1
|
|
Knežević L, Bura-Nakić E. Investigation of thiol compounds (L-cysteine, thioacetic acid and ethanethiol) with V(V) and V(IV) using combined spectroscopy and chromatography. J Inorg Biochem 2023;242:112158. [PMID: 36773444 DOI: 10.1016/j.jinorgbio.2023.112158] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
The interactions of V(V) and L-cysteine, thioacetic acid and ethanethiol were studied in aqueous solution using chromatographic and spectral analysis. The chromatographic determination of V(V) and V(IV) species in the presence of thiols was enabled by inducing the ligand exchange reaction with EDTA as the competing ligand. Analytical setup allowed investigation of the possible redox and structural transformations of V(V) in the presence of thiols used over a wide pH range. Obtained data strongly suggest that the reduction of V(V) is proton catalyzed in case of L-cysteine and thioacetic acid. In the case of ethanethiol, the reduction did not seem to be proton dependent, as no reduction was observed above pH = 2. Thus, reduction was inhibited by the deprotonation of L-cysteine and thioacetic acid, with L-cysteine being the strongest reducing agent of V(V), followed by thioacetic acid and finally ethanethiol. Apart from structural thiol properties, the reduction reaction seems to be influenced by the aqueous V(V) speciation due to the observed nonlinear kinetics. In the case of all investigated thiols, the formation of V(V)-thioester intermediate species was an essential step for V(V) reduction. The structural properties of the V(IV)-thiol complexes were also found to be pH-dependent.
Collapse
|
2
|
|
Lima LMA, da Silva AKJPF, Batista EK, Postal K, Kostenkova K, Fenton A, Crans DC, Silva WE, Belian MF, Lira EC. The antihyperglycemic and hypolipidemic activities of a sulfur-oxidovanadium(IV) complex. J Inorg Biochem 2023;241:112127. [PMID: 36822888 DOI: 10.1016/j.jinorgbio.2023.112127] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/30/2023]
Abstract
This study describes the synthesis, characterization, and biological activity of a new class of antidiabetic oxidovanadium(IV)-complexes with S2O2 coordination mode. The target complex 3,6-dithio-1,8-octanediolatooxidovanadium(IV), abbreviated as ([VIVO(octd)]), where octd = 3,6-dithio-1,8-octanediol, is formed from the reaction between the 3,6-dithio-1,8-octanediol and vanadyl sulfate (VIVOSO4). The effects of treatment with ([VIVO(octd)] on blood glucose, lipidic profile, body weight, food intake, water intake, urinary volume, glycogen levels, and biomarkers for liver toxicity were investigated using a streptozotocin (STZ)-induced diabetic Wistar rats model. The results have shown that the [VIVO(octd)] complex caused a significant decrease in blood glucose (247.6 ± 19.3 mg/dL vs 430.1 ± 37.6 mg/dL diabetic group, p < 0.05), triglycerides (TG, 50%) and very low-density cholesterol (VLDL-C, 50%) levels in STZ-diabetic rats after 3 weeks of treatment. The [VIVO(octd)] has shown antihyperglycemic activity in diabetic rats as well as a reduction in elevated lipid levels. Time-dependent studies using EPR and 51V NMR spectroscopy of [VIVO(octd)] were done in aqueous solutions to determine the complex stability and species present in the oral gavage solution used for complex administration. The spectroscopic studies have shown that the antidiabetic/hypolipidemic activity could be attributed to [VIVO(octd)], vanadium species resulting from redox processes, the hydrolysis of [VIVO(octd)] and its decomposition products, or some combination of these factors. In summary, the oxidovanadium(IV) complex containing the S2O2 donor ligand has desirable antidiabetic properties eliminating the symptoms of Diabetes mellitus and its comorbidities.
Collapse
|
3
|
|
Chen X, Li F, Liang R, Liu W, Ma H, Lan T, Liao J, Yang Y, Yang J, Liu N. A Smart Benzothiazole-Based Conjugated Polymer Nanoplatform with Multistimuli Response for Enhanced Synergistic Chemo-Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2023. [PMID: 36947054 DOI: 10.1021/acsami.2c19246] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023]
Abstract
The combination of chemotherapy and phototherapy has received tremendous attention in multimodal cancer therapy. However, satisfactory therapeutic outcomes of chemo-photothermal therapy (chemo-PTT) still remain challenging. Herein, a biocompatible smart nanoplatform based on benzothiazole-linked conjugated polymer nanoparticles (CPNs) is rationally designed, for effectively loading doxorubicin (DOX) and Mo-based polyoxometalate (POM) through both dynamic chemical bond and intermolecular interactions, with an expectation to obtain new anticancer drugs with multiple stimulated responses to the tumor microenvironment (TME) and external laser irradiation. Controlled drug release of DOX from the obtained nanoformulation (CPNs-DOX-PEG-cRGD-BSA@POM) triggered by both endogenous stimulations (GSH and low pH) and exogenous laser irradiation has been well demonstrated by pharmacodynamics investigations. More intriguingly, incorporating POM into the nanoplatform not only enables the nanomedicine to achieve mild hyperthermia but also makes it exhibit self-assembly behavior in acidic TME, producing enhanced tumor retention. Benefiting from the versatile functions, the prepared CPNs-DOX-PEG-cRGD-BSA@POM exhibited excellent tumor targeting and therapeutic effects in murine xenografted models, showing great potential in practical cancer therapy.
