1
|
|
Nawab R, Ali M, Haroon U, Kamal A, Akbar M, Anwar F, Ahmed J, Chaudhary HJ, Iqbal A, Hashem M, Alamri S, Alhaithloul HAS, Munis MFH. Calotropis procera (L.) mediated synthesis of AgNPs and their application to control leaf spot of Hibiscus rosa-sinensis (L.). BRAZ J BIOL 2024;84:e261123. [DOI: 10.1590/1519-6984.261123] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/22/2022] Open
Abstract
Abstract Nature is gifted with a wide range of ornamental plants, which beautify and clean the nature. Due to its great aesthetic value, there is a need to protect these plants from a variety of biotic and abiotic stresses. Hibiscus rosa-sinensis (L.) is an ornamental plant and it is commonly known as China rose or shoeblack plant. It is affected by several fungal and bacterial pathogens. Current study was designed to isolate leaf spot pathogen of H. rosa-sinensis and its control using silver nanoparticles (AgNPs). Based on molecular and morphological features, the isolated leaf spot pathogen was identified as Aspergillus niger. AgNPs were synthesized in the leaf extract of Calotropis procera and characterized. UV-vis spectral analysis displayed discrete plasmon resonance bands on the surface of synthesized AgNPs, depicting the presence of aromatic amino acids. Fourier transform infrared spectroscopy (FTIR) described the presence of C-O, NH, C-H, and O-H functional groups, which act as stabilizing and reducing molecules. X-ray diffraction (XRD) revealed the average size (~32.43 nm) of AgNPs and scanning electron microscopy (SEM) depicted their spherical nature. In this study, in vitro and in vivo antifungal activity of AgNPs was investigated. In vitro antifungal activity analysis revealed the highest growth inhibition of mycelia (87%) at 1.0 mg/ml concentration of AgNPs. The same concentration of AgNPs tremendously inhibited the spread of disease on infected leaves of H. rosa-sinensis. These results demonstrated significant disease control ability of AgNPs and suggested their use on different ornamental plants.
Collapse
|
2
|
|
Li Z, Li X, Chua JW, Lim CH, Yu X, Wang Z, Zhai W. Architected lightweight, sound-absorbing, and mechanically efficient microlattice metamaterials by digital light processing 3D printing. VIRTUAL PHYS PROTOTY 2023;18. [DOI: 10.1080/17452759.2023.2166851] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/25/2023]
|
3
|
|
Lee J, Park Y. Systematic Investigation on the Mechanisms for Water Responsive Actuation Using Commercial Sewing Threads. J NAT FIBERS 2023;20. [DOI: 10.1080/15440478.2023.2178584] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/25/2023]
|
4
|
|
Wan J, Geng H, Chen B, Shen J, Kondoh K, Li J. Assessing the thermal stability of laser powder bed fused AlSi10Mg by short-period thermal exposure. VIRTUAL PHYS PROTOTY 2023;18. [DOI: 10.1080/17452759.2023.2165122] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/18/2023]
|
5
|
|
Collet E, Azzolina G, Jeftić J, Lemée-cailleau M. Coupled spin cross-over and ferroelasticity: revisiting the prototype [Fe(ptz)6](BF4)2 material. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2022.2161936] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/03/2023]
|
6
|
|
Liu J, Zhang W, Chen X, Huang Z, Fu X, Wang C. Effect of pyrite packed thickness on its oxidation pathway in high temperature. ENERG SOURCE PART A 2023;45:1874-1885. [DOI: 10.1080/15567036.2023.2182843] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
7
|
|
Alahmadi M, Alsaedi WH, Mohamed WS, Hassan HMA, Ezzeldien M, Abu-dief AM. Development of Bi2O3/MoSe2 mixed nanostructures for photocatalytic degradation of methylene blue dye. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2022.2161333] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/22/2023] Open
|
8
|
|
Ouyang Y, Wang F, Zhang M, Qin Y, Tan Y, Ji W, Song F. Atom electronics in single-molecule transistors: single-atom access and manipulation. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2023.2165148] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/18/2023]
|
9
|
|
Danilov MO, Dovbeshko GI, Rusetskyi IA, Bykov VN, Gnatyuk OP, Fomanyuk SS, Kolbasov GY. Synthesis, properties and electrocatalytic application of g-C3N4 for oxygen electrodes of fuel cells. NANOCOMPOSITES 2023;9:1-9. [DOI: 10.1080/20550324.2023.2169985] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/05/2023] Open
|
10
|
|
Mendes PCD, Song Y, Ma W, Gani TZH, Lim KH, Kawi S, Kozlov SM. Opportunities in the design of metal@oxide core-shell nanoparticles. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2023.2175623] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
11
|
|
Peng S, Sun S, Zhu Y, Qiu J, Yang H. Colourful 3D anti-counterfeiting label using nanoscale additive manufacturing. VIRTUAL PHYS PROTOTY 2023;18. [DOI: 10.1080/17452759.2023.2179929] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/02/2023]
|
12
|
|
Sheng C, Zhu S, Liu H. Optical simulation of various phenomena in curved space on photonic chips. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2022.2153626] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/12/2022]
