1
|
Cui Z, He J, Li A, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Novel insights into non-coding RNAs and their role in hydrocephalus. Neural Regen Res 2026; 21:636-647. [PMID: 39688559 DOI: 10.4103/nrr.nrr-d-24-00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation. This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus, one of the most common neurological conditions worldwide. In this review, we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition. Then, we outline the definition, classification, and biological role of non-coding RNAs. Subsequently, we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail. Specifically, we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus, including glymphatic pathways, neuroinflammatory processes, and neurological dysplasia, on the basis of the existing evidence. Lastly, we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.
Collapse
Affiliation(s)
- Zhiyue Cui
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - An Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan Province, China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke 's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Liu M, Meng Y, Ouyang S, Zhai M, Yang L, Yang Y, Wang Y. Neuromodulation technologies improve functional recovery after brain injury: From bench to bedside. Neural Regen Res 2026; 21:506-520. [PMID: 39851132 DOI: 10.4103/nrr.nrr-d-24-00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/05/2024] [Indexed: 01/26/2025] Open
Abstract
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine. These techniques utilize electricity, magnetism, sound, and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury. Therefore, this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury. Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury. However, studies report negative findings, potentially due to variations in stimulation protocols, differences in observation periods, and the severity of functional impairments among participants across different clinical trials. Additionally, we observed that different neuromodulation techniques share remarkably similar mechanisms, including promoting neuroplasticity, enhancing neurotrophic factor release, improving cerebral blood flow, suppressing neuroinflammation, and providing neuroprotection. Finally, considering the advantages and disadvantages of various neuromodulation techniques, we propose that future development should focus on closed-loop neural circuit stimulation, personalized treatment, interdisciplinary collaboration, and precision stimulation.
Collapse
Affiliation(s)
- Mei Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yijing Meng
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Siguang Ouyang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Meng'ai Zhai
- Department of Neurosurgery, The 904 Hospital of PLA, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Likun Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yang Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| |
Collapse
|
3
|
Chen H, Li N, Cai Y, Ma C, Ye Y, Shi X, Guo J, Han Z, Liu Y, Wei X. Exosomes in neurodegenerative diseases: Therapeutic potential and modification methods. Neural Regen Res 2026; 21:478-490. [PMID: 40326981 DOI: 10.4103/nrr.nrr-d-24-00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 05/07/2025] Open
Abstract
In recent years, exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research. Exosomes are small and can effectively cross the blood-brain barrier, allowing them to target deep brain lesions. Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines, mRNAs, and disease-related proteins, thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects. However, exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells. This limitation can lead to side effects and toxicity when they interact with non-specific cells. Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases. In this review, we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases. Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases. We introduce the strategies being used to enhance exosome targeting, including genetic engineering, chemical modifications (both covalent, such as click chemistry and metabolic engineering, and non-covalent, such as polyvalent electrostatic and hydrophobic interactions, ligand-receptor binding, aptamer-based modifications, and the incorporation of CP05-anchored peptides), and nanomaterial modifications. Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases. However, several challenges remain in the clinical application of exosomes. Improvements are needed in preparation, characterization, and optimization methods, as well as in reducing the adverse reactions associated with their use. Additionally, the range of applications and the safety of exosomes require further research and evaluation.
Collapse
Affiliation(s)
- Hongli Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Na Li
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Yuanhao Cai
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
- School of Intelligent Information Engineering, Medicine & Technology College of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Chunyan Ma
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Yutong Ye
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Xinyu Shi
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Jun Guo
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Zhibo Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Cancer Hospital & Institute, International Cancer Institute, Institute of Medical Technology, Peking University Health Science Center, Department of Biomedical Engineering, Peking University, Beijing, China
| |
Collapse
|
4
|
Chen Y, Hu J, Zhang Y, Peng L, Li X, Li C, Wu X, Wang C. Epilepsy therapy beyond neurons: Unveiling astrocytes as cellular targets. Neural Regen Res 2026; 21:23-38. [PMID: 39819836 PMCID: PMC12094549 DOI: 10.4103/nrr.nrr-d-24-01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
Epilepsy is a leading cause of disability and mortality worldwide. However, despite the availability of more than 20 antiseizure medications, more than one-third of patients continue to experience seizures. Given the urgent need to explore new treatment strategies for epilepsy, recent research has highlighted the potential of targeting gliosis, metabolic disturbances, and neural circuit abnormalities as therapeutic strategies. Astrocytes, the largest group of nonneuronal cells in the central nervous system, play several crucial roles in maintaining ionic and energy metabolic homeostasis in neurons, regulating neurotransmitter levels, and modulating synaptic plasticity. This article briefly reviews the critical role of astrocytes in maintaining balance within the central nervous system. Building on previous research, we discuss how astrocyte dysfunction contributes to the onset and progression of epilepsy through four key aspects: the imbalance between excitatory and inhibitory neuronal signaling, dysregulation of metabolic homeostasis in the neuronal microenvironment, neuroinflammation, and the formation of abnormal neural circuits. We summarize relevant basic research conducted over the past 5 years that has focused on modulating astrocytes as a therapeutic approach for epilepsy. We categorize the therapeutic targets proposed by these studies into four areas: restoration of the excitation-inhibition balance, reestablishment of metabolic homeostasis, modulation of immune and inflammatory responses, and reconstruction of abnormal neural circuits. These targets correspond to the pathophysiological mechanisms by which astrocytes contribute to epilepsy. Additionally, we need to consider the potential challenges and limitations of translating these identified therapeutic targets into clinical treatments. These limitations arise from interspecies differences between humans and animal models, as well as the complex comorbidities associated with epilepsy in humans. We also highlight valuable future research directions worth exploring in the treatment of epilepsy and the regulation of astrocytes, such as gene therapy and imaging strategies. The findings presented in this review may help open new therapeutic avenues for patients with drug-resistant epilepsy and for those suffering from other central nervous system disorders associated with astrocytic dysfunction.
Collapse
Affiliation(s)
- Yuncan Chen
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayi Hu
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lulu Peng
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xunyi Wu
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Shanghai, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Qu X, Lai X, He M, Zhang J, Xiang B, Liu C, Huang R, Shi Y, Qiao J. Investigation of epilepsy-related genes in a Drosophila model. Neural Regen Res 2026; 21:195-211. [PMID: 39688550 PMCID: PMC12094548 DOI: 10.4103/nrr.nrr-d-24-00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Complex genetic architecture is the major cause of heterogeneity in epilepsy, which poses challenges for accurate diagnosis and precise treatment. A large number of epilepsy candidate genes have been identified from clinical studies, particularly with the widespread use of next-generation sequencing. Validating these candidate genes is emerging as a valuable yet challenging task. Drosophila serves as an ideal animal model for validating candidate genes associated with neurogenetic disorders such as epilepsy, due to its rapid reproduction rate, powerful genetic tools, and efficient use of ethological and electrophysiological assays. Here, we systematically summarize the advantageous techniques of the Drosophila model used to investigate epilepsy genes, including genetic tools for manipulating target gene expression, ethological assays for seizure-like behaviors, electrophysiological techniques, and functional imaging for recording neural activity. We then introduce several typical strategies for identifying epilepsy genes and provide new insights into gene‒gene interactions in epilepsy with polygenic causes. We summarize well-established precision medicine strategies for epilepsy and discuss prospective treatment options, including drug therapy and gene therapy for genetic epilepsy based on the Drosophila model. Finally, we also address genetic counseling and assisted reproductive technology as potential approaches for the prevention of genetic epilepsy.
Collapse
Affiliation(s)
- Xiaochong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaodan Lai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Mingfeng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jinyuan Zhang
- School of Health Management, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Binbin Xiang
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chuqiao Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ruina Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yiwu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jingda Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 inflammasome and gut microbiota-brain axis: A new perspective on white matter injury after intracerebral hemorrhage. Neural Regen Res 2026; 21:62-80. [PMID: 39885662 PMCID: PMC12094575 DOI: 10.4103/nrr.nrr-d-24-00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury. The NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in this context. This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome. These mechanisms include metabolic pathways (involving short-chain fatty acids, lipopolysaccharides, lactic acid, bile acids, trimethylamine-N-oxide, and tryptophan), neural pathways (such as the vagus nerve and sympathetic nerve), and immune pathways (involving microglia and T cells). We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage. The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood-brain barrier, inducing neuroinflammation, and interfering with nerve regeneration. Finally, we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury. Our review highlights the critical role of the gut microbiota-brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage, paving the way for exploring potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanhua Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xueqi Xiao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tong Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tian Zhou
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Mattioli AV. Sex-specific impacts of caffeine on body composition: commentary on a retrospective cohort study. J Int Soc Sports Nutr 2025; 22:2454633. [PMID: 39825466 PMCID: PMC11749007 DOI: 10.1080/15502783.2025.2454633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Understanding the impact of caffeine intake on body composition is a topic of growing research interest. The article "Association Between Caffeine Intake and Fat-Free Mass Index: A Retrospective Cohort Study" by Tian et al. explored this relationship, highlighting a positive correlation between caffeine consumption and fat-free mass index (FFMI). In this letter to the editor, we discuss the broader implications of these findings, emphasizing the need for further exploration of the underlying biological and lifestyle factors influencing caffeine's effects. OBJECTIVE To provide critical insights into the mechanisms and contextual factors that may explain the observed association between caffeine intake and FFMI, with particular focus on sex-specific differences, hormonal influences, and lifestyle interactions. METHODS This letter to editor builds on the findings of Tian et al., drawing from related literature and prior research to contextualize the potential mechanisms and broader implications of caffeine's impact on body composition. The discussion highlights key areas requiring further investigation, including the role of hormonal modulation, genetic variability, and long-term effects on muscle health. DISCUSSION The positive association between caffeine intake and FFMI, particularly among women and younger populations, underscores the ergogenic potential of caffeine in enhancing muscle performance and metabolic efficiency. This letter expands on the study by emphasizing the role of hormonal factors, such as estrogen's modulation of CYP1A2, the liver enzyme critical for caffeine metabolism. The discussion also highlights the complex interplay between caffeine and other lifestyle factors. Finally, this commentary calls attention to the need for more research into the differential effects of caffeine sources, such as energy drinks and supplements, which often include additional ingredients with distinct metabolic and cardiovascular effects. These alternative sources may influence body composition differently than traditional coffee-based caffeine intake, an area that remains underexplored.