Collapse
|
4
|
|
Shpilt Z, Melamed-Book N, Tshuva EY. An anticancer Ti(IV) complex increases mitochondrial reactive oxygen species levels in relation with hypoxia and endoplasmic-reticulum stress: A distinct non DNA-related mechanism. J Inorg Biochem 2023;243:112197. [PMID: 36963201 DOI: 10.1016/j.jinorgbio.2023.112197] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/26/2023]
Abstract
PhenolaTi is a promising Ti(IV) anticancer complex, with high stability and cytotoxicity, without notable toxic side-effects. Its cellular mechanism was proposed to relate to ER stress. Herein, we investigated the downstream effects of this mode of action in two cancer cell lines: ovarian carcinoma A2780 and cervical adenocarcinoma HeLa. First, although Ti(IV) is a non-redox metal, the formation of mitochondrial reactive oxygen species (ROS) was detected with live-cell imaging. Then, we inspected the effect of the mitochondrial ROS on cytotoxicity, using two methods: (a) addition of compounds that either elevate or reduce the mitochondrial glutathione concentration, thus affecting the oxidative state of the cells; and (b) scavenging mitochondrial ROS. Unlike the results observed for cisplatin, neither method influenced the cytotoxicity of phenolaTi, implying that ROS formation was a mere side effect of its activity. Additionally, live cell imaging displayed the hypoxia induced by phenolaTi, which can be associated with ROS formation. Overall, the results support the notion that ER-stress is the main cellular mechanism of phenolaTi, leading to hypoxia and mitochondrial ROS. The distinct mechanism of phenolaTi, which is different from that of cisplatin, combined with its stability and favorable anticancer properties, altogether make it a strong chemotherapeutic drug candidate.
Collapse
|
5
|
|
Guo L, He L, Zhuang Q, Li B, Wang C, Lv Y, Chu J, Song YF. Recent Advances in Confining Polyoxometalates and the Applications. Small 2023;:e2207315. [PMID: 36929209 DOI: 10.1002/smll.202207315] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023]
Abstract
Polyoxometalates (POMs) are widely used in catalysis, energy storage, biomedicine, and other research fields due to their unique acidity, photothermal, and redox features. However, the leaching and agglomeration problems of POMs greatly limit their practical applications. Confining POMs in a host material is an efficient tool to address the above-mentioned issues. POM@host materials have received extensive attention in recent years. They not only inherent characteristics of POMs and host, but also play a significant synergistic effect from each component. This review focuses on the recent advances in the development and applications of POM@host materials. Different types of host materials are elaborated in detail, including tubular, layered, and porous materials. Variations in the structures and properties of POMs and hosts before and after confinement are highlighted as well. In addition, an overview of applications for the representative POM@host materials in electrochemical, catalytic, and biological fields is provided. Finally, the challenges and future perspectives of POM@host composites are discussed.
Collapse
|
6
|
|
Li N, Xie J, Chu YM. Degradation and evaluation of myofibril proteins induced by endogenous protease in aquatic products during storage: a review. Food Sci Biotechnol 2023. [DOI: 10.1007/s10068-023-01291-4] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/18/2023] Open
|
7
|
|
Díaz A, Vázquez-Roque R, Carreto-Meneses K, Moroni-González D, Moreno-Rodríguez JA, Treviño S. Polyoxidovanadates as a pharmacological option against brain aging. J Chem Neuroanat 2023;129:102256. [PMID: 36921908 DOI: 10.1016/j.jchemneu.2023.102256] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/14/2023]
Abstract
The world population is aging rapidly, and chronic diseases associated are cardiometabolic syndrome, cancer, and neurodegenerative diseases. Oxidative stress and inflammation are typical hallmarks in them. Polyoxidovanadates (POVs) have shown interesting pharmacological actions against chronic diseases. This work aimed to evaluate the POV effect on hippocampal neuroinflammation, redox balance, and recognition memory in the aging of rats. Rats 18 months old were administered a daily dose of sodium metavanadate (MV), decavanadate (DV), Metformin (Metf), or MetfDeca for two months. Results showed that short-term and long-term recognition memory improved by 28 % and 16 % (DV), 19 % and 20 % (Metf), and 21 % and 27 % (MetfDeca). In hippocampi, reactive oxygen species, IL-1β, and TNF-α, after DV, Metf, and MetfDeca decreased at similar concentrations to young adult control, while lipid peroxidation substantially ameliorated. Additionally, superoxide dismutase and catalase activity increased by 41 % and 42 % (DV), 39 % and 41 % (Metf), and 75 % and 73 % (MetfDeca). POV treatments reduced Nrf2 and GFAP immunoreactivity in CA1 (70-87.5 %), CA3 (60-80 %), and DG (57-89 %). Metformin treatment showed a minor effect, while MV treatment did not improve any parameters. Although DV, Metf, and MetfDeca treatments showed similar results, POVs doses were 16-fold fewer than Metformin. In conclusion, DV and MetfDeca could be pharmacological options to reduce age-related neuronal damage.
Collapse
|
8
|
|
Aureliano M, De Sousa-coelho AL, Dolan CC, Roess DA, Crans DC. Biological Consequences of Vanadium Effects on Formation of Reactive Oxygen Species and Lipid Peroxidation. Int J Mol Sci 2023;24:5382. [DOI: 10.3390/ijms24065382] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/17/2023] Open
Abstract
Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.
Collapse
|
9
|
|
Zhang H, Zhao H, Chang W, Liu X, Chen P, Yu A, Chishti AN, Zhang Y, Ni L, Wang X, Wei Y. Hetero-bimetallic transition metal-substituted Krebs-type polyoxometalate with N-chelating ligand as anticancer agents. Tungsten 2023. [DOI: 10.1007/s42864-023-00210-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/12/2023]
|
10
|
|
Hao L, Zheng Q, Guan M, Zhou M, Yin Z, Chen H, Zhou H, Zhou X. Large Ultrathin Polyoxomolybdate-Decorated Boron Nitride Nanosheets with Enhanced Antibacterial Activity for Infection Control. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.3c00247] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/11/2023]
|
11
|
|
Tao Z, Wang J, Wu H, Hu J, Li L, Zhou Y, Zheng Q, Zha L, Zha Z. Renal Clearable Mo-Based Polyoxometalate Nanoclusters: A Promising Radioprotectant against Ionizing Irradiation. ACS Appl Mater Interfaces 2023;15:11474-84. [PMID: 36702809 DOI: 10.1021/acsami.2c19282] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/28/2023]
Abstract
In response to diffused ionizing radiation damage throughout the body caused by nuclear leaks and inaccurate radiotherapy, radioprotectants with considerable free radical scavenging capacities, along with negligible adverse effects, are highly regarded. Herein, unlike being performed as toxic chemotherapeutic drug candidates, molybdenum-based polyoxometalate nanoclusters (Mo-POM NCs) were developed as a non-toxic potent radioprotectant with impressive free radical scavenging capacities for ionizing radiation protection. In comparison to the clinically used radioprotectant drug amifostine (AM), the as-prepared Mo-POM NCs exhibited effective shielding capacity by virtue of their antioxidant properties resulting from a valence shift of molybdenum ions, alleviating not only ionizing radiation-induced DNA damage but also disruption of the radiation-sensitive hematopoietic system. More encouragingly, without trouble with long-term retention in the body, ultra-small sized Mo-POM NCs prepared by the mimetic Folin-Ciocalteu assay can be removed from the body through the renal-urinary pathway and the hepato-enteral excretory system after completing the mission of radiation protection. This work broadened the biological applications of metal-based POM chemotherapeutic drugs to act as a neozoic radioprotectant.
