, Mizushima N, Morishita H, Russo R, Sadda J, Shyam R, Sinha D, Thompson DA, Zacks DN. Autophagy in the eye: from physiology to pathophysology. Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2023.2178996] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023]
|
20
|
|
Shen MY, Di YX, Wang X, Tian FX, Zhang MF, Qian FY, Jiang BP, Zhou XP, Zhou LL. Panax notoginseng saponins (PNS) attenuate Th17 cell differentiation in CIA mice via inhibition of nuclear PKM2-mediated STAT3 phosphorylation. Pharm Biol 2023;61:459-72. [PMID: 36794740 DOI: 10.1080/13880209.2023.2173248] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/17/2023] Open
Abstract
CONTEXT Rheumatoid arthritis (RA) is an autoimmune disease with aberrant Th17 cell differentiation. Panax notoginseng (Burk.) F. H. Chen (Araliaceae) saponins (PNS) have an anti-inflammatory effect and can suppress Th17 cell differentiation. OBJECTIVE To investigate mechanisms of PNS on Th17 cell differentiation in RA, and the role of pyruvate kinase M2 (PKM2). MATERIALS AND METHODS Naive CD4+T cells were treated with IL-6, IL-23 and TGF-β to induce Th17 cell differentiation. Apart from the Control group, other cells were treated with PNS (5, 10, 20 μg/mL). After the treatment, Th17 cell differentiation, PKM2 expression, and STAT3 phosphorylation were measured via flow cytometry, western blots, or immunofluorescence. PKM2-specific allosteric activator (Tepp-46, 50, 100, 150 μM) and inhibitor (SAICAR, 2, 4, 8 μM) were used to verify the mechanisms. A CIA mouse model was established and divided into control, model, and PNS (100 mg/kg) groups to assess an anti-arthritis effect, Th17 cell differentiation, and PKM2/STAT3 expression. RESULTS PKM2 expression, dimerization, and nuclear accumulation were upregulated upon Th17 cell differentiation. PNS inhibited the Th17 cells, RORγt expression, IL-17A levels, PKM2 dimerization, and nuclear accumulation and Y705-STAT3 phosphorylation in Th17 cells. Using Tepp-46 (100 μM) and SAICAR (4 μM), we demonstrated that PNS (10 μg/mL) inhibited STAT3 phosphorylation and Th17 cell differentiation by suppressing nuclear PKM2 accumulation. In CIA mice, PNS attenuated CIA symptoms, reduced the number of splenic Th17 cells and nuclear PKM2/STAT3 signaling. DISCUSSION AND CONCLUSIONS PNS inhibited Th17 cell differentiation through the inhibition of nuclear PKM2-mediated STAT3 phosphorylation. PNS may be useful for treating RA.
Collapse
|
21
|
|
Ji W, Tao L, Li D, Zhu P, Wang Y, Zhang Y, Zhang L, Chen S, Yang H, Jin Y, Duan G. A mouse model and pathogenesis study for CVA19 first isolated from hand, foot, and mouth disease. Emerg Microbes Infect 2023;12:2177084. [PMID: 36735880 DOI: 10.1080/22221751.2023.2177084] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/05/2023]
Abstract
ABSTRACTCoxsackievirus A19 (CVA19) is a member of Enterovirus (EV) C group in the Picornaviridae family. Recently, we reported a case of CVA19-infected hand, foot, and mouth disease (HFMD) for the first time. However, the current body of knowledge on the CVA19 infection, particularly the pathogenesis of encephalomyelitis and diarrhoea is still very limited, due to the lack of suitable animal models. Here, we successfully established a CVA19 mouse model via oral route based on 7-day-old ICR mice. Our results found the virus strain could directly infect the neurons, astrocytes of brain, and motor neurons of spinal cord causing neurological complications, such as acute flaccid paralysis. Importantly, viruses isolated from the spinal cords of infected mice caused severe illness in suckling mice, fulfilling Koch's postulates to some extent. CVA19 infection led to diarrhoea with typical pathological features of shortened intestinal villi, increased number of secretory cells and apoptotic intestinal cells, and inflammatory cell infiltration. Much higher concentrations of serum cytokines and more peripheral blood inflammatory cells in CVA19-infected mice indicated a systematic inflammatory response induced by CVA19 infection. Finally, we found ribavirin and CVA19 VP1 monoclonal antibody could not prevent the disease progression, but higher concentrations of antisera and interferon alpha 2 (IFN-α2) could provide protective effects against CVA19. In conclusion, this study shows that a natural mouse-adapted CVA19 strain leads to diarrhoea and encephalomyelitis in a mouse model via oral infection, which provides a useful tool for studying CVA19 pathogenesis and evaluating the efficacy of vaccines and antivirals.
Collapse
|
22
|
|
Johnson AN, Dickinson J, Nelson A, Gaurav R, Kudrna K, Evans SE, Janike K, Wyatt TA, Poole JA. Effect of epithelial-specific MyD88 signaling pathway on airway inflammatory response to organic dust exposure. J Immunotoxicol 2023;20:2148782. [PMID: 36538286 DOI: 10.1080/1547691X.2022.2148782] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/24/2022] Open
Abstract
The Toll-like receptor (TLR) adaptor protein MyD88 is integral to airway inflammatory response to microbial-enriched organic dust extract (ODE) exposures. ODE-induced airway neutrophil influx and release of pro-inflammatory cytokines was essentially abrogated in global MyD88-deficient mice, yet these mice demonstrate an increase in airway epithelial cell mucin expression. To further elucidate the role of MyD88-dependent responses specific to lung airway epithelial cells in response to ODE in vivo, the surfactant protein C protein (SPC) Cre+ embryologic expressing airway epithelial cells floxed for MyD88 to disrupt MyD88 signaling were utilized. The inducible club cell secretory protein (CCSP) Cre+, MyD88 floxed, were also developed. Using an established protocol, mice were intranasally instilled with ODE or saline once or daily up to 3 weeks. Mice with MyD88-deficient SPC+ lung epithelial cells exhibited decreased neutrophil influx following ODE exposure once and repetitively for 1 week without modulation of classic pro-inflammatory mediators including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and neutrophil chemoattractants. This protective response was lost after 3 weeks of repetitive exposure. ODE-induced Muc5ac mucin expression at 1 week was also reduced in MyD88-deficient SPC+ cells. Acute ODE-induced IL-33 was reduced in MyD88-deficient SPC+ cells whereas serum IgE levels were increased at one week. In contrast, mice with inducible MyD88-deficient CCSP+ airway epithelial cells demonstrated no significant difference in experimental indices following ODE exposure. Collectively, these findings suggest that MyD88-dependent signaling targeted to all airway epithelial cells plays an important role in mediating neutrophil influx and mucin production in response to acute organic dust exposures.