Collapse
Affiliation(s)
- Anna Vittoria Mattioli
- University of Bologna-Alma Mater Studiorum, Department of Quality of Life Sciences, Bologna, Italy
| |
Collapse
|
8
|
Guo D, Lu J, Hong L, Liu H, Huang H. Downregulated expression of dual-specificity phosphatase-1 in multiple myeloma as a predictor of poor survival outcomes. Hematology 2025; 30:2474271. [PMID: 40077895 DOI: 10.1080/16078454.2025.2474271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVES Multiple myeloma (MM) is an incurable hematological malignancy, Dual-specificity phosphatase-1 (DUSP1) plays a crucial role in the initiation and progression of various tumors. Here, we aim to elucidate the role of DUSP1 in MM. METHODS DUSP1 mRNA expression was analyzed based on public datasets, and protein expression was determined by immunohistochemistry. The association between DUSP1 and clinicopathological characteristics, as well as its impact on survival, were investigated. Protein-protein interaction and gene set enrichment analysis were performed. RESULTS Low DUSP1 expression was detected in MM and it was associated with elevated β2-microglobulin, C-reactive protein, creatinine, lactate dehydrogenase, plasma cell ratio, and decreased hemoglobin levels. The DUSP1high group exhibited superior outcomes across clinical endpoints. Univariate and multivariate analyses indicated that low DUSP1 expression was an independent prognostic factor for poor OS (hazard ratio = 0.273). The findings suggested that DUSP1 expression was related to proto-oncogene c-Fos (FOS), heat shock protein family member 1a (HSPA1A), several members of the MAPK family, nuclear receptor subfamily 3, group C, member 1 (NR3C1), and zinc finger protein 36 (ZFP36). DUSP1 mRNA levels were positively correlated with ribosomes and were negatively correlated with oocyte meiosis, one carbon pool by folate, homologous recombination, base excision repair, and pyrimidine metabolism pathways. DISCUSSION The potential mechanisms identified through the PPI network analysis could provide insight into how DUSP1 may influence MM. CONCLUSIONS Low expression of DUSP1 may be considered a poor prognostic factor for MM patients.
Collapse
Affiliation(s)
- Dan Guo
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Jinfeng Lu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Lemin Hong
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Hong Liu
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Hongming Huang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
9
|
Lin Y, Wang J, Bu F, Zhang R, Wang J, Wang Y, Huang M, Huang Y, Zheng L, Wang Q, Hu X. Bacterial extracellular vesicles in the initiation, progression and treatment of atherosclerosis. Gut Microbes 2025; 17:2452229. [PMID: 39840620 DOI: 10.1080/19490976.2025.2452229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular and cerebrovascular diseases. However, current anti-atherosclerosis drugs have shown conflicting therapeutic outcomes, thereby spurring the search for novel and effective treatments. Recent research indicates the crucial involvement of oral and gastrointestinal microbiota in atherosclerosis. While gut microbiota metabolites, such as choline derivatives, have been extensively studied and reviewed, emerging evidence suggests that bacterial extracellular vesicles (BEVs), which are membrane-derived lipid bilayers secreted by bacteria, also play a significant role in this process. However, the role of BEVs in host-microbiota interactions remains insufficiently explored. This review aims to elucidate the complex communication mediated by BEVs along the gut-heart axis. In this review, we summarize current knowledge on BEVs, with a specific focus on how pathogen-derived BEVs contribute to the promotion of atherosclerosis, as well as how BEVs from gut symbionts and probiotics may mitigate its progression. We also explore the potential and challenges associated with engineered BEVs in the prevention and treatment of atherosclerosis. Finally, we discuss the benefits and challenges of using BEVs in atherosclerosis diagnosis and treatment, and propose future research directions to address these issues.
Collapse
Affiliation(s)
- Yuling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Bu
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, China
| | - Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubing Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Wei H, Zhao Q. CYP2D6 polymorphism rs1065852 significantly increases the risk of type 2 diabetes. Ann Med 2025; 57:2470956. [PMID: 40028882 PMCID: PMC11878161 DOI: 10.1080/07853890.2025.2470956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Genetic variations within the cytochrome P450 (CYP) gene family are significant determinants of type 2 diabetes mellitus (T2DM) susceptibility. This study aimed to investigate the association between CYP2C8 and CYP2D6 gene variants and the risk of T2DM. METHODS We conducted a case-control study involving 512 individuals with T2DM and 515 controls. Genotyping of CYP2C8 and CYP2D6 polymorphisms was performed using the Agena MassARRAY system. Logistic regression analysis was employed to estimate the odds ratios (ORs) and 95% confidence intervals (CIs), thereby assessing the relationship between these genetic variants and T2DM risk. Additionally, multifactor dimensionality reduction (MDR) was utilized to assess the potential interaction effects of SNPs on T2DM risk. RESULTS The study found a strong correlation between rs1065852 and increased risk of T2DM in overall (A vs. G: OR = 1.22, 95% CI: 1.03-1.45, p = .024; AA vs. GG: OR = 1.46, 95% CI: 1.04-2.06, p = .031; AA-AG vs. GG: OR = 1.36, 95% CI: 1.04-1.79, p = .026; additive: OR = 1.21, 95% CI: 1.02-1.44, p = .027), males and age < 59 subgroups. However, there is no significant association between the CYP2C8 polymorphisms (rs1934953, rs1934951, rs2275620 and rs17110453) and T2DM risk. MDR analysis results showed that the best model was the one locus model (rs1065852, testing accuracy = 0.534; OR = 1.39; 95% CI: 1.05-1.85; p = .023; CVC = 10/10), indicating that rs1065852 is an independent risk factor for T2DM. CONCLUSIONS This study suggests that rs1065852 (CYP2D6) is an independent risk factor for T2DM. Further research is warranted to validate these results and explore their clinical implications.
Collapse
Affiliation(s)
- Huiyi Wei
- Medical College of Yan’an University, Yan’an, China
| | - Qingbin Zhao
- Department of Geratology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Liu Z, Jiang W, Song Y, Dou K, Song W. Association between the difference in estimated GFR based on cystatin C versus creatinine in coronary artery diseases. Ren Fail 2025; 47:2482127. [PMID: 40301327 PMCID: PMC12042239 DOI: 10.1080/0886022x.2025.2482127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND The difference in estimated glomerular filtration rate (eGFR) derived from creatinine and cystatin C (eGFRdiff) has been noticed recently and the relationship with poor cardiovascular prognosis has been proven. However, primary prevention of the risk of coronary artery disease (CAD) is equally important but there is a lack of studies specifically investigating this implication. METHODS This prospective cohort study utilized data from the UK Biobank, including 437,536 participants without CAD at baseline. The primary outcome was defined as CAD. The eGFRdiff was calculated by subtracting creatinine-based eGFR from cystatin C-based eGFR. Participants were then categorized into a negative, intermediate range, and positive group based on thresholds of -15 mL/min/1.73 m2 and 15 mL/min/1.73 m2. Cox proportional risk models were used to evaluate the associations of eGFRdiff with CAD and the relationship among different genetic risks of CAD. RESULTS During a median follow-up of 13.8 years, CAD occurred in 36,797 participants. In the fully adjusted model, compared to midrange eGFRdiff, participants with a positive eGFRdiff had a lower risk of CAD (HR 0.717, 95%CI 0.675-0.762), while with a negative eGFRdiff had a higher risk (HR 1.433, 95%CI 1.399-1.468). When eGFRdiff was treated as a continuous variable, a statistically significant trend toward a lower risk of CAD as eGFRdiff increased (HR 0.982, 95% CI 0.981-0.982). Moreover, this relationship is independent of genetic susceptibility. CONCLUSIONS eGFRdiff was associated with CAD risk, where a high eGFRdiff corresponded to a decreased likelihood of CAD onset no matter genetic susceptibility.
Collapse
Affiliation(s)
- Zechen Liu
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wangying Jiang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjun Song
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kefei Dou
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Song
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Gafforov Y, Bekić S, Yarasheva M, Mišković J, Živanović N, Chen JJ, Petri E, Abdullaev B, Rapior S, Lim YW, Abdullaev I, Abbasi AM, Ghosh S, Wan-Mohtar WAAQI, Rašeta M. Bioactivity profiling of Sanghuangporus lonicerinus: antioxidant, hypoglycaemic, and anticancer potential via in-vitro and in-silico approaches. J Enzyme Inhib Med Chem 2025; 40:2461185. [PMID: 39992291 PMCID: PMC11852365 DOI: 10.1080/14756366.2025.2461185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
This study investigates the mycochemical profile and biological activities of hydroethanolic (EtOH), chloroform (CHCl3), and hot water (H2O) extracts of Sanghuangporus lonicerinus from Uzbekistan. Antioxidant capacity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), NO, and FRAP assays, and in vitro hypoglycaemic effects were evaluated through α-amylase and α-glucosidase inhibition. Antiproliferative potential was explored by analysing the binding affinities of EtOH and H2O extracts to estrogen receptor α (ERα), ERβ, androgen receptor (AR), and glucocorticoid receptor (GR), with molecular docking providing structural insights. LC-MS/MS analysis revealed solvent-dependent phenolic profiles, with the EtOH extract containing the highest total phenolic content (143.15 ± 6.70 mg GAE/g d.w.) and the best antioxidant capacity. The EtOH extract showed significant hypoglycaemic effects, with 85.29 ± 5.58% inhibition of α-glucosidase and 41.21 ± 0.79% inhibition of α-amylase. Moderate ERβ binding suggests potential for estrogen-mediated cancer therapy, while strong AKR1C3 inhibition by the EtOH extract supports its therapeutic potential.
Collapse
Affiliation(s)
- Yusufjon Gafforov
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Sofija Bekić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Manzura Yarasheva
- Microbiology Laboratory, Navruz International Corp. LLC, Kibray, Uzbekistan
| | - Jovana Mišković
- Department of Biology and Ecology, Faculty of Sciences, ProFungi Laboratory, University of Novi Sad, Novi Sad, Serbia
| | - Nemanja Živanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jia Jia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Bekhzod Abdullaev
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
| | - Sylvie Rapior
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, Montpellier, France
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, Montpellier, France
| | - Young Won Lim
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Republic of Korea
| | | | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Soumya Ghosh
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
- Department of Biology and Ecology, Faculty of Sciences, ProFungi Laboratory, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
13
|
Santoro AM, Persico M, D’Urso A, Cunsolo A, Tkachuk O, Milardi D, Purrello R, Tundo GR, Sbardella D, Osmulski PA, Gaczynska M, Coletta M, Fattorusso C. Tetra-anionic porphyrin mimics protein-protein interactions between regulatory particles and the catalytic core, allosterically activating human 20S proteasome. J Enzyme Inhib Med Chem 2025; 40:2482892. [PMID: 40192126 PMCID: PMC11980194 DOI: 10.1080/14756366.2025.2482892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Decreased proteasome activity is a hallmark of brain and retinal neurodegenerative diseases (Alzheimer's, Parkinson's diseases, glaucoma) boosting the search for molecules acting as proteasome activators. Based on the hypothesis of an electrostatic key code driving catalytic core particle (20S) activation by regulatory particles (RPs), we identified the tetra-anionic meso-Tetrakis(4-sulphonatophenyl)-porphyrin (H2TPPS) as a new activator of human proteasome. By means of an integrated approach, including bioinformatics, enzymatic kinetic analysis, atomic force microscopy, and dynamic docking simulations, we show how binding of H2TPPS affects the closed/open conformational equilibrium of human 20S to ultimately promote substrate gate opening and proteolytic activity. These outcomes support our hypothesis and pave the way to the rational discovery of new proteasome allosteric modulators able to reproduce the key structural elements of regulatory particles responsible for catalytic activation.