Collapse
|
12
|
|
Carvalho F, Aureliano M. Polyoxometalates Impact as Anticancer Agents. Int J Mol Sci 2023;24. [PMID: 36902473 DOI: 10.3390/ijms24055043] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/08/2023] Open
Abstract
Polyoxometalates (POMs) are oxoanions of transition metal ions, such as V, Mo, W, Nb, and Pd, forming a variety of structures with a wide range of applications. Herein, we analyzed recent studies on the effects of polyoxometalates as anticancer agents, particularly their effects on the cell cycle. To this end, a literature search was carried out between March and June 2022, using the keywords "polyoxometalates" and "cell cycle". The effects of POMs on selected cell lines can be diverse, such as their effects in the cell cycle, protein expression, mitochondrial effects, reactive oxygen species (ROS) production, cell death and cell viability. The present study focused on cell viability and cell cycle arrest. Cell viability was analyzed by dividing the POMs into sections according to the constituent compound, namely polyoxovanadates (POVs), polyoxomolybdates (POMos), polyoxopaladates (POPds) and polyoxotungstates (POTs). When comparing and sorting the IC50 values in ascending order, we obtained first POVs, then POTs, POPds and, finally, POMos. When comparing clinically approved drugs and POMs, better results of POMs in relation to drugs were observed in many cases, since the dose required to have an inhibitory concentration of 50% is 2 to 200 times less, depending on the POMs, highlighting that these compounds could become in the future an alternative to existing drugs in cancer therapy.
Collapse
|
13
|
|
Liao Z, Wu Y, Wang S, Wang D, Yuan S, Zhao S, Qin J, Cao C, Liu Q, Shi J, Ou C. Polyethylenimine Deposited on Phosphomolybdic-Acid-Loaded Polyacrylonitrile Membranes for Enhanced Dye/Salt Separation. ACS EST Water 2023. [DOI: 10.1021/acsestwater.3c00027] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/08/2023]
|
14
|
|
Kale A, Rogers NM. No Time to Die-How Islets Meet Their Demise in Transplantation. Cells 2023;12. [PMID: 36899932 DOI: 10.3390/cells12050796] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/08/2023] Open
Abstract
Islet transplantation represents an effective treatment for patients with type 1 diabetes mellitus (T1DM) and severe hypoglycaemia unawareness, capable of circumventing impaired counterregulatory pathways that no longer provide protection against low blood glucose levels. The additional beneficial effect of normalizing metabolic glycaemic control is the minimisation of further complications related to T1DM and insulin administration. However, patients require allogeneic islets from up to three donors, and the long-term insulin independence is inferior to that achieved with solid organ (whole pancreas) transplantation. This is likely due to the fragility of islets caused by the isolation process, innate immune responses following portal infusion, auto- and allo-immune-mediated destruction and β-cell exhaustion following transplantation. This review covers the specific challenges related to islet vulnerability and dysfunction that affect long-term cell survival following transplantation.
Collapse
|
15
|
|
Wang Y, Xin X, Feng Y, Chi M, Wang R, Liu T, Lv H. Structurally-New Hexadecanuclear Ni-Containing Silicotungstate with Catalytic Hydrogen Generation Activity. Molecules 2023;28. [PMID: 36903264 DOI: 10.3390/molecules28052017] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/24/2023] Open
Abstract
A structurally-new, carbon-free hexadecanuclear Ni-containing silicotungstate, [Ni16(H2O)15(OH)9(PO4)4(SiW9O34)3]19-, has been facilely synthesized using a one-pot, solution-based synthetic method systematically characterized by single-crystal X-ray diffraction and several other techniques. The resulting complex works as a noble-metal-free catalyst for visible-light-driven catalytic generation of hydrogen, by coupling with a [Ir(coumarin)2(dtbbpy)][PF6] photosensitizer and a triethanolamine (TEOA) sacrificial electron donor. Under minimally optimized conditions, a turnover number (TON) of 842 was achieved for TBA-Ni16P4(SiW9)3-catalyzed hydrogen evolution system. The structural stability of TBA-Ni16P4(SiW9)3 catalyst under photocatalytic conditions was evaluated by the mercury-poisoning test, FT-IR, and DLS measurements. The photocatalytic mechanism was elucidated by both time-solved luminescence decay and static emission quenching measurements.
Collapse
|
16
|
|
Padilla A, Manganaro JF, Huesgen L, Roess DA, Brown MA, Crans DC. Targeting Epigenetic Changes Mediated by Members of the SMYD Family of Lysine Methyltransferases. Molecules 2023;28. [PMID: 36838987 DOI: 10.3390/molecules28042000] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/24/2023] Open
Abstract
A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.
