1
|
Maier LP, Felix G, Fliegmann J. LuBiA (Luciferase-Based Binding Assay): Glowing Peptides as Sensitive Probes to Study Ligand-Receptor Interactions. Methods Mol Biol 2024; 2731:265-278. [PMID: 38019441 DOI: 10.1007/978-1-0716-3511-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The quantitative and qualitative biochemical description of molecular interactions is fundamental to the study of ligand/receptor pairs and their structure/function relationships. Bioactive peptides often are active at (sub-)nanomolar concentrations, indicating they have a high affinity for their sites of action, notably binding sites on receptors. Since such receptor proteins are commonly of low abundance, highly sensitive detection methods are required to study these ligand/receptor interactions. We present a protocol for an inexpensive luminescence-based detection setup in which the peptide ligand of interest is extended with the 11-amino acid HiBiT tag. This tag can be quantified easily down to fmol amounts by its ability to reconstitute the enzymatic activity of LgBiT, a truncated version of the Oplophorus gracilirostris luciferase.
Collapse
Affiliation(s)
- Louis-Philippe Maier
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Daubermann AG, Dressano K, de Oliveira Ceciliato PH, Moura DS. Acridinium-Based Chemiluminescent Receptor-Ligand Binding Assay for Protein/Peptide Hormones. Methods Mol Biol 2024; 2731:253-263. [PMID: 38019440 DOI: 10.1007/978-1-0716-3511-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Chemiluminescent acridinium esters (AE) have been extensively used for oligonucleotide probing and peptide-binding assays in molecular research due to labeling efficiency, lack of radioactivity, and ease of application. In addition to being a powerful and reliable alternative to radiolabeling, AE can be directly bound to the target molecule, with high specificity. Here, we describe an AE-based protein/peptide labeling method and the use of the labeled protein/peptide in a ligand-binding assay.
Collapse
Affiliation(s)
- André Guilherme Daubermann
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Keini Dressano
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, Brazil
- Centro de Tecnologia Canavieira - CTC, Piracicaba, Brazil
| | - Paulo Henrique de Oliveira Ceciliato
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, Brazil
- Centro de Tecnologia Canavieira - CTC, Piracicaba, Brazil
| | - Daniel S Moura
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, Brazil.
| |
Collapse
|
3
|
Wang X, Meng X. Rapid Identification of Peptide-Receptor-Coreceptor Complexes in Protoplasts. Methods Mol Biol 2024; 2731:241-251. [PMID: 38019439 DOI: 10.1007/978-1-0716-3511-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Secreted signaling peptides, also called peptide hormones, play crucial roles in regulating plant growth, development, and immunity. Plant peptide hormones are perceived by plasma membrane-localized receptor-like kinases (RLKs) or receptor-like proteins (RLPs) that harbor specific extracellular domains to bind and recognize the corresponding peptide ligands. Binding of a peptide ligand to its receptor usually induces the hetero-dimerization of the cognate receptor and a coreceptor, followed by the phosphorylation and activation of the receptor complex to transduce downstream signaling. Therefore, matching peptide ligands with their respective receptors/coreceptors is crucial for elucidating peptide hormone signaling pathways. In this chapter, using the RGF7 peptide-RGI4/RGI5 receptor-BAK1 coreceptor complex as an example, we describe a rapid method to identify the peptide ligand-receptor-coreceptor complexes via co-immunoprecipitation assays using recombinant proteins transiently expressed in Arabidopsis protoplasts.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
4
|
Tran Van Canh L, Aubourg S. Bioinformatics Methods for Prediction of Gene Families Encoding Extracellular Peptides. Methods Mol Biol 2024; 2731:3-21. [PMID: 38019422 DOI: 10.1007/978-1-0716-3511-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Genes encoding small secreted peptides are widely distributed among plant genomes but their detection and annotation remains challenging. The bioinformatics protocol described here aims to identify as exhaustively as possible secreted peptide precursors belonging to a family of interest. First, homology searches are performed at the protein and genome levels. Next, multiple sequence alignments and predictions of a secretion signal are used to define a set of homologous proteins sharing features of secreted peptide precursors. These protein sequences are then used as input of motif detection and profile-based tools to build representative matrices and profiles that are used iteratively as guides to scan again the proteome and genome until family completion.