Collapse
Affiliation(s)
- A. M. Santoro
- National Research Council, Institute of Crystallography, Sede Secondaria di Catania, Catania, Italy
| | - M. Persico
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| | - A. D’Urso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - A. Cunsolo
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Epic Sciences, San Diego, California, USA
| | - O. Tkachuk
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| | - D. Milardi
- National Research Council, Institute of Crystallography, Sede Secondaria di Catania, Catania, Italy
| | - R. Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G. R. Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
| | | | - P. A. Osmulski
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - M. Gaczynska
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | | | - C. Fattorusso
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| |
Collapse
|
14
|
Xia X, Liu R, Jiang X. Integration of mitochondrial gene expression and immune landscape in acute kidney injury prediction. Ren Fail 2025; 47:2502608. [PMID: 40369940 PMCID: PMC12082736 DOI: 10.1080/0886022x.2025.2502608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/17/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a life-threatening condition with limited early biomarkers. Mitochondrial dysfunction is central to AKI pathophysiology, yet its potential for predicting AKI remains underexplored. METHODS Gene expression data from three publicly available AKI datasets (GSE30718, GSE61739, and GSE139061) were analyzed to identify differentially expressed genes (DEGs). A set of 11 mitochondrial-related genes was selected and used to construct a mitochondrial risk score (MRS) model via Lasso and elastic net regression. The model was validated across multiple datasets. Immune infiltration was assessed using the xCell algorithm to explore the relationship between MRS and immune cell dynamics in AKI. Stable HK-2 cells were constructed of XRCC3 knockdown and overexpression to investigate the effects of XRCC3 on cell activities. Additionally, the impact of XRCC3 on mitochondrial structure and function was examined in vivo and in vitro. RESULTS Eleven mitochondrial-related genes were consistently dysregulated across all datasets. PCA demonstrated a clear separation between AKI and normal samples. Functional enrichment analysis revealed that upregulated genes were linked to extracellular matrix remodeling and stress responses, while downregulated genes were associated with mitochondrial dysfunction. The MRS model showed strong predictive performance. We found that XRCC3 significantly promoted the activities of HK-2 cells and improved the integrity of mitochondrial structure and function in vivo and in vitro. CONCLUSION The mitochondrial gene-based MRS model is a robust tool for predicting AKI. Our findings underscore the critical role of mitochondrial dysfunction and immune modulation in AKI, offering potential avenues for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoping Xia
- Department of Intensive Care Unit, Taizhou Integrated Traditional Chinese and Western Medicine Hospital, Wenling, Zhejiang, China
| | - Renyang Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaohui Jiang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Fan HL, Chen JL, Liu ST, Lee JT, Huang SM, Wu ZF, Lai HC. Remimazolam induced cytotoxicity mediated through multiple stress pathways and acted synergistically with tyrosine kinase inhibitors in hepatocellular carcinoma. Redox Rep 2025; 30:2475696. [PMID: 40053437 PMCID: PMC11892054 DOI: 10.1080/13510002.2025.2475696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
The primary treatment for hepatocellular carcinoma (HCC) involves surgical removal of the primary tumor, but this creates a favorable environment for the proliferation and spread of residual and circulating cancer cells. The development of remimazolam-based balanced anesthesia is crucial for future antitumor applications. It is important to understand the mechanisms of cytotoxicity for HCC in detail. We performed cell viability analysis, western blotting analysis, reverse transcription-polymerase chain reaction analysis, and flow cytometry analysis in two HCC cell lines, HepG2 and Hep3B cells. Our data demonstrated that remimazolam induced cytotoxicity by suppressing cell proliferation, inhibiting G1 phase progression, and affecting mitochondrial reactive oxygen species (ROS) levels, leading to apoptosis, DNA damage, cytosolic ROS elevation, lipid peroxidation, autophagy, mitochondrial depolarization, and endoplasmic reticulum stress. Inhibitors of apoptosis, autophagic cell death, and ferroptosis and a ROS scavenger failed to rescue cell death caused by remimazolam besylate. Our combination index revealed that remimazolam besylate has the potential to act as a sensitizer for targeted tyrosine kinase inhibitor therapy for HCC. Our findings open up new possibilities for combinatory HCC therapy using remimazolam, leveraging its dual functional roles in surgery and drug therapy for liver cancers.
Collapse
Affiliation(s)
- Hsiu-Lung Fan
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Jia-Lin Chen
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Jia-Tong Lee
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Zhi-Fu Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan, Republic of China
| | - Hou-Chuan Lai
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
16
|
de la Rosa Vázquez J, Lee A. Role of the C-terminal domain in modifying pH-dependent regulation of Ca v1.4 Ca 2+ channels. Channels (Austin) 2025; 19:2473074. [PMID: 40116026 PMCID: PMC11934190 DOI: 10.1080/19336950.2025.2473074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
In the retina, Ca2+ influx through Cav1.4 Ca2+ channels triggers neurotransmitter release from rod and cone photoreceptors. Changes in extracellular pH modify channel opening, enabling a feedback regulation of photoreceptor output that contributes to the encoding of color and contrast. However, the mechanisms underlying pH-dependent modulation of Cav1.4 are poorly understood. Here, we investigated the role of the C-terminal domain (CTD) of Cav1.4 in pH-dependent modulation of Ba2+ currents (IBa) in HEK293T cells transfected with the full length CaV1.4 (FL) or variants lacking portions of the CTD due to alternative splicing (Δe47) or a disease-causing mutation (K1591X). While extracellular alkalinization caused an increase in IBa for each variant, the magnitude of this increase was significantly diminished (~40-50%) for both CTD variants; K1591X was unique in showing no pH-dependent increase in maximal conductance. Moreover, the auxiliary α2δ-4 subunit augmented the pH sensitivity of IBa, as compared to α2δ-1 or no α2δ, for FL and K1591X but not Δe47. We conclude that the CTD and α2δ-4 are critical determinants of pH-dependent modulation of Cav1.4 and may influence the processing of visual information in normal and diseased states of the retina.
Collapse
Affiliation(s)
- Juan de la Rosa Vázquez
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX, USA
| | - Amy Lee
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
17
|
Noman MZ, Szpakowska M, Xiao M, Gao R, Van Moer K, Kumar A, Ollert M, Berchem G, Chevigné A, Janji B. Targeting the atypical chemokine receptor 2 ( Ackr2) improves the benefit of anti-PD-1 immunotherapy in melanoma mouse model. Oncoimmunology 2025; 14:2494426. [PMID: 40248897 PMCID: PMC12013441 DOI: 10.1080/2162402x.2025.2494426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
Immune checkpoint blockade (ICB) therapies, such as anti-PD-1, have transformed cancer treatment, but many patients do not respond due to a non-inflammatory tumor microenvironment (TME). Here, we investigated the impact of targeting Atypical Chemokine Receptor 2 (ACKR2), which scavenges key chemokines involved in immune cell recruitment, on the improvement of anti-PD-1-based therapy. In a melanoma mouse model, we demonstrated that Ackr2 inhibition increases the release of proinflammatory chemokines CCL5 and CXCL10 and enhances the infiltration of NK cells, activated CD8+ and CD4+ effector T cells while reducing regulatory T cells (Tregs) in the TME. Targeting Ackr2 led to tumor growth inhibition, improved survival, and enhanced response to anti-PD-1 therapy. In BRAF- and NRAS-mutant melanoma patients, low ACKR2 expression or high CCL5/CXCL10 levels correlated with improved survival and higher CD8+ T cell markers. Targeting ACKR2 represents a promising approach for developing combination therapies, particularly for 'cold' ICB resistant tumors.
Collapse
MESH Headings
- Animals
- Mice
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Melanoma/immunology
- Melanoma/drug therapy
- Melanoma/pathology
- Humans
- Disease Models, Animal
- Chemokine CXCL10/metabolism
- Immunotherapy/methods
- Receptors, CCR/antagonists & inhibitors
- Receptors, CCR/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Chemokine CCL5/metabolism
- Cell Line, Tumor
- Mice, Inbred C57BL
- Female
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Melanoma, Experimental/immunology
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
Collapse
Affiliation(s)
- Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME), Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Malina Xiao
- Tumor Immunotherapy and Microenvironment (TIME), Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Ruize Gao
- Tumor Immunotherapy and Microenvironment (TIME), Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Kris Van Moer
- Tumor Immunotherapy and Microenvironment (TIME), Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Akinchan Kumar
- Tumor Immunotherapy and Microenvironment (TIME), Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Markus Ollert
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME), Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME), Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| |
Collapse
|
18
|
Ganglberger M, Koschak A. Exploring the potential for gene therapy in Cav1.4-related retinal channelopathies. Channels (Austin) 2025; 19:2480089. [PMID: 40129245 PMCID: PMC11938310 DOI: 10.1080/19336950.2025.2480089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
The visual process begins with photon detection in photoreceptor outer segments within the retina, which processes light signals before transmission to the thalamus and visual cortex. Cav1.4 L-type calcium channels play a crucial role in this process, and dysfunction of these channels due to pathogenic variants in corresponding genes leads to specific manifestations in visual impairments. This review explores the journey from basic research on Cav1.4 L-type calcium channel complexes in retinal physiology and pathophysiology to their potential as gene therapy targets. Moreover, we provide a concise overview of key findings from studies using different animal models to investigate retinal diseases. It will critically examine the constraints these models present when attempting to elucidate retinal channelopathies. Additionally, the paper will explore potential strategies for addressing Cav1.4 channel dysfunction and discuss the current challenges facing gene therapy approaches in this area of research.
Collapse
Affiliation(s)
- Matthias Ganglberger
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Alexandra Koschak
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Chen J, Zhou Q, Su L, Ni L. Mitochondrial dysfunction: the hidden catalyst in chronic kidney disease progression. Ren Fail 2025; 47:2506812. [PMID: 40441691 PMCID: PMC12123951 DOI: 10.1080/0886022x.2025.2506812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) represents a global health epidemic, with approximately one-third of affected individuals ultimately necessitating renal replacement therapy or transplantation. The kidney, characterized by its exceptionally high energy demands, exhibits significant sensitivity to alterations in energy supply and mitochondrial function. In CKD, a compromised capacity for mitochondrial ATP synthesis has been documented. As research advances, the multifaceted roles of mitochondria, extending beyond their traditional functions in oxygen sensing and energy production, are increasingly acknowledged. Empirical studies have demonstrated a strong association between mitochondrial dysfunction and the pathogenesis of fibrosis and cellular apoptosis in CKD. Targeting mitochondrial dysfunction holds substantial therapeutic promise, with emerging insights into its epigenetic regulation in CKD, particularly involving non-coding RNAs and DNA methylation. This article presents a comprehensive review of contemporary research on mitochondrial dysfunction in relation to the onset and progression of CKD. It elucidates the associated molecular mechanisms across various renal cell types and proposes novel research avenues for CKD treatment.