Collapse
|
23
|
|
Luo M, Zhou B, Reddem ER, Tang B, Chen B, Zhou R, Liu H, Liu L, Katsamba PS, Au KK, Man HO, To KK, Yuen KY, Shapiro L, Dang S, Ho DD, Chen Z. Structural insights into broadly neutralizing antibodies elicited by hybrid immunity against SARS-CoV-2. Emerg Microbes Infect 2023;12:2146538. [PMID: 36354024 DOI: 10.1080/22221751.2022.2146538] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/11/2022]
Abstract
ABSTRACTIncreasing spread by SARS-CoV-2 Omicron variants challenges existing vaccines and broadly reactive neutralizing antibodies (bNAbs) against COVID-19. Here we determine the diversity, potency, breadth and structural insights of bNAbs derived from memory B cells of BNT162b2-vaccinee after homogeneous Omicron BA.1 breakthrough infection. The infection activates diverse memory B cell clonotypes for generating potent class I/II and III bNAbs with new epitopes mapped to the receptor-binding domain (RBD). The top eight bNAbs neutralize wildtype and BA.1 potently but display divergent IgH/IgL sequences and neuralization profiles against other variants of concern (VOCs). Two of them (P2D9 and P3E6) belonging to class III NAbs display comparable potency against BA.4/BA.5, although structural analysis reveals distinct modes of action. P3E6 neutralizes all variants tested through a unique bivalent interaction with two RBDs. Our findings provide new insights into hybrid immunity on BNT162b2-induced diverse memory B cells in response to Omicron breakthrough infection for generating diverse bNAbs with distinct structural basis.
Collapse
|
24
|
|
Barral A, Déjardin J. The chromatin signatures of enhancers and their dynamic regulation. Nucleus 2023;14:2160551. [PMID: 36602897 DOI: 10.1080/19491034.2022.2160551] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/06/2023] Open
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
|
25
|
|
Geng M, Li K, Ai K, Liang W, Yang J, Wei X. Evolutionarily conserved IL-27β enhances Th1 cells potential by triggering the JAK1/STAT1/T-bet axis in Nile tilapia. Fish Shellfish Immunol Rep 2023;4:100087. [PMID: 36873098 DOI: 10.1016/j.fsirep.2023.100087] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/19/2023] Open
Abstract
As a pleiotropic cytokine in the interleukin (IL)-12 family, IL-27β plays a significant role in regulating immune cell responses, eliminating invading pathogens, and maintaining immune homeostasis. Although non-mammalian IL-27β homologs have been identified, the mechanism of whether and how it is involved in adaptive immunity in early vertebrates remains unclear. In this study, we identified an evolutionarily conserved IL-27β (defined as OnIL-27β) from Nile tilapia (Oreochromis niloticus), and explored its conserved status through gene collinearity, gene structure, functional domain, tertiary structure, multiple sequence alignment, and phylogeny analysis. IL-27β was widely expressed in the immune-related tissues/organ of tilapia. The expression of OnIL-27β in spleen lymphocytes increased significantly at the adaptive immune phase after Edwardsiella piscicida infection. OnIL-27β can bind to precursor cells, T cells, and other lymphocytes to varying degrees. Additionally, IL-27β may be involved in lymphocyte-mediated immune responses through activation of Erk and JNK pathways. More importantly, we found that IL-27β enhanced the mRNA expression of the Th1 cell-associated cytokine IFN-γ and the transcription factor T-bet. This potential enhancement of the Th1 response may be attributed to the activation of the JAK1/STAT1/T-bet axis by IL-27β, as it induced increased transcript levels of JAK1, STAT1 but not TYK2 and STAT4. This study provides a new perspective for understanding the origin, evolution and function of the adaptive immune system in teleost.
Collapse
|
26
|
|
Lee IJ, Lan YH, Wu PY, Wu YW, Chen YH, Tseng SC, Kuo TJ, Sun CP, Jan JT, Ma HH, Liao CC, Liang JJ, Ko HY, Chang CS, Liu WC, Ko YA, Chen YH, Sie ZL, Tsung SI, Lin YL, Wang IH, Tao MH. A receptor-binding domain-based nanoparticle vaccine elicits durable neutralizing antibody responses against SARS-CoV-2 and variants of concern. Emerg Microbes Infect 2023;12:2149353. [PMID: 36395071 DOI: 10.1080/22221751.2022.2149353] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/18/2022]
Abstract
Numerous vaccines have been developed to address the current COVID-19 pandemic, but safety, cross-neutralizing efficacy, and long-term protectivity of currently approved vaccines are still important issues. In this study, we developed a subunit vaccine, ASD254, by using a nanoparticle vaccine platform to encapsulate the SARS-CoV-2 spike receptor-binding domain (RBD) protein. As compared with the aluminum-adjuvant RBD vaccine, ASD254 induced higher titers of RBD-specific antibodies and generated 10- to 30-fold more neutralizing antibodies. Mice vaccinated with ASD254 showed protective immune responses against SARS-CoV-2 challenge, with undetectable infectious viral loads and reduced typical lesions in lung. Besides, neutralizing antibodies in vaccinated mice lasted for at least one year and were effective against various SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, particle size, polydispersity index, and zeta-potential of ASD254 remained stable after 8-month storage at 4°C. Thus, ASD254 is a promising nanoparticle vaccine with good immunogenicity and stability to be developed as an effective vaccine option in controlling upcoming waves of COVID-19.
Collapse
|
27
|
|
Yu Y, Lu S, Jin H, Zhu H, Wei X, Zhou T, Zhao M. RNA N6-methyladenosine methylation and skin diseases. Autoimmunity 2023;56:2167983. [PMID: 36708146 DOI: 10.1080/08916934.2023.2167983] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/29/2023]
Abstract
Skin diseases are global health issues caused by multiple pathogenic factors, in which epigenetics plays an invaluable role. Post-transcriptional RNA modifications are important epigenetic mechanism that regulate gene expression at the genome-wide level. N6-methyladenosine (m6A) is the most prevalent modification that occurs in the messenger RNAs (mRNA) of most eukaryotes, which is installed by methyltransferases called "writers", removed by demethylases called "erasers", and recognised by RNA-binding proteins called "readers". To date, m6A is emerging to play essential part in both physiological processes and pathological progression, including skin diseases. However, a systematic summary of m6A in skin disease has not yet been reported. This review starts by illustrating each m6A-related modifier specifically and their roles in RNA processing, and then focus on the existing research advances of m6A in immune homeostasis and skin diseases.