|
13
|
|
Wang L, Li J, Liu Z, Li S, Yang Y, Misra R, Tian Z. Towards strength-ductility synergy in nanosheets strengthened titanium matrix composites through laser power bed fusion of MXene/Ti composite powder. MATER TECHNOL 2023;38. [DOI: 10.1080/10667857.2023.2181680] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/10/2023]
|
14
|
|
Mabuea BP, Erasmus E, Swart HC. Molybdenum-Tungsten carbides based electrocatalysts for hydrogen evolution reaction. International Journal of Sustainable Energy 2023;42:91-102. [DOI: 10.1080/14786451.2023.2176700] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/12/2023]
|
15
|
|
Wang J, Pan F, Chen W, Li B, Yang D, Ming P, Wei X, Zhang C. Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability. ELECTROCHEM ENERGY R 2023;6:6. [DOI: 10.1007/s41918-022-00141-x] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
16
|
|
Jabbar A, Rehman K, Jabri T, Kanwal T, Perveen S, Rashid MA, Kazi M, Ahmad Khan S, Saifullah S, Shah MR. Improving curcumin bactericidal potential against multi-drug resistant bacteria via its loading in polydopamine coated zinc-based metal-organic frameworks. Drug Deliv 2023;30:2159587. [PMID: 36718806 DOI: 10.1080/10717544.2022.2159587] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/01/2023] Open
Abstract
Multi-drug resistant (MDR) bactearial strains have posed serious health issues, thus leading to a significant increase in mortality, morbidity, and the expensive treatment of infections. Metal-organic frameworks (MOFs), comprising metal ions and a variety of organic ligands, have been employed as an effective drug deliveryy vehicle due to their low toxicity, biodegradability, higher structural integrity and diverse surface functionalities. Polydopamine (PDA) is a versatile biocompatible polymer with several interesting properties, including the ability to adhere to biological surfaces. As a result, modifying drug delivery vehicles with PDA has the potential to improve their antimicrobial properties. This work describes the preparation of PDA-coated Zn-MOFs for improving curcumin's antibacterial properties against S. aureus and E. coli. Powder X-ray diffraction (P-XRD), FT-IR, scanning electron microscopy (SEM), and DLS were utilized to characterize PDA-coated Zn-MOFs. The curcumin loading and in vitro release of the prepared MOFs were also examined. Finally, the MOFs were tested for bactericidal ability against E. coli and S. aureus using an anti-bacterial assay and surface morphological analysis. Smaller size MOFs were capable of loading and releasing curcumin. The findings showed that as curcumin was encapsulated into PDA-coated MOFs, its bactericidal potential was significantly enhanced, and the findings were further supported by SEM which indicated the complete morphological distortion of the bacteria after treatment with PDA-Cur-Zn-MOFs. These studies clearly indicate that the PDA-Cur-Zn-MOFs developed in this study are extremely promising for long-term release of drugs to treat a wide range of microbial infections.
Collapse
|
17
|
|
Li Y, Zhang H, Chen Y, Zhang J. Transformed thermal meta-devices for manipulating macroscopic thermal fields. ENERGY REP 2023;9:3716-3732. [DOI: 10.1016/j.egyr.2023.02.050] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023] Open
|
18
|
|
S K P. Immunogenic antitumor potential of Prakasine nanoparticles in zebrafish by gene expression stimulation. Artif Cells Nanomed Biotechnol 2023;51:41-56. [PMID: 36744833 DOI: 10.1080/21691401.2023.2173217] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023] Open
Abstract
In this study, non-toxic mercury nanoparticle was synthesized as per "Prakash theory of metal drugs" and nanoparticle's characters has been demonstrated by employing several nanotechnological tools including XPS, XRD, EDAX. The size of the Prakasine nanoparticles (PRK-NP) ranged from 90-100 nm, confirmed using TEM, SEM, DLS and along with zeta potential of -29.5 mV before storage and -8.5 mV after storage. The FTIR provided information regarding the nanoparticle capping and functional groups. The study was further elaborated for determining PRK-NPs toxicity, genotoxicity, in-vivo toxicity, immunological anti-tumour activity, immunogenicity potential, gene expression profiling and confirmed by MTT and apoptosis assays, cancer zebrafish model studies and WBC proliferation assay. PRK-NPs revealed no cytotoxicity where cell viability was observed 99% in L6 mouse fibroblasts and 99% in MCF-7 cell lines. Also, the cell viability was to be 89.47% at a very high concentration of 320 µg/ml in HEK 293 cells. The PRK-NPs significantly reduced the tumour in zebrafish at dose of 90 μg/g by up regulating IL-1α, IL-1β, IL-2-ITK, IL-6, IL-8, IL-12, TNF-α and IFN-γ, and down regulating IL-4, IL-5, IL-10 and TGF-β compared to untreated controls without any adverse effects and toxicity. Thus, the current study beholds anticipation PRK-NPs may play a vital role in therapeutic.