Collapse
Affiliation(s)
- Jinhu Chen
- Department of Nephrology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuyuan Zhou
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, Liang Ping People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Davidson M, Stanciu GD, Rabinowitz J, Untu I, Dobrin RP, Tamba BI. Exploring novel therapeutic strategies: Could psychedelic perspectives offer promising solutions for Alzheimer's disease comorbidities? DIALOGUES IN CLINICAL NEUROSCIENCE 2025; 27:1-12. [PMID: 40108882 PMCID: PMC11926901 DOI: 10.1080/19585969.2025.2480566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
The increasing prevalence of dementia within an ageing global population, combined with prolonged life expectancy, accentuates Alzheimer's disease (AD) as a multifaceted healthcare challenge. This challenge is further compounded by the limited therapeutic options currently available. Addressing the intricacies of AD management, the mitigation of comorbidities has emerged as a pivotal facet of treatment. Comorbid conditions, such as neurobehavioral symptoms, play a role in shaping the clinical course, management, and outcomes of this pathology; highlighting the importance of comprehensive care approaches for affected individuals. Exploration of psychedelic compounds in psychiatric and palliative care settings has recently uncovered promising therapeutic potential, enhancing neuroplasticity, emotional processing and connection. These effects are particularly relevant in the context of AD, where psychedelic therapy offers hope not only for mitigating core symptoms but also for addressing the array of comorbidities associated with this condition. The integration of this comprehensive method offers a chance to significantly enhance the care provided to those navigating the intricate landscape of AD. Therefore, the current paper reviews the intricate link between more frequent additional health conditions that may coexist with dementia, particularly in the context of AD, and explores the therapeutic potential of psychedelic compounds in addressing these concurrent conditions.
Collapse
Affiliation(s)
- Michael Davidson
- University of Miami School of Medicine, Miami, FL, USA
- Advanced Research and Development Center for Experimental Medicine ‘Prof. Ostin C. Mungiu’ CEMEX, ‘Grigore T. Popa’ University of Medicine and Pharmacy of Iasi, Iasi, Romania
| | - Gabriela-Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine ‘Prof. Ostin C. Mungiu’ CEMEX, ‘Grigore T. Popa’ University of Medicine and Pharmacy of Iasi, Iasi, Romania
| | - Jonathan Rabinowitz
- Advanced Research and Development Center for Experimental Medicine ‘Prof. Ostin C. Mungiu’ CEMEX, ‘Grigore T. Popa’ University of Medicine and Pharmacy of Iasi, Iasi, Romania
- Bar Ilan University, Ramat Gan, Israel
| | - Ilinca Untu
- Department of Medicine III, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Iasi, Romania
- Institute of Psychiatry ‘Socola’, Iasi, Romania
| | - Romeo-Petru Dobrin
- Department of Medicine III, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Iasi, Romania
- Institute of Psychiatry ‘Socola’, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine ‘Prof. Ostin C. Mungiu’ CEMEX, ‘Grigore T. Popa’ University of Medicine and Pharmacy of Iasi, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, ‘Grigore T. Popa’ University of Medicine and Pharmacy of Iasi, Iasi, Romania
| |
Collapse
|
21
|
Cheungpasitporn W, Krisanapan P, Suppadungsuk S, Thongprayoon C, Fülöp T, Miao J, Soliman KM, Ho YS. Research trends and performance of endothelin A receptor antagonist in kidney care: a bibliometric analysis. Ren Fail 2025; 47:2487212. [PMID: 40211733 PMCID: PMC11995767 DOI: 10.1080/0886022x.2025.2487212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Endothelin A receptor antagonists (ERAs) have emerged as pivotal therapeutic agents in managing pulmonary hypertension (PH) and various kidney disorders, including chronic kidney disease (CKD) and proteinuric glomerular diseases such as IgA nephropathy (IgAN) and focal segmental glomerulosclerosis (FSGS). Although initially developed for pulmonary applications, recent research has highlighted their renoprotective effects, expanding their role in nephrology. This study presents a comprehensive bibliometric analysis of global research trends, key contributors, and emerging applications of ERAs in kidney care over the past three decades. METHODS A bibliometric analysis was performed using the Science Citation Index Expanded database (1992-2023). Relevant kidney-related publications were identified through specific keyword searches. Author performance was assessed using the Y-index. RESULTS ERA-related research has shown significant growth, particularly in nephrology. The United States and the University of Groningen lead in publication volume and international collaborations, with H.J.L. Heerspink emerging as a key contributor. While PH remains the dominant research focus, nephrology applications are rapidly increasing, particularly in CKD, diabetic nephropathy (DN), and glomerular diseases. A major milestone was the accelerated FDA approval of sparsentan for IgAN in 2023, followed by full approval in 2024 based on confirmatory efficacy data. However, challenges such as fluid retention and cardiovascular risks remain, necessitating further investigation into optimized ERA therapies, including combination strategies with SGLT2 inhibitors. CONCLUSIONS The expanding role of ERAs in nephrology underscores their potential in treating proteinuric kidney diseases. Ongoing international collaborations are advancing research on ERA safety, efficacy, and novel therapeutic strategies, supporting their broader clinical application.
Collapse
Affiliation(s)
| | - Pajaree Krisanapan
- Department of Medicine, Division of Nephrology, Mayo Clinic, Rochester, MN, USA
- Department of Nephrology, Department of Internal Medicine, Thammasat University, Khlong Nueng, Thailand
| | - Supawadee Suppadungsuk
- Department of Medicine, Division of Nephrology, Mayo Clinic, Rochester, MN, USA
- Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Bang Pla, Thailand
| | - Charat Thongprayoon
- Department of Medicine, Division of Nephrology, Mayo Clinic, Rochester, MN, USA
| | - Tibor Fülöp
- Medical Services, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Jing Miao
- Department of Medicine, Division of Nephrology, Mayo Clinic, Rochester, MN, USA
| | - Karim M. Soliman
- Medical Services, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Yuh-Shan Ho
- Trend Research Centre, Asia University, Taichung, Taiwan
| |
Collapse
|
22
|
Liu L, Liu W, Deng W. Amylin inhibits gastric cancer progression by targeting CCN1 and affecting the PI3K/AKT signalling pathway. Ann Med 2025; 57:2480754. [PMID: 40165038 DOI: 10.1080/07853890.2025.2480754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/22/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
METHODS This study used a combination of in vitro and in vivo experiments to investigate the role of amylin in the progression of GC. The expression of amylin in GC and its clinical correlation were evaluated using 38 pairs of GC and healthy human clinical samples. In vitro studies, human GC cell lines were treated with amylin to evaluate the effects of amylin on the proliferation, apoptosis and migration of GC cells. In in vivo studies, xenograft mouse models were established by subcutaneous injection of GC cells into nude mice, followed by treatment with amylin to assess tumor growth. Finally, Next-Generation Sequencing Technology (RNA-seq) was used to explore the potential mechanism of amylin on GC. RESULTS We found that amylin expression was reduced in GC compared to adjacent normal gastric tissues and that elevated amylin expression was negatively correlated with adverse pathological factors (p < 0.05). Additionally, we demonstrated that amylin impeded the growth, invasion, migration, and colony formation of GC cells and suppressed the epithelial-to-mesenchymal transformation of these cells (p < 0.05). Tumour xenograft model experiments confirmed the tumour-suppressive effect of amylin in subcutaneous tumours in nude mice (p < 0.05). Transcriptome sequencing (RNA-seq) revealed that amylin significantly down-regulated CCN1 gene expression in GC cells (p < 0.001). Further intervention targeting CCN1 verified its significance as a target of amylin's anti-carcinogenic function in GC. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that amylin exerted its oncogenic effects by inhibiting the PI3K/Akt signalling pathway (p < 0.05). CONCLUSIONS Our findings demonstrate that amylin plays a crucial role in suppressing gastric cancer progression by targeting CCN1 and inhibiting the PI3K/Akt signalling pathway. These results suggest that amylin could serve as a potential therapeutic agent for GC treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenxuan Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
23
|
Xiong K, Lou S, Lian Z, Wu Y, Kou Z. The GluN3-containing NMDA receptors. Channels (Austin) 2025; 19:2490308. [PMID: 40235311 PMCID: PMC12005412 DOI: 10.1080/19336950.2025.2490308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are heterotetrameric ion channels that play crucial roles in brain function. Among all the NMDAR subtypes, GluN1-N3 receptors exhibit unique agonist binding and gating properties. Unlike "conventional" GluN1-N2 receptors, which require both glycine and glutamate for activation, GluN1-N3 receptors are activated solely by glycine. Furthermore, GluN1-N3 receptors display faster desensitization, reduced Ca2+ permeability, and lower sensitivity to Mg2+ blockage compared to GluN1-N2 receptors. Due to these characteristics, GluN1-N3 receptors are thought to play critical roles in eliminating redundant synapses and pruning spines in early stages of brain development. Recent studies have advanced pharmacological tools for specifically targeting GluN1-N3 receptors and provided direct evidence of these glycine-activated excitatory receptors in native brain tissue. The structural basis of GluN1-N3 receptors has also been elucidated through cryo-EM and artificial intelligence. These findings highlight that GluN1-N3 receptors are not only involved in essential brain functions but also present potential targets for drug development.