Collapse
Affiliation(s)
- Loup Tran Van Canh
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, Angers, France
| | - Sébastien Aubourg
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, Angers, France
| |
Collapse
|
5
|
Lanooij J, Smakowska-Luzan E. Isothermal Titration Calorimetry to Study Plant Peptide Ligand-Receptor Interactions. Methods Mol Biol 2024; 2731:295-310. [PMID: 38019443 DOI: 10.1007/978-1-0716-3511-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The field of plant receptor biology has rapidly expanded in the past three decades. However, the demonstration of direct interaction between receptor-ligand pairs remains a challenge. Identifying and quantifying protein-ligand interactions is crucial for understanding how they regulate certain physiological processes. An important aspect is the quantification of different parameters of the interaction, like binding affinity, kinetics, and ligand specificity that drive the formation of signaling complexes. In this chapter, we discuss Isothermal Titration Calorimetry (ITC) as a label-free technique to measure thermodynamic parameters of ligand binding with high accuracy and reproducibility. We provide a detailed guideline how to design, perform, analyze, and interpret ITC measurements using as an example the interaction between the SCHENGEN3/GASSHO1 (SGN3/GSO1) leucine-rich repeat receptor-like kinase and its sulfated peptide ligand CASPARIAN STRIP INTEGRITY FACTOR 2 (CIF2).
Collapse
Affiliation(s)
- Judith Lanooij
- Wageningen University and Research, Laboratory of Biochemistry, Wageningen, The Netherlands
| | - Elwira Smakowska-Luzan
- Wageningen University and Research, Laboratory of Biochemistry, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
7
|
Mori S, Oya S, Takahashi M, Takashima K, Inagaki S, Kakutani T. Cotranscriptional demethylation induces global loss of H3K4me2 from active genes in Arabidopsis. EMBO J 2023; 42:e113798. [PMID: 37849386 PMCID: PMC10690457 DOI: 10.15252/embj.2023113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Based on studies of animals and yeasts, methylation of histone H3 lysine 4 (H3K4me1/2/3, for mono-, di-, and tri-methylation, respectively) is regarded as the key epigenetic modification of transcriptionally active genes. In plants, however, H3K4me2 correlates negatively with transcription, and the regulatory mechanisms of this counterintuitive H3K4me2 distribution in plants remain largely unexplored. A previous genetic screen for factors regulating plant regeneration identified Arabidopsis LYSINE-SPECIFIC DEMETHYLASE 1-LIKE 3 (LDL3), which is a major H3K4me2 demethylase. Here, we show that LDL3-mediated H3K4me2 demethylation depends on the transcription elongation factor Paf1C and phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNAPII). In addition, LDL3 binds to phosphorylated RNAPII. These results suggest that LDL3 is recruited to transcribed genes by binding to elongating RNAPII and demethylates H3K4me2 cotranscriptionally. Importantly, the negative correlation between H3K4me2 and transcription is significantly attenuated in the ldl3 mutant, demonstrating the genome-wide impacts of the transcription-driven LDL3 pathway to control H3K4me2 in plants. Our findings implicate H3K4me2 demethylation in plants as chromatin records of transcriptional activity, which ensures robust gene control.
Collapse
Affiliation(s)
- Shusei Mori
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | | | | | - Soichi Inagaki
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
- National Institute of GeneticsShizuokaJapan
| |
Collapse
|
8
|
Jobert F, Yadav S, Robert S. Auxin as an architect of the pectin matrix. J Exp Bot 2023; 74:6933-6949. [PMID: 37166384 PMCID: PMC10690733 DOI: 10.1093/jxb/erad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Auxin is a versatile plant growth regulator that triggers multiple signalling pathways at different spatial and temporal resolutions. A plant cell is surrounded by the cell wall, a complex and dynamic network of polysaccharides. The cell wall needs to be rigid to provide mechanical support and protection and highly flexible to allow cell growth and shape acquisition. The modification of the pectin components, among other processes, is a mechanism by which auxin activity alters the mechanical properties of the cell wall. Auxin signalling precisely controls the transcriptional output of several genes encoding pectin remodelling enzymes, their local activity, pectin deposition, and modulation in different developmental contexts. This review examines the mechanism of auxin activity in regulating pectin chemistry at organ, cellular, and subcellular levels across diverse plant species. Moreover, we ask questions that remain to be addressed to fully understand the interplay between auxin and pectin in plant growth and development.
