1
|
Lewis CM, Hoffmann A, Helmchen F. Linking brain activity across scales with simultaneous opto- and electrophysiology. Neurophotonics 2024; 11:033403. [PMID: 37662552 PMCID: PMC10472193 DOI: 10.1117/1.nph.11.3.033403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The brain enables adaptive behavior via the dynamic coordination of diverse neuronal signals across spatial and temporal scales: from fast action potential patterns in microcircuits to slower patterns of distributed activity in brain-wide networks. Understanding principles of multiscale dynamics requires simultaneous monitoring of signals in multiple, distributed network nodes. Combining optical and electrical recordings of brain activity is promising for collecting data across multiple scales and can reveal aspects of coordinated dynamics invisible to standard, single-modality approaches. We review recent progress in combining opto- and electrophysiology, focusing on mouse studies that shed new light on the function of single neurons by embedding their activity in the context of brain-wide activity patterns. Optical and electrical readouts can be tailored to desired scales to tackle specific questions. For example, fast dynamics in single cells or local populations recorded with multi-electrode arrays can be related to simultaneously acquired optical signals that report activity in specified subpopulations of neurons, in non-neuronal cells, or in neuromodulatory pathways. Conversely, two-photon imaging can be used to densely monitor activity in local circuits while sampling electrical activity in distant brain areas at the same time. The refinement of combined approaches will continue to reveal previously inaccessible and under-appreciated aspects of coordinated brain activity.
Collapse
Affiliation(s)
| | - Adrian Hoffmann
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
- University of Zurich, University Research Priority Program, Adaptive Brain Circuits in Development and Learning, Zurich, Switzerland
| |
Collapse
|
2
|
Mourtzi T, Antoniou N, Dimitriou C, Gkaravelas P, Athanasopoulou G, Kostantzo PN, Stathi O, Theodorou E, Anesti M, Matsas R, Angelatou F, Kouroupi G, Kazanis I. Enhancement of endogenous midbrain neurogenesis by microneurotrophin BNN-20 after neural progenitor grafting in a mouse model of nigral degeneration. Neural Regen Res 2024; 19:1318-1324. [PMID: 37905881 DOI: 10.4103/1673-5374.385314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202406000-00036/inline-graphic1/v/2023-10-30T152229Z/r/image-tiff
We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the “weaver” mouse, a model of progressive nigrostriatal degeneration. Here, we extended our investigation in two clinically-relevant ways. First, we assessed the effects of BNN-20 on human induced pluripotent stem cell-derived neural progenitor cells and neurons derived from healthy and parkinsonian donors. Second, we assessed if BNN-20 can boost the outcome of mouse neural progenitor cell intranigral transplantations in weaver mice, at late stages of degeneration. We found that BNN-20 has limited direct effects on cultured human induced pluripotent stem cell-derived neural progenitor cells, marginally enhancing their differentiation towards neurons and partially reversing the pathological phenotype of dopaminergic neurons generated from parkinsonian donors. In agreement, we found no effects of BNN-20 on the mouse neural progenitor cells grafted in the substantia nigra of weaver mice. However, the graft strongly induced an endogenous neurogenic response throughout the midbrain, which was significantly enhanced by the administration of microneurotrophin BNN-20. Our results provide straightforward evidence of the existence of an endogenous midbrain neurogenic system that can be specifically strengthened by BNN-20. Interestingly, the lack of major similar activity on cultured human induced pluripotent stem cell-derived neural progenitors and their progeny reveals the in vivo specificity of the aforementioned pro-neurogenic effect.