Collapse
Affiliation(s)
- Kunlong Xiong
- Department of Pulmonary and Critical Care Medicine, Affiliated First Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shulei Lou
- Institute of Hospital Management, Linyi People’s Hospital, Linyi, Shandong, China
| | - Zuoyu Lian
- Department of General Practice, Cicheng Town Central Health Center, Ningbo, Zhejiang, China
| | - Yunlin Wu
- Hospital Infection Control Section, Affiliated First Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zengwei Kou
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Farahani A, Farahani A, Kashfi K, Ghasemi A. Inhibition of hepatic gluconeogenesis in type 2 diabetes by metformin: complementary role of nitric oxide. Med Gas Res 2025; 15:507-519. [PMID: 40300886 PMCID: PMC12124709 DOI: 10.4103/mgr.medgasres-d-24-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 05/01/2025] Open
Abstract
Metformin is the first-line treatment for type 2 diabetes mellitus. Type 2 diabetes mellitus is associated with decreased nitric oxide bioavailability, which has significant metabolic implications, including enhanced insulin secretion and peripheral glucose utilization. Similar to metformin, nitric oxide also inhibits hepatic glucose production, mainly by suppressing gluconeogenesis. This review explores the combined effects of metformin and nitric oxide on hepatic gluconeogenesis and proposes the potential of a hybrid metformin-nitric oxide drug for managing type 2 diabetes mellitus. Both metformin and nitric oxide inhibit gluconeogenesis through overlapping and distinct mechanisms. In hepatic gluconeogenesis, mitochondrial oxaloacetate is exported to the cytoplasm via various pathways, including the malate, direct, aspartate, and fumarate pathways. The effects of nitric oxide and metformin on the exportation of oxaloacetate are complementary; nitric oxide primarily inhibits the malate pathway, while metformin strongly inhibits the fumarate and aspartate pathways. Furthermore, metformin effectively blocks gluconeogenesis from lactate, glycerol, and glutamine, whereas nitric oxide mainly inhibits alanine-induced gluconeogenesis. Additionally, nitric oxide contributes to the adenosine monophosphate-activated protein kinase-dependent inhibition of gluconeogenesis induced by metformin. The combined use of metformin and nitric oxide offers the potential to mitigate common side effects. For example, lactic acidosis, a known side effect of metformin, is linked to nitric oxide deficiency, while the oxidative and nitrosative stress caused by nitric oxide could be counterbalanced by metformin's enhancement of glutathione. Metformin also amplifies nitric oxide -induced activation of adenosine monophosphate-activated protein kinase. In conclusion, a metformin-nitric oxide hybrid drug can benefit patients with type 2 diabetes mellitus by enhancing the inhibition of hepatic gluconeogenesis, decreasing the required dose of metformin for maintaining optimal glycemia, and lowering the incidence of metformin-associated lactic acidosis.
Collapse
Affiliation(s)
- Arman Farahani
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Cheku S, Rokusek B, Pattabiraman M, Carlson KA. Enhancing drug administration in Drosophila melanogaster: a method for using solid dispersions for improved solubility and bioavailability. Fly (Austin) 2025; 19:2497565. [PMID: 40277072 PMCID: PMC12036485 DOI: 10.1080/19336934.2025.2497565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Drosophila melanogaster is a widely used model organism for diseases such as Parkinson's disease, Alzheimer's disease, obesity, and diabetes. However, compound administration-based toxicological and behavioural studies on Drosophila have been hindered by technical difficulties associated with inefficient administration of hydrophobic compounds. This study illustrates a general method to make and distribute PEG 8000-based solid dispersions for three hydrophobic compounds, distearoylglycerol (DSG) geldanamycin (GA) and RU486 to D. melanogaster. The solid dispersions were validated, in vitro, using nuclear magnetic resonance spectroscopy (NMR), to have a higher aqueous solubility. The study also describes three different methods to administer the solid dispersions: subcutaneous injections, mixing in solid food, and the capillary feeder assay (CAFE). We show that the presence of 1% DMSO decreases survival, whereas PEG does not have an adverse effect. Lastly, we showed that the prepared PEG-RU486 formulation showed signs of enhanced bioavailability when compared to RU486 dissolved in ethanol. The methodology described in the study provides an easy and effective means to administer hydrophobic compounds to D. melanogaster using subcutaneous injections, CAFE assay, or by mixing it with solid food.
Collapse
Affiliation(s)
- Sunayn Cheku
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, USA
| | - Blase Rokusek
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, USA
| | - Mahesh Pattabiraman
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, USA
| | | |
Collapse
|
26
|
Ma X, Liang Y, Chen W, Zheng L, Lin H, Zhou T. The role of endothelin receptor antagonists in kidney disease. Ren Fail 2025; 47:2465810. [PMID: 40015728 PMCID: PMC11869344 DOI: 10.1080/0886022x.2025.2465810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Kidney diseases are among the most prevalent conditions worldwide, impacting over 850 million individuals. They are categorized into acute kidney injury and chronic kidney disease. Current preclinical and clinical trials have demonstrated that endothelin (ET) is linked to the onset and progression of kidney disease. In kidney diseases, pathological conditions such as hyperglycemia, acidosis, insulin resistance, and elevated angiotensin II levels lead to an increase in ET. This elevation activates endothelin receptor type A, resulting in harmful effects like proteinuria and a reduced glomerular filtration rate (GFR). Therefore, to slow the progression of kidney disease, endothelin receptor antagonists (ERAs) have been proposed as promising new therapies. Numerous studies have demonstrated the efficacy of ERAs in significantly reducing proteinuria and improving GFR, thereby slowing the progression of kidney diseases. This review discusses the mechanisms of action of ERAs in treating kidney disease, their efficacy and safety in preclinical and clinical studies, and explores future prospects for ERAs.
Collapse
Affiliation(s)
- Xiaoting Ma
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuyang Liang
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenmin Chen
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lingqian Zheng
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Haishan Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
27
|
Tian YL, Liu X, Yang MY, Wu YH, Yin FQ, Zhang ZT, Zhang C. Association between caffeine intake and fat free mass index: a retrospective cohort study. J Int Soc Sports Nutr 2025; 22:2445607. [PMID: 39706596 DOI: 10.1080/15502783.2024.2445607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Caffeine, identified as a central nervous system stimulant in foods, beverages (coffee, tea, chocolate), and medications, has been focused on its ergogenic properties, enhancing physical performance. The aim of this study was to investigate the association between the caffeine intake (from coffee) and fat-free mass index (FFMI). MATERIALS AND METHODS We carried out a cohort study that included 3,466 women and 3,145 men aged ≥20 years who were intaking caffeine. Caffeine intake from coffee were obtained from two 24-hour dietary recall interviews. The FFMI was calculated as FFM (kg) divided by height in m2. The caffeine intake was classified into quartiles and combined into 4 groups. Multiple linear regression model analysis and multiple logistic regression model analysis were used to assess associations between the caffeine and FFMI adjusted for potential confounders. RESULTS Among the 2,427 participants, males accounted for 52.4%, and females 47.6%. In multiple linear regression model, Model 1 (unadjusted Model (p = 0.041)) and Model 2 (adjusted for age, race, and BMI (p = 0.006)) in women showed a significant relationship between caffeine intake and FFMI. In multivariable models, caffeine intake and FFMI were significantly different (p < 0.05). In sex subgroups, among females, each quartile of caffeine intake was positively correlated with FFMI levels in the average FFMI group in Model 3 (p < 0.001). In age subgroups, each quartile of caffeine intake was positively correlated with FFMI levels in the average FFMI group in Model 3 for individuals aged 20-40 (p = 0.039) and those aged above 40 (p = 0.016). In drinking status subgroups, if they drunk alcohol, each quartile was positively correlated with FFMI levels in the average FFMI group in Model 3 (p < 0.001). CONCLUSION Caffeine intake was mainly positively associated with FFMI, especially in women with above levels of FFMI. Longitudinal studies and randomized controlled trials are needed to establish causality and provide evidence-based recommendations regarding caffeine intake to optimize muscle health.
Collapse
Affiliation(s)
- Ya-Lan Tian
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- School of Nursing, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin Liu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Meng-Yao Yang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- School of Nursing, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu-Han Wu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- School of Nursing, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fu-Qiang Yin
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhen-Tong Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- School of Nursing, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
28
|
Ghanem R, Buin X, Haute T, Philippe J, Kaouane G, Leclerc L, Guivarch M, Le Gall T, Pourchez J, Montier T. Impact of nebulizers on nanoparticles-based gene delivery efficiency: in vitro and in vivo comparison of jet and mesh nebulizers using branched-polyethyleneimine. Drug Deliv 2025; 32:2463428. [PMID: 39930696 PMCID: PMC11816613 DOI: 10.1080/10717544.2025.2463428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
Nanoparticles-based gene delivery has emerged as a promising approach for the treatment of genetic diseases based on efficient delivery systems for therapeutic nucleic acids (NAs) into the target cells. For pulmonary diseases such as cystic fibrosis (CF), chronic obstructive pulmonary diseases (COPD), infectious disease or lung cancer, aerosol delivery is the best choice to locally deliver NAs into the lungs. It is, therefore, important to investigate the effects of nebulization conditions on the efficiency of delivery. To this purpose, the non-viral vector branched polyethyleneimine (b-PEI, 25 kDa) was investigated for plasmid delivery by aerosol. Two types of nebulizers, jet nebulizer and mesh nebulizer, were compared regarding the properties of the nanoparticles (NPs) formed, the efficiency of NAs delivery in vitro and in vivo models and the pulmonary deposition. The results indicate that the mesh nebulizer has a better gene delivery performance than the jet nebulizer in this application. This superiority was demonstrated in terms of size, concentration, distribution of NPs and efficiency of NAs delivery. However, pulmonary deposition appears to be similar regardless of the nebulizer used, and the difference between the two systems lies in the inhalable dose. These results underline the crucial role of nebulization techniques in optimizing aerosol-mediated gene delivery by b-PEI and highlight the potential of mesh nebulizers as promising tools to improved gene therapy. Therefore, the comparison must be performed for each gene therapy formulation to determine the most suitable nebulizer.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France
| | - Xavier Buin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Tanguy Haute
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | | | - Ghalia Kaouane
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Maël Guivarch
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Tony Le Gall
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France
| |
Collapse
|
29
|
Victor Atoki A, Aja PM, Shinkafi TS, Ondari EN, Adeniyi AI, Fasogbon IV, Dangana RS, Shehu UU, Akin-Adewumi A. Exploring the versatility of Drosophila melanogaster as a model organism in biomedical research: a comprehensive review. Fly (Austin) 2025; 19:2420453. [PMID: 39722550 DOI: 10.1080/19336934.2024.2420453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
Drosophila melanogaster is a highly versatile model organism that has profoundly advanced our understanding of human diseases. With more than 60% of its genes having human homologs, Drosophila provides an invaluable system for modelling a wide range of pathologies, including neurodegenerative disorders, cancer, metabolic diseases, as well as cardiac and muscular conditions. This review highlights key developments in utilizing Drosophila for disease modelling, emphasizing the genetic tools that have transformed research in this field. Technologies such as the GAL4/UAS system, RNA interference (RNAi) and CRISPR-Cas9 have enabled precise genetic manipulation, with CRISPR-Cas9 allowing for the introduction of human disease mutations into orthologous Drosophila genes. These approaches have yielded critical insights into disease mechanisms, identified novel therapeutic targets and facilitated both drug screening and toxicological studies. Articles were selected based on their relevance, impact and contribution to the field, with a particular focus on studies offering innovative perspectives on disease mechanisms or therapeutic strategies. Our findings emphasize the central role of Drosophila in studying complex human diseases, underscoring its genetic similarities to humans and its effectiveness in modelling conditions such as Alzheimer's disease, Parkinson's disease and cancer. This review reaffirms Drosophila's critical role as a model organism, highlighting its potential to drive future research and therapeutic advancements.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | | | | | - Umar Uthman Shehu
- Department of Physiology, Kampala International University, Ishaka, Uganda
| | | |
Collapse
|
30
|
Zhang C, Luo J, Liao Y, Cao H, Wu X, Huang X, Lan H, Lin Y, Chen H, Guan X. Respiratory depression in women receiving propofol/esketamine versus propofol/fentanyl for abortion surgery or curettage: a randomized clinical trial. Ann Med 2025; 57:2483981. [PMID: 40172617 PMCID: PMC11966977 DOI: 10.1080/07853890.2025.2483981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND A combination of opioids with propofol is a popular approach to non-intubated general anaesthesia; however, this method usually results in higher incidence of respiratory depression. We compared the incidence of esketamine- and fentanyl-induced respiratory depression in women undergoing abortion surgery or curettage under propofol-based non-intubated general anaesthesia. METHODS This study included 176 women (aged 18-60 years) scheduled for abortion surgery or curettage. Patients were randomized into the fentanyl or esketamine groups. Patients in the fentanyl group received fentanyl (1 µg/kg) combined with propofol intravenously. Patients in the esketamine group received subanaesthetic doses of esketamine (0.15 mg/kg) combined with propofol intravenously. The primary outcome was the incidence of respiratory depression during anaesthesia. Secondary outcomes included respiratory rate, pulse oximetry, blood pressure, heart rate, propofol dose, duration of surgery, duration of anaesthesia, and adverse events. RESULTS The incidence of respiratory depression in the esketamine group was significantly lower than that in the fentanyl group (11% vs. 45%; p < .0001). Propofol administration was lower with esketamine than fentanyl. Respiratory rate, SpO2 and blood pressure were more stable in the esketamine group than in the fentanyl group. The incidences of hypotension, propofol-induced injection pain and chin lifting in the esketamine group were lower than those in the fentanyl group. The incidence of nightmares was higher in the esketamine than in the fentanyl group. CONCLUSIONS The incidence of respiratory depression was lower with subanaesthetic doses of esketamine than with fentanyl in women undergoing abortion surgery or curettage under propofol-based non-intubated general anaesthesia.KEY MESSAGESOpioids combined with propofol is a popular method for non-intubated general anaesthesia; however, this method usually results in higher incidence of respiratory depression.At subanaesthetic doses, esketamine provides an analgesic effect by antagonizing the N-methyl-d-aspartate receptor.In this trial, the incidence of respiratory depression was lower with subanaesthetic doses of esketamine than with fentanyl in women undergoing abortion surgery or curettage under propofol-based non-intubated general anaesthesia.