Collapse
|
28
|
|
de La Vega MA, Polychronopoulou E, Xiii A, Ding Z, Chen T, Liu Q, Lan J, Nepveu-Traversy ME, Fausther-Bovendo H, Zaidan MF, Wong G, Sharma G, Kobinger GP. SARS-CoV-2 infection-induced immunity reduces rates of reinfection and hospitalization caused by the Delta or Omicron variants. Emerg Microbes Infect 2023;12:e2169198. [PMID: 36655944 DOI: 10.1080/22221751.2023.2169198] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/20/2023]
Abstract
During a pandemic, effective vaccines are typically in short supply, particularly at onset intervals when the wave is accelerating. We conducted an observational, retrospective analysis of aggregated data from all patients who tested positive for SARS-CoV-2 during the waves caused by the Delta and Omicron variants, stratified based on their known previous infection and vaccination status, throughout the University of Texas Medical Branch (UTMB) network. Next, the immunity statuses within each medical parameter were compared to naïve individuals for the effective decrease of occurrence. Lastly, we conducted studies using mice and pre-pandemic human samples for IgG responses to viral nucleocapsid compared to spike protein toward showing a functional component supportive of the medical data results in relation to the immunity types. During the Delta and Omicron waves, both infection-induced and hybrid immunities were associated with a trend of equal or greater decrease of occurrence than vaccine-induced immunity in hospitalizations, intensive care unit admissions, and deaths in comparison to those without pre-existing immunity, with hybrid immunity often trending with the greatest decrease. Compared to individuals without pre-existing immunity, those vaccinated against SARS-CoV-2 had a significantly reduced incidence of COVID-19, as well as all subsequent medical parameters. Though vaccination best reduces health risks associated with initial infection toward acquiring immunity, our findings suggest infection-induced immunity is as or more effective than vaccination in reducing the severity of reinfection from the Delta or Omicron variants, which should inform public health response at pandemic onset, particularly when triaging towards the allotment of in-demand vaccinations.
Collapse
|
29
|
|
Quadir N, Shariq M, Sheikh JA, Singh J, Sharma N, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis protein MoxR1 enhances virulence by inhibiting host cell death pathways and disrupting cellular bioenergetics. Virulence 2023;14:2180230. [PMID: 36799069 DOI: 10.1080/21505594.2023.2180230] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/18/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) utilizes the multifunctionality of its protein factors to deceive the host. The unabated global incidence and prevalence of tuberculosis (TB) and the emergence of multidrug-resistant strains warrant the discovery of novel drug targets that can be exploited to manage TB. This study reports the role of M. tb AAA+ family protein MoxR1 in regulating host-pathogen interaction and immune system functions. We report that MoxR1 binds to TLR4 in macrophage cells and further reveal how this signal the release of proinflammatory cytokines. We show that MoxR1 activates the PI3K-AKT-MTOR signalling cascade by inhibiting the autophagy-regulating kinase ULK1 by potentiating its phosphorylation at serine 757, leading to its suppression. Using autophagy-activating and repressing agents such as rapamycin and bafilomycin A1 suggested that MoxR1 inhibits autophagy flux by inhibiting autophagy initiation. MoxR1 also inhibits apoptosis by suppressing the expression of MAPK JNK1/2 and cFOS, which play critical roles in apoptosis induction. Intriguingly, MoxR1 also induced robust disruption of cellular bioenergetics by metabolic reprogramming to rewire the citric acid cycle intermediates, as evidenced by the lower levels of citric acid and electron transport chain enzymes (ETC) to dampen host defence. These results point to a multifunctional role of M. tb MoxR1 in dampening host defences by inhibiting autophagy, apoptosis, and inducing metabolic reprogramming. These mechanistic insights can be utilized to devise strategies to combat TB and better understand survival tactics by intracellular pathogens.
Collapse
|
30
|
|
Zheng H, Li M, Wu L, Liu W, Liu Y, Gao J, Lu Z. Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Deliv 2023;30:2161670. [PMID: 36587630 DOI: 10.1080/10717544.2022.2161670] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal tumors are the most common cancers with the highest morbidity and mortality worldwide. Surgery accompanied by chemotherapy, radiotherapy and targeted therapy remains the first option for gastrointestinal tumors. However, poor specificity for tumor cells of these postoperative treatments often leads to severe side effects and poor prognosis. Tumor immunotherapy, including checkpoint blockade and tumor vaccines, has developed rapidly in recent years, showing good curative effects and minimal side effects in the treatment of gastrointestinal tumors. National Comprehensive Cancer Network guidelines recommend tumor immunotherapy as part of the treatment of gastrointestinal tumors. However, the heterogeneity of tumor cells, complicacy of the tumor microenvironment and poor tumor immunogenicity hamper the effectiveness of tumor immunotherapy. Hydrogels, defined as three-dimensional, hydrophilic, and water-insoluble polymeric networks, could significantly improve the overall response rate of immunotherapy due to their superior drug loading efficacy, controlled release and drug codelivery ability. In this article, we briefly describe the research progress made in recent years on hydrogel delivery systems in immunotherapy for gastrointestinal tumors and discuss the potential future application prospects and challenges to provide a reference for the clinical application of hydrogels in tumor immunotherapy.
Collapse
|
31
|
|
Li A, Leng H, Li Z, Jin L, Sun K, Feng J. Temporal dynamics of the bat wing transcriptome: Insight into gene-expression changes that enable protection against pathogen. Virulence 2023;14:2156185. [PMID: 36599840 DOI: 10.1080/21505594.2022.2156185] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/06/2023] Open
Abstract
Skin acts as a mechanical barrier between the body and its surrounding environment and plays an important role in resistance to pathogens. However, we still know little regarding skin responses to physiological changes, particularly with regard to responses against potential pathogens. We herein executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-hibernation), and post-hibernation, as well as the gene-expression patterns of infected and uninfected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number of differentially expressed genes between the more disparate physiological stages. Functional enrichment analysis showed that the down-regulated response pathways in hibernating bats included phosphorus metabolism and immune response, indicating metabolic suppression and decreased whole immune function. We also found up-regulated genes in post-hibernating bats that included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion, suggesting that the immune response and skin integrity of the wing were improved after bats emerged from their hibernation and that this facilitated clearing Pd from the integument. Additionally, we found that the genes involved in cytokine or chemokine activity were up-regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying that the host's innate immune function was enhanced during late-hibernation so as to resist pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity provides protection against pathogenic infections in highly resistant bats.