Collapse
Affiliation(s)
- Theodora Mourtzi
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Nasia Antoniou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Christina Dimitriou
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Panagiotis Gkaravelas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Athanasopoulou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiota Nti Kostantzo
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Olga Stathi
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Efthymia Theodorou
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Maria Anesti
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Fevronia Angelatou
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Ilias Kazanis
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
3
|
Hellenbrand DJ, Quinn CM, Piper ZJ, Elder RT, Mishra RR, Marti TL, Omuro PM, Roddick RM, Lee JS, Murphy WL, Hanna AS. The secondary injury cascade after spinal cord injury: an analysis of local cytokine/chemokine regulation. Neural Regen Res 2024; 19:1308-1317. [PMID: 37905880 DOI: 10.4103/1673-5374.385849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202406000-00035/inline-graphic1/v/2023-10-30T152229Z/r/image-tiff
After spinal cord injury, there is an extensive infiltration of immune cells, which exacerbates the injury and leads to further neural degeneration. Therefore, a major aim of current research involves targeting the immune response as a treatment for spinal cord injury. Although much research has been performed analyzing the complex inflammatory process following spinal cord injury, there remain major discrepancies within previous literature regarding the timeline of local cytokine regulation. The objectives of this study were to establish an overview of the timeline of cytokine regulation for 2 weeks after spinal cord injury, identify sexual dimorphisms in terms of cytokine levels, and determine local cytokines that significantly change based on the severity of spinal cord injury. Rats were inflicted with either a mild contusion, moderate contusion, severe contusion, or complete transection, 7 mm of spinal cord centered on the injury was harvested at varying times post-injury, and tissue homogenates were analyzed with a Cytokine/Chemokine 27-Plex assay. Results demonstrated pro-inflammatory cytokines including tumor necrosis factor α, interleukin-1β, and interleukin-6 were all upregulated after spinal cord injury, but returned to uninjured levels within approximately 24 hours post-injury, while chemokines including monocyte chemoattractant protein-1 remained upregulated for days post-injury. In contrast, several anti-inflammatory cytokines and growth factors including interleukin-10 and vascular endothelial growth factor were downregulated by 7 days post-injury. After spinal cord injury, tissue inhibitor of metalloproteinase-1, which specifically affects astrocytes involved in glial scar development, increased more than all other cytokines tested, reaching 26.9-fold higher than uninjured rats. After a mild injury, 11 cytokines demonstrated sexual dimorphisms; however, after a severe contusion only leptin levels were different between female and male rats. In conclusion, pro-inflammatory cytokines initiate the inflammatory process and return to baseline within hours post-injury, chemokines continue to recruit immune cells for days post-injury, while anti-inflammatory cytokines are downregulated by a week post-injury, and sexual dimorphisms observed after mild injury subsided with more severe injuries. Results from this work define critical chemokines that influence immune cell infiltration and important cytokines involved in glial scar development after spinal cord injury, which are essential for researchers developing treatments targeting secondary damage after spinal cord injury.
Collapse
Affiliation(s)
- Daniel J Hellenbrand
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Charles M Quinn
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Zachariah J Piper
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ryan T Elder
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Raveena R Mishra
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Taylor L Marti
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Phoebe M Omuro
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Rylie M Roddick
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Jae Sung Lee
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Forward BIO Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Amgad S Hanna
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Wegman E, Wosiski-Kuhn M, Luo Y. The dual role of striatal interneurons: circuit modulation and trophic support for the basal ganglia. Neural Regen Res 2024; 19:1277-1283. [PMID: 37905876 DOI: 10.4103/1673-5374.382987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Striatal interneurons play a key role in modulating striatal-dependent behaviors, including motor activity and reward and emotional processing. Interneurons not only provide modulation to the basal ganglia circuitry under homeostasis but are also involved in changes to plasticity and adaptation during disease conditions such as Parkinson's or Huntington's disease. This review aims to summarize recent findings regarding the role of striatal cholinergic and GABAergic interneurons in providing circuit modulation to the basal ganglia in both homeostatic and disease conditions. In addition to direct circuit modulation, striatal interneurons have also been shown to provide trophic support to maintain neuron populations in adulthood. We discuss this interesting and novel role of striatal interneurons, with a focus on the maintenance of adult dopaminergic neurons from interneuron-derived sonic-hedgehog.