Collapse
|
17
|
|
Salazar Marcano DE, Savić ND, Abdelhameed SAM, de Azambuja F, Parac-vogt TN. Exploring the Reactivity of Polyoxometalates toward Proteins: From Interactions to Mechanistic Insights. JACS Au 2023. [DOI: 10.1021/jacsau.3c00011] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/16/2023] Open
|
18
|
|
Zhou T, Xie L, Niu Y, Xiao H, Li Y, Han Q, Qiu X, Yang X, Wu X, Zhu L, Pang H, Cao X. New insights on (V10O28)6−-based electrode materials for energy storage: a brief review. RARE METALS 2023. [DOI: 10.1007/s12598-022-02207-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/12/2023]
|
19
|
|
Sfar M, Souid G, Alminderej FM, Mzoughi Z, El-Ghoul Y, Rihouey C, Le Cerf D, Majdoub H. Structural Characterization of Polysaccharides from Coriandrum sativum Seeds: Hepatoprotective Effect against Cadmium Toxicity In Vivo. Antioxidants (Basel) 2023;12. [PMID: 36830010 DOI: 10.3390/antiox12020455] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/15/2023] Open
Abstract
Coriandrum sativum is one of the most widespread curative plants in the world, being vastly cultivated in arid and semi-arid regions as one of the oldest spice plants. The present study explored the extraction of polysaccharides from Coriandrum sativum seeds and the evaluation of their antioxidant potential and hepatoprotective effects in vivo. The polysaccharide from coriander seeds was extracted, and the structural characterization was performed by FT-IR, UV-vis, DSC, NMR (1D and 2D), GC-MS, and SEC analysis. The polysaccharide extracted from Coriandrum sativum (CPS) seeds was characterized to evaluate its antioxidant and hepatoprotective capacities in rats. Results showed that CPS was composed of arabinose, rhamnose, xylose, mannose, fructose, galactose, and glucose in molar percentages of 6.2%, 3.6%, 8.8%, 17.7%, 5.2%, 32.9%, and 25.6%, respectively. Further, CPS significantly hindered cadmium-induced oxidation damage and exercised a protective effect against Cd hepatocytotoxicity, with a considerable reduction in MDA production and interesting CAT and SOD enzyme levels. Results suggest that CPS might be employed as a natural antioxidant source.
Collapse
|
20
|
|
Dziedziejko V, Safranow K, Kijko-nowak M, Malinowski D, Pawlik A. Leptin receptor gene polymorphisms in patients with post-transplant diabetes mellitus.. [DOI: 10.21203/rs.3.rs-2552558/v1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/12/2023]
Abstract
Abstract
Post-transplant diabetes mellitus (PTDM) is a metabolic complication that often occurs after kidney transplantation. Factors that increase the risk of this complication are currently being researched, including polymorphisms in genes affecting carbohydrate-lipid metabolism. Leptin is a hormone that affects appetite and adipose tissue and plays an important role in regulating insulin secretion as well as glucose and lipid metabolism. The aim of this study was to examine the association between leptin receptor gene polymorphisms and the development of post-transplant diabetes mellitus. The study was carried out in a group of 201 patients who underwent kidney transplantation. The follow-up period was 12 months. PTDM was diagnosed in 35 patients. There were no statistically significant differences in the distribution of the LEPR rs1137100 and LEPR rs1805094 polymorphisms between patients with and without PTDM. Analysing the LEPR gene rs1137101 polymorphism, we observed in patients with PTDM an increased frequency of GG allele carriers (GG vs AA; OR 3.36; 95% CI (0.99–11.46), p = 0.044). Multivariate regression analysis confirmed that female sex, advanced age, increased BMI and a higher number of LEPR rs1137101 G alleles were independent risk factors for PTDM development. The risk of PTDM development was almost 3.5 times greater in LEPR rs1137101 G allele carriers than in AA homozygotes (GG + AG vs AA; OR 3.48; 95%CI (1.09–11.18), p = 0.035). The results suggest that patients after kidney transplantation with the LEPR gene rs1137101 G allele have an increased risk of post-transplant diabetes development.
Collapse
|
21
|
|
Ge S, Cui L, Yu K, Wang M, Wang C, Guo L, Zhou B. A bi-As-capped and tetra-V-substituted arsenomolybdate: synthesis, structure, capacitive and electrocatalytic properties. Tungsten 2023. [DOI: 10.1007/s42864-023-00205-5] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/10/2023]
|
22
|
|
Ma X, Bhattacharya S, Taffa DH, Nisar T, Wark M, Wagner V, Kortz U. Discrete Arsonate-Grafted Inverted-Keggin 12-Molybdate Ion [Mo(12)O(32)(OH)(2)(4-N(3)C(2)H(2)-C(6)H(4)AsO(3))(4)](2-) and Formation of a Copper(II)-Mediated Metal-Organic Framework. Inorg Chem 2023;62:1813-9. [PMID: 35588300 DOI: 10.1021/acs.inorgchem.2c00650] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
The discrete inverted-Keggin ion [Mo12O32(OH)2(4-N3C2H2-C6H4AsO3)4]2- (1) has been prepared in an aqueous acidic (pH 0.8) medium by the reaction of MoO3 with the (4-triazolylphenyl)arsonic acid 4-N3C2H2-C6H4AsO3H2 under hydrothermal conditions and was isolated as a sodium salt in 21% yield. The exact same reaction in the presence of Cu2+ ions resulted in the neutral metal-organic framework (MOF) Cu2[Mo12O34(4-N3C2H2-C6H4AsO3)4] (Cu-1) in 68% yield. The inverted-Keggin ion 1 comprises a metal-oxo core, which is capped by four organoarsonate groups, and in Cu-1, individual polyanions are linked in the solid state by coordination of the Cu2+ ions with the triazolyl groups. The discrete ion 1 was characterized by single-crystal X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and atomic absorption (AA) spectroscopy, as well as thermogravimetric analysis (TGA), and the POM-MOF Cu-1 was characterized by single-crystal and powder XRD, FT-IR, TGA, and gas sorption. Cu-1 has channels with a diameter of around ∼0.9 nm and exhibits a water-vapor adsorption capacity of 89.7 cm3 g-1 (p/p0 = 0.95).