Collapse
|
19
|
|
Tang M, Zhang X, Fei W, Xin Y, Zhang M, Yao Y, Zhao Y, Zheng C, Sun D. Advance in placenta drug delivery: concern for placenta-originated disease therapy. Drug Deliv 2023;30:2184315. [PMID: 36883905 DOI: 10.1080/10717544.2023.2184315] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/09/2023] Open
Abstract
In the therapy of placenta-originated diseases during pregnancy, the main challenges are fetal exposure to drugs, which can pass through the placenta and cause safety concerns for fetal development. The design of placenta-resident drug delivery system is an advantageous method to minimize fetal exposure as well as reduce adverse maternal off-target effects. By utilizing the placenta as a biological barrier, the placenta-resident nanodrugs could be trapped in the local placenta to concentrate on the treatment of this abnormal originated tissue. Therefore, the success of such systems largely depends on the placental retention capacity. This paper expounds on the transport mechanism of nanodrugs in the placenta, analyzes the factors that affect the placental retention of nanodrugs, and summarizes the advantages and concerns of current nanoplatforms in the treatment of placenta-originated diseases. In general, this review aims to provide a theoretical basis for the construction of placenta-resident drug delivery systems, which will potentially enable safe and efficient clinical treatment for placenta-originated diseases in the future.
Collapse
|
20
|
|
Zheng H, Li M, Wu L, Liu W, Liu Y, Gao J, Lu Z. Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Deliv 2023;30:2161670. [PMID: 36587630 DOI: 10.1080/10717544.2022.2161670] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal tumors are the most common cancers with the highest morbidity and mortality worldwide. Surgery accompanied by chemotherapy, radiotherapy and targeted therapy remains the first option for gastrointestinal tumors. However, poor specificity for tumor cells of these postoperative treatments often leads to severe side effects and poor prognosis. Tumor immunotherapy, including checkpoint blockade and tumor vaccines, has developed rapidly in recent years, showing good curative effects and minimal side effects in the treatment of gastrointestinal tumors. National Comprehensive Cancer Network guidelines recommend tumor immunotherapy as part of the treatment of gastrointestinal tumors. However, the heterogeneity of tumor cells, complicacy of the tumor microenvironment and poor tumor immunogenicity hamper the effectiveness of tumor immunotherapy. Hydrogels, defined as three-dimensional, hydrophilic, and water-insoluble polymeric networks, could significantly improve the overall response rate of immunotherapy due to their superior drug loading efficacy, controlled release and drug codelivery ability. In this article, we briefly describe the research progress made in recent years on hydrogel delivery systems in immunotherapy for gastrointestinal tumors and discuss the potential future application prospects and challenges to provide a reference for the clinical application of hydrogels in tumor immunotherapy.
Collapse
|
21
|
|
Abdulaal WH, Hosny KM, Alhakamy NA, Bakhaidar RB, Almuhanna Y, Sabei FY, Alissa M, Majrashi M, Alamoudi JA, Hazzazi MS, Jafer A, Khallaf RA. Fabrication, assessment, and optimization of alendronate sodium nanoemulsion-based injectable in-situ gel formulation for management of osteoporosis. Drug Deliv 2023;30:2164094. [PMID: 36588399 DOI: 10.1080/10717544.2022.2164094] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/03/2023] Open
Abstract
Low bone mass, degeneration of bone tissue, and disruption of bone microarchitecture are all symptoms of the disease osteoporosis, which can decrease bone strength and increase the risk of fractures. The main objective of the current study was to use a phospholipid-based phase separation in-situ gel (PPSG) in combination with an alendronate sodium nanoemulsion (ALS-NE) to help prevent bone resorption in rats. The effect of factors such as concentrations of the ALS aqueous solution, surfactant Plurol Oleique CC 497, and Maisine CC oil on nanoemulsion characteristics such as stability index and globular size was investigated using an l-optimal coordinate exchange statistical design. Injectable PPSG with the best nanoemulsion formulation was tested for viscosity, gel strength, water absorption, and in-vitro ALS release. ALS retention in the rats' muscles was measured after 30 days. The droplet size and stability index of the optimal nanoemulsion were 90 ± 2.0 nm and 85 ± 1.9%, respectively. When mixed with water, the optimal ALS-NE-loaded PPSG became viscous and achieved 36 seconds of gel strength, which was adequate for an injectable in-situ formulation. In comparison with the ALS solution-loaded in-situ gel, the newly created optimal ALS-NE-loaded PPSG produced the sustained and regulated release of ALS; hence, a higher percentage of ALS remained in rats' muscles after 30 days. PPSG that has been loaded with an ALS-NE may therefore be a more auspicious, productive, and effective platform for osteoporosis treatment than conventional oral forms.
