1
|
Rodrigues PM, Afonso MB, SimĆ£o AL, Islam T, Gaspar MM, O'Rourke CJ, Lewinska M, Andersen JB, Arretxe E, Alonso C, Santos-Laso Ć, Izquierdo-Sanchez L, Jimenez-Agüero R, Eizaguirre E, Bujanda L, Pareja MJ, Prip-Buus C, Banales JM, Rodrigues CMP, Castro RE. miR-21-5p promotes NASH-related hepatocarcinogenesis. Liver Int 2023; 43:2256-2274. [PMID: 37534739 DOI: 10.1111/liv.15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND AND AIMS The mechanisms governing the progression of non-alcoholic fatty liver disease (NAFLD) towards steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remain elusive. Here, we evaluated the role of hsa-miRNA-21-5p in NASH-related hepatocarcinogenesis. METHODS Hepatic hsa-miR-21-5p expression was evaluated in two cohorts of patients with biopsy-proven NAFLD (nā=ā199) or HCC (nā=ā366 HCC and nā=ā11 NAFLD-HCC). Serum/liver metabolomic profiles were correlated with hsa-miR-21-5p in NAFLD obese patients. Wild-type (WT) and Mir21 KO mice were fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66āweeks to induce NASH and NASH-HCC, respectively. RESULTS In obese individuals, hsa-miR-21-5p expression increased with NAFLD severity and associated with a hepatic lipotoxic profile. CDAA-fed WT mice displayed increased hepatic mmu-miR-21-5p levels and progressively developed NASH and fibrosis, with livers presenting macroscopically discernible pre-neoplastic nodules, hyperplastic foci and deregulated cancer-related pathways. Mir21 KO mice exhibited peroxisome-proliferator-activated receptor α (PPARα) activation, augmented mitochondrial activity, reduced liver injury and NAS below the threshold for NASH diagnosis, with the pro-inflammatory/fibrogenic milieu reversing to baseline levels. In parallel, Mir21 KO mice displayed reduced number of pre-neoplastic nodules, hepatocyte proliferation and activation of oncogenic signalling, being protected from NASH-associated carcinogenesis. The hsa-miRNA-21-5p/PPARα pathway was similarly deregulated in patients with HCC- or NASH-related HCC, correlating with HCC markers and worse prognosis. CONCLUSIONS Hsa-miR-21-5p is a key inducer of whole-spectrum NAFLD progression, from simple steatosis to NASH and NASH-associated carcinogenesis. The inhibition of hsa-miR-21-5p, leading to a pro-metabolic profile, might constitute an appealing therapeutic approach to ameliorate NASH and prevent progression towards HCC.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - André L Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Tawhidul Islam
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria M Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Monika Lewinska
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Ćlvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Laura Izquierdo-Sanchez
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Raúl Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Emma Eizaguirre
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | | | - Carina Prip-Buus
- UniversitƩ Paris Descartes UMR-S1016, Institut Cochin, Paris, France
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - CecĆlia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Talib N, Mohamad NE, Yeap SK, Ho CL, Masarudin MJ, Abd-Aziz S, Izham MNM, Kumar MR, Hussin Y, Alitheen NB. Anti-Diabetic Effect of Lactobacillus Paracasei Isolated from Malaysian Water Kefir Grains. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10159-2. [PMID: 37755545 DOI: 10.1007/s12602-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is alarming because it is always linked to the increase in chronic diseases, mortality, and socioeconomic burden. Water kefir has a wide range of functional and probiotic characteristics attributed to the microorganisms present in the kefir grains. The present study aims to evaluate the in vivo anti-diabetic potential of the isolated Lactobacillus paracasei from Malaysian water kefir grains (MWKG) which was reported to have excellent probiotic properties and high antioxidant activities as reported previously. High-fat diet/streptozotocin (HFD/STZ) induction was used to obtain a T2DM model followed by treatment with the isolated L. paracasei from MWKG. The levels of glucose, insulin, and in vivo liver antioxidants were quantified after 14Ā weeks. Gene expression analysis of the liver was also carried out using microarray analysis, and several genes were selected for validation using quantitative real-time PCR. Insulin tolerance test demonstrated that the L. paracasei isolated from the MWKG alleviated T2DM by improving the area under the curve of the insulin tolerance test whereby low-dose and high-dose concentrations treated groups showed 2424.50ā±ā437.02Ā mmol/LĀ·min and 2017.50ā±ā347.09Ā mmol/LĀ·min, respectively, compared to untreated diabetic mice which was 3884.50ā±ā39.36Ā mmol/LĀ·min. Additionally, treatment with the isolated L. paracasei from MWKG regulated the expression of several genes related to glucose homeostasis and lipid metabolism in diabetic mice. These results suggested that the isolated L. paracasei from MWKG could be a potential dietary supplement for T2DM.