Collapse
|
23
|
|
Fioravanço LP, Pôrto JB, Martins FM, Siqueira JD, Iglesias BA, Rodrigues BM, Chaves OA, Back DF. A Vanadium(V) complexes derived from pyridoxal/salicylaldehyde. Interaction with CT-DNA/HSA, and molecular docking assessments. J Inorg Biochem 2023;239:112070. [PMID: 36450221 DOI: 10.1016/j.jinorgbio.2022.112070] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/19/2022]
Abstract
With the increasing development of metallopharmaceuticals, coordination compounds become viable alternatives for therapeutic uses. Despite the importance of platinum derivatives in this area, first-row transition metals complexes are welcome due to their characteristics. Vanadium is a promising metal in this context, as it has a range of compounds with different biological applications, including anticancer therapeutic effects. In this effort, the study of interactions between coordination compounds with deoxyribonucleic acid and with human serum albumin is fundamental. In this way, ten iminic ligands were synthesized by condensing p-substituted aromatic benzohydrazides (OH, CH3, H, NO2, and NH2) with salicylaldehyde (L1As-L5As) or pyridoxal hydrochloride (L1P-L5P). These ligands have characteristics that allow the tridentate coordination of vanadium cations, leading to the formation of ten vanadium(V) complexes (C1As-C5As and C1P-C5P) with different structural features, all characterized by single-crystal X-ray diffraction, UV-Vis and infrared spectroscopies, and cyclic voltammetry. In addition, the complexes were tested for their interactions with calf thymus deoxyribonucleic acid and human serum albumin by spectroscopic assays and molecular docking calculations. These new results can contribute to further research and provide different ways to design new vanadium complexes with biological applications.
Collapse
|
24
|
|
Granadeiro CM, Julião D, Ribeiro SO, Cunha-silva L, Balula SS. Recent advances in lanthanide-coordinated polyoxometalates: from structural overview to functional materials. Coord Chem Rev 2023;476:214914. [DOI: 10.1016/j.ccr.2022.214914] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/10/2022]
|
25
|
|
Wang P, Wang T, Li F, Li D, Yang Y, Yu H, Dong X. Enhanced sensing response of the first polyoxometalate electron acceptor modified MoS2 for NO2 gas detection at room temperature. Sens Actuators B Chem 2023. [DOI: 10.1016/j.snb.2023.133495] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/12/2023]
|
26
|
|
Fan GH, Zhang CZ, Gao FQ, Wei XY, Ling SB, Wang K, Wang JG, Zheng SS, Nikfarjam M, Xu X. A mixed blessing for liver transplantation patients - Rapamycin. Hepatobiliary Pancreat Dis Int 2023;22:14-21. [PMID: 36328894 DOI: 10.1016/j.hbpd.2022.10.004] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/04/2022]
Abstract
BACKGROUND Liver transplantation (LT) is an effective treatment option for end-stage liver disease. Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin, are widely used post LT. DATA SOURCES In this review, we focused on the anti-cancer activities and metabolic side effects of rapamycin after LT. The literature available on PubMed for the period of January 1999-September 2022 was reviewed. The key words were rapamycin, sirolimus, liver transplantation, hepatocellular carcinoma, diabetes, and lipid metabolism disorder. RESULTS Rapamycin has shown excellent effects and is safer than other immunosuppressive regimens. It has exhibited excellent anti-cancer activity and has the potential in preventing hepatocellular carcinoma (HCC) recurrence post LT. Rapamycin is closely related to two long-term complications after LT, diabetes and lipid metabolism disorders. CONCLUSIONS Rapamycin prevents HCC recurrence post LT in some patients, but it also induces metabolic disorders. Reasonable use of rapamycin benefits the liver recipients.
Collapse
|
27
|
|
Somasundaram JD, Ebrahimi A, Nandan SP, Cherevan A, Eder D, Šupolíková M, Nováková E, Gyepes R, Krivosudský L. Functionalization of decavanadate anion by coordination to cobalt(II): Binding to proteins, cytotoxicity, and water oxidation catalysis. J Inorg Biochem 2023;239:112067. [PMID: 36423394 DOI: 10.1016/j.jinorgbio.2022.112067] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/18/2022]
Abstract
A series of five decavanadates (V10) using a simple, one-pot synthesis, adhering to the model template: transition metal ion - decavanadate - ligands:(Hnicotinamide)2{[Co(H2O)3(nicotinamide)2]2[μ-V10O28]}.6H2O (1), {[Co(H2O)4(isonicotinamide)2]3}V10O28·4H2O (2), {[Co(H2O)4]2[Co(H2O)2(μ-pyrazinamide)2][μ-V10O28]}·4H2O (3) {[Co(H2O)4(μ-pyrazinamide)]3.V10O28}·4H2O (4), and (NH4)2{[Ni(H2O)4(2-hydroxyethylpyridine)]2}V10O28·2H2O (5) was synthesized. X-ray analysis reveals that 1 and 3 are decavanadato complexes, while 2, 4 and 5 are decavanadate complex salts. Moreover, 3 is the first example of a polymeric decavanadato complex, employing direct coordination with the metal center and the organic ligand, in toto. From the solution studies using 51V NMR spectroscopy, it was decoded that 1 and 3 stay stable in the model buffer solution and aqueous media. Binding to model proteins, cytotoxicity and water oxidation catalysis (WOC) was studied primarily for 1 and 3 and concluded that neither 1 nor 3 have an interaction with the model proteins thaumatin, lysozyme and proteinase K, because of the presence of the organic ligands in the Co(II) center, any further interplay with the proteins was blocked. Cytotoxicity studies reveal that 1 is 40% less toxic (0.05 mM) and 26% less toxic (0.1 mM) than the uncoordinated V10 with human cell lines A549 and HeLa respectively. In WOC, 1 performed superior activity, by evolving 143.37 nmol of O2 which is 700% (9-fold) increase than the uncoordinated V10.