Collapse
|
22
|
|
Souri M, Kiani Shahvandi M, Chiani M, Moradi Kashkooli F, Farhangi A, Mehrabi MR, Rahmim A, Savage VM, Soltani M. Stimuli-sensitive nano-drug delivery with programmable size changes to enhance accumulation of therapeutic agents in tumors. Drug Deliv 2023;30:2186312. [PMID: 36895188 DOI: 10.1080/10717544.2023.2186312] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023] Open
Abstract
Nano-based drug delivery systems hold significant promise for cancer therapies. Presently, the poor accumulation of drug-carrying nanoparticles in tumors has limited their success. In this study, based on a combination of the paradigms of intravascular and extravascular drug release, an efficient nanosized drug delivery system with programmable size changes is introduced. Drug-loaded smaller nanoparticles (secondary nanoparticles), which are loaded inside larger nanoparticles (primary nanoparticles), are released within the microvascular network due to temperature field resulting from focused ultrasound. This leads to the scale of the drug delivery system decreasing by 7.5 to 150 times. Subsequently, smaller nanoparticles enter the tissue at high transvascular rates and achieve higher accumulation, leading to higher penetration depths. In response to the acidic pH of tumor microenvironment (according to the distribution of oxygen), they begin to release the drug doxorubicin at very slow rates (i.e., sustained release). To predict the performance and distribution of therapeutic agents, a semi-realistic microvascular network is first generated based on a sprouting angiogenesis model and the transport of therapeutic agents is then investigated based on a developed multi-compartment model. The results show that reducing the size of the primary and secondary nanoparticles can lead to higher cell death rate. In addition, tumor growth can be inhibited for a longer time by enhancing the bioavailability of the drug in the extracellular space. The proposed drug delivery system can be very promising in clinical applications. Furthermore, the proposed mathematical model is applicable to broader applications to predict the performance of drug delivery systems.
Collapse
|
23
|
|
Xue P, Chen Y, Xu Y, Valenzuela C, Zhang X, Bisoyi HK, Yang X, Wang L, Xu X, Li Q. Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color. Nanomicro Lett 2023;15:1. [DOI: 10.1007/s40820-022-00977-4] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/29/2022] Open
Abstract
AbstractIn nature, many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots. However, it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird. Herein, we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO2 nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices. The resulting soft actuators are found to exhibit brilliant, angle-independent structural color, as well as ultrafast actuation and recovery speeds (a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s, and a recovery time of ~ 0.24 s) in response to acetone vapor. As proof-of-concept illustrations, structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target, artificial green tendrils that can twine around tree branches, and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor. The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.
Collapse
|
24
|
|
Wallace M, Fedorchak GR, Agrawal R, Gilbert RM, Patel J, Park S, Paszek M, Lammerding J. The lamin A/C Ig-fold undergoes cell density-dependent changes that alter epitope binding. Nucleus 2023;14:2180206. [PMID: 36809122 DOI: 10.1080/19491034.2023.2180206] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/23/2023] Open
Abstract
Lamins A/C are nuclear intermediate filament proteins that are involved in diverse cellular mechanical and biochemical functions. Here, we report that recognition of Lamins A/C by a commonly used antibody (JOL-2) that binds the Lamin A/C Ig-fold and other antibodies targeting similar epitopes is highly dependent on cell density, even though Lamin A/Clevels do not change. We propose that the effect is caused by partial unfolding or masking of the C'E and/or EF loops of the Ig-fold in response to cell spreading. Surprisingly, JOL-2 antibody labeling was insensitive to disruption of cytoskeletal filaments or the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Furthermore, neither nuclear stiffness nor nucleo-cytoskeletal force transmission changed with cell density. These findings are important for the interpretation of immunofluorescence data for Lamin A/C and also raise the intriguing prospect that the conformational changes may play a role in Lamin A/C mediated cellular function.
Collapse
|
25
|
|
Meng M, Zhang X, Li Q, Han J, Chen Y, Qiao H, Yang Y, Huang X. Engineering M1-derived nanovesicles loading with docosahexaenoic acid synergizes ferroptosis and immune activation for treating hepatocellular carcinoma. Cancer Nanotechnol 2023;14:17. [DOI: 10.1186/s12645-023-00166-x] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/09/2023] Open
Abstract
AbstractFerroptosis represents an innovative strategy to overcome the resistance of traditional cancer therapeutic through lethal lipid peroxidation leading to immunogenic cell death. However, the inefficiency of ferroptosis inducers and mild immunogenicity restrict the further clinical applications. Herein, engineering exosome-mimic M1 nanovesicles (MNV) were prepared by serial extrusion of M1 macrophage and served as an efficient vehicle for docosahexaenoic acid (DHA) delivery. MNV loaded with DHA (MNV@DHA) could promote more DHA accumulation in tumor cells, depletion glutathione and reduction of lipid antioxidant glutathione peroxidase-4 facilitating the occurrence of ferroptosis. Furthermore, MNV were able to induce the polarization of M1 and repolarize M2 macrophages to activate tumor immune microenvironments. The activated immune cells would further trigger the ferroptosis of tumor cells. In a murine orthotopic hepatocellular carcinoma model, MNV@DHA could significantly target tumor tissues, increase the proportion of M1 macrophages and CD8+ T cells and lessen the infiltration of M2 macrophages. Accordingly, MNV@DHA characterized with positive feedback regulation between ferroptosis and immune activation exhibited the strongest in vivo therapeutic effect. The synergism of ferroptosis and immunomodulation based on the dietary polyunsaturated fatty acids and engineered exosome-mimic nanovesicles may serve as a promising modality to efficiently complement pharmacological approaches for cancer management.