Collapse
Affiliation(s)
- Cuiwen Zhang
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Jiaxin Luo
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yeqing Liao
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Huiyu Cao
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xiaoshan Wu
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xiaofang Huang
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Hongmeng Lan
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yuliu Lin
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Huihe Chen
- Department of Rehabilitation, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xuehai Guan
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| |
Collapse
|
31
|
Zhang Y, Mo C, Ai P, He X, Xiao Q, Yang X. Pharmacomicrobiomics: a new field contributing to optimizing drug therapy in Parkinson's disease. Gut Microbes 2025; 17:2454937. [PMID: 39875349 PMCID: PMC11776486 DOI: 10.1080/19490976.2025.2454937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Gut microbiota, which act as a determinant of pharmacokinetics, have long been overlooked. In recent years, a growing body of evidence indicates that the gut microbiota influence drug metabolism and efficacy. Conversely, drugs also exert a substantial influence on the function and composition of the gut microbiota. Pharmacomicrobiomics, an emerging field focusing on the interplay of drugs and gut microbiota, provides a potential foundation for making certain advances in personalized medicine. Understanding the communication between gut microbiota and antiparkinsonian drugs is critical for precise treatment of Parkinson's disease. Here, we provide a historical overview of the interplay between gut microbiota and antiparkinsonian drugs. Moreover, we discuss potential mechanistic insights into the complex associations between gut microbiota and drug metabolism. In addition, we also draw attention to microbiota-based biomarkers for predicting antiparkinsonian drug efficacy and examine current state-of-the-art knowledge of microbiota-based strategies to optimize drug therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Yang C, Chen L, Jiang Y, Sun D, Hu Y. Synthesis and evaluation of 5, 6-dihydro-8 H-isoquinolino[1, 2- b]quinazolin-8-one derivatives as novel non-lipogenic ABCA1 up-regulators with inhibitory effects on macrophage-derived foam cell formation. J Enzyme Inhib Med Chem 2025; 40:2470310. [PMID: 40008549 PMCID: PMC11866647 DOI: 10.1080/14756366.2025.2470310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Increasing the expression of ATP-binding cassette transporter A1 (ABCA1) can lower cellular cholesterol levels and prevent foam cell formation. In this study, a series of 5, 6-dihydro-8H-isoquinolino[1, 2-b]quinazolin-8-one derivatives were synthesised and assessed for their ability to up-regulate ABCA1 expression. The structure-activity relationship was explored and summarised. Among the 28 derivatives, compound 3 exhibited the most potent activity in activating the ABCA1 promoter (2.50-fold), significantly up-regulating both ABCA1 mRNA and protein levels in RAW264.7 macrophage cells. Mechanism studies revealed that compound 3 acted by targeting the LXR-involved pathway. In a foam cell model, compound 3 reduced ox-LDL-induced lipid accumulation and thereby inhibited foam cell formation. Moreover, compared to the LXR agonist T0901317, compound 3 led to minimal accumulation of unwanted lipids and triglycerides in HepG2 cells. With little cytotoxicity towards all the tested cell lines, compound 3 holds promise as a novel potential anti-atherogenic agent for further exploration.
Collapse
Affiliation(s)
- Changhuan Yang
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Lin Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yanmei Jiang
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Demeng Sun
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yun Hu
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
33
|
Holas P, Kamińska J, Zajenkowski M. Societal perspectives on psychedelics use in clinical context: Development of Concerns and Openness towards Psychedelic Scale (COPS). DIALOGUES IN CLINICAL NEUROSCIENCE 2025; 27:11-21. [PMID: 40051051 PMCID: PMC11892042 DOI: 10.1080/19585969.2025.2470426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/12/2025]
Abstract
INTRODUCTION Psychedelics are gaining recognition for their therapeutic potential in mental health treatment, yet societal attitudes remain divided, influenced by both skepticism and curiosity. This study aimed to develop and validate a scale assessing attitudes toward psychedelics. METHODS Study 1 (n = 1000, convenience sample) explored the factor structure, identifying two dimensions: Openness toward Psychedelics and Concerns toward Psychedelics. Study 2 (n = 843, representative Polish sample) confirmed the scale's validity. RESULTS The Concerns factor negatively correlated with meaning in life, while the Openness factor was positively associated with openness to experience, agreeableness, conscientiousness, mindfulness, meaning in life, and nature-relatedness. These associations suggest that individuals with greater openness and psychological flexibility may hold more favorable views on psychedelics. DISCUSSION The Concerns and Openness towards Psychedelics Scale (COPS) is a psychometrically sound tool for assessing attitudes toward psychedelics. Its meaningful correlations with established psychological constructs underscore its utility in research and public health. By providing insight into societal perceptions, COPS may help inform discussions on psychedelic therapy, policy, and education, ultimately fostering a more nuanced understanding of their potential benefits and risks.
Collapse
Affiliation(s)
- Paweł Holas
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
34
|
Vijayan S, Margesan T. The potential of Abrus precatorius leaves in arthritis alleviation computational approaches through lC-MS analysis. Future Sci OA 2025; 11:2483131. [PMID: 40131221 PMCID: PMC11938972 DOI: 10.1080/20565623.2025.2483131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
AIM This study explores the therapeutic potential of Abrus precatorius leaves in arthritis treatment using computational methods and LC-MS analysis. METHODS The plant material was taxonomically authenticated, and phytochemical analysis identified bioactive compounds such as alkaloids, flavonoids, and triterpenoids. RESULTS Swiss ADME analysis confirmed that multiple compounds complied with Lipinski's Rule of Five, while OSIRIS software indicated minimal toxicity. PASS analysis predicted anti-inflammatory and antioxidant activities. Molecular docking simulations of Abrine with key rheumatoid arthritis (RA) targets revealed strong binding affinities, suggesting potential mechanisms for RA treatment. CONCLUSION This research highlights the medicinal potential of Abrus precatorius leaves and emphasizes the importance of computational tools in understanding their pharmacological properties for arthritis management.
Collapse
Affiliation(s)
- Sukanya Vijayan
- Department of Pharmacognosy, SRM College of Pharmacy, SRMIST, Chengalpattu, Tamil Nadu, India
| | - Thirumal Margesan
- Department of Pharmacognosy, SRM College of Pharmacy, SRMIST, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
35
|
Deng F, Yang D, Qing L, Chen Y, Zou J, Jia M, Wang Q, Jiang R, Huang L. Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway: a potential therapeutic approach for neurodegenerative diseases. Neural Regen Res 2025; 20:3095-3112. [PMID: 39589173 PMCID: PMC11881707 DOI: 10.4103/nrr.nrr-d-24-00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut microbiota and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut-brain axis. The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites, which activates the vagus nerve and modulates the immune and neuroendocrine systems. Conversely, alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota, creating a dynamic network of microbial-host interactions. This reciprocal regulation affects neurodevelopment, neurotransmitter control, and behavioral traits, thus playing a role in the modulation of neurological diseases. The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation, mitochondrial dysfunction, abnormal energy metabolism, microglial activation, oxidative stress, and neurotransmitter release, which collectively influence the onset and progression of neurological diseases. This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway, along with its implications for potential therapeutic interventions in neurological diseases. Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders. This can be achieved through various methods such as dietary modifications, probiotic supplements, Chinese herbal extracts, combinations of Chinese herbs, and innovative dosage forms. These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Fengcheng Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lingxi Qing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yifei Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jilian Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Meiling Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Runda Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lihua Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
36
|
Ali MS, Gupta G, Alsayari A, Wahab S, Kesharwani P. Biotinylated nanoparticles: A new frontier in nanomedicine and targeted cancer therapy. BIOMATERIALS ADVANCES 2025; 176:214366. [PMID: 40479769 DOI: 10.1016/j.bioadv.2025.214366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/11/2025] [Accepted: 05/31/2025] [Indexed: 06/16/2025]
Abstract
The development of targeted drug delivery systems has become a cornerstone of modern cancer therapy which provides a pathway to maximize treatment effectiveness while reducing side effects. Among the plethora of innovative strategies, biotinylated nanoparticles have evolved as a hopeful tool due to their ability to exploit the elevated expression of biotin receptors on cancerous cells. The design, synthesis, and functionalization of biotinylated nanoparticles for cancer treatment are thoroughly examined in this review article. By leveraging biotin's high affinity for biotin receptors, these nanoparticles achieve selective cancerous cell targeting, leading to enhanced drug bioavailability and cellular uptake. The discussion extends to the underlying mechanisms of drug release, receptor-mediated endocytosis, and strategies for achieving endosomal escape or pH-sensitive drug activation. Furthermore, the article also emphasizes how biotinylation in combination therapy allows for synergistic effects with immunomodulators, nucleic acids, and chemotherapeutic drugs. Preclinical studies are examined to underscore the translational potential of these systems. The review concludes by addressing current challenges, including scalability, and potential immunogenicity, while proposing future directions for optimizing biotinylated nanoparticles as a transformative approach in cancer treatment.