Collapse
|
28
|
|
Zhang L, Li Q, Sørensen JS, Luo Y, Lametsch R. Protein phosphorylation profile of Atlantic cod (Gadus morhua) in response to pre-slaughter pumping stress and postmortem time. Food Chem 2023;402:134234. [DOI: 10.1016/j.foodchem.2022.134234] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/19/2022]
|
29
|
|
Zhu L, Tao R, Peng W, Huo A, Guo W. Polyoxometalates immobilized on MIL-100 (Fe) as an emerging platform for eliminating breast cancer tumor cells. Results in Chemistry 2023. [DOI: 10.1016/j.rechem.2023.100857] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/23/2023] Open
|
30
|
|
Abdelhameed SAM, de Azambuja F, Vasović T, Savić ND, Ćirković Veličković T, Parac-Vogt TN. Regioselective protein oxidative cleavage enabled by enzyme-like recognition of an inorganic metal oxo cluster ligand. Nat Commun 2023;14:486. [PMID: 36717594 DOI: 10.1038/s41467-023-36085-z] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/01/2023] Open
Abstract
Oxidative modifications of proteins are key to many applications in biotechnology. Metal-catalyzed oxidation reactions efficiently oxidize proteins but with low selectivity, and are highly dependent on the protein surface residues to direct the reaction. Herein, we demonstrate that discrete inorganic ligands such as polyoxometalates enable an efficient and selective protein oxidative cleavage. In the presence of ascorbate (1 mM), the Cu-substituted polyoxometalate K8[Cu2+(H2O)(α2-P2W17O61)], (CuIIWD, 0.05 mM) selectively cleave hen egg white lysozyme under physiological conditions (pH =7.5, 37 °C) producing only four bands in the gel electropherogram (12.7, 11, 10, and 5 kDa). Liquid chromatography/mass spectrometry analysis reveals a regioselective cleavage in the vicinity of crystallographic CuIIWD/lysozyme interaction sites. Mechanistically, polyoxometalate is critical to position the Cu at the protein surface and limit the generation of oxidative species to the proximity of binding sites. Ultimately, this study outlines the potential of discrete, designable metal oxo clusters as catalysts for the selective modification of proteins through radical mechanisms under non-denaturing conditions.
Collapse
|
31
|
|
Li X, Lin Z, Jin N, Sun L, Yang X, Liu Y. Electrochemically Induced Crystalline‐to‐Amorphous Transition of Dinuclear Polyoxovanadate for High‐Rate Lithium‐Ion Batteries. Adv Funct Mater 2023. [DOI: 10.1002/adfm.202214667] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/27/2023]
|
32
|
|
Smith IM, Banerjee S, Moses AK, Stroka KM. Aquaporin-mediated dysregulation of cell migration in disease states. Cell Mol Life Sci 2023;80:48. [PMID: 36682037 DOI: 10.1007/s00018-022-04665-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/23/2023]
Abstract
Dysregulated cell migration and invasion are hallmarks of many disease states. This dysregulated migratory behavior is influenced by the changes in expression of aquaporins (AQPs) that occur during pathogenesis, including conditions such as cancer, endometriosis, and arthritis. The ubiquitous function of AQPs in migration of diseased cells makes them a crucial target for potential therapeutics; this possibility has led to extensive research into the specific mechanisms underlying AQP-mediated diseased cell migration. The functions of AQPs depend on a diverse set of variables including cell type, AQP isoform, disease state, cell microenvironments, and even the subcellular localization of AQPs. To consolidate the considerable work that has been conducted across these numerous variables, here we summarize and review the last decade's research covering the role of AQPs in the migration and invasion of cells in diseased states.
Collapse
|
33
|
|
Louis H, Chima CM, Amodu IO, Gber TE, Unimuke TO, Adeyinka AS. Organochlorine detection on transition metals (X=Zn, Ti, Ni, Fe, and Cr) anchored fullerenes (C 23 X). ChemistrySelect 2023;8. [DOI: 10.1002/slct.202203843] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/14/2023]
|
34
|
|
Moazeni Bistgani Z, Shafiee F, Varshosaz J, Kazemian H, Tangestaninejad S, Rostami M. Arsenic Polyoxotungstate-Zeolitic Imidazolate Framework-8 as a Potential Selective Anti-cancer Nano Platform. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-022-02529-0] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/08/2023]
|
35
|
|
Xia K, Yamaguchi K, Suzuki K. Recent Advances in Hybrid Materials of Metal Nanoparticles and Polyoxometalates. Angew Chem Int Ed Engl 2023;62:e202214506. [PMID: 36282183 DOI: 10.1002/anie.202214506] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/25/2022]
Abstract
Polyoxometalates (POMs), anionic metal-oxygen nanoclusters that possess various composition-dependent properties, are widely used to modify the existing properties of metal nanoparticles and to endow them with new ones. Herein, we present an overview of recent advances in hybrid materials that consist of metal nanoparticles and POMs. Following a brief introduction on the inception of this area and its development, representative properties and applications of these materials in various fields such as electrochemistry, photochemistry, and catalysis are introduced. We discuss how the combination of two classic inorganic materials facilitates cooperative and synergistic behavior, and we also give personal perspectives on the future development of this field.
Collapse
|
36
|
|
Garcia-velasco N, Carrero J, Urionabarrenetxea E, Doni L, Zaldibar B, Izagirre U, Soto M. Innovative in vivo and in vitro bioassays for the establishment of toxicity thresholds of pollutants in sediment quality assessment using polychaetes and their immune cells. Chemosphere 2023;311:136935. [DOI: 10.1016/j.chemosphere.2022.136935] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/19/2022]
|
37
|
|
Rehder D. Vanadium in biological systems and medicinal applications. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121387] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/15/2023]
|
38
|
|
Fabbri E, Valbonesi P, Moon TW. Pharmaceuticals in the marine environment: occurrence, fate, and biological effects. Contaminants of Emerging Concern in the Marine Environment 2023. [DOI: 10.1016/b978-0-323-90297-7.00008-1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/19/2023]
|
39
|
|
Pereira MJ, Azim A, Hetty S, Nandi Jui B, Kullberg J, Lundqvist MH, Eriksson JW. Interleukin-33 inhibits glucose uptake in human adipocytes and its expression in adipose tissue is elevated in insulin resistance and type 2 diabetes. Cytokine 2023;161:156080. [PMID: 36368230 DOI: 10.1016/j.cyto.2022.156080] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Interleukin-33 (IL-33) is associated with obesity-related inflammation. We aim to investigate IL-33 expression in subcutaneous adipose tissue (SAT) in type 2 diabetes (T2D) subjects and its effects on human adipocyte glucose uptake. METHODS Expression of IL-33 was analysed in SAT from cohort studies including subjects with and without obesity and T2D and correlated with insulin resistance and obesity markers. Magnetic resonance imaging (MRI) of tissue fat volumes was performed. We investigated the effects of IL-33 treatment on ex vivo adipocyte glucose uptake. RESULTS T2D subjects had higher IL-33 gene and protein expression in SAT than the control subjects. IL-33 mRNA expression was positively correlated with markers of dysglycemia (e.g. HbA1c), insulin resistance (e.g. HOMA-IR) and adiposity (BMI, visceral adipose tissue volume, liver and pancreas fat %). In multiple linear regression analyses, insulin resistance and T2D status were the strongest predictors of IL-33, independent of BMI. IL-33 mRNA expression was negatively correlated with expression of genes regulating adipocyte glucose uptake, lipid storage, and adipogenesis (e.g.glucose transporter 1 and 4 (GLUT1/4), fatty acid binding protein 4 (FABP4), and PPARG). Additionally, incubation of SAT with IL-33 reduced adipocyte glucose uptake and GLUT4 gene and protein expression. CONCLUSIONS Our findings suggest that T2D subjects have higher IL-33 gene and protein expressionin SATthan control subjects, which is associated with insulin resistance and reduced gene expression of lipid storage and adipogenesis markers. IL-33 may reduce adipocyte glucose uptake. This opens up a potential pharmacological route for reversing insulin resistance in T2D and prediabetes.