Collapse
|
26
|
|
Jamil I, Lucheng H, Habib S, Aurangzeb M, Ahmed EM, Jamil R. Performance evaluation of solar power plants for excess energy based on energy production. ENERGY REP 2023;9:1501-1534. [DOI: 10.1016/j.egyr.2022.12.081] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/03/2023] Open
|
27
|
|
Chen B, Chen P, Yeh YL, Liao H. Establishment of second-order equivalent circuit model for bidirectional voltage regulator converter: 48 V-aluminum-ion battery pack. ENERGY REP 2023;9:2629-2637. [DOI: 10.1016/j.egyr.2023.01.086] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/03/2023] Open
|
28
|
|
Tang Z, Zhou S, Huang Y, Wang H, Zhang R, Wang Q, Sun D, Tang Y, Wang H. Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. ELECTROCHEM ENERGY R 2023;6:8. [DOI: 10.1007/s41918-022-00178-y] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/28/2023]
|
29
|
|
Mahmudur Rahman M, Sarmina Yeasmin M, Jasim Uddin M, Hasan M, Aftab Ali Shaikh M, Safiur Rahman M, Maniruzzaman M. Simultaneous abatement of Ni2+ and Cu2+ effectually from industrial wastewater by a low cost natural clay-chitosan nanocomposite filter: Synthesis, characterization and fixed bed column adsorption study. Environmental Nanotechnology, Monitoring & Management 2023;20:100797. [DOI: 10.1016/j.enmm.2023.100797] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/16/2023]
|
30
|
|
Huang T, Zhang X, Wang T, Zhang H, Li Y, Bao H, Chen M, Wu L. Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films. Nanomicro Lett 2023;15:2. [DOI: 10.1007/s40820-022-00972-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/30/2022] Open
Abstract
AbstractWhile boron nitride (BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties, a great challenge is the poor vertical thermal conductivity when embedded in composites owing to the poor interfacial interaction causing severe phonon scattering. Here, we report a novel surface modification strategy called the “self-modified nanointerface” using BN nanocrystals (BNNCs) to efficiently link the interface between BN and the polymer matrix. Combining with ice-press assembly method, an only 25 wt% BN-embedded composite film can not only possess an in-plane thermal conductivity of 20.3 W m−1 K−1 but also, more importantly, achieve a through-plane thermal conductivity as high as 21.3 W m−1 K−1, which is more than twice the reported maximum due to the ideal phonon spectrum matching between BNNCs and BN fillers, the strong interaction between the self-modified fillers and polymer matrix, as well as ladder-structured BN skeleton. The excellent thermal conductivity has been verified by theoretical calculations and the heat dissipation of a CPU. This study provides an innovative design principle to tailor composite interfaces and opens up a new path to develop high-performance composites.
Collapse
|
31
|
|
Li C, Han Y, Luo X, Qian C, Li Y, Su H, Du G. Immunomodulatory nano-preparations for rheumatoid arthritis. Drug Deliv 2023;30:9-19. [PMID: 36482698 DOI: 10.1080/10717544.2022.2152136] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease (AD) caused by the aberrant attack of the immune system on its own joint tissues. Genetic and environmental factors are the main reasons of immune system impairment and high incidence of RA. Although there are medications on the market that lessen disease activity, there is no known cure for RA, and patients are at risk in varying degrees of systemic immunosuppression. By transporting (encapsulating or surface binding) RA-related self-antigens, nucleic acids, immunomodulators, or cytokines, tolerogenic nanoparticles-also known as immunomodulatory nano-preparations-have the potential to gently regulate local immune responses and ultimately induce antigen-specific immune tolerance. We review the recent advances in immunomodulatory nano-preparations for delivering self-antigen or self-antigen plus immunomodulator, simulating apoptotic cell avatars in vivo, acting as artificial antigen-presenting cells, and based on scaffolds and gels, to provide a reference for developing new immunotherapies for RA.