Collapse
|
32
|
|
Estevinho T, Lé AM, Torres T. Deucravacitinib in the treatment of psoriasis. J DERMATOL TREAT 2023;34:2154122. [PMID: 36453809 DOI: 10.1080/09546634.2022.2154122] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/03/2022]
Abstract
PURPOSE OF THE ARTICLE Psoriasis is a chronic, immune-mediated, skin disease with a significantly negative impact on patients' quality of life. Moderate-to-severe disease often requires systemic therapies and currently available ones still have numerous disadvantages or limitations. Tyrosine kinase 2 (TYK2) mediates immune signaling of IL-12, IL-23, and type I interferons, without interfering with other critical systemic functions. This article aims to review the current knowledge on deucravacitinib, a new oral drug which selectively inhibits TYK2, granting it a low risk of off-target effects. MATERIALS AND METHODS A review of the published literature was conducted using the PubMed database, published abstracts and virtual presentations from scientific meetings, data from industry press releases, and results published on ClinicalTrials.gov regarding the deucravacitinib for the treatment of psoriasis. Manuscripts with trial results, case series, clinical trial data from ClinicalTrials.gov, and articles highlighting expert perspectives on the topic of the article were selected. RESULTS Two phase 3, 52-week trials evaluated deucravacitinib 6 mg against placebo and apremilast - POETYK PSO-1 and PSO-2, enrolling 1688 patients with moderate-to-severe psoriasis. At week 16, over 50% of patients treated with deucravacitinib reached PASI75, significantly superior to placebo and apremilast. Symptomatic improvement was also reported, with greater impact on itch. Deucravacitinib was well tolerated and safe. There were no reports of serious infections, thromboembolic events, or laboratory abnormalities. Persistent efficacy and consistent safety profiles were reported for up to 2 years. CONCLUSIONS Deucravacitinib has the potential to become a safe, effective, and well-tolerated treatment for patients with moderate-to-severe disease. Future studies will be important to determine the exact role of this drug in the treatment of psoriasis.
Collapse
|
33
|
|
Elgaard CDB, Iversen L, Hjuler KF. Guselkumab, tildrakizumab, and risankizumab in a real-world setting: drug survival and effectiveness in the treatment of psoriasis and psoriatic arthritis. J DERMATOL TREAT 2023;34:2133531. [PMID: 36200762 DOI: 10.1080/09546634.2022.2133531] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 10/24/2022]
Abstract
BACKGROUND Clinical trials have shown promising results for interleukin-23 inhibitors in the treatment of psoriasis. The drugs have been used in clinical practice since 2017. OBJECTIVE To investigate the drug survival and effectiveness of interleukin-23 inhibitors in the treatment of psoriasis and psoriatic arthritis (PsA) in a real-world setting. METHODS The study was a retrospective analysis of patients treated with either guselkumab, tildrakizumab, or risankizumab at the Department of Dermatology, Aarhus University Hospital, during the period from June 11 2018, to July 14 2021. RESULTS A total of 80 patients were included. During the study, 19 patients discontinued treatment with an interleukin-23 inhibitor, and mean treatment duration (SD) was 61.4 weeks (43.7). Seventy-six patients (95%) had previous use of ≥1 biologic. One-year drug survival was 81.0%. Among patients, 64.3% achieved a Psoriasis Area and Severity Index (PASI) ≤ 2 at weeks 12-17; 61.3%, at weeks 40-60. There was no statistically significant difference between the drugs regarding the chance of achieving PASI ≤ 2 (p>.05). Twenty-two patients (27.5%) had PsA. Among these, 40.9% and 36.4% achieved complete remission and partial remission, respectively. CONCLUSIONS Interleukin-23 inhibitors appear to have high and similar drug survival and effectiveness in patients with difficult-to-treat psoriasis and PsA.
Collapse
|
34
|
|
Xu F, Zhang Q, Xuan D, Zhao S, Wang Y, Han L, Huang S, Zhu H, Wang T, Chen X. Daytime variation in non-cardiac surgery impacts the recovery after general anesthesia. Ann Med 2023;55:1134-43. [PMID: 36947128 DOI: 10.1080/07853890.2023.2187875] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Circadian rhythm involved with physiology has been reported to affect pharmacokinetics or pharmacodynamics. We hypothesized that circadian variations in physiology disturb anesthesia and eventually affect recovery after anesthesia. METHODS A retrospective cohort study initially included 107,406 patients (1 June 2016-6 June 2021). Patients were classified into morning or afternoon surgery groups. The primary outcome was daytime variation in PACU (post-anesthesia care unit) recovery time and Steward score. Inverse probability weighting (IPW) approach based on propensity score and univariable/multivariable linear regression were used to estimate this outcome. RESULTS Of 28,074 patients, 13,418 (48%) patients underwent morning surgeries, and 14,656 (52%) patients underwent afternoon surgeries. LOWESS curves and IPW illustrated daytime variation in PACU recovery time and Steward score. Before adjustment, compared to morning surgery group, afternoon surgery group had less PACU recovery time (median [interquartile range], 57 [46, 70] vs. 54 [43, 66], p < 0.001) and a higher Steward score (5.62 [5.61, 5.63] vs. 5.66 [5.65, 5.67], p < 0.001). After adjustment, compared to morning surgery group, afternoon surgery group had less PACU recovery time (58 [46, 70] vs. 54 [43, 66], p < 0.001). In multivariable linear regression, morning surgery is statistically associated with an increased PACU recovery time (coefficient, -3.20; 95% confidence interval, -3.55 to -2.86). Among non-cardiac surgeries, daytime variation might affect recovery after general anesthesia. These findings indicate that the timing of surgery improves recovery after general anesthesia, with afternoon surgery providing protection.KEY MESSAGESIn this retrospective cohort study of 28,074 participants, the afternoon surgery group has a higher Steward score than the morning surgery group.In multivariable linear regression, morning surgery is statistically associated with an increased PACU recovery time.Among non-cardiac surgeries, daytime variation affects the recovery after general anesthesia, with afternoon surgery providing protection.
Collapse
|
35
|
|
Kolben Y, Azmanov H, Gelman R, Dror D, Ilan Y. Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections. Ann Med 2023;55:311-8. [PMID: 36594558 DOI: 10.1080/07853890.2022.2163053] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/04/2023] Open
Abstract
Antimicrobial resistance results from the widespread use of antimicrobial agents and is a significant obstacle to the effectiveness of these agents. Numerous methods are used to overcome this problem with moderate success. Besides efforts of antimicrobial stewards, several artificial intelligence (AI)-based technologies are being explored for preventing resistance development. These first-generation systems mainly focus on improving patients' adherence. Chronobiology is inherent in all biological systems. Host response to infections and pathogens activity are assumed to be affected by the circadian clock. This paper describes the problem of antimicrobial resistance and reviews some of the current AI technologies. We present the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance. An algorithm-controlled regimen that improves the long-term effectiveness of antimicrobial agents is being developed based on the implementation of variability in dosing and drug administration times. The method provides a means for ensuring a sustainable response and improved outcomes. Ongoing clinical trials determine the effectiveness of this second-generation system in chronic infections. Data from these studies are expected to shed light on a new aspect of resistance mechanisms and suggest methods for overcoming them.IMPORTANCE SECTIONThe paper presents the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance.Key messagesAntimicrobial resistance results from the widespread use of antimicrobial agents and is a significant obstacle to the effectiveness of these agents.We present the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance.