Collapse
Affiliation(s)
- Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Marlena Wosiski-Kuhn
- Department of Emergency Medicine at the School of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Qiu X, Yang Y, Da X, Wang Y, Chen Z, Xu C. Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms. Neural Regen Res 2024; 19:1056-1063. [PMID: 37862208 DOI: 10.4103/1673-5374.382986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons. An increasing body of evidence suggests that in the presence of inflammation and nerve damage, a significant number of satellite glial cells become activated, thus triggering a series of functional changes. This suggests that satellite glial cells are closely related to the occurrence of chronic pain. In this review, we first summarize the morphological structure, molecular markers, and physiological functions of satellite glial cells. Then, we clarify the multiple key roles of satellite glial cells in chronic pain, including gap junction hemichannel Cx43, membrane channel Pannexin1, K channel subunit 4.1, ATP, purinergic P2 receptors, and a series of additional factors and their receptors, including tumor necrosis factor, glutamate, endothelin, and bradykinin. Finally, we propose that future research should focus on the specific sorting of satellite glial cells, and identify genomic differences between physiological and pathological conditions. This review provides an important perspective for clarifying mechanisms underlying the peripheral regulation of chronic pain and will facilitate the formulation of new treatment plans for chronic pain.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yuanzhi Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaoli Da
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Zhu C, Ren X, Liu C, Liu Y, Wang Y. Rbm8a regulates neurogenesis and reduces Alzheimer's disease-associated pathology in the dentate gyrus of 5×FAD mice. Neural Regen Res 2024; 19:863-871. [PMID: 37843222 PMCID: PMC10664127 DOI: 10.4103/1673-5374.382254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer's disease is a prevalent and debilitating neurodegenerative condition that profoundly affects a patient's daily functioning with progressive cognitive decline, which can be partly attributed to impaired hippocampal neurogenesis. Neurogenesis in the hippocampal dentate gyrus is likely to persist throughout life but declines with aging, especially in Alzheimer's disease. Recent evidence indicated that RNA-binding protein 8A (Rbm8a) promotes the proliferation of neural progenitor cells, with lower expression levels observed in Alzheimer's disease patients compared with healthy people. This study investigated the hypothesis that Rbm8a overexpression may enhance neurogenesis by promoting the proliferation of neural progenitor cells to improve memory impairment in Alzheimer's disease. Therefore, Rbm8a overexpression was induced in the dentate gyrus of 5×FAD mice to validate this hypothesis. Elevated Rbm8a levels in the dentate gyrus triggered neurogenesis and abated pathological phenotypes (such as plaque formation, gliosis reaction, and dystrophic neurites), leading to ameliorated memory performance in 5×FAD mice. RNA sequencing data further substantiated these findings, showing the enrichment of differentially expressed genes involved in biological processes including neurogenesis, cell proliferation, and amyloid protein formation. In conclusion, overexpressing Rbm8a in the dentate gyrus of 5×FAD mouse brains improved cognitive function by ameliorating amyloid-beta-associated pathological phenotypes and enhancing neurogenesis.
Collapse
Affiliation(s)
- Chenlu Zhu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chen Liu
- Department of Neurology, Xiaogan City Central Hospital, Xiaogan, Hubei Province, China
| | - Yawei Liu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, China
| | - Yonggang Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zhao J, Liu S, Xiang X, Zhu X. Versatile strategies for adult neurogenesis: avenues to repair the injured brain. Neural Regen Res 2024; 19:774-780. [PMID: 37843211 PMCID: PMC10664121 DOI: 10.4103/1673-5374.382224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 10/17/2023] Open
Abstract
Brain injuries due to trauma or stroke are major causes of adult death and disability. Unfortunately, few interventions are effective for post-injury repair of brain tissue. After a long debate on whether endogenous neurogenesis actually happens in the adult human brain, there is now substantial evidence to support its occurrence. Although neurogenesis is usually significantly stimulated by injury, the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient. Alternatively, exogenous stem cell transplantation has shown promising results in animal models, but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use. Recently, a high focus was placed on glia-to-neuron conversion under single-factor regulation. Despite some inspiring results, the validity of this strategy is still controversial. In this review, we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury. We also discuss their advantages and drawbacks, as to provide a comprehensive account of their potentials for further studies.
Collapse
Affiliation(s)
- Junyi Zhao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Siyu Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xianyuan Xiang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong Province, China
| |
Collapse
|
8
|
Deng J, Sun C, Zheng Y, Gao J, Cui X, Wang Y, Zhang L, Tang P. In vivo imaging of the neuronal response to spinal cord injury: a narrative review. Neural Regen Res 2024; 19:811-817. [PMID: 37843216 PMCID: PMC10664102 DOI: 10.4103/1673-5374.382225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 10/17/2023] Open
Abstract
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury (SCI). However, this subject has been neglected in part because appropriate tools are lacking. Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease. This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques, and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI. We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations. Finally, we identify the challenges and possible solutions for spinal cord neuron imaging.