Collapse
|
32
|
|
Zeng G, Deng Q, Gulizia S, Zahiri SH, Chen Y, Xu C, Cao Q, Chen X, Cole I. Contributions of Ti-xTa cold spray composite interface to in-vitro cell growth. Smart Materials in Manufacturing 2023;1:100007. [DOI: 10.1016/j.smmf.2022.100007] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/21/2022]
|
33
|
|
Xian S, Zhu J, Wang Y, Song H, Wang H. Oral liposomal delivery of an activatable budesonide prodrug reduces colitis in experimental mice. Drug Deliv 2023;30:2183821. [PMID: 36861451 DOI: 10.1080/10717544.2023.2183821] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is one of the most common intestinal disorders, with increasing global incidence and prevalence. Numerous therapeutic drugs are available but require intravenous administration and are associated with high toxicity and insufficient patient compliance. Here, an oral liposome that entraps the activatable corticosteroid anti-inflammatory budesonide was developed for efficacious and safe IBD therapy. The prodrug was produced via the ligation of budesonide with linoleic acid linked by a hydrolytic ester bond, which was further constrained into lipid constituents to form colloidal stable nanoliposomes (termed budsomes). Chemical modification with linoleic acid augmented the compatibility and miscibility of the resulting prodrug in lipid bilayers to provide protection from the harsh environment of the gastrointestinal tract, while liposomal nanoformulation enables preferential accumulation to inflamed vasculature. Hence, when delivered orally, budsomes exhibited high stability with low drug release in the stomach in the presence of ultra-acidic pH but released active budesonide after accumulation in inflamed intestinal tissues. Notably, oral administration of budsomes demonstrated favorable anti-colitis effect with only ∼7% mouse body weight loss, whereas at least ∼16% weight loss was observed in other treatment groups. Overall, budsomes exhibited higher therapeutic efficiency than free budesonide treatment and potently induced remission of acute colitis without any adverse side effects. These data suggest a new and reliable approach for improving the efficacy of budesonide. Our in vivo preclinical data demonstrate the safety and increased efficacy of the budsome platform for IBD treatment, further supporting clinical evaluation of this orally efficacious budesonide therapeutic.
Collapse
|
34
|
|
Zhou Z, Xu Z, Song Y, Shi C, Zhang K, Dong B. Silicon Vacancy Color Centers in 6H-SiC Fabricated by Femtosecond Laser Direct Writing. Nanomanuf Metrol 2023;6:7. [DOI: 10.1007/s41871-023-00186-6] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023]
Abstract
AbstractAs a single photon source, silicon vacancy (VSi) centers in wide bandgap semiconductor silicon carbide (SiC) are expected to be used in quantum technology as spin qubits to participate in quantum sensing and quantum computing. Simultaneously, the new direct femtosecond (fs) laser writing technology has been successfully applied to preparing VSis in SiC. In this study, 6H-SiC, which has been less studied, was used as the processed material. VSi center arrays were formed on the 6H-SiC surface using a 1030-nm-wavelength fs pulsed laser. The surface was characterized by white light microscopy, atomic force microscopy, and confocal photoluminescence (PL)/Raman spectrometry. The effect of fs laser energy, vector polarization, pulse number, and repetition rate on 6H-SiC VSi defect preparation was analyzed by measuring the VSi PL signal at 785-nm laser excitation. The results show that fs laser energy and pulse number greatly influence the preparation of the color center, which plays a key role in optimizing the yield of VSis prepared by fs laser nanomachining.
Collapse
|
35
|
|
Qian H, Ren H, Zhang Y, He X, Li W, Wang J, Hu J, Yang H, Sari HMK, Chen Y, Li X. Surface Doping vs. Bulk Doping of Cathode Materials for Lithium-Ion Batteries: A Review. ELECTROCHEM ENERGY R 2023;6:2. [DOI: 10.1007/s41918-022-00155-5] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/12/2022]
|
36
|
|
Abouaitah K, Hassan HA, Ammar NM, Abou Baker DH, Higazy IM, Shaker OG, Elsayed AAA, Hassan AME. Novel delivery system with a dual–trigger release of savory essential oil by mesoporous silica nanospheres and its possible targets in leukemia cancer cells: in vitro study. Cancer Nanotechnol 2023;14:3. [DOI: 10.1186/s12645-022-00152-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/15/2023] Open
Abstract
Abstract
Introduction
Essential oils (EOs) are complex structures and possess several pharmacological effects. Nanomedicine offers a solution for their major limitations, including poor solubility, volatility, and non–controlled release, preventing their clinical use.
Methods
Here, we developed a novel delivery system by nanoformulations that were prepared by impregnating savory essential oil (SA) into mesoporous silica nanoparticles (MSNs). The nanoformulations were characterized and examined for their anticancer activities on cancer cells (HepG2 liver and HL60 leukemia cells) and MRC5 normal cells. We further tested the mechanisms of action and possible molecular targets against HL60 cells.
Results
The results demonstrated that SA was governed by nanoformulations under the dual–trigger release of pH/glutathione, and it typically fit the Korsmeyer–Peppas kinetic model. The nanoformulations enhanced the anticancer effect against HepG2 cells and HL60 cells compared to SA but were less cytotoxic to MRC5 normal cells and regulated various molecular pathways of apoptosis. Most importantly, new results were obtained on the genetic regulation principle through the high inhibition of long noncoding RNAs (HOTAIR, HULC, CCAT1, and H19) and matrix metalloproteinases (MMP–2 and MMP–9), providing a novel leukemia target.
Conclusions
These results suggest potential impacts for nanoformulations composed of SA with a sustained release pattern controlled by dual–trigger release of pH/GSH that enhanced anticancer cells. This approach may offer a new route for using EOs as new targets for cancers and open the door for deep preclinical investigations.