Collapse
|
36
|
|
Salvato I, Ricciardi L, Nucera F, Nigro A, Dal Col J, Monaco F, Caramori G, Stellato C. RNA-Binding Proteins as a Molecular Link between COPD and Lung Cancer. COPD 2023;20:18-30. [PMID: 36655862 DOI: 10.1080/15412555.2022.2107500] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) represents an independent risk factor for lung cancer development. Accelerated cell senescence, induced by oxidative stress and inflammation, is a common pathogenic determinant of both COPD and lung cancer. The post transcriptional regulation of genes involved in these processes is finely regulated by RNA-binding proteins (RBPs), which regulate mRNA turnover, subcellular localization, splicing and translation. Multiple pro-inflammatory mediators (including cytokines, chemokines, proteins, growth factors and others), responsible of lung microenvironment alteration, are regulated by RBPs. Several mouse models have shown the implication of RBPs in multiple mechanisms that sustain chronic inflammation and neoplastic transformation. However, further studies are required to clarify the role of RBPs in the pathogenic mechanisms shared by lung cancer and COPD, in order to identify novel biomarkers and therapeutic targets. This review will therefore focus on the studies collectively indicating the role of RBPs in oxidative stress and chronic inflammation as common pathogenic mechanisms shared by lung cancer and COPD.
Collapse
|
37
|
|
Kanninen T, Jung E, Gallo DM, Diaz-Primera R, Romero R, Gotsch F, Suksai M, Bosco M, Chaiworapongsa T. Soluble suppression of tumorigenicity-2 in pregnancy with a small-for-gestational-age fetus and with preeclampsia. J Matern Fetal Neonatal Med 2023;36:2153034. [PMID: 36521862 DOI: 10.1080/14767058.2022.2153034] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Preeclampsia and fetal growth disorders are pregnancy-specific conditions that share common pathophysiological mechanisms. Yet, why some patients develop preeclampsia while others experience fetal growth restriction, or a combination of both clinical presentations, is unknown. We propose that the difference in severity of the maternal inflammatory response can contribute to the clinical phenotypes of preeclampsia vs. small for gestational age (SGA). To assess this hypothesis, we measured maternal plasma concentrations of the soluble isoform of suppression of tumorigenicity-2 (sST2), a member of the interleukin-1 receptor family that buffers proinflammatory responses. Previous reports showed that serum sST2 concentrations rise in the presence of intravascular inflammation and Th1-type immune responses and are significantly higher in patients with preeclampsia compared to those with normal pregnancy. The behavior of sST2 in pregnancies complicated by SGA has not been reported. This study was conducted to compare sST2 plasma concentrations in normal pregnancies, in those with preeclampsia, and in those with an SGA fetus. METHODS This retrospective cross-sectional study included women with an SGA fetus (n = 52), women with preeclampsia (n = 106), and those with normal pregnancy (n = 131). Maternal plasma concentrations of sST2 were determined by enzyme-linked immunosorbent assay. Doppler velocimetry of the uterine and umbilical arteries was available in a subset of patients with SGA (42 patients and 43 patients, respectively). RESULTS (1) Women with an SGA fetus had a significantly higher median plasma concentration of sST2 than normal pregnant women (p = .008); (2) women with preeclampsia had a significantly higher median plasma concentration of sST2 than those with normal pregnancy (p < .001) and those with an SGA fetus (p < .001); (3) patients with SGA and abnormal uterine artery Doppler velocimetry had a higher median plasma concentration of sST2 than controls (p < .01) and those with SGA and normal uterine artery Doppler velocimetry (p = .02); (4) there was no significant difference in the median plasma sST2 concentration between patients with SGA who had normal uterine artery Doppler velocimetry and controls (p = .4); (5) among patients with SGA, those with abnormal and those with normal umbilical artery Doppler velocimetry had higher median plasma sST2 concentrations than controls (p = .001 and p = .02, respectively); and (6) there was no significant difference in the median plasma sST2 concentrations between patients with SGA who did and those who did not have abnormal umbilical artery Doppler velocimetry (p = .06). CONCLUSIONS Preeclampsia and disorders of fetal growth are conditions characterized by intravascular inflammation, as reflected by maternal plasma concentrations of sST2. The severity of intravascular inflammation is highest in patients with preeclampsia.
Collapse
|
38
|
|
Li W, Lv Y, Sun Y. Roles of non-coding RNA in megakaryocytopoiesis and thrombopoiesis: new target therapies in ITP. Platelets 2023;34:2157382. [PMID: 36550091 DOI: 10.1080/09537104.2022.2157382] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot encode proteins, and a better understanding of the complex interaction networks coordinated by ncRNAs will provide a theoretical basis for the development of therapeutics targeting the regulatory effects of ncRNAs. Platelets are produced upon the differentiation of hematopoietic stem cells into megakaryocytes, 1011 per day, and are renewed every 8-9 days. The process of thrombopoiesis is affected by multiple factors, in which ncRNAs also exert a significant regulatory role. This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis in recent years as well as their roles in primary immune thrombocytopenia (ITP).