Collapse
|
40
|
|
Chagnes A, Mangold L, Halleux H, Cote G. New Insights on Titanium(IV) Speciation to Improve the Purification of Concentrated Phosphoric Acid. The Minerals, Metals & Materials Series 2023. [DOI: 10.1007/978-3-031-22761-5_13] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/12/2023]
|
41
|
|
Quintana-Pérez JC, García-Dolores F, Valdez-Guerrero AS, Alemán-González-Duhart D, Arellano-Mendoza MG, Rojas Hernández S, Olivares-Corichi IM, García Sánchez JR, Trujillo Ferrara JG, Tamay-Cach F. Modeling type 2 diabetes in rats by administering tacrolimus. Islets 2022;14:114-27. [PMID: 35348048 DOI: 10.1080/19382014.2022.2051991] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/16/2022] Open
Abstract
The prevalence of diabetes is rapidly increasing. The current number of diagnosed cases is ~422 million, expected to reach ~640 million by 2040. Type 2 diabetes, which constitutes ~95% of the cases, is characterized by insulin resistance and a progressive loss of β-cell function. Despite intense research efforts, no treatments are yet able to cure the disease or halt its progression. Since all existing animal models of type 2 diabetes have serious drawbacks, one is needed that represents the complete pathogenesis, is low cost and non-obese, and can be developed relatively quickly. The aim of this study was to evaluate a low-cost, non-obese model of type 2 diabetes engendered by administering a daily high dose of tacrolimus (an immunosuppressant) to Wistar rats for 4 weeks. The biochemical and antioxidant markers were measured at basal and after the 4-week tacrolimus treatment. At week 4, the values of these parameters closely resembled those observed in human type 2 diabetes, including fasting blood glucose at 141.5 mg/dL, blood glucose greater than 200 mg/dL at 120 min of the glucose tolerance test, blood glucose at varied levels in the insulin tolerance test, and elevated levels of cholesterol and triglyceride. The tacrolimus treatment produced hypoinsulinemia and sustained hyperglycemia, probably explained by the alteration found in pancreatic β-cell function and morphology. This model should certainly be instrumental for evaluating possible type 2 diabetes treatments, and for designing new immunosuppressants that do not cause pancreatic damage, type 2 diabetes, or new-onset diabetes after transplantation (NODAT).
Collapse
|
42
|
|
Soria-Carrera H, Atrián-Blasco E, Martín-Rapún R, Mitchell SG. Polyoxometalate-peptide hybrid materials: from structure-property relationships to applications. Chem Sci 2022;14:10-28. [PMID: 36605748 DOI: 10.1039/d2sc05105b] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/17/2022] Open
Abstract
Organo-functionalisation of polyoxometalates (POMs) represents an effective approach to obtain diverse arrays of functional structures and materials, where the introduction of organic moieties into the POM molecules can dramatically change their surface chemistry, charge, polarity, and redox properties. The synergistic combination of POMs and peptides, which perform a myriad of essential roles within cellular biochemistry, including protection and transport in living organisms, leads to functional hybrid materials with unique properties. In this Perspective article, we present the principal synthetic routes to prepare and characterise POM-peptide hybrids, together with a comprehensive description of how their properties - such as redox chemistry, stereochemistry and supramolecular self-assembly - give rise to materials with relevant catalytic, adhesive, and biomedical applications. By presenting the state-of-the-art of the POM-peptide field, we show specifically how emerging chemical approaches can be harnessed to develop tailored POM-peptide materials with synergistic properties for applications in a variety of disciplines.
Collapse
|
43
|
|
Clichici A, Filip GA, Achim M, Baldea I, Cristea C, Melinte G, Pana O, Tudoran LB, Dudea D, Stefan R. Characterization and In Vitro Biocompatibility of Two New Bioglasses for Application in Dental Medicine-A Preliminary Study. Materials (Basel) 2022;15. [PMID: 36556865 DOI: 10.3390/ma15249060] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/23/2022] Open
Abstract
Bioactive glasses (BGs), also known as bioglasses, are very attractive and versatile materials that are increasingly being used in dentistry. For this study, two new bioglasses-one with boron (BG1) and another with boron and vanadium (BG2)-were synthesized, characterized, and tested on human dysplastic keratinocytes. The in vitro biological properties were evaluated through pH and zeta potential measurement, weight loss, Ca2+ ions released after immersion in phosphate-buffered saline (PBS), and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) analysis. Furthermore, biocompatibility was evaluated through quantification of lactate dehydrogenase activity, oxidative stress, transcription factors, and DNA lesions. The results indicate that both BGs presented the same behavior in simulated fluids, characterized by high degradation, fast release of calcium and boron in the environment (especially from BG1), and increased pH and zeta potential. Both BGs reacted with the fluid, particularly BG2, with irregular deposits covering the glass surface. In vitro studies demonstrated that normal doses of the BGs were not cytotoxic to DOK, while high doses reduced cell viability. Both BGs induced oxidative stress and cell membrane damage and enhanced NFkB activation, especially BG1. The BGs down-regulated the expression of NFkB and diminished the DNA damage, suggesting the protective effects of the BGs on cell death and efficacy of DNA repair mechanisms.