Collapse
|
37
|
|
Li B, Chao Y, Li M, Xiao Y, Li R, Yang K, Cui X, Xu G, Li L, Yang C, Yu Y, Wilkinson DP, Zhang J. A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. ELECTROCHEM ENERGY R 2023;6:7. [DOI: 10.1007/s41918-022-00147-5] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
38
|
|
Zhang S, Ma J, Dong S, Cui G. Designing All-Solid-State Batteries by Theoretical Computation: A Review. ELECTROCHEM ENERGY R 2023;6:4. [DOI: 10.1007/s41918-022-00143-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/05/2023]
|
39
|
|
Alonso-vante N. Parameters Affecting the Fuel Cell Reactions on Platinum Bimetallic Nanostructures. ELECTROCHEM ENERGY R 2023;6:3. [DOI: 10.1007/s41918-022-00145-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/11/2023]
|
40
|
|
England JL. Self-organized computation in the far-from-equilibrium cell. Biophysics Rev 2023;3:041303. [DOI: 10.1063/5.0103151] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/24/2022]
Abstract
Recent progress in our understanding of the physics of self-organization in active matter has pointed to the possibility of spontaneous collective behaviors that effectively compute things about the patterns in the surrounding patterned environment. Here, we describe this progress and speculate about its implications for our understanding of the internal organization of the living cell.
Collapse
|
41
|
|
Jafarian M, Haseli P, Saxena S, Dally B. Emerging technologies for catalytic gasification of petroleum residue derived fuels for sustainable and cleaner fuel production—An overview. ENERGY REP 2023;9:3248-3272. [DOI: 10.1016/j.egyr.2023.01.116] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/17/2023] Open
|
42
|
|
Liu H, Fan Y, Zhong J, Malkoch M, Cai Z, Wang Z. Advance in oral delivery of living material. Biomedical Technology 2023;3:26-39. [DOI: 10.1016/j.bmt.2022.12.003] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/23/2023]
|
43
|
|
Guan Y, Ren Z, Yang B, Xu W, Wu W, Li X, Zhang T, Li D, Chen S, Bai J, Song X, Jia Z, Xiong X, He S, Li C, Meng F, Wu T, Zhang J, Liu X, Meng H, Peng J, Wang Y. Dual-bionic regenerative microenvironment for peripheral nerve repair. Bioact Mater 2023;26:370-86. [PMID: 36942011 DOI: 10.1016/j.bioactmat.2023.02.002] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023] Open
Abstract
Autologous nerve grafting serves is considered the gold standard treatment for peripheral nerve defects; however, limited availability and donor area destruction restrict its widespread clinical application. Although the performance of allogeneic decellularized nerve implants has been explored, challenges such as insufficient human donors have been a major drawback to its clinical use. Tissue-engineered neural regeneration materials have been developed over the years, and researchers have explored strategies to mimic the peripheral neural microenvironment during the design of nerve catheter grafts, namely the extracellular matrix (ECM), which includes mechanical, physical, and biochemical signals that support nerve regeneration. In this study, polycaprolactone/silk fibroin (PCL/SF)-aligned electrospun material was modified with ECM derived from human umbilical cord mesenchymal stem cells (hUMSCs), and a dual-bionic nerve regeneration material was successfully fabricated. The results indicated that the developed biomimetic material had excellent biological properties, providing sufficient anchorage for Schwann cells and subsequent axon regeneration and angiogenesis processes. Moreover, the dual-bionic material exerted a similar effect to that of autologous nerve transplantation in bridging peripheral nerve defects in rats. In conclusion, this study provides a new concept for designing neural regeneration materials, and the prepared dual-bionic repair materials have excellent auxiliary regenerative ability and further preclinical testing is warranted to evaluate its clinical application potential.
Collapse
|
44
|
|
Zhang S, Hou P, Kang J, Li T, Mooraj S, Ren Y, Chen CH, Hart AJ, Gerasimidis S, Chen W. Laser additive manufacturing for infrastructure repair: A case study of a deteriorated steel bridge beam. J MATER SCI TECHNOL 2023;154:149-158. [DOI: 10.1016/j.jmst.2023.01.018] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/21/2023]
|
45
|
|
Zhao Y, Liu J, Liu S, Yang P, Liang Y, Ma J, Mao S, Sun C, Yang Y. Fibroblast exosomal TFAP2C induced by chitosan oligosaccharides promotes peripheral axon regeneration via the miR-132-5p/CAMKK1 axis. Bioact Mater 2023;26:249-63. [PMID: 36936807 DOI: 10.1016/j.bioactmat.2023.03.002] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023] Open
Abstract
Chitosan and its degradation product, oligosaccharides, have been shown to facilitate peripheral nerve regeneration. However, the underlying mechanisms are not well understood. In this study, we analyzed the protein expression profiles in sciatic nerves after injury using proteomics. A group of proteins related to exosome packaging and transport is up-regulated by chitosan oligosaccharides (COS), implying that exosomes are involved in COS-induced peripheral nerve regeneration. In fact, exosomes derived from fibroblasts (f-EXOs) treated with COS significantly promoted axon extension and regeneration. Exosomal protein identification and functional studies, revealed that TFAP2C is a key factor in neurite outgrowth induced by COS-f-EXOs. Furthermore, we showed that TFAP2C targets the pri-miRNA-132 gene and represses miR-132-5p expression in dorsal root ganglion neurons. Camkk1 is a downstream substrate of miR-132-5p that positively affects axon extension. In rats, miR-132-5p antagomir stimulates CAMKK1 expression and improves axon regeneration and functional recovery in sciatic nerves after injury. Our data reveal the mechanism for COS in axon regeneration, that is COS induce fibroblasts to produce TFAP2C-enriched EXOs, which are then transferred into axons to promote axon regeneration via miR-132-5p/CAMKK1. Moreover, these results show a new facet of fibroblasts in axon regeneration in peripheral nerves.