Collapse
|
39
|
|
Mao R, Wang J, Xu Y, Wang Y, Wu M, Mao L, Chen Y, Li D, Zhang T, Diao E, Chi Z, Wang Y, Chang X. Oral delivery of bi-autoantigens by bacterium-like particles (BLPs) against autoimmune diabetes in NOD mice. Drug Deliv 2023;30:2173339. [PMID: 36719009 DOI: 10.1080/10717544.2023.2173339] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/01/2023] Open
Abstract
Induction of oral tolerance by vaccination with type 1 diabetes mellitus (T1DM)-associated autoantigens exhibits great potential in preventing and treating this autoimmune disease. However, antigen degradation in the gastrointestinal tract (GIT) limits the delivery efficiency of oral antigens. Previously, bacterium-like particles (BLPs) have been used to deliver a single-chain insulin (SCI-59) analog (BLPs-SCI-59) or the intracellular domain of insulinoma-associated protein 2 (IA-2ic) (BLPs-IA-2ic). Both monovalent BLPs vaccines can suppress T1DM in NOD mice by stimulating the corresponding antigen-specific oral tolerance, respectively. Here, we constructed two bivalent BLPs vaccines which simultaneously deliver SCI-59 and IA-2ic (Bivalent vaccine-mix or Bivalent vaccine-SA), and evaluated whether there is an additive beneficial effect on tolerance induction and suppression of T1DM by treatment with BLPs-delivered bi-autoantigens. Compared to the monovalent BLPs vaccines, oral administration of the Bivalent vaccine-mix could significantly reduce morbidity and mortality in T1DM. Treatment with the bivalent BLPs vaccines (especially Bivalent vaccine-mix) endowed the mice with a stronger ability to regulate blood glucose and protect the integrity and function of pancreatic islets than the monovalent BLPs vaccines treatment. This additive effect of BLPs-delivered bi-autoantigens on T1DM prevention may be related to that SCI-59- and IA-2-specific Th2-like immune responses could be induced, which was more beneficial for the correction of Th1/Th2 imbalance. In addition, more CD4+CD25+Foxp3+ regulatory T cells (Tregs) were induced by treatment with the bivalent BLPs vaccines than did the monovalent BLPs vaccines. Therefore, multiple autoantigens delivered by BLPs maybe a promising strategy to prevent T1DM by efficiently inducing antigen-specific immune tolerance.
Collapse
|
40
|
|
Maehara T, Koga R, Nakamura S. Immune dysregulation in immunoglobulin G4-related disease. Jpn Dent Sci Rev 2023;59:1-7. [PMID: 36654676 DOI: 10.1016/j.jdsr.2022.12.002] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/10/2023] Open
Abstract
(IgG4-RD) is an immune-mediated fibrotic disorder characterized by severe resolution of inflammation and dysregulation of wound healing. IgG4-RD has been considered a unique disease since 2003, and significant progress has been achieved in the understanding of its essential features. The central role of B cells in IgG4-RD has been demonstrated by the robust clinical responsiveness of IgG4-RD to B cell depletion and the identification of multiple self-antigens that promote B cell expansion. Studies have increasingly revealed critical roles of these B cells and T cells in the pathogenesis of IgG4-RD, and we and other authors further identified CD4+ cytotoxic T lymphocytes as the main tissue-infiltrating CD4+ T cell subset in IgG4-RD tissues. Additionally, T follicular helper cell subsets that play a role in IgG4 isotype switching have been identified. In this review, we discuss research on IgG4-RD and the roles of B cell and T cell subsets, as well as the functions of CD4+ cytotoxic T cells in IgG4-RD pathogenesis. We highlight our findings from ongoing research using single-cell analysis of infiltrating CD4+ cytotoxic T cells, CD4+ follicular helper T cells, and infiltrating B cells in IgG4-RD and propose a model for the pathogenesis of IgG4-RD.
Collapse
|
41
|
|
Sharma A, Achi SC, Ibeawuchi SR, Anandachar MS, Gementera H, Chaudhury U, Usmani F, Vega K, Sayed IM, Das S. The crosstalk between microbial sensors ELMO1 and NOD2 shape intestinal immune responses. Virulence 2023;14:2171690. [PMID: 36694274 DOI: 10.1080/21505594.2023.2171690] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/26/2023] Open
Abstract
Microbial sensors play an essential role in maintaining cellular homoeostasis. Our knowledge is limited on how microbial sensing helps in differential immune response and its link to inflammatory diseases. Recently we have confirmed that ELMO1 (Engulfment and Cell Motility Protein-1) present in cytosol is involved in pathogen sensing, engulfment, and intestinal inflammation. Here, we show that ELMO1 interacts with another sensor, NOD2 (Nucleotide-binding oligomerization domain-containing protein 2), that recognizes bacterial cell wall component muramyl dipeptide (MDP). The polymorphism of NOD2 is linked to Crohn's disease (CD) pathogenesis. Interestingly, we found that overexpression of ELMO1 and mutant NOD2 (L1007fs) were not able to clear the CD-associated adherent invasive E. coli (AIEC-LF82). The functional implications of ELMO1-NOD2 interaction in epithelial cells were evaluated by using enteroid-derived monolayers (EDMs) from ELMO1 and NOD2 KO mice. Subsequently we also assessed the immune response in J774 macrophages depleted of either ELMO1 or NOD2 or both. The infection of murine EDMs with AIEC-LF82 showed higher bacterial load in ELMO1-KO, NOD2 KO EDMs, and ELMO1 KO EDMs treated with NOD2 inhibitors. The murine macrophage cells showed that the downregulation of ELMO1 and NOD2 is associated with impaired bacterial clearance that is linked to reduce pro-inflammatory cytokines and reactive oxygen species. Our results indicated that the crosstalk between microbial sensors in enteric infection and inflammatory diseases impacts the fate of the bacterial load and disease pathogenesis.
Collapse
|
42
|
|
Zhan Z, Shi-Jin L, Yi-Ran Z, Zhi-Long L, Xiao-Xu Z, Hui D, Pan YL, Pan JH. High endothelial venules proportion in tertiary lymphoid structure is a prognostic marker and correlated with anti-tumor immune microenvironment in colorectal cancer. Ann Med 2023;55:114-26. [PMID: 36503344 DOI: 10.1080/07853890.2022.2153911] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND High endothelial venules (HEV) and tertiary lymphoid structures (TLS) are associated with clinical outcomes of patients with colorectal cancer (CRC). However, because HEV are components of TLS, there have been few studies of the role of the HEV proportion in TLS (HEV/TLS). This study investigated the role of the HEV/TLS and its relationship with the tumor immune microenvironment in CRC. METHODS A retrospective analysis of 203 cases of tissue pathologically diagnosed as CRC after general surgery was performed at the First Affiliated Hospital of Jinan University from January 2014 to July 2017. Paraffin sections were obtained from the paracancerous intestinal mucosal tissues. The area of HEV and TLS and immune cells were detected by immunohistochemistry. We further divided the positive HEV expression group into the high HEV/TLS group and the low HEV/TLS group by the average area of HEV/TLS. After grouping, the data were also analyzed using the chi-square test, Kaplan-Meier method, and univariate and multivariate Cox proportional risk regression analyses. A correlation analysis of the HEV/TLS and immune cells as well as angiogenesis was performed. RESULTS Patients with a high HEV/TLS in CRC tissue were associated with longer OS, DFS and lower TNM stage. Meanwhile, CRC tissue with a high HEV/TLS showed a greater ability to recruit the CD3+ T cells, CD8+ T cells and M1 macrophages and correlated with less angiogenesis. Conclusively, high HEV/TLS links to the favorable prognosis of CRC patients and correlated with anti-tumor immune microenvironment, which can be a potential biomarker for prognosis of CRC patients. CONCLUSION A high HEV/TLS is associated with a favorable prognosis for CRC and is correlated with the anti-tumor immune microenvironment. Therefore, it is a potential biomarker of the CRC prognosis.KEY MESSAGESHigh HEV/TLS is associated with a favorable prognosis for CRC.High HEV/TLS correlated with the anti-tumor immune microenvironment of CRC and can serve as a novel prognostic biomarker.