Collapse
|
44
|
|
Missina JM, Ronqui Bottini RC, Baptistella GB, Santana FS, Stinghen D, Lemos de Sá E, Gioppo Nunes G. Synthesis, characterization, DFT calculations and bromoperoxidase activity of binuclear oxidovanadium complexes containing vitamin B6. J COORD CHEM 2022;75:2901-2922. [DOI: 10.1080/00958972.2022.2135993] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/19/2023]
|
45
|
|
Matusoiu F, Negrea A, Ciopec M, Duteanu N, Negrea P, Ianasi P, Ianasi C. Vanadium (V) Adsorption from Aqueous Solutions Using Xerogel on the Basis of Silica and Iron Oxide Matrix. Materials (Basel) 2022;15. [PMID: 36556774 DOI: 10.3390/ma15248970] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/23/2022] Open
Abstract
Vanadium is considered a strategic metal with wide applications in various industries due to its unique chemical and physical properties. On the basis of these considerations, the recovery of vanadium (V) is mandatory because of the lack of raw materials. Various methods are used to recover vanadium (V) from used aqueous solutions. This study develops a clean and effective process for the recovery of vanadium (V) by using the adsorption method. At the same time, this study synthesizes a material starting from silica matrices and iron oxides, which is used as an adsorbent material. To show the phase composition, the obtained material is characterized by X-ray diffraction showing that the material is present in the amorphous phase, with a crystal size of 20 nm. However, the morphological texture of the material is determined by the N2 adsorption-desorption method, proving that the adsorbent material has a high surface area of 305 m2/g with a total pore volume of 1.55 cm3/g. To determine the efficiency of the SiO2FexOy material for the recovery of vanadium through the adsorption process, the role of specific parameters, such as the L-to-V ratio, pH, contact time, temperature, and initial vanadium concentration, must be evaluated. The adsorption process mechanism was established through kinetic, thermodynamic, and equilibrium studies. In our case, the process is physical, endothermic, spontaneous, and takes place at the interface of SiO2FexOy with V2O5. Following equilibrium studies, the maximum adsorption capacity of the SiO2FexOy material was 58.8 mg (V)/g of material.
Collapse
|
46
|
|
Shi P, Wang X, Zhang H, Sun Q, Li A, Miao Y, Shi C, Guan J, Gong S, Diwu J. Boosting Simultaneous Uranium Decorporation and Reactive Oxygen Species Scavenging Efficiency by Lacunary Polyoxometalates. ACS Appl Mater Interfaces 2022. [PMID: 36455139 DOI: 10.1021/acsami.2c11226] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/05/2022]
Abstract
The chemical toxicity and the oxidative stress induced by the internal exposure of uranium is responsible for the long-term adverse effect of in vivo contamination of uranium. An agent with simultaneous removal capability of uranium and excess reactive oxygen species (ROS) is highly desired. Herein, the lacunary Keggin-type polyoxometalate (POM) is demonstrated to selectively bind with uranyl ions in the presence of excess essential divalent ions and exhibits a compelling ROS scavenging efficiency of 78.8%. In vivo uranium decorporation assays illustrate the uranium sequestration efficiencies of 74.0%, 49.4%, and 37.1% from kidneys by prophylactic, prompt, and delayed administration of lacunary POM solution, respectively. The superior ROS quenching and uranium removal performance in comparison with all reported bifunctional agents endow lacunary polyoxometalates as novel agents to effectively protect people from injuries caused by the internal exposure of actinides.
Collapse
|
47
|
|
Wang J, Cao J, Zhu Y, Wang Q, Li N, Fan X, Mei H, Xu Y. Four unprecedented V14 clusters as highly efficient heterogeneous catalyst for CO2 fixation with epoxides and oxidation of sulfides. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1424-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/23/2022]
|
48
|
|
Kar A, Pradeep CP. Mixed Organic Counterion Strategy Modulates the Self-Assembly of Polyoxometalate Hybrids into Toroids and Affects Their Photochromic and Photocatalytic Properties. Inorg Chem 2022. [DOI: 10.1021/acs.inorgchem.2c03395] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/13/2022]
|
49
|
|
Breibeck J, Gumerova NI, Rompel A. Oxo-Replaced Polyoxometalates: There Is More than Oxygen. ACS Org Inorg Au 2022;2:477-95. [PMID: 36510613 DOI: 10.1021/acsorginorgau.2c00014] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/02/2023]
Abstract
The presence of oxo-ligands is one of the main required characteristics for polyoxometalates (POMs), although some oxygen ions in a metallic environment can be replaced by other nonmetals, while maintaining the POM structure. The replacement of oxo-ligands offers a valuable approach to tune the charge distribution and connected properties like reducibility and hydrolytic stability of POMs for the development of tailored compounds. By assessing the reported catalytic and biological applications and connecting them to POM structures, the present review provides a guideline for synthetic approaches and aims to stimulate further applications where the oxo-replaced compounds are superior to their oxo-analogues. Oxo-replacement in POMs deserves more attention as a valuable tool to form chemically activated precursors for the synthesis of novel structures or to upgrade established structures with extraordinary properties for challenging applications.
Collapse
|
50
|
|
Tonkushina MO, Grzhegorzhevskii KV, Ermoshin AA, Tugbaeva AS, Kim GA, Taniya OS, Gagarin ID, Ostroushko AA. The Electrostatic‐Mediated Formation of a Coordination Complex: the Trapping and Release of an Antitumor Drug with an Anthracycline Core from {Mo 72 Fe 30 }‐Based Ensembles. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202203684] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/04/2022]
|