Collapse
|
46
|
|
Ben Amara H, Martinez DC, Shah FA, Loo AJ, Emanuelsson L, Norlindh B, Willumeit-Römer R, Plocinski T, Swieszkowski W, Palmquist A, Omar O, Thomsen P. Magnesium implant degradation provides immunomodulatory and proangiogenic effects and attenuates peri-implant fibrosis in soft tissues. Bioact Mater 2023;26:353-69. [PMID: 36942009 DOI: 10.1016/j.bioactmat.2023.02.014] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/17/2023] Open
Abstract
Implants made of magnesium (Mg) are increasingly employed in patients to achieve osteosynthesis while degrading in situ. Since Mg implants and Mg2+ have been suggested to possess anti-inflammatory properties, the clinically observed soft tissue inflammation around Mg implants is enigmatic. Here, using a rat soft tissue model and a 1-28 d observation period, we determined the temporo-spatial cell distribution and behavior in relation to sequential changes of pure Mg implant surface properties and Mg2+ release. Compared to nondegradable titanium (Ti) implants, Mg degradation exacerbated initial inflammation. Release of Mg degradation products at the tissue-implant interface, culminating at 3 d, actively initiated chemotaxis and upregulated mRNA and protein immunomodulatory markers, particularly inducible nitric oxide synthase and toll-like receptor-4 up to 6 d, yet without a cytotoxic effect. Increased vascularization was demonstrated morphologically, preceded by high expression of vascular endothelial growth factor. The transition to appropriate tissue repair coincided with implant surface enrichment of Ca and P and reduced peri-implant Mg2+ concentration. Mg implants revealed a thinner fibrous encapsulation compared with Ti. The detailed understanding of the relationship between Mg material properties and the spatial and time-resolved cellular processes provides a basis for the interpretation of clinical observations and future tailoring of Mg implants.
Collapse
|
47
|
|
Yang B, Yang Y, Li Q, Lin D, Li Y, Zheng J, Cai Y. Classification of Medical Image Notes for Image Labeling by Using MinBERT. TSINGHUA SCI TECHNOL 2023;28:613-627. [DOI: 10.26599/tst.2022.9010012] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/09/2023]
|
48
|
|
Yu Z, Chen J, Chao D, Sun X, Liu L, Dong S. Study on hydrolase mechanism of copper compound nanoparticles and its application in the evaluation of gut bacteria in aquatic environment. Appl Catal B 2023;330:122639. [DOI: 10.1016/j.apcatb.2023.122639] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/17/2023]
|
49
|
|
Lu Q, Diao J, Wang Y, Feng J, Zeng F, Yang Y, Kuang Y, Zhao N, Wang Y. 3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration. Bioact Mater 2023;26:413-24. [PMID: 36969106 DOI: 10.1016/j.bioactmat.2023.02.025] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/28/2023] Open
Abstract
Bone bionics and structural engineering have sparked a broad interest in optimizing artificial scaffolds for better bone regeneration. However, the mechanism behind scaffold pore morphology-regulated bone regeneration remains unclear, making the structure design of scaffolds for bone repair challenging. To address this issue, we have carefully assessed diverse cell behaviors of bone mesenchymal stem cells (BMSCs) on the β-tricalcium phosphate (β-TCP) scaffolds with three representative pore morphologies (i.e., cross column, diamond, and gyroid pore unit, respectively). Among the scaffolds, BMSCs on the β-TCP scaffold with diamond pore unit (designated as D-scaffold) demonstrated enhanced cytoskeletal forces, elongated nucleus, faster cell mobility, and better osteogenic differentiation potential (for example, the alkaline phosphatase expression level in D-scaffold were 1.5-2 times higher than other groups). RNA-sequencing analysis and signaling pathway intervention revealed that Ras homolog gene family A (RhoA)/Rho-associated kinase-2 (ROCK2) has in-depth participated in the pore morphology-mediated BMSCs behaviors, indicating an important role of mechanical signaling transduction in scaffold-cell interactions. Finally, femoral condyle defect repair results showed that D-scaffold could effectively promote endogenous bone regeneration, of which the osteogenesis rate was 1.2-1.8 times higher than the other groups. Overall, this work provides insights into pore morphology-mediated bone regeneration mechanisms for developing novel bioadaptive scaffold designs.
Collapse
|
50
|
|
Liu Y, Qiu L, Liu J, Feng Y. Enhancing thermal transport across diamond/graphene heterostructure interface. Int J Heat Mass Transf 2023;209:124123. [DOI: 10.1016/j.ijheatmasstransfer.2023.124123] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/28/2023]
|