Collapse
Affiliation(s)
- François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- CRRBM, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Sandeep Yadav
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|
9
|
Cao J, Wang W, Xu X, Li SY, Zheng Y, Li DD. Identification and Analysis of MADS-Box Genes Expressed in the Mesocarp of Oil Palm Fruit (Elaeis guineensis Jacq.). Biochem Genet 2023; 61:2382-2400. [PMID: 37060482 DOI: 10.1007/s10528-023-10376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Oil palm (Elaeis guineensis) is the most important tropical oil-bearing crop species worldwide. MADS-box proteins, which play crucial roles in plant growth and development and are involved in various physiological and biochemical processes, compose one of the largest families of plant transcription factors. In this study, 42 MADS-box genes were screened from the mesocarp transcriptome database of oil palm fruit, and their phylogenetic relationships with Arabidopsis thaliana MADS-box genes were analyzed. Based on the results, MADS-box genes from oil palm mesocarp were classified into four groups: MIKCc-type, MIKC*-type, Mα-type, and Mγ-type MADS-box genes. Members of the subfamilies were classified according to the presence of three specific protein motifs. To explore the differential expression of the MADS-box genes, the dynamic expression of all selected MADS-box genes in oil palm was measured by RNA-seq. The high expression of specific MADS-box genes in the mesocarp of oil palm during different developmental stages indicates that those genes may play important roles in the cell division of and metabolite accumulation in the fruit and could become important targets for fruit development and oil accumulation research in oil palm.
Collapse
Affiliation(s)
- Jiaqi Cao
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Wei Wang
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Xin Xu
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Si-Yu Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Yusheng Zheng
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Dong-Dong Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China.
| |
Collapse
|
10
|
Shen L, Xia X, Zhang L, Yang S, Yang X. SmWRKY11 acts as a positive regulator in eggplant response to salt stress. Plant Physiol Biochem 2023; 205:108209. [PMID: 38006793 DOI: 10.1016/j.plaphy.2023.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Salt stress is one of the most threatening abiotic stresses to plants, which can seriously affect plant growth, development, reproduction, and yield. However, the mechanisms of plant against salt stress largely remain unclear. Herein, SmWRKY11, an assumed WRKY transcription factor, was functionally characterized in eggplant against salt stress. SmWRKY11 was significantly up-regulated by salt, dehydration stress, and ABA treatment. SmWRKY11 located in the nucleus, and the Plant_zn_clust conserved domain exhibited transcriptional activation activity. Silencing of SmWRKY11 enhanced the susceptibility of eggplant to salt stress, accompanied by significantly down-regulation of transcript expression levels of salt stress defense-related genes SmNCED1, SmGSTU10, and positive regulator of salt stress response SmERF1 as well as increase of hydrogen peroxide (H2O2) content and decrease of the enzyme activities of catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). In addition, silencing of SmERF1 also could significantly down-regulate SmWRKY11 expression in eggplant response to salt stress. By luciferase reporter assay and chromatin immunoprecipitation PCR assay, SmERF1 expression was found to be indirectly activated by SmWRKY11. These data indicate that SmWRKY11 acts as a positive regulator by forming positive feedback loop with SmERF1 via an indirect regulatory manner in eggplant response to salt stress.
Collapse
Affiliation(s)
- Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Xin Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Longhao Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Shixin Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Nietzschmann L, Smolka U, Perino EHB, Gorzolka K, Stamm G, Marillonnet S, Bürstenbinder K, Rosahl S. The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato. Sci Rep 2023; 13:20534. [PMID: 37996470 PMCID: PMC10667265 DOI: 10.1038/s41598-023-47648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Collapse
Affiliation(s)
- Linda Nietzschmann
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ulrike Smolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Elvio Henrique Benatto Perino
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Gina Stamm
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
12
|
Alling R, Galindo-Trigo S. Reproductive defects in the abscission mutant ida-2 are caused by T-DNA-induced genomic rearrangements. Plant Physiol 2023; 193:2292-2297. [PMID: 37555453 PMCID: PMC10663105 DOI: 10.1093/plphys/kiad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Affiliation(s)
- Renate Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
13
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
14
|