Collapse
Affiliation(s)
- Mohd Shoab Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
37
|
Liang G, Yang L, Xiao L, Tang L, Cheng S, Sun Z, Zhang Y, Yang F, Zhang GJ. Nanozymes enhancing field-effect transistor nanosensor for in-situ monitoring intracellular hydrogen peroxide release. Biosens Bioelectron 2025; 286:117643. [PMID: 40460459 DOI: 10.1016/j.bios.2025.117643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 05/29/2025] [Indexed: 06/11/2025]
Abstract
Field-effect transistor (FET) nanodevices are widely recognized as highly sensitive sensors for continuous detection of bioactive molecules like hydrogen peroxide (H2O2). However, accurate and real-time monitoring of H2O2 poses challenges due to its instability and low concentration in organisms. To address these challenges, we construct an enhanced FET by one-step interfacing with nanozymes that possess natural enzyme-like catalytic properties and exceptional stability. Specifically, reduced graphene oxide (RGO) is drop-casted onto the fabricated FET channel, after which the nanozymes are assembled with RGO through π-π stacking interactions. The nanozyme-functionalized FET sensor is able to realize continuous H2O2 monitoring, featuring a broad linear detection range (1 pM-10 nM), an ultralow detection limit (0.5 pM), high selectivity, and rapid response. Moreover, the sensor enables real-time monitoring of intracellular H2O2 release from cells cultured within the FET channel, demonstrating significant potential for distinguishing between cancer cells and normal cells. In addition, the sensor successfully tracks the dynamic regulation of intracellular H2O2 efflux under drug stimulation. This platform combines high sensitivity with excellent biocompatibility, making it highly promising for applications in cell metabolism research, disease diagnosis, and drug efficacy evaluation and screening.
Collapse
Affiliation(s)
- Guowu Liang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Luyao Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Ling Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Shibo Cheng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Zhongyue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, PR China.
| | - Fan Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, 530021, PR China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, PR China.
| |
Collapse
|
38
|
Ji X, Jiang X, Gao Z, Gao H, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. Discovery of novel diarypyrimidine derivatives as potent HIV-1 NNRTIs by exploiting the tolerant region I within NNRTI binding pocket. Eur J Med Chem 2025; 295:117787. [PMID: 40435828 DOI: 10.1016/j.ejmech.2025.117787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/11/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) serve as an essential component of antiretroviral treatment regimens, but they encounter challenges such as resistance mutations, poor solubility, and adverse effects. This study presents the design, synthesis, and biological evaluation of novel diarylpyrimidine (DAPY)-typed derivatives targeting the tolerant region I within the NNRTI binding pocket (NNIBP). We introduced aliphatic ring structures with high Fsp3 value, aiming to enhance target affinity while simultaneously improving water solubility. Among them, compound 9k demonstrated excellent potency against wild-type HIV-1 (EC50 = 0.0014 μM) and key single-mutant strains K103 N (EC50 = 0.0041 μM) and E138K (EC50 = 0.0077 μM), which outperformed the positive drugs ETR, NVP and EFV. Molecular modeling studies were conducted to elucidate the detailed interactions between RT and 9k, providing insights into the enhanced drug resistance profiles. Additionally, 9k demonstrated a notable improvement in water solubility (1.38 μg/mL, pH = 7) compared to ETR (≪ 1 μg/mL, pH = 7). These findings provide a foundation for further optimization of NNRTIs with improved anti-resistance profiles and pharmacokinetics.
Collapse
Affiliation(s)
- Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China
| | - Heng Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium.
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012, Jinan, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012, Jinan, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012, Jinan, China.
| |
Collapse
|
39
|
Ansari M, Ghandadi M, Emami S. An overview of isatin-derived CDK2 inhibitors in developing anticancer agents. Eur J Med Chem 2025; 295:117819. [PMID: 40451137 DOI: 10.1016/j.ejmech.2025.117819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/16/2025] [Accepted: 05/26/2025] [Indexed: 06/11/2025]
Abstract
Isatin (1H-indole-2,3-dione) scaffold is an important heterocyclic building block which can be used for the design and synthesis of anti-cancer agents targeting tyrosine kinases, tubulin polymerization, carbonic anhydrases, and histone deacetylases. There are also several lines of evidences demonstrating the role of cyclin-dependent kinase 2 (CDK2) in cancer development and its potential as anti-cancer target. Here we are going to review isatin-derived CDK2 inhibitors and their potential for developing new anticancer agents. The purpose of this review is to present the importance of isatin scaffold for design of new CDK2 inhibitors from medicinal and biological viewpoints. Furthermore, the in vitro and in silico studies, and structure-activity relationships (SARs) were also discussed. The Insights derived from SARs provide crucial directions for the rational design of potent and selective isatin-based CDK2 inhibitors, which improve therapeutic efficacy and reduce side effects of anticancer chemotherapy.
Collapse
Affiliation(s)
- Mahsa Ansari
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Ghandadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
40
|
Zheng Q, Wang D, Lin R, Xu W. Pyroptosis, ferroptosis, and autophagy in spinal cord injury: regulatory mechanisms and therapeutic targets. Neural Regen Res 2025; 20:2787-2806. [PMID: 39101602 PMCID: PMC11826477 DOI: 10.4103/nrr.nrr-d-24-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Regulated cell death is a form of cell death that is actively controlled by biomolecules. Several studies have shown that regulated cell death plays a key role after spinal cord injury. Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords. Autophagy, a complex form of cell death that is interconnected with various regulated cell death mechanisms, has garnered significant attention in the study of spinal cord injury. This injury triggers not only cell death but also cellular survival responses. Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis, ferroptosis, and autophagy. Therefore, this review aims to comprehensively examine the mechanisms underlying regulated cell deaths, the signaling pathways that modulate these mechanisms, and the potential therapeutic targets for spinal cord injury. Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury. Moreover, a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
41
|
Zhang Z, Zhang W, Wang H, Chen H, Wang H, Yu Y, Shen D, Pi M, Wu Y, Luo M, He Y, Mao S, Geng J, Li W, Wang G, Guo C, Yin D, Yao X. Immunosuppressive role of benzo[a]pyrene exposure in prostate cancer progression. J Environ Sci (China) 2025; 156:185-199. [PMID: 40412924 DOI: 10.1016/j.jes.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 05/27/2025]
Abstract
Epidemiological studies indicate that prostate cancer (PCa) is the second prevalent malignant tumor affecting men globally. Environmental pollution such as cigarette smoke is one of the important risk factors for the development of prostate cancer. However, as one of the main carcinogens in cigarette smoke, the role of benzo[a]pyrene (BaP) in prostate cancer is still unclear. The current study aimed to investgate the impacts of BaP exposure on the progression of PCa toward malignancy and the regulation of the immune microenvironment. We verified that BaP exposure can promote the proliferation, migration, and apoptosis of prostate cancer cells through in vitro experiments. We constructed a subcutaneous xenograft tumor model of BaP exposure mouse and found that can promote the proliferation of tumors in vivo. Organoids-driven by PCa patients showed higher growth rate under BaP exposure. Flow cytometric analysis demonstrated a remarkable decrease in CD4+ T and CD8+ T cell infiltration levels. Moreover, we identified four genes (Mdm2, Ar, Foxo1, Crebbp) were strongly associated with BaP exposure by combining mouse tumor RNA-seq and CTD database. Additionally, a nomogram integrating clinicopathological features was constructed to assess the prognosis of prostate cancer patients under BaP exposure. This study systematically proved that BaP exposure promotes malignant progression of PCa and suppresses the immune microenvironment, in which Mdm2, Ar, Foxo1, Crebbp may play a crucial role in inhibiting apoptosis. These findings offer novel insights into the mechanisms via which BaP exposure contributes to PCa development.
Collapse
Affiliation(s)
- Zhijin Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haotian Chen
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Hong Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Danjing Shen
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Man Pi
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yang Wu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Ming Luo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yanyan He
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiang Geng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
42
|
Endo R, Ueda T, Nagaoki T, Sato Y, Maishi N, Hida K, Harashima H, Nakamura T. Selective vascular disrupting therapy by lipid nanoparticle-mediated Fas ligand silencing and stimulation of STING. Biomaterials 2025; 321:123297. [PMID: 40158445 DOI: 10.1016/j.biomaterials.2025.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Although recent therapeutic developments have greatly improved the outcomes of patients with cancer, it remains on ongoing problem, particularly in relation to acquired drug resistance. Vascular disrupting agents (VDAs) directly damage tumor blood vessels, thus promoting drug efficacy and reducing the development of drug resistance; however, their low molecular weight and resulting lack of selectivity for tumor endothelial cells (TECs) lead to side effects that can hinder their practical use. Here, we report a novel tumor vascular disrupting therapy using nucleic acid-loaded lipid nanoparticles (LNPs). We prepared two LNPs: a small interfering RNA (siRNA) against Fas ligand (FasL)-loaded cyclic RGD modified LNP (cRGD-LNP) to knock down FasL in TECs and a stimulator of interferon genes (STING) agonist-loaded LNP to induce systemic type I interferon (IFN) production. The combination therapy disrupted the tumor vasculature and induced broad tumor cell apoptosis within 48 h, leading to rapid and strong therapeutic effects in various tumor models. T cells were not involved in these antitumor effects. Furthermore, the combination therapy demonstrated a significantly superior therapeutic efficacy compared with conventional anti-angiogenic agents and VDAs. RNA sequencing analysis suggested that reduced collagen levels may have been responsible for TEC apoptosis. These findings demonstrated a potential therapeutic method for targeting the tumor vasculature, which may contribute to the development of a new class of anti-cancer drugs.