Collapse
|
43
|
|
Zhang C, Sheng Q, Zhao N, Huang S, Zhao Y. DNA hypomethylation mediates immune response in pan-cancer. Epigenetics 2023;18:2192894. [PMID: 36945884 DOI: 10.1080/15592294.2023.2192894] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023] Open
Abstract
Abnormal DNA methylation is a fundamental characterization of epigenetics in cancer. Here we demonstrate that aberrant DNA methylating can modulate the tumour immune microenvironment in 16 cancer types. Differential DNA methylation in promoter region can regulate the transcriptomic pattern of immune-related genes and DNA hypomethylation mainly participated in the processes of immunity, carcinogenesis and immune infiltration. Moreover, many cancer types shared immune-related functions, like activation of innate immune response, interferon gamma response and NOD-like receptor signalling pathway. DNA methylation can further help identify molecular subtypes of kidney renal clear cell carcinoma. These subtypes are characterized by DNA methylation pattern, major histocompatibility complex, cytolytic activity and cytotoxic t lymphocyte and tumour mutation burden, and subtype with hypomethylation pattern shows unstable immune status. Then, we investigate the DNA methylation pattern of exhaustion-related marker genes and further demonstrate the role of hypomethylation in tumour immune microenvironment. In summary, our findings support the use of hypomethylation as a biomarker to understand the mechanism of tumour immune environment.
Collapse
|
44
|
|
Rahlwes KC, Dias BRS, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023;14:2150449. [PMID: 36419223 DOI: 10.1080/21505594.2022.2150449] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
|
45
|
|
Fang W, Li L, Lin Z, Zhang Y, Jing Z, Li Y, Zhang Z, Hou L, Liang X, Zhang X, Zhang X. Engineered IL-15/IL-15Rα-expressing cellular vesicles promote T cell anti-tumor immunity. Extracellular Vesicle 2023;2:100021. [DOI: 10.1016/j.vesic.2022.100021] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/28/2022]
|
46
|
|
Chiu KH, Yip CC, Poon RW, Leung KH, Li X, Hung IF, To KK, Cheng VC, Yuen KY. Correlations of Myeloperoxidase (MPO), Adenosine deaminase (ADA), C-C motif chemokine 22 (CCL22), Tumour necrosis factor alpha (TNFα) and Interleukin-6 (IL-6) mRNA expression in the nasopharyngeal specimens with the diagnosis and severity of SARS-CoV-2 infections. Emerg Microbes Infect 2023;12:2157338. [PMID: 36482706 DOI: 10.1080/22221751.2022.2157338] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/13/2022]
Abstract
Cytokine dynamics in patients with coronavirus disease 2019 (COVID-19) have been studied in blood but seldomly in respiratory specimens. We studied different cell markers and cytokines in fresh nasopharyngeal swab specimens for the diagnosis and for stratifying the severity of COVID-19. This was a retrospective case-control study comparing Myeloperoxidase (MPO), Adenosine deaminase (ADA), C-C motif chemokine ligand 22 (CCL22), Tumour necrosis factor alpha (TNFα) and Interleukin-6 (IL-6) mRNA expression in 490 (327 patients and 163 control) nasopharyngeal specimens from 317 (154 COVID-19 and 163 control) hospitalized patients. Of the 154 COVID-19 cases, 46 died. Both total and normalized MPO, ADA, CCL22, TNFα, and IL-6 mRNA expression levels were significantly higher in the nasopharyngeal specimens of infected patients when compared with controls, with ADA showing better performance (OR 5.703, 95% CI 3.424-9.500, p < 0.001). Receiver operating characteristics (ROC) curve showed that the cut-off value of normalized ADA mRNA level at 2.37 × 10-3 had a sensitivity of 81.8% and specificity of 83.4%. While patients with severe COVID-19 had more respiratory symptoms, and elevated lactate dehydrogenase, multivariate analysis showed that severe COVID-19 patients had lower CCL22 mRNA (OR 0.211, 95% CI 0.060-0.746, p = 0.016) in nasopharyngeal specimens, while lymphocyte count, C-reactive protein, and viral load in nasopharyngeal specimens did not correlate with disease severity. In summary, ADA appears to be a better biomarker to differentiate between infected and uninfected patients, while CCL22 has the potential in stratifying the severity of COVID-19.
Collapse
|
47
|
|
Wan LY, Huang HH, Zhen C, Chen SY, Song B, Cao WJ, Shen LL, Zhou MJ, Zhang XC, Xu R, Fan X, Zhang JY, Shi M, Zhang C, Jiao YM, Song JW, Wang FS. Distinct inflammation-related proteins associated with T cell immune recovery during chronic HIV-1 infection. Emerg Microbes Infect 2023;12:2150566. [PMID: 36408648 DOI: 10.1080/22221751.2022.2150566] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/22/2022]
Abstract
Chronic inflammation and T cell dysregulation persist in individuals infected with human immunodeficiency virus type 1 (HIV-1), even after successful antiretroviral treatment. The mechanism involved is not fully understood. Here, we used Olink proteomics to comprehensively analyze the aberrant inflammation-related proteins (IRPs) in chronic HIV-1-infected individuals, including in 24 treatment-naïve individuals, 33 immunological responders, and 38 immunological non-responders. T cell dysfunction was evaluated as T cell exhaustion, activation, and differentiation using flow cytometry. We identified a cluster of IRPs (cluster 7), including CXCL11, CXCL9, TNF, CXCL10, and IL18, which was closely associated with T cell dysregulation during chronic HIV-1 infection. Interestingly, IRPs in cluster 5, including ST1A1, CASP8, SIRT2, AXIN1, STAMBP, CD40, and IL7, were negatively correlated with the HIV-1 reservoir size. We also identified a combination of CDCP1, CXCL11, CST5, SLAMF1, TRANCE, and CD5, which may be useful for distinguishing immunological responders and immunological non-responders. In conclusion, the distinct inflammatory milieu is closely associated with immune restoration of T cells, and our results provide insight into immune dysregulation during chronic HIV-1 infection.