Jin Y, Zeng L, Xiao M, Feng Y, Gao Z, Wei J. Exploration of the B3 transcription factor superfamily in Aquilaria sinensis reveal their involvement in seed recalcitrance and agarwood formation. PLoS One 2023; 18:e0294358. [PMID: 37972007 PMCID: PMC10653465 DOI: 10.1371/journal.pone.0294358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The endangered tree species of the Aquilaria genus produce agarwood, a high value material produced only after wounding; however, conservation of Aquilaria seeds is difficult. The B3 transcription factor family has diverse important functions in plant development, especially in seed development, although their functions in other areas, such as stress responses, remain to be revealed. Here germination tests proved that the seeds of A. sinensis were recalcitrant seeds. To provide insights into the B3 superfamily, the members were identified and characterized by bioinformatic approaches and classified by phylogenetic analysis and domain structure. In total, 71 members were identified and classified into four subfamilies. Each subfamily not only had similar domains, but also had conserved motifs in their B3 domains. For the seed-related LAV subfamily, the B3 domain of AsLAV3 was identical to that of AsVALs but lacked a typical zf-CW domain such as VALs. AsLAV5 lacks a typical PHD-L domain present in Arabidopsis VALs. qRT-PCR expression analysis showed that the LEC2 ortholog AsLAV4 was not expressed in seeds. RAVs and REMs induced after wound treatment were also identified. These findings provide insights into the functions of B3 genes and seed recalcitrance of A. sinensis and indicate the role of B3 genes in wound response and agarwood formation.This is the first work to investigate the B3 family in A. sinensis and to provide insights of the molecular mechanism of seed recalcitrance.This will be a valuable guidance for studies of B3 genes in stress responses, secondary metabolite biosynthesis, and seed development.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zeng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Mengjun Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanan Feng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhe Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
15
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
16
|
Li S, Devi B, Allam G, Bhullar A, Murmu J, Li E, Hepworth SR. Regulation of secondary growth by poplar BLADE-ON-PETIOLE genes in Arabidopsis. Front Plant Sci 2023; 14:1244583. [PMID: 38034559 PMCID: PMC10682204 DOI: 10.3389/fpls.2023.1244583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
BLADE-ON-PETIOLE (BOP) genes are essential regulators of vegetative and reproductive development in land plants. First characterized in Arabidopsis thaliana (Arabidopsis), members of this clade function as transcriptional co-activators by recruiting TGACG-motif binding (TGA) basic leucine zipper (bZIP) transcription factors. Highly expressed at organ boundaries, these genes are also expressed in vascular tissue and contribute to lignin biosynthesis during secondary growth. How these genes function in trees, which undergo extensive secondary growth to produce wood, remains unclear. Here, we investigate the functional conservation of BOP orthologs in Populus trichocarpa (poplar), a widely-used model for tree development. Within the poplar genome, we identified two BOP-like genes, PtrBPL1 and PtrBPL2, with abundant transcripts in stems. To assess their functions, we used heterologous assays in Arabidopsis plants. The promoters of PtrBPL1 and PtrBPL2, fused with a β-glucuronidase (GUS) reporter gene showed activity at organ boundaries and in secondary xylem and phloem. When introduced into Arabidopsis plants, PtrBPL1 and PtrBPL2 complemented leaf and flower patterning defects in bop1 bop2 mutants. Notably, Arabidopsis plants overexpressing PtrBPL1 and PtrBPL2 showed defects in stem elongation and the lignification of secondary tissues in the hypocotyl and stem. Finally, PtrBPL1 and PtrBPL2 formed complexes with TGA bZIP proteins in yeast. Collectively, our findings suggest that PtrBPL1 and PtrBPL2 are orthologs of Arabidopsis BOP1 and BOP2, potentially contributing to secondary growth regulation in poplar trees. This work provides a foundation for functional studies in trees.
Collapse
|
17
|
Wang Q, Zhao X, Sun Q, Mou Y, Wang J, Yan C, Yuan C, Li C, Shan S. Genome-wide identification of the LRR-RLK gene family in peanut and functional characterization of AhLRR-RLK265 in salt and drought stresses. Int J Biol Macromol 2023; 254:127829. [PMID: 37926304 DOI: 10.1016/j.ijbiomac.2023.127829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) play important roles in plant developmental regulations and various stress responses. Peanut (Arachis hypogaea L.) is a worldwide important oil crop; however, no systematic identification or analysis of the peanut LRR-RLK gene family has been reported. In present study, 495 LRR-RLK genes in peanut were identified and analyzed. The 495 AhLRR-RLK genes were classed into 14 groups and 10 subgroups together with their Arabidopsis homologs according to phylogenetic analyses, and 491 of 495 AhLRR-RLK genes unequally located on 20 chromosomes. Analyses of gene structure and protein motif organization revealed similarity in exon/intron and motif organization among members of the same subgroup, further supporting the phylogenetic results. Gene duplication events were found in peanut LRR-RLK gene family via syntenic analysis, which were important in LRR-RLK gene family expansion in peanut. We found that the expression of AhLRR-RLK genes was detected in different tissues using RNA-seq data, implying that AhLRR-RLK genes may differ in function. In addition, Arabidopsis plants overexpressing stress-induced AhLRR-RLK265 displayed lower seed germination rates and root lengths compared to wild-type under exogenous ABA treatment. Notably, overexpression of AhLRR-RLK265 enhanced tolerance to salt and drought stresses in transgenic Arabidopsis. Moreover, the AhLRR-RLK265-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under salt and drought stress treatments. We believe these results may provide valuable information about the function of peanut LRR-RLK genes for further analysis.
Collapse
Affiliation(s)
- Qi Wang
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China.
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China.
| |
Collapse
|
18
|
Bramsiepe J, Krabberød AK, Bjerkan KN, Alling RM, Johannessen IM, Hornslien KS, Miller JR, Brysting AK, Grini PE. Structural evidence for MADS-box type I family expansion seen in new assemblies of Arabidopsis arenosa and A. lyrata. Plant J 2023; 116:942-961. [PMID: 37517071 DOI: 10.1111/tpj.16401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Arabidopsis thaliana diverged from A. arenosa and A. lyrata at least 6 million years ago. The three species differ by genome-wide polymorphisms and morphological traits. The species are to a high degree reproductively isolated, but hybridization barriers are incomplete. A special type of hybridization barrier is based on the triploid endosperm of the seed, where embryo lethality is caused by endosperm failure to support the developing embryo. The MADS-box type I family of transcription factors is specifically expressed in the endosperm and has been proposed to play a role in endosperm-based hybridization barriers. The gene family is well known for its high evolutionary duplication rate, as well as being regulated by genomic imprinting. Here we address MADS-box type I gene family evolution and the role of type I genes in the context of hybridization. Using two de-novo assembled and annotated chromosome-level genomes of A. arenosa and A. lyrata ssp. petraea we analyzed the MADS-box type I gene family in Arabidopsis to predict orthologs, copy number, and structural genomic variation related to the type I loci. Our findings were compared to gene expression profiles sampled before and after the transition to endosperm cellularization in order to investigate the involvement of MADS-box type I loci in endosperm-based hybridization barriers. We observed substantial differences in type-I expression in the endosperm of A. arenosa and A. lyrata ssp. petraea, suggesting a genetic cause for the endosperm-based hybridization barrier between A. arenosa and A. lyrata ssp. petraea.
Collapse
Affiliation(s)
- Jonathan Bramsiepe
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Anders K Krabberød
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Katrine N Bjerkan
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Renate M Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Ida M Johannessen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Karina S Hornslien
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Jason R Miller
- College of STEM, Shepherd University, Shepherdstown, West Virginia, 25443-5000, USA
| | - Anne K Brysting
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Paul E Grini
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
19
|
Cheng Y, Li Y, Yang J, He H, Zhang X, Liu J, Yang X. Multiplex CRISPR-Cas9 knockout of EIL3, EIL4, and EIN2L advances soybean flowering time and pod set. BMC Plant Biol 2023; 23:519. [PMID: 37884905 PMCID: PMC10604859 DOI: 10.1186/s12870-023-04543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Ethylene inhibitor treatment of soybean promotes flower bud differentiation and early flowering, suggested that there is a close relationship between ethylene signaling and soybean growth and development. The short-lived ETHYLENE INSENSITIVE2 (EIN2) and ETHYLENE INSENSITIVE3 (EIN3) proteins play central roles in plant development. The objective of this study was carried out gene editing of EIL family members in soybeans and to examine the effects on soybean yield and other markers of growth. METHODS AND RESULTS By editing key-node genes in the ethylene signaling pathway using a multi-sgRNA-in-one strategy, we obtained a series of gene edited lines with variable edit combinations among 15 target genes. EIL3, EIL4, and EIN2L were editable genes favored by the T0 soybean lines. Pot experiments also show that the early flowering stage R1 of the EIL3, EIL4, and EIN2L triple mutant was 7.05 d earlier than that of the wild-type control. The yield of the triple mutant was also increased, being 1.65-fold higher than that of the control. Comparative RNA-seq revealed that sucrose synthase, AUX28, MADS3, type-III polyketide synthase A/B, ABC transporter G family member 26, tetraketide alpha-pyrone reductase, and fatty acyl-CoA reductase 2 may be involved in regulating early flowering and high-yield phenotypes in triple mutant soybean plants. CONCLUSION Our results provide a scientific basis for genetic modification to promote the development of earlier-flowering and higher-yielding soybean cultivars.
Collapse
Affiliation(s)
- Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Yujie Li
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Xingzheng Zhang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China.
| |
|