Collapse
Affiliation(s)
- Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Tomoki Ueda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Takumi Nagaoki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, 060-8586, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, 060-8586, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
43
|
Musumeci F, Fasce A, Falesiedi M, Oleari F, Grossi G, Carbone A, Schenone S. Approaching Gallium-68 radiopharmaceuticals for tumor diagnosis: a Medicinal Chemist's perspective. Eur J Med Chem 2025; 294:117760. [PMID: 40393260 DOI: 10.1016/j.ejmech.2025.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Nuclear medicine has revolutionized disease diagnosis and treatment, particularly in oncology, by enabling precise imaging and targeted therapies using radiopharmaceuticals. Recently, Gallium-68 (68Ga) has emerged as a powerful positron emission tomography (PET) imaging agent, with a growing role in theranostics when paired with 177Lu for cancer treatment. The ability to obtain 68Ga from 68Ge/68Ga generators, along with its favorable radiochemical and pharmacokinetic properties, has driven an increasing number of clinical applications, which culminated with the approvals of 68Ga-DOTA-TOC and 68Ga-DOTA-TATE for the treatment of neuroendocrine tumors, and 68Ga-PSMA-11 for prostate cancer over the past decade. This review provides a comprehensive overview of 68Ga radiochemistry, chelators, and key compounds in clinical trials, highlighting the potential of this radionuclide in precision oncology.
Collapse
Affiliation(s)
- Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy.
| | - Alessandro Fasce
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Marta Falesiedi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Federica Oleari
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Giancarlo Grossi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| |
Collapse
|
44
|
Pan HY, Ye RW, Han S, Li A, Zhou YH, Li YY, Yang DD, Lin JY, Dai HR, Dang XW, Cheng Y, Zhao ZP, Yu ZR, Wang JJ, Zhuang YG, Li YC, Lu YM. Discovery of a novel sea snake antimicrobial peptide Hydrostatin-AMP3 with dual-mechanism against multidrug-resistant Klebsiella pneumoniae. Eur J Med Chem 2025; 293:117696. [PMID: 40349638 DOI: 10.1016/j.ejmech.2025.117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Klebsiella pneumoniae (K. pneumoniae) has ranked in the top three pathogens responsible for bacteria-related mortal infections. The emergence of multi-drug resistant (MDR) K. pneumoniae strains highlights an urgent need for novel antimicrobial agents. In this study, a series of antimicrobial peptides (AMPs) were screened based on gene annotation and sequence profiling via high-quality whole genome maps of sea snakes Hydrophis curtus and Hydrophis cyanocinctus. The most potent Hydrostatin-AMP3 showed efficient antimicrobial capacity against a panel of pathogenic bacteria, particularly MDR K. pneumoniae strains. Moreover, Hydrostatin-AMP3 exhibited remarkable efficacy in infection models of MDR K. pneumoniae, while demonstrating favourable profiles in safety and resistance development both in vitro and in vivo studies. Mechanistically, Hydrostatin-AMP3 exerted a bactericidal effect through a unique dual-mechanism: bacterial membrane disruption and DNA-targeting. Overall, this study presented Hydrostatin-AMP3 as the potential antimicrobial candidate for the treatment of MDR K. pneumoniae infection.
Collapse
Affiliation(s)
- Han-Yu Pan
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Rui-Wei Ye
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Sheng Han
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - An Li
- Department of Wound Infection and Drug, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Yong-Hong Zhou
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ying-Ying Li
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Dan-Dan Yang
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jia-Yi Lin
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Hao-Rui Dai
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xia-Wen Dang
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yue Cheng
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhi-Ping Zhao
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhao-Ran Yu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jun-Jie Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Yu-Gang Zhuang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Ying-Chuan Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Yi-Ming Lu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
45
|
Covarrubias M, Liang Q, Nguyen-Phuong L, Kennedy KJ, Alexander TD, Sam A. Structural insights into the function, dysfunction and modulation of Kv3 channels. Neuropharmacology 2025; 275:110483. [PMID: 40288604 DOI: 10.1016/j.neuropharm.2025.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The third subfamily of voltage-gated K+ (Kv) channels includes four members, Kv3.1, Kv3.2, Kv3.3 and Kv3.4. Fast gating and activation at relatively depolarized membrane potentials allows Kv3 channels to be major drivers of fast action potential repolarization in the nervous system. Consequently, they help determine the fast-spiking phenotype of inhibitory interneurons and regulate fast synaptic transmission at glutamatergic synapses and the neuromuscular junction. Recent studies from our group and a team of collaborators have used cryo-EM to demonstrate the surprising gating role of the Kv3.1 cytoplasmic T1 domain, the structural basis of a developmental epileptic encephalopathy caused by the Kv3.2-C125Y variant and the mechanism of action of positive allosteric modulators involving unexpected interactions and conformational changes in Kv3.1 and Kv3.2. Furthermore, our recent work has shown that Kv3.4 regulates use-dependent spike broadening in a manner that depends on gating modulation by phosphorylation of the channel's N-terminal inactivation domain, which can impact activity-dependent synaptic facilitation. Here, we review and integrate these studies to provide a perspective on our current understanding of Kv3 channel function, dysfunction and pain modulation in the nervous system.
Collapse
Affiliation(s)
- Manuel Covarrubias
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA.
| | - Qiansheng Liang
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Linh Nguyen-Phuong
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Kyle J Kennedy
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Tyler D Alexander
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Andrew Sam
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| |
Collapse
|
46
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 PMCID: PMC11801300 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
47
|
Wang Y, Li Y, Gu Y, Ma W, Guan Y, Guo M, Shao Q, Ji X, Liu J. Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Neural Regen Res 2025; 20:2598-2610. [PMID: 38845216 PMCID: PMC11801306 DOI: 10.4103/nrr.nrr-d-23-01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/30/2023] [Accepted: 02/29/2024] [Indexed: 11/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00022/figure1/v/2024-11-05T132919Z/r/image-tiff Poststroke cognitive impairment is a major secondary effect of ischemic stroke in many patients; however, few options are available for the early diagnosis and treatment of this condition. The aims of this study were to (1) determine the specific relationship between hypoxic and α-synuclein during the occur of poststroke cognitive impairment and (2) assess whether the serum phosphorylated α-synuclein level can be used as a biomarker for poststroke cognitive impairment. We found that the phosphorylated α-synuclein level was significantly increased and showed pathological aggregation around the cerebral infarct area in a mouse model of ischemic stroke. In addition, neuronal α-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia, suggesting that hypoxia is the underlying cause of α-synuclein-mediated pathology in the brains of mice with ischemic stroke. Serum phosphorylated α-synuclein levels in patients with ischemic stroke were significantly lower than those in healthy subjects, and were positively correlated with cognition levels in patients with ischemic stroke. Furthermore, a decrease in serum high-density lipoprotein levels in stroke patients was significantly correlated with a decrease in phosphorylated α-synuclein levels. Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury, some of them exhibited decreased cognitive function and reduced phosphorylated α-synuclein levels. Taken together, our results suggest that serum phosphorylated α-synuclein is a potential biomarker for poststroke cognitive impairment.
Collapse
Affiliation(s)
- Yi Wang
- Department of Clinical Laboratory, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Yuning Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 PMCID: PMC11801288 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Taiqi Huang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Meiyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
49
|
Liu S, Zhang Y, Li G, Liang S. P2 purinergic signaling and pruritus. Neuropharmacology 2025; 275:110497. [PMID: 40334932 DOI: 10.1016/j.neuropharm.2025.110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/18/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Pruritus is a common sensation that triggers scratching. Extracellular nucleotides and nucleosides, along with their receptors, primarily compose the purinergic signaling. The purinergic signaling mechanism in itch remains incompletely understood. Keratinocytes, fibroblasts, Langerhans cells, primary sensory nerve endings in the skin, and neurons and satellite glial cells in primary sensory ganglia (dorsal root ganglia and trigeminal ganglia) have been confirmed to express multiple subtypes of P2X and P2Y receptors. Purinergic signaling in the skin and primary sensory ganglia is involved in the pathological changes of skin pruritus, including atopic dermatitis, psoriasis, systemic sclerosis, diabetes complicated with pruritus, or other pruritus disorders. The interaction between P2 purinergic signaling and histamine receptors, transient receptor potential (TRP) channel receptors, and Mas-related G protein-coupled receptor member A3 (MrgprA3) receptors, which mediate itch signaling, is involved in the pathological process of skin pruritus. P2 purinergic receptor agonists can induce itching behaviors in animals. Targeted antagonism or inhibition of P2 purinergic receptors in the skin and primary sensory ganglia can alleviate pathological changes in skin pruritus. This review summarizes studies concluding that P2 receptors are involved in the pathogenesis of pruritus, with several showing potential as novel therapeutic options for alleviating pruritus.
Collapse
Affiliation(s)
- Shipan Liu
- Neuropharmacology Laboratory of Physiology Department, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; Class 2103, First Clinical Medical College of Nanchang University, Nanchang, 330031, China
| | - Yuanyuan Zhang
- Neuropharmacology Laboratory of Physiology Department, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
50
|
Espinosa de Los Monteros-Zúñiga A, Almazán JL, Martínez-Lorenzana G, Guillen-Paredes MC, Prieto GA, Condés-Lara M, González-Hernández A. The biased OTR ligands -atosiban and carbetocin- differentially inhibit early or late formalin-induced nociception in rats. Neuropharmacology 2025; 275:110487. [PMID: 40324652 DOI: 10.1016/j.neuropharm.2025.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Males are more sensitive to intrathecal oxytocin-induced antinociception than females. This antinociception has been linked to oxytocin receptor (OTR) activation. Canonically, OTR is coupled to Gq but can also activate Gi/o proteins. In males, the formalin test showed that oxytocin prevented early nociception (flinches) via the Gq pathway, whereas long-lasting hypersensitivity was halted by Gi/o activation. Here, we tested the effects of biased OTR ligands carbetocin (Gq) and atosiban (Gi/o) on formalin-induced nociception in male and female Wistar rats. Specifically, we assessed the effects of intrathecal carbetocin and atosiban on early (flinches) and late (paw withdrawal threshold) formalin-induced nociception. Pretreatment with L-368,899 (OTR antagonist), U-73122 (phospholipase C inhibitor), L-NAME (nitric oxide synthase inhibitor), or pertussis toxin (a Gi/o inhibitor) was used to dissect the pathways involved. Furthermore, late activation of Akt, ERK1/2, and S6 ribosomal (S6) protein was tracked in spinal tissue by immunoblotting. Carbetocin prevented early nociception in males, whereas atosiban precluded late nociception in both sexes. The antinociception induced by carbetocin and atosiban was abolished by L-368,899, pointing out the role of OTR. Pretreatment with U-73122 or L-NAME blocked the carbetocin effect, whereas pertussis toxin prevented the atosiban effect. Late hypersensitivity correlated with increased levels of phosphorylated S6 protein in the spinal tissue, an effect partly blocked by atosiban. These data suggest that carbetocin prevents early nociception in males via OTR-Gq, and atosiban blocks late hypersensitivity in both sexes via OTR-Gi/o, implying that OTR-biased activation underlies the sexual dimorphism observed in oxytocin-induced antinociception.
Collapse
Affiliation(s)
- Antonio Espinosa de Los Monteros-Zúñiga
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Jorge Luis Almazán
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Mónica C Guillen-Paredes
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - G Aleph Prieto
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Miguel Condés-Lara
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Abimael González-Hernández
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| |
Collapse
|