Collapse
|
48
|
|
Shih LJ, Yang CC, Liao MT, Lu KC, Hu WC, Lin CP. An important call: Suggestion of using IL-10 as therapeutic agent for COVID-19 with ARDS and other complications. Virulence 2023;14:2190650. [PMID: 36914565 DOI: 10.1080/21505594.2023.2190650] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/15/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has a detrimental impact on public health. COVID-19 usually manifests as pneumonia, which can progress into acute respiratory distress syndrome (ARDS) related to uncontrolled TH17 immune reaction. Currently, there is no effective therapeutic agent to manage COVID-19 with complications. The currently available anti-viral drug remdesivir has an effectiveness of 30% in SARS-CoV-2-induced severe complications. Thus, there is a need to identify effective agents to treat COVID-19 and the associated acute lung injury and other complications. The host immunological pathway against this virus typically involves the THαβ immune response. THαβ immunity is triggered by type 1 interferon and interleukin-27 (IL-27), and the main effector cells of the THαβ immune response are IL10-CD4 T cells, CD8 T cells, NK cells, and IgG1-producing B cells. In particular, IL-10 exerts a potent immunomodulatory or anti-inflammatory effect and is an anti-fibrotic agent for pulmonary fibrosis. Concurrently, IL-10 can ameliorate acute lung injury or ARDS, especially those caused by viruses. Owing to its anti-viral activity and anti-pro-inflammatory effects, in this review, IL-10 is suggested as a possible treatment agent for COVID-19.
Collapse
|
49
|
|
Xie J, Huang QF, Zhang Z, Dong Y, Xu H, Cao Y, Sheng CS, Li Y, Wang C, Wang X, Wang JG. Angiotensin-converting enzyme 2 in human plasma and lung tissue. Blood Press 2023;32:6-15. [PMID: 36495008 DOI: 10.1080/08037051.2022.2154745] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/13/2022]
Abstract
PURPOSE We investigated plasma angiotensin-converting enzyme 2 (ACE2) concentration in a population sample and the ACE2 expression quantitated with the diaminobenzidine mean intensity in the lung tissue in patients who underwent lung surgery. MATERIALS AND METHODS The study participants were recruited from a residential area in the suburb of Shanghai for the plasma ACE2 concentration study (n = 503) and the lung tissue samples were randomly selected from the storage in Ruijin Hospital (80 men and 78 age-matched women). RESULTS In analyses adjusted for covariables, men had a significantly higher plasma ACE2 concentration (1.21 vs. 0.98 ng/mL, p = 0.027) and the mean intensity of ACE2 in the lung tissue (55.1 vs. 53.9 a.u., p = 0.037) than women. With age increasing, plasma ACE2 concentration decreased (p = 0.001), while the mean intensity of ACE2 in the lung tissue tended to increase (p = 0.087). Plasma ACE2 concentration was higher in hypertension than normotension, especially treated hypertension (1.23 vs. 0.98 ng/mL, p = 0.029 vs. normotension), with no significant difference between users of RAS inhibitors and other classes of antihypertensive drugs (p = 0.64). There was no significance of the mean intensity of ACE2 in the lung tissue between patients taking and those not taking RAS inhibitors (p = 0.14). Neither plasma ACE2 concentration nor the mean intensity of ACE2 in the lung tissue differed between normoglycemia and diabetes (p ≥ 0.20). CONCLUSION ACE2 in the plasma and lung tissue showed divergent changes according to several major characteristics of patients.Plain language summary What is the context? • The primary physiological function of ACE2 is the degradation of angiotensin I and II to angiotensin 1-9 and 1-7, respectively. • ACE2 was found to behave as a mediator of the severe acute respiratory syndrome coronavirus (SARS) infection. • There is little research on ACE2 in humans, especially in the lung tissue. • In the present report, we investigated plasma ACE2 concentration and the ACE2 expression quantitated with the diaminobenzidine mean intensity in the lung tissue respectively in two study populations. What is new? • Our study investigated both circulating and tissue ACE2 in human subjects. The main findings were: • In men as well as women, plasma ACE2 concentration was higher in younger than older participants, whereas the mean intensity of ACE2 in the lung tissue increase with age increasing. • Compared with normotension, hypertensive patients had higher plasma ACE2 concentration but similar mean intensity of ACE2 in the lung tissue. • Neither plasma ACE2 concentration nor lung tissue ACE2 expression significantly differed between users of RAS inhibitors and other classes of antihypertensive drugs. What is the impact? • ACE2 in the plasma and lung tissue showed divergent changes according to several major characteristics, such as sex, age, and treated and untreated hypertension. • A major implication is that plasma ACE2 concentration might not be an appropriate surrogate for the ACE2 expression in the lung tissue, and hence not a good predictor of SARS-COV-2 infection or fatality.
Collapse
|
50
|
|
Yu Y, Feng Y, Zhou Z, Li K, Hu X, Liao L, Xing H, Shao Y. Substitution of gp120 C4 region compensates for V3 loss-of-fitness mutations in HIV-1 CRF01_AE co-receptor switching. Emerg Microbes Infect 2023;12:e2169196. [PMID: 36647730 DOI: 10.1080/22221751.2023.2169196] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/18/2023]
Abstract
HIV-1 infection is mediated by a viral envelope subsequently binding to CD4 receptor and two main coreceptors, CCR5 (R5) for primary infection and CXCR4 (X4) in chronic infection. Switching from R5 to X4 tropism in HIV-1 infection is associated with increased viral pathogenesis and disease progression. The coreceptor switching is mainly due to variations in the V3 loop, while the mechanism needs to be further elucidated. We systematically studied the determinant for HIV-1 coreceptor switching by substitution of the genes from one R5 and one X4 pseudoviruses. The study results in successfully constructing two panels of chimeric viruses of R5 to X4 forward and X4 to R5 reverse switching. The determinants for tropism switching are the combined substitution of the V3 loop and C4 region of the HIV-1 envelope. The possible mechanism of the tropism switching includes two components, the V3 loop to enable the viral envelope binding to the newly switched coreceptor and the C4 region, to compensate for the loss of fitness caused by deleterious V3 loop mutations to maintain the overall viral viability. The combined C4 and V3 substitution showed at least an eightfold increase in replication activity compared with the pseudovirus with only V3 loop substitution. The site-directed mutations of N425R and S440-I442 with charged amino acids could especially increase viral activity. This study could facilitate HIV-1 phenotype surveillance and select right entry inhibitor, CCR5 or CXCR4 antagonists, for antiviral therapy.
Collapse
|