Collapse
Affiliation(s)
- Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Ying Zheng
- Medical School of Chinese PLA, Beijing, China
| | - Jianpeng Gao
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
9
|
Isabella AJ, Moens CB. Development and regeneration of the vagus nerve. Semin Cell Dev Biol 2024; 156:219-227. [PMID: 37537116 DOI: 10.1016/j.semcdb.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The vagus nerve, with its myriad constituent axon branches and innervation targets, has long been a model of anatomical complexity in the nervous system. The branched architecture of the vagus nerve is now appreciated to be highly organized around the topographic and/or molecular identities of the neurons that innervate each target tissue. However, we are only just beginning to understand the developmental mechanisms by which heterogeneous vagus neuron identity is specified, patterned, and used to guide the axons of particular neurons to particular targets. Here, we summarize our current understanding of the complex topographic and molecular organization of the vagus nerve, the developmental basis of neuron specification and patterned axon guidance that supports this organization, and the regenerative mechanisms that promote, or inhibit, the restoration of vagus nerve organization after nerve damage. Finally, we highlight key unanswered questions in these areas and discuss potential strategies to address these questions.
Collapse
Affiliation(s)
- Adam J Isabella
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cecilia B Moens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
10
|
Rajendran PS, Hadaya J, Khalsa SS, Yu C, Chang R, Shivkumar K. The vagus nerve in cardiovascular physiology and pathophysiology: From evolutionary insights to clinical medicine. Semin Cell Dev Biol 2024; 156:190-200. [PMID: 36641366 PMCID: PMC10336178 DOI: 10.1016/j.semcdb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The parasympathetic nervous system via the vagus nerve exerts profound influence over the heart. Together with the sympathetic nervous system, the parasympathetic nervous system is responsible for fine-tuned regulation of all aspects of cardiovascular function, including heart rate, rhythm, contractility, and blood pressure. In this review, we highlight vagal efferent and afferent innervation of the heart, with a focus on insights from comparative biology and advances in understanding the molecular and genetic diversity of vagal neurons, as well as interoception, parasympathetic dysfunction in heart disease, and the therapeutic potential of targeting the parasympathetic nervous system in cardiovascular disease.
Collapse
Affiliation(s)
| | - Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, CA, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Ok, USA; Oxley College of Health Sciences, University of Tulsa, Tulsa, Ok, USA
| | - Chuyue Yu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rui Chang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kalyanam Shivkumar
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Borgmann D, Fenselau H. Vagal pathways for systemic regulation of glucose metabolism. Semin Cell Dev Biol 2024; 156:244-252. [PMID: 37500301 DOI: 10.1016/j.semcdb.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Maintaining blood glucose at an appropriate physiological level requires precise coordination of multiple organs and tissues. The vagus nerve bidirectionally connects the central nervous system with peripheral organs crucial to glucose mobilization, nutrient storage, and food absorption, thereby presenting a key pathway for the central control of blood glucose levels. However, the precise mechanisms by which vagal populations that target discrete tissues participate in glucoregulation are much less clear. Here we review recent advances unraveling the cellular identity, neuroanatomical organization, and functional contributions of both vagal efferents and vagal afferents in the control of systemic glucose metabolism. We focus on their involvement in relaying glucoregulatory cues from the brain to peripheral tissues, particularly the pancreatic islet, and by sensing and transmitting incoming signals from ingested food to the brain. These recent findings - largely driven by advances in viral approaches, RNA sequencing, and cell-type selective manipulations and tracings - have begun to clarify the precise vagal neuron populations involved in the central coordination of glucose levels, and raise interesting new possibilities for the treatment of glucose metabolism disorders such as diabetes.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Physical Activity Research (CFAS), Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
12
|
Coverdell TC, Abbott SBG, Campbell JN. Molecular cell types as functional units of the efferent vagus nerve. Semin Cell Dev Biol 2024; 156:210-218. [PMID: 37507330 DOI: 10.1016/j.semcdb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise "functional units" - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.
Collapse
Affiliation(s)
- Tatiana C Coverdell
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
13
|
Genaro K, Luo ZD. Pathophysiological roles of thrombospondin-4 in disease development. Semin Cell Dev Biol 2024; 155:66-73. [PMID: 37391348 DOI: 10.1016/j.semcdb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the extracellular matrix glycoprotein family of thrombospondins (TSPs). The multidomain, pentameric structure of TSP-4 allows its interactions with numerous extracellular matrix components, proteins and signaling molecules that enable its modulation to various physiological and pathological processes. Characterization of TSP-4 expression under development and pathogenesis of disorders has yielded important insights into mechanisms underlying the unique role of TSP-4 in mediating various processes including cell-cell, cell-extracellular matrix interactions, cell migration, proliferation, tissue remodeling, angiogenesis, and synaptogenesis. Maladaptation of these processes in response to pathological insults and stress can accelerate the development of disorders including skeletal dysplasia, osteoporosis, degenerative joint disease, cardiovascular diseases, tumor progression/metastasis and neurological disorders. Overall, the diverse functions of TSP-4 suggest that it may be a potential marker or therapeutic target for prognosis, diagnosis, and treatment of various pathological conditions upon further investigations. This review article highlights recent findings on the role of TSP-4 in both physiological and pathological conditions with a focus on what sets it apart from other TSPs.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
Li J, Jiang W, Cai Y, Ning Z, Zhou Y, Wang C, Chung SK, Huang Y, Sun J, Deng M, Zhou L, Cheng X. Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism. Neural Regen Res 2024; 19:650-656. [PMID: 37721297 PMCID: PMC10581554 DOI: 10.4103/1673-5374.380906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 09/19/2023] Open
Abstract
Vascular etiology is the second most prevalent cause of cognitive impairment globally. Endothelin-1, which is produced and secreted by endothelial cells and astrocytes, is implicated in the pathogenesis of stroke. However, the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood. Here, using mice in which astrocytic endothelin-1 was overexpressed, we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia (1 hour of ischemia; 7 days, 28 days, or 3 months of reperfusion). We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion. Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6, which were differentially expressed in the brain, were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke. Moreover, the levels of the enriched differentially expressed proteins were closely related to lipid metabolism, as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis. Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine, sphingomyelin, and phosphatidic acid. Overall, this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Li
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Wen Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuefang Cai
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhenqiu Ning
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yingying Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Chengyi Wang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Sookja Ki Chung
- Faculty of Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| | - Yan Huang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Jingbo Sun
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Minzhen Deng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lihua Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Xiao Cheng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| |
Collapse
|
15
|
Reed JL, Qi HX, Kaas JH. Implications for brainstem recovery from studies in primates after sensory loss from arm. Neural Regen Res 2024; 19:479-480. [PMID: 37721262 PMCID: PMC10581547 DOI: 10.4103/1673-5374.380890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Jamie L. Reed
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
16
|
Liu B, Yang H, Song YS, Sorenson CM, Sheibani N. Thrombospondin-1 in vascular development, vascular function, and vascular disease. Semin Cell Dev Biol 2024; 155:32-44. [PMID: 37507331 DOI: 10.1016/j.semcdb.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Angiogenesis is vital to developmental, regenerative and repair processes. It is normally regulated by a balanced production of pro- and anti-angiogenic factors. Alterations in this balance under pathological conditions are generally mediated through up-regulation of pro-angiogenic and/or downregulation of anti-angiogenic factors, leading to growth of new and abnormal blood vessels. The pathological manifestation of many diseases including cancer, ocular and vascular diseases are dependent on the growth of these new and abnormal blood vessels. Thrompospondin-1 (TSP1) was the first endogenous angiogenesis inhibitor identified and its anti-angiogenic and anti-inflammatory activities have been the subject of many studies. Studies examining the role TSP1 plays in pathogenesis of various ocular diseases and vascular dysfunctions are limited. Here we will discuss the recent studies focused on delineating the role TSP1 plays in ocular vascular development and homeostasis, and pathophysiology of various ocular and vascular diseases with a significant clinical relevance to human health.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | - Huan Yang
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
17
|
Norte-Muñoz M, García-Bernal D, García-Ayuso D, Vidal-Sanz M, Agudo-Barriuso M. Interplay between mesenchymal stromal cells and the immune system after transplantation: implications for advanced cell therapy in the retina. Neural Regen Res 2024; 19:542-547. [PMID: 37721282 PMCID: PMC10581591 DOI: 10.4103/1673-5374.380876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 05/11/2023] [Indexed: 09/19/2023] Open
Abstract
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models. Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration, namely trophic factor deprivation and neuroinflammation. Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement. However, little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system. Here, we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system, focusing on recent work in the retina and the importance of the type of transplantation.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - David García-Bernal
- Grupo de Investigación Trasplante Hematopoyético y Terapia celular, Departamento de Bioquímica e Inmunología. Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|
18
|
Yu H, Shao M, Luo X, Pang C, So KF, Yu J, Zhang L. Treadmill exercise improves hippocampal neural plasticity and relieves cognitive deficits in a mouse model of epilepsy. Neural Regen Res 2024; 19:657-662. [PMID: 37721298 PMCID: PMC10581559 DOI: 10.4103/1673-5374.377771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/18/2023] [Accepted: 05/25/2023] [Indexed: 09/19/2023] Open
Abstract
Epilepsy frequently leads to cognitive dysfunction and approaches to treatment remain limited. Although regular exercise effectively improves learning and memory functions across multiple neurological diseases, its application in patients with epilepsy remains controversial. Here, we adopted a 14-day treadmill-exercise paradigm in a pilocarpine injection-induced mouse model of epilepsy. Cognitive assays confirmed the improvement of object and spatial memory after endurance training, and electrophysiological studies revealed the maintenance of hippocampal plasticity as a result of physical exercise. Investigations of the mechanisms underlying this effect revealed that exercise protected parvalbumin interneurons, probably via the suppression of neuroinflammation and improved integrity of blood-brain barrier. In summary, this work identified a previously unknown mechanism through which exercise improves cognitive rehabilitation in epilepsy.
Collapse
Affiliation(s)
- Hang Yu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Mingting Shao
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Chaoqin Pang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Jiandong Yu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Shandong Province, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
19
|
Wang A, Zhang H, Li X, Zhao Y. Annexin A1 in the nervous and ocular systems. Neural Regen Res 2024; 19:591-597. [PMID: 37721289 PMCID: PMC10581565 DOI: 10.4103/1673-5374.380882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/06/2023] [Accepted: 06/02/2023] [Indexed: 09/19/2023] Open
Abstract
The therapeutic potential of Annexin A1, an important member of the Annexin superfamily, has become evident in results of experiments with multiple human systems and animal models. The anti-inflammatory and pro-resolving effects of Annexin A1 are characteristic of pathologies involving the nervous system. In this review, we initially describe the expression sites of Annexin A1, then outline the mechanisms by which Annexin A1 maintains the neurological homeostasis through either formyl peptide receptor 2 or other molecular approaches; and, finally, we discuss the neuroregenerative potential qualities of Annexin A1. The eye and the nervous system are anatomically and functionally connected, but the association between visual system pathogenesis, especially in the retina, and Annexin A1 alterations has not been well summarized. Therefore, we explain the beneficial effects of Annexin A1 for ocular diseases, especially for retinal diseases and glaucoma on the basis of published findings, and we explore present and future delivery strategies for Annexin A1 to the retina.
Collapse
Affiliation(s)
- Aijia Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xing Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
Deng X, Huang IS, Williams K, Wainwright ML, Zimba PV, Mozzachiodi R. Role of serotonin in the lack of sensitization caused by prolonged food deprivation in Aplysia. Behav Brain Res 2024; 458:114736. [PMID: 37923220 DOI: 10.1016/j.bbr.2023.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Food deprivation may cause neurological dysfunctions including memory impairment. The mollusk Aplysia is a suitable animal model to study prolonged food deprivation-induced memory deficits because it can sustain up to 14 days of food deprivation (14DFD). Sensitization of defensive withdrawal reflexes has been used to illustrate the detrimental effects of 14DFD on memory formation. Under normal feeding conditions (i.e., two days food deprivation, 2DFD), aversive stimuli lead to serotonin (5-HT) release into the hemolymph and neuropil, which mediates sensitization and its cellular correlates including increased excitability of tail sensory neurons (TSNs). Recent studies found that 14DFD prevents both short-term and long-term sensitization, as well as short-term increased excitability of TSNs induced by in vitro aversive training. This study investigated the role of 5-HT in the absence of sensitization and TSN increased excitability under 14DFD. Because 5-HT is synthesized from tryptophan obtained through diet, and its exogeneous application alone induces sensitization and increases TSN excitability, we hypothesized that 1) 5-HT level may be reduced by 14DFD and 2) 5-HT may still induce sensitization and TSN increased excitability in 14DFD animals. Results revealed that 14DFD significantly decreased hemolymph 5-HT level, which may contribute to the lack of sensitization and its cellular correlates, while ganglia 5-HT level was not changed. 5-HT exogenous application induced sensitization in 14DFD Aplysia, albeit smaller than that in 2DFD animals, suggesting that this treatment can only induce partial sensitization in food deprived animals. Under 14DFD, 5-HT increased TSN excitability indistinguishable from that observed under 2DFD. Taken together, these findings characterize 5-HT metabolic deficiency under 14DFD, which may be compensated, at least in part, by 5-HT exogenous application.
Collapse
Affiliation(s)
- Xin Deng
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA; Center for Coastal Studies, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA.
| | - I-Shuo Huang
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA; Center for Coastal Studies, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA
| | - Kourtlin Williams
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA
| | - Marcy L Wainwright
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA
| | - Paul V Zimba
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA; Center for Coastal Studies, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA.
| |
Collapse
|
21
|
Destain H, Prahlad M, Kratsios P. Maintenance of neuronal identity in C. elegans and beyond: Lessons from transcription and chromatin factors. Semin Cell Dev Biol 2024; 154:35-47. [PMID: 37438210 PMCID: PMC10592372 DOI: 10.1016/j.semcdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Neurons are remarkably long-lived, non-dividing cells that must maintain their functional features (e.g., electrical properties, chemical signaling) for extended periods of time - decades in humans. How neurons accomplish this incredible feat is poorly understood. Here, we review recent advances, primarily in the nematode C. elegans, that have enhanced our understanding of the molecular mechanisms that enable post-mitotic neurons to maintain their functionality across different life stages. We begin with "terminal selectors" - transcription factors necessary for the establishment and maintenance of neuronal identity. We highlight new findings on five terminal selectors (CHE-1 [Glass], UNC-3 [Collier/Ebf1-4], LIN-39 [Scr/Dfd/Hox4-5], UNC-86 [Acj6/Brn3a-c], AST-1 [Etv1/ER81]) from different transcription factor families (ZNF, COE, HOX, POU, ETS). We compare the functions of these factors in specific neuron types of C. elegans with the actions of their orthologs in other invertebrate (D. melanogaster) and vertebrate (M. musculus) systems, highlighting remarkable functional conservation. Finally, we reflect on recent findings implicating chromatin-modifying proteins, such as histone methyltransferases and Polycomb proteins, in the control of neuronal terminal identity. Altogether, these new studies on transcription factors and chromatin modifiers not only shed light on the fundamental problem of neuronal identity maintenance, but also outline mechanistic principles of gene regulation that may operate in other long-lived, post-mitotic cell types.
Collapse
Affiliation(s)
- Honorine Destain
- Department of Neurobiology, University of Chicago, Chicago, IL, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL, USA; University of Chicago Neuroscience Institute, Chicago, IL, USA
| | - Manasa Prahlad
- Department of Neurobiology, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA; University of Chicago Neuroscience Institute, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA; University of Chicago Neuroscience Institute, Chicago, IL, USA.
| |
Collapse
|
22
|
Dodge JD, Browder NJ, Pellegrino MW. Mitochondrial recovery by the UPR mt: Insights from C. elegans. Semin Cell Dev Biol 2024; 154:59-68. [PMID: 36792440 DOI: 10.1016/j.semcdb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Mitochondria are multifaceted organelles, with such functions as the production of cellular energy to the regulation of cell death. However, mitochondria incur various sources of damage from the accumulation of reactive oxygen species and DNA mutations that can impact the protein folding environment and impair their function. Since mitochondrial dysfunction is often associated with reductions in organismal fitness and possibly disease, cells must have safeguards in place to protect mitochondrial function and promote recovery during times of stress. The mitochondrial unfolded protein response (UPRmt) is a transcriptional adaptation that promotes mitochondrial repair to aid in cell survival during stress. While the earlier discoveries into the regulation of the UPRmt stemmed from studies using mammalian cell culture, much of our understanding about this stress response has been bestowed to us by the model organism Caenorhabditis elegans. Indeed, the facile but powerful genetics of this relatively simple nematode has uncovered multiple regulators of the UPRmt, as well as several physiological roles of this stress response. In this review, we will summarize these major advancements originating from studies using C. elegans.
Collapse
|