Collapse
Affiliation(s)
- Noorshafadzilah Talib
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nurul Elyani Mohamad
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mira Nadiah Mohd Izham
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Muganti Rajah Kumar
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Yazmin Hussin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Matsuura T, Ueda Y, Harada Y, Hayashi K, Horisaka K, Yano Y, So S, Kido M, Fukumoto T, Kodama Y, Hara E, Matsumoto T. Histological diagnosis of polyploidy discriminates an aggressive subset of hepatocellular carcinomas with poor prognosis. Br J Cancer 2023:10.1038/s41416-023-02408-6. [PMID: 37715023 DOI: 10.1038/s41416-023-02408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Although genome duplication, or polyploidization, is believed to drive cancer evolution and affect tumor features, its significance in hepatocellular carcinoma (HCC) is unclear. We aimed to determine the characteristics of polyploid HCCs by evaluating chromosome duplication and to discover surrogate markers to discriminate polyploid HCCs. METHODS The ploidy in human HCC was assessed by fluorescence in situ hybridization for multiple chromosomes. Clinicopathological and expression features were compared between polyploid and near-diploid HCCs. Markers indicating polyploid HCC were explored by transcriptome analysis of cultured HCC cells. RESULTS Polyploidy was detected in 36% (20/56) of HCCs and discriminated an aggressive subset of HCC that typically showed high serum alpha-fetoprotein, poor differentiation, and poor prognosis compared to near-diploid HCCs. Molecular subtyping revealed that polyploid HCCs highly expressed alpha-fetoprotein but did not necessarily show progenitor features. Histological examination revealed abundant polyploid giant cancer cells (PGCCs) with a distinct appearance and frequent macrotrabecular-massive architecture in polyploid HCCs. Notably, the abundance of PGCCs and overexpression of ubiquitin-conjugating enzymes 2C indicated polyploidy in HCC and efficiently predicted poor prognosis in combination. CONCLUSIONS Histological diagnosis of polyploidy using surrogate markers discriminates an aggressive subset of HCC, apart from known HCC subgroups, and predict poor prognosis in HCC.
Collapse
Affiliation(s)
- Takanori Matsuura
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihide Ueda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiyuki Harada
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuki Hayashi
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kisara Horisaka
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshihiko Yano
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichi So
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Kido
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| |
Collapse
|
4
|
Choi KJ, Yoon MY, Kim JE, Yoon SS. Gut commensal Kineothrix alysoides mitigates liver dysfunction by restoring lipid metabolism and gut microbial balance. Sci Rep 2023; 13:14668. [PMID: 37674003 PMCID: PMC10482948 DOI: 10.1038/s41598-023-41160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as Non-Alcoholic Fatty Liver Disease, is a widespread liver condition characterized by excessive fat buildup in hepatocytes without significant alcohol consumption. Manipulation of the gut microbiome has been considered to prevent and improve the occurrence and progression of MASLD, particularly through the gut-liver axis. This study aimed to investigate the correlation between the gut microbiome and liver function and determine whether the gut microbiome can ameliorate MASLD. We comparatively analyzed the gut microbiome composition between mice fed normal chow and those fed a high-fat diet and observed that the abundance of Kineothrix alysoides decreased in the high-fat group. Further analysis showed that treatment with K. alysoides in the high-fat diet group led to decreased weight loss, and MASLD attenuation. Importantly, K. alysoides treatment attenuated MASLD in mice fed a high-fat, high-fructose diet (HFHF), which can cause advanced liver damage. Furthermore, administration of K. alysoides altered the gut microbial composition in the HFHF diet group and improved MASLD. Overall, these findings demonstrate the potential of K. alysoides in restoring gut health and facilitating lipid metabolism to prevent and treat MASLD.
Collapse
Affiliation(s)
- Kyoung Jin Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Young Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Eun Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.
- BioMe Inc., Seoul, South Korea.
| |
Collapse
|
5
|
Massemin A, Goehrig D, Flaman JM, Jaber S, Griveau A, Djebali S, Marcos E, Payen L, Marvel J, Parent R, Adnot S, Bertolino P, Rieusset J, Tortereau A, Vindrieux D, