1
|
Singh H, Das A, Khan MM, Pourmotabbed T. New insights into the therapeutic approaches for the treatment of tauopathies. Neural Regen Res 2024; 19:1020-1026. [PMID: 37862204 DOI: 10.4103/1673-5374.385288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Tauopathies are a group of neurological disorders, including Alzheimer's disease and frontotemporal dementia, which involve progressive neurodegeneration, cognitive deficits, and aberrant tau protein accumulation. The development of tauopathies cannot currently be stopped or slowed down by treatment measures. Given the significant contribution of tau burden in primary tauopathies and the strong association between pathogenic tau accumulation and cognitive deficits, there has been a lot of interest in creating therapies that can alleviate tau pathology and render neuroprotective effects. Recently, small molecules, immunotherapies, and gene therapy have been used to reduce the pathological tau burden and prevent neurodegeneration in animal models of tauopathies. However, the major pitfall of the current therapeutic approach is the difficulty of drugs and gene-targeting modalities to cross the blood-brain barrier and their unintended side effects. In this review, the current therapeutic strategies used for tauopathies including the use of oligonucleotide-based gene therapy approaches that have shown a promising result for the treatment of tauopathies and Alzheimer's disease in preclinical animal models, have been discussed.
Collapse
Affiliation(s)
- Himanshi Singh
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India; Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center; Neuroscience Institute, University of Tennessee Health Science Center; Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tayebeh Pourmotabbed
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
McDonald PC, Dedhar S. Persister cell plasticity in tumour drug resistance. Semin Cell Dev Biol 2024; 156:1-10. [PMID: 37977107 DOI: 10.1016/j.semcdb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The emergence of therapeutic resistance remains a formidable barrier to durable responses by cancer patients and is a major cause of cancer-related deaths. It is increasingly recognized that non-genetic mechanisms of acquired resistance are important in many cancers. These mechanisms of resistance rely on inherent cellular plasticity where cancer cells can switch between multiple phenotypic states without genetic alterations, providing a dynamic, reversible resistance landscape. Such mechanisms underlie the generation of drug-tolerant persister (DTP) cells, a subpopulation of tumour cells that contributes to heterogeneity within tumours and that supports therapeutic resistance. In this review, we provide an overview of the major features of DTP cells, focusing on phenotypic and metabolic plasticity as two key drivers of tolerance and persistence. We discuss the link between DTP cell plasticity and the potential vulnerability of these cells to ferroptosis. We also discuss the relationship between DTP cells and cells that survive the induction of apoptosis, a process termed anastasis, and discuss the properties of such cells in the context of increased metastatic potential and sensitivity to cell death mechanisms such as ferroptosis.
Collapse
Affiliation(s)
- Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
3
|
Liu K, Li Q, Andrady AL, Wang X, He Y, Li D. Underestimated activity-based microplastic intake under scenario-specific exposures. Environ Sci Ecotechnol 2024; 18:100316. [PMID: 37860830 PMCID: PMC10583090 DOI: 10.1016/j.ese.2023.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Despite increasing alarms over the health impacts of microplastics (MPs) due to their detection in human organs and feces, precise exposure evaluations remain scarce. To comprehend their risks, there is a distinct need to prioritize quantitive estimates in MP exposome, particularly at the environmentally-realistic level. Here we used a method rooted in real-world MP measurements and activity patterns to determine the daily intake of MPs through inhalation and from ground dust/soil ingestion. We found that nearly 80% of this intake comes from residential sectors, with activity intensity and behavioral types significantly affecting the human MP burden. The data showed a peak in MP exposure for those aged 18-64. When compared to dietary MP intake sources like seafood, salt, and water, we identified a previously underestimated exposure from inhalation and dust/soil ingestion, emphasizing the need for more realistic evaluations that incorporate activity factors. This discovery raises questions about the accuracy of past studies and underscores MP's potential health risks. Moreover, our time-based simulations revealed increased MP intake during the COVID-19 lockdown due to more surface dust ingestion, shedding light on how global health crises may inadvertently elevate MP exposure risks.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qingqing Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Anthony L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yinan He
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
4
|
Liang ZQ, Song DD, Li ZC, Xu SH, Dai GL, Ye CQ, Wang XM, Tao XT. Bright photoactivatable probes based on triphenylethylene for Cu 2+ detection in tap water and tea samples. Food Chem 2024; 434:137439. [PMID: 37729781 DOI: 10.1016/j.foodchem.2023.137439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Photoactivatable probes can switch fluorescence on from a weak or nonemission state to improve the sensitivity of the sensing system. In this work, we successfully constructed three highly emissive photoactivatable probes, 2-DP, 1-2-DP and 2-2-DP, for Cu2+ detection. Under UV irradiation, the photoluminescence quantum yields of 2-DP, 1-2-DP and 2-2-DP display approximately 52.4-, 11.5- and 49.2-fold enhancement, respectively. Cu2+ selectively quenches the bright photoactivated fluorescence, resulting in an approximately 38-fold fluorescence reduction. The highly selective fluorescence response to Cu2+ yields an excellent low detection limit of 5.8 nM. Moreover, the photoactivatable probes were successfully applied for Cu2+ determination in tap water and tea samples with recovery ranges of 95%-105% and 97%-106%, respectively. This work provides a more sensitive and efficient methodology for Cu2+ detection in heavy metal pollution and food safety.
Collapse
Affiliation(s)
- Zuo-Qin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dong-Dong Song
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhuo-Cheng Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Su-Hang Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guo-Liang Dai
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chang-Qing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao-Mei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xu-Tang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Ababneh R, Telfah A, Al Bataineh QM, Tolstik E, Dierks J, Hergenröder R. 1H, 31P NMR, Raman and FTIR spectroscopies for investigating phosphoric acid dissociation to understand phosphate ion kinetics in body fluids. Spectrochim Acta A Mol Biomol Spectrosc 2024; 307:123594. [PMID: 37976576 DOI: 10.1016/j.saa.2023.123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
The study investigates the formation and transportation of ionic charge carriers in phosphoric acid-water system. This investigation encompasses an analysis of 1H and 31P NMR chemical shifts, self-diffusion coefficients, spin-lattice relaxation rates, spin-spin relaxation rates, activation energies, dissociation constants, electrical conductivity, and Raman shifts, along with FTIR spectra across various water concentrations. Significantly, the maxima observed in these curves at around 0.8 water molar fraction predominantly from the unique molecular arrangement between phosphoric acid and water molecules, influenced by a hydrogen bonding network. These findings yield valuable insights into phosphate ion kinetics within body fluids, covering essential aspects like hydrogen bonding networks, ionization processes, and the energy kinetics of phosphoric dissociation. A customized semiempirical model is applied to calculate dissociated species (water, phosphoric acid, and hydronium ion) at different water contents within a wide range of water mole fraction. Furthermore, this investigation extends to the dissociation of phosphoric acid in DMEM cell culture media, offering a more precise model for phosphate ionic kinetics within body fluids, especially at nominal phosphate concentrations of approximately 1:700μL.
Collapse
Affiliation(s)
- Riad Ababneh
- Department of Physics, Yarmouk University (YU), Irbid 21163, Jordan
| | - Ahmad Telfah
- Department of Physics, Yarmouk University (YU), Irbid 21163, Jordan; Nanotechnology Center, The University of Jordan, 11942 Amman, Jordan; Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Qais M Al Bataineh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany; Experimental Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Elen Tolstik
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Johann Dierks
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| |
Collapse
|
6
|
Zheng D, Zhang R, Zheng K, Zhang C, Chen J, Wang C, Sun S, Lin S. A hair-ball heterostructure of MnS-MnS 2/CdS with compact linking interface for ultrasensitive photoelectrochemical bioanalysis of carcinoembryonic antigen. Bioelectrochemistry 2024; 155:108586. [PMID: 37844392 DOI: 10.1016/j.bioelechem.2023.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
The heterostructured photoelectric material is supposed to markedly promote the photoelectrochemical (PEC) property. Herein, the species heterostructured MnS/CdS and MnS-MnS2/CdS(1∼2) composites derived from Mn-ZIF MOFs via a sulfofication reaction using Cd(NO3)2, CdC12 cadmium source, respectively. Under irradiation, the PEC tests showed that the photocurrent response of MnS-MnS2/CdS(1∼2) signally enhanced compared to globose MnS/CdS heterostructure and pure MnS or CdS. It was ascribed to the matching band-gap to form type II heterojunction in MnS-MnS2/CdS(1∼2) which dramatically facilitated photo-induced electron/hole (e-/h+) separation and transfer. The hair-ball morphologies structure of MnS-MnS2/CdS(1∼2) with large number of pores was beneficial to improve penetrating efficiency of the electrolyte liquid. Meanwhile, the well-synergistic effect on the MnS, MnS2, CdS components and with tight connecting heterojunction interface among MnS-MnS2/CdS(1∼2) which also led to violently photocurrent output. Besides, the chitosan (CS) was covalently coupled with glutaraldehyde (GLD) to obtain steady composite film, and the cross-linker of GLD can achieve the high efficiency to graft the Apt-CEA (aptamer) biomolecules, which resulting in the promotion of hybridization reaction efficiency of the CEA target. Hence, this created biosensor of Apt-CEA/GLD-CS/MnS-MnS2/CdS(1)/ITO for the CEA detection displayed a wide linear range from 0.001 to 18 ng mL-1 and with ultralow detection limit of 0.313 pg mL-1. This research innovatively prepared a contact heterojunction interface with special porosities structure, which had superior PEC nature for the fabrication of high-performance biosensor.
Collapse
Affiliation(s)
- Delun Zheng
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China.
| | - Ruilong Zhang
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Kaibo Zheng
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Caiyun Zhang
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Jianqiao Chen
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Chengwen Wang
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Shaochen Sun
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Sihan Lin
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| |
Collapse
|
7
|
Gao H, Chen J, Huang Y, Zhao R. Advances in targeted tracking and detection of soluble amyloid-β aggregates as a biomarker of Alzheimer's disease. Talanta 2024; 268:125311. [PMID: 37857110 DOI: 10.1016/j.talanta.2023.125311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Misfolding and aggregation of amyloid-β (Aβ) peptides are key hallmarks of Alzheimer's disease (AD). With accumulating evidence suggesting that different Aβ species have varied neurotoxicity and implications in AD development, the discovery of affinity ligands and analytical approaches to selective distinguish, detect, and monitor Aβ becomes an active research area. Remarkable advances have been achieved, which not only promote our understanding of the biophysical chemistry of the protein aggregation during neurodegeneration, but also provide promising tools for early detection of the disease. In view of this, we summarize the recent progress in selective and sensitive approaches for tracking and detection of Aβ species. Specific attentions are given to soluble Aβ oligomers, due to their crucial roles in AD development and occurrence at early stages. The design principle, performance of targeting units, and their cooperative effects with signal reporters for Aβ analysis are discussed. The applications of the novel targeting probes and sensing systems for dynamic monitoring oligomerization, measuring Aβ in biosamples and in vivo imaging in brain are summarized. Finally, the perspective and challenges are discussed regarding the future development of Aβ-targeting analytical tools to explore the unknown field to contribute to the early diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Han X, Yu H, Zhang L, Weng Z, Dai L, Wang L, Song L, Wang Z, Zhao R, Wang L, Wang W, Bai D, Guo Y, Lv K, Xie G. Movable toehold for leakless self-assembly circuits. Biosens Bioelectron 2024; 245:115823. [PMID: 37979548 DOI: 10.1016/j.bios.2023.115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Nonenzymatic self-assembly circuit utilizing hairpin substrates has been developed to be a powerful tool for information transduction, amplification and computation. However, the sensitivity, stability and application of this circuit are impeded by the presence of leakage which refers to undesired triggering in the absence of input. Herein, we proposed a movable toehold principle to suppress leakage and accelerate the catalytic reaction through removing partial hairpin toehold responsible for the leakage and transferring it to the catalyst. With movable toehold, catalytic hairpin assembly (called mtCHA) exhibited an excellent signal-to-background ratio of over 100, high robustness and improved specificity. In more complex circuit, including proximity recognition, signal amplification of small molecules (such as ATP), logic network, autocatalysis circuit and two-layer cascade circuit, mtCHA also demonstrated satisfactory performance. Our findings suggest that mtCHA holds great potential for broader applications, and the approach of repurposing harmful fragments into beneficial candidates can provide valuable insights for other chemical systems.
Collapse
Affiliation(s)
- Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhi Weng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ling Dai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li Wang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Song
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhongzhong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Rong Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Weitao Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Dan Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, LuZhou Key Laboratory of Nanobiosensing and Microfluidic Point-of-Care Testing, Luzhou 646000, PR China.
| | - Ke Lv
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
9
|
Golombek M, Tsigaras T, Schaumkessel Y, Hänsch S, Weidtkamp-Peters S, Anand R, Reichert AS, Kondadi AK. Cristae dynamics is modulated in bioenergetically compromised mitochondria. Life Sci Alliance 2024; 7:e202302386. [PMID: 37957016 PMCID: PMC10643176 DOI: 10.26508/lsa.202302386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Cristae membranes have been recently shown to undergo intramitochondrial merging and splitting events. Yet, the metabolic and bioenergetic factors regulating them are unclear. Here, we investigated whether and how cristae morphology and dynamics are dependent on oxidative phosphorylation (OXPHOS) complexes, the mitochondrial membrane potential (ΔΨm), and the ADP/ATP nucleotide translocator. Advanced live-cell STED nanoscopy combined with in-depth quantification were employed to analyse cristae morphology and dynamics after treatment of mammalian cells with rotenone, antimycin A, oligomycin A, and CCCP. This led to formation of enlarged mitochondria along with reduced cristae density but did not impair cristae dynamics. CCCP treatment leading to ΔΨm abrogation even enhanced cristae dynamics showing its ΔΨm-independent nature. Inhibition of OXPHOS complexes was accompanied by reduced ATP levels but did not affect cristae dynamics. However, inhibition of ADP/ATP exchange led to aberrant cristae morphology and impaired cristae dynamics in a mitochondrial subset. In sum, we provide quantitative data of cristae membrane remodelling under different conditions supporting an important interplay between OXPHOS, metabolite exchange, and cristae membrane dynamics.
Collapse
Affiliation(s)
- Mathias Golombek
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thanos Tsigaras
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yulia Schaumkessel
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- https://ror.org/024z2rq82 Center for Advanced Imaging, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- https://ror.org/024z2rq82 Center for Advanced Imaging, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Chen H, You Z, Hong Y, Wang X, Zhao M, Luan Y, Ying Y, Wang Y. Gas-responsive two-dimensional metal-organic framework composites for trace visualization of volatile organic compounds. Biosens Bioelectron 2024; 245:115826. [PMID: 37984318 DOI: 10.1016/j.bios.2023.115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/07/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Highly sensitive and specific identification of complex volatile organic compound mixtures has always been a huge challenge in the field of gas detection. To address this issue, the gas-responsive two-dimensional metal-organic framework (MOF) composites have been designed for fabricating a colorimetric sensor arrays for extremely sensitive detection of volatile organic compounds (VOCs). The physically exfoliated MOF nanosheets Zn2(bim)4 with large surface area and abundant unsaturated active sites were used for loading various dyes to form dye/Zn2(bim)4 composites. Due to the protective effect on dye activity and preconcentration for VOCs, the dye/Zn2(bim)4 composites-based colorimetric sensor arrays showed significantly enhanced sensitivity compared with the corresponding dyes for the detection of various VOCs. The mechanical flexibility of the dye/MOF nanosheets endowed the excellent film-forming properties on various substrates for fabricating the colorimetric sensor arrays. Besides owing to the hydrophobic property and the protection of the Zn2(bim)4 nanosheets, the dye/Zn2(bim)4 sensor arrays exhibited excellent anti-interference including humidity and temperature influence. On the basis of the fantastic properties of dye/Zn2(bim)4 composites for VOCs detection, the dye/Zn2(bim)4 sensor arrays were applied for the early perception of the plant disease late blight via ultra-sensitive and highly specific sensing the VOCs released from the infected plants.
Collapse
Affiliation(s)
- Huayun Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province Hangzhou, Zhejiang, 310058, PR China
| | - Zhiheng You
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province Hangzhou, Zhejiang, 310058, PR China
| | - Yuhui Hong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Xiao Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province Hangzhou, Zhejiang, 310058, PR China
| | - Mingming Zhao
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province Hangzhou, Zhejiang, 310058, PR China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Yibin Ying
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province Hangzhou, Zhejiang, 310058, PR China
| | - Yixian Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
11
|
Sun H, Chan W, Zhang H, Jiao R, Wang F, Zhu Z, Li A. Robust synthesis of free-standing films comprising conjugated microporous polymers nanotubes for water disinfection. J Colloid Interface Sci 2024; 655:771-778. [PMID: 37976750 DOI: 10.1016/j.jcis.2023.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Water environmental pollution especially caused by bacteria, viruses and other microorganisms always would accelerate the spread of infectious diseases and has been one of the issues highly concerned by the World Health Organization for a long time. The development of novel antibacterial materials with high activity for water cleanness was of great importance for public health and ecological sustainable development. In this work, we developed two really free-standing conjugated microprous polymers (CMPs) film with large size and processibility by a simple and convenient solid surface-assisted polymerization between bromo- and aryl-acetylene monomers. With the solid interfacial orientation from silica nanofibers, the resulting CMPs film exhibited nanotube-liked morphology with BET surface area of 379.5 m2 g-1 and 480.1 m2 g-1. The introduction of antibacterial isocyanurate and acetanilide group into polymer skeleton brings the resulting CMPs film intrinsically antimicrobial capability and durability. The growth of E. coli can be completely inhibited by the resulting CMPs film even after several cycles. Our work was suggested to provide a new route for rational design of CMPs film or membrane with antibacterial activity for water treatment and sterilization.
Collapse
Affiliation(s)
- Hanxue Sun
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Wenjun Chan
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Hongyu Zhang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Rui Jiao
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Fei Wang
- Department of Applied Chemistry, Baotou Teachers' College, Inner Mongolia 014031, PR China
| | - Zhaoqi Zhu
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - An Li
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| |
Collapse
|
12
|
Siciliano G, Alsadig A, Chiriacò MS, Turco A, Foscarini A, Ferrara F, Gigli G, Primiceri E. Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta 2024; 268:125280. [PMID: 37862755 DOI: 10.1016/j.talanta.2023.125280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Gold nanoparticles (AuNPs) have emerged as powerful tools in the construction of highly sensitive electrochemical biosensors. Their unique properties, such as the ability to serve as an effective platform for biomolecule immobilization and to facilitate electron transfer between the electrode surface and the immobilized molecules, make them a promising choice for biosensor applications. Utilizing AuNPs modified electrodes can lead to improved sensitivity and lower limits of detection compared to unmodified electrodes. This review provides a comprehensive overview of the recent advancements and applications of AuNPs-based electrochemical biosensors in the biomedical field. The synthesis methods of AuNPs, their key properties, and various strategies employed for electrode modification are discussed. Furthermore, this review highlights the remarkable applications of these nanostructure-integrated electrodes, including immunosensors, enzyme biosensors, and DNA biosensors.
Collapse
Affiliation(s)
- Giulia Siciliano
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Ahmed Alsadig
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | | | - Antonio Turco
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Alessia Foscarini
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Francesco Ferrara
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Gigli
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | | |
Collapse
|
13
|
Zhong W, Chen D, Wu Y, Yue J, Shen Z, Huang H, Wang Y, Li X, Lang JP, Xia Q, Cao Y. Screening of transition metal and boron atoms co-doped graphdiyne catalysts for electrocatalytic urea synthesis. J Colloid Interface Sci 2024; 655:80-89. [PMID: 37925971 DOI: 10.1016/j.jcis.2023.10.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Electrocatalytic CN coupling using nitrogen (N2) and carbon dioxide (CO2) as precursors offers a promising alternative for urea production under mild conditions, compared to traditional synthesis approaches. However, the design and screening of extremely efficient electrocatalysts remains a significant challenge in this field. Hence, we propose a systematic approach to screen efficient double-atom catalysts (DACs) with both metal and boron active sites, employing density functional theory (DFT). A comprehensive evaluation of 27 potential catalysts were performed, taking into account their stability, co-adsorption of N2 and CO2, as well as the potential-determining step (PDS) involved urea formation. The calculated results show that co-doped graphdiyne with CrB and MnB double atoms (CrB@GDY and MnB@GDY) emerge as potential electrocatalysts for urea production, displaying thermodynamic energy barriers of 0.41 eV and 0.66 eV, respectively. More importantly, these two DACs can significantly suppress the ammonia (NH3) and C1 products formation. Furthermore, a catalytic activity relationship between the d-band centers of the DACs and urea production performance were established. This study not only forecasts two promising DACs for subsequent experimental work but also establishes a theoretical framework for the evaluation of DACs in electrocatalytic urea synthesis.
Collapse
Affiliation(s)
- Weichan Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Dixing Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Yuting Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Jingxiu Yue
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China.
| | - Qineng Xia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| | - Yongyong Cao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| |
Collapse
|
14
|
Tang W, Liu JR, Wang Q, Zheng YL, Zhou XY, Xie L, Dai F, Zhang S, Zhou B. Developing a novel benzothiazole-based red-emitting probe for intravital imaging of superoxide anion. Talanta 2024; 268:125297. [PMID: 37832453 DOI: 10.1016/j.talanta.2023.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Superoxide anion (O2•-), the first generated reactive oxygen species (ROS), is a critical player in cellular signaling network and redox homeostasis. Imaging of O2•-, particularly in vivo, is of concern for further understanding its roles in pathophysiological and pharmacological events. Herein, we designed a novel probe, (E)-4-(5-(2-(benzo[d]thiazol-2-yl)-2-cyanovinyl)furan-2-yl)phenyl trifluoromethane-sulfonate (BFTF), by modifying hydroxyphenyl benzothiazole (a widely used dye scaffold) which includes insertion of both an acrylonitrile unit and a furan ring to extend the total π-conjugation system and to enhance push-pull intramolecular charge transfer process, and utilization of trifluoromethanesulfonate as the response unit. Toward O2•-, the probe features near-infrared fluorescent emission (685 nm), large Stokes shift (135 nm), and deep tissue penetration (300 μm). With its help, we successfully mapped preferential generation of O2•- in HepG2 cells over L02 cells, as well as in A549 over BEAS-2B cells by β-lapachone (an anticancer agent that generates O2•-), and more importantly, visualized overproduction of O2•- in living mice with liver injury induced by acetaminophen (a well-known analgesic and antipyretic drug).
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Jun-Ru Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Qi Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Xi-Yue Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Li Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
15
|
Niu Y, Kang K, Wang B, Wang L, Li C, Gao X, Zhao Z, Ji X. Ultrasensitive electrochemical sensing of catechol and hydroquinone via single-atom nanozyme anchored on MOF-derived porous carbon. Talanta 2024; 268:125349. [PMID: 37922817 DOI: 10.1016/j.talanta.2023.125349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Single-atom nanozymes (SANs) can significantly enhance the sensitivity and selectivity of electrochemical sensing platforms due to the homogeneity of their active sites, full atom utilization, and high catalytic activity. In this study, we demonstrate the synthesis and characterization of a high-density Co-based single-atom nanozyme anchored on activated MOF-derived porous carbon (Co-AcNC-3) via a cascade anchoring strategy for ultrasensitive, simultaneous electrochemical detection of catechol (CC) and hydroquinone (HQ). The Co-AcNC-3 displays a large specific surface area, high defectivity, and abundant oxygen-containing groups, with Co atoms being atomically dispersed throughout the carbon support via Co-N bonds. The Co-AcNC-3 biosensor exhibits superior electrochemical signals for CC and HQ, with linear ranges of 4.0 μM-300.0 μM. and detection limits of 0.072 μM and 0.034 μM, respectively. Moreover, the Co-AcNC-3 biosensor has shown excellent performance in accurately detecting CC and HQ in actual samples. Our findings highlight the potential of the proposed Co-AcNC-3 biosensor as a reliable and promising sensing platform for determining CC and HQ.
Collapse
Affiliation(s)
- Yongzhe Niu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kai Kang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Beibei Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Lanyue Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Congwei Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiang Gao
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhenzhen Zhao
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xueping Ji
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, 050017, China.
| |
Collapse
|
16
|
Zhang P, Wang X, Yang Y, Yang H, Lu C, Su M, Zhou Y, Dou A, Li X, Hou X, Liu Y. Mechanistic exploration of Co doping in optimizing the electrochemical performance of 2H-MoS 2/N-doped carbon anode for potassium-ion battery. J Colloid Interface Sci 2024; 655:383-393. [PMID: 37948812 DOI: 10.1016/j.jcis.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The 2H-MoS2/nitrogen-doped carbon (2H-MoS2/NC) composite is a promising anode material for potassium-ion batteries (PIBs). Various transition metal doping has been adopted to optimize the poor intrinsic electronic conductivity and lack of active sites in the intralayer of 2H-MoS2. However, its optimization mechanisms have not been well probed. In this paper, using Cobalt (Co) as an example, we aim to investigate the influence of transition metal doping on the electronic and mechanical properties and electrochemical performance of 2H-MoS2/NC via first-principles calculation. Co doping is found to be effective in improving the electronic conductivity and the areas of active sites on different positions (C surface, interface, and MoS2 surface) of 2H-MoS2/NC. The increased active sites can optimize K adsorption and diffusion capability/processes, where general smaller K adsorption energies and diffusion energy barriers are found after Co doping. This helps improve the rate performance. Especially, the pyridinic N (pyN), pyrrolic N (prN), and graphitic N (grN) are first unveiled to respectively work best in K kinetic adsorption, diffusion, and interfacial stability. These findings are instructive to experimental design of high rate 2H-MoS2/NC electrode materials. The roles of different N types provide new ideas for optimal design of other functional composite materials.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xu Wang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Yang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haifeng Yang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunsheng Lu
- School of Civil and Mechanical Engineering, Curtin University, Perth, WA 6845, Australia
| | - Mingru Su
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Zhou
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Aichun Dou
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Li
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaochuan Hou
- Zhejiang New Era Zhongneng Circulation Technology Co., Ltd., Shaoxing 312369, China
| | - Yunjian Liu
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Huang Y, Cao X, Deng Y, Ji X, Sun W, Xia S, Wan S, Zhang H, Xing R, Ding J, Ren C. An overview on recent advances of reversible fluorescent probes and their biological applications. Talanta 2024; 268:125275. [PMID: 37839322 DOI: 10.1016/j.talanta.2023.125275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/03/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Due to the simplicity and low detection limit, fluorescent probes are widely used in both analytical sensing and optical imaging. Compared to conventional fluorescent probes, reversibility endows the reversible fluorescent probe outstanding advantages and special properties, making reversible fluorescent probes with capable of quantitative, repetitive or circulatory. Reversible fluorescent probes can also monitor the concentration dynamics of target analytes in real time, such as metal ions, proteins and enzymes, as well as intracellular redox processes, which have been widely applied in various fields. This review summarized the types and excellent properties of reversible fluorescent probes designed and developed in recent years. It also summarized the applications of reversible fluorescent probe in fluorescence imaging, biological testing, monitoring redox cycles, and proposed the remaining challenges and future development directions of the reversible fluorescent probe. This review provided comprehensive overview of reversible fluorescent probe, which may provide valuable references for the design and fabrication of the reversible fluorescent probe.
Collapse
Affiliation(s)
- Yanan Huang
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xuebin Cao
- China State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo315832, Zhejiang, China; Yantai Jinghai Marine Fisheries Co., LTD, Yantai, 264000, Shandong, China
| | - Yawen Deng
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xingyu Ji
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Weina Sun
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Shiyu Xia
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Shuo Wan
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Hongxia Zhang
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Ronglian Xing
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China.
| | - Jun Ding
- Dalian Ocean University, Dalian, 116000, Liaoning, China
| | - Chunguang Ren
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China.
| |
Collapse
|
18
|
Cullari LL, Yosefi G, Nativ-Roth E, Furó I, Regev O. Decoupling rheology from particle concentration by charge modulation: Aqueous graphene-clay dispersions. J Colloid Interface Sci 2024; 655:863-875. [PMID: 37979292 DOI: 10.1016/j.jcis.2023.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
HYPOTHESIS Aqueous graphene dispersions are usually obtainable by treating the surface of graphene chemically or physically. In these dispersions, the rheological properties (e.g., viscosity) are governed by a direct coupling to the graphene concentration, which limits their applicability. An alternative approach for dispersing graphene is trapping them in a viscoelastic-network formed by a co-dispersed charged fibrous-clay, Sepiolite. Contrary to surface treatment, the rheological properties of these dispersions are set by the clay particles. The rheology of charged-colloidal dispersions is governed by various parameters, including interparticle interactions. Hence, the rheology of the dispersion could be modulated by changing the clay surface charge without compromising the dispersed graphene concentration. EXPERIMENTAL The surface charge of Sepiolite was modulated either by charge-screening (by NaCl added to the solution) or by surface-charging (by attachment of highly charged ions, e.g., HexaMetaPhosphate, HMP-) and the effect on rheology and graphene concentration was assessed. In particular, loading the dispersion with HMP- yielded low viscosity, storage, and loss moduli (two orders of magnitude lower than the corresponding HMP--free dispersion) while the graphene concentration was maintained. We demonstrate that by this charge-modulation approach, reaching the rheological requirements of different applications without compromising on graphene concentration is plausible.
Collapse
Affiliation(s)
- Lucas Luciano Cullari
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Gal Yosefi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Einat Nativ-Roth
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - István Furó
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-1044, Sweden.
| | - Oren Regev
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
19
|
Deng H, Yang X, Wang H, Gao M, Zhang Y, Liu R, Xu H, Zhang W. Tailoring the surface charges of iron-crosslinked dextran nanogels towards improved tumor-associated macrophage targeting. Carbohydr Polym 2024; 325:121585. [PMID: 38008480 DOI: 10.1016/j.carbpol.2023.121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
Tumor-associated macrophages (TAMs) have emerged as therapeutic interests in cancer nanomedicine because TAMs play a pivotal role in the immune microenvironment of solid tumors. Dextran and its derived nanocarriers are among the most promising nanomaterials for TAM targeting due to their intrinsic affinities towards macrophages. Various dextran-based nanomaterials have been developed to image TAMs. However, the effects of physiochemical properties especially for surface charges of dextran nanomaterials on TAM-targeting efficacy were ambiguous in literature. To figure out the surface charge effects on TAM targeting, here we developed a facile non-covalent self-assembly strategy to construct oppositely charged dextran nanogels (NGs) utilizing the coordination interaction of ferric ions, chlorine e6 (Ce6) dye and three dextran derivatives, diethylaminoethyl-, sulfate sodium- and carboxymethyl-dextran. The acquired dextran NGs exhibit different charges but similar hydrodynamic size, Ce6 loading and mechanical stiffness, which enables a side-by-side comparison of the effects of NG surface charges on TAM targeting monitored by the Ce6 fluorescence imaging. Compared with negative NGs, the positive NG clearly displays a superior TAM targeting in murine breast cancer model. This study identifies that positively charged dextran NG could be a promising approach to better engineer nanomedicine towards an improved TAM targeting.
Collapse
Affiliation(s)
- Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China; Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xue Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Huimin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China; Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Menghan Gao
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China; Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China; Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Runmeng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China; Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Haiyan Xu
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China; Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
20
|
Wang T, Zhang Q, Lian K, Qi G, Liu Q, Feng L, Hu G, Luo J, Liu X. Fe nanoparticles confined by multiple-heteroatom-doped carbon frameworks for aqueous Zn-air battery driving CO 2 electrolysis. J Colloid Interface Sci 2024; 655:176-186. [PMID: 37935071 DOI: 10.1016/j.jcis.2023.10.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Metal-organic frameworks (MOF) derived carbon materials are considered to be excellent conductive mass transfer substrates, and the large specific surface area provides a favorable platform for loading metal nanoparticles. Tuning the coordination of metals through polyacid doping to change the MOF structure and specific surface area is an advanced strategy for designing catalysts. Modification of Fe-doped ZIF-8 pre-curing by pyrolysis of phosphomolybdic acid hydrate (PMo), Fe nanoparticles confined by Mo and N co-doped carbon frameworks (Fe-NP/MNCF) were fabricated, and the impact of PMo doping on the shape and functionality of the catalysts was investigated. The Zn-air battery (ZAB) driven CO2 electrolysis was realized by using Fe-NP/MNCF, which was used as bifunctional oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO2RR) catalysts. The results show that the half-wave potential (E1/2) of Fe-NP/MNCF is 0.89 V, and the limiting diffused current density (jL) is 6.4 mA cm-2. The ZAB constructed by Fe-NP/MNCF shows a high specific capacity of 794.8 mAh gZn-1, a high open-circuit voltage (OCV) of 1.475 V, and a high power density of 111.6 mW cm-2. Fe-NP/MNCF exhibited efficient CO2RR performance with high CO Faraday efficiency (FECO) of 87.5 % and current density for the generation of carbon dioxide (jCO) of 10 mA cm-2 at -0.9 V vs RHE. ZAB-driven CO2RR had strong catalytic stability. These findings provide new methods and techniques for the preparation of advanced carbon-based catalysts from MOFs.
Collapse
Affiliation(s)
- Tianwei Wang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Quan Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Kang Lian
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China
| | - Gaocan Qi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China.
| |
Collapse
|
21
|
Huang Q, Qian C, Liu C, Chen Y. Simultaneous modification of dual-substitution with CeO 2 coating boosting high performance sodium ion batteries. J Colloid Interface Sci 2024; 654:626-638. [PMID: 37864868 DOI: 10.1016/j.jcis.2023.10.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Na3V2(PO4)3 (NVP) is highly valued based on the stable construction among the polyanionic compounds. Nevertheless, the drawback of low intrinsic conductivity has been impeded its further application. In this paper, the internal channels of the crystal structure are extended by the introduction of larger radius Ce3+, which increases the transport rate of Na+. The introduction of Mo6+ replacing the V site leads to a beneficial n-type doping effect and facilitates the transportation of electrons. Besides, CeO2 cladding is introduced to further enhance the electronic conductivity of NVP system. Initially, CeO2 serves as an n-type semiconductor and functions as a conductive additive to significantly enhance the electronic conductivity of the electrode, thereby improving the electrochemical characteristics. Moreover, CeO2 functions as an oxygen buffer, aiding in the maintenance of active metal dispersion during operation and enabling efficient electron transfer between CeO2 and [VO6] octahedra in NVP, thus fostering outstanding electrical connectivity between the oxides. CeO2 cladding can be effectively integrated with the carbon layer to stabilize the NVP system. Comprehensively, the modified Na3V1.79Ce0.07Mo0.07(PO4)3/C@8wt.%CeO2 (CeMo0.07@8wt.%CeO2) composite exhibits excellent rate and cycling properties. It delivers a capacity of 113.4 mAh/g at 1C with a capacity retention rate of 80.3 % after 150 cycles. Even at 10C and 40C, it also submits high capacities of 84.7 mAh/g and 76 mAh/g, respectively. Furthermore, the CHC//CeMo0.07@8wt.%CeO2 asymmetric full cell possesses excellent sodium storage property, indicating its prospective application potentials.
Collapse
Affiliation(s)
- Que Huang
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; School of Resources and Safety Engineering, Central South University, Changsha 410010, Hunan, People's Republic of China
| | - Chenghao Qian
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China.
| | - Changcheng Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China.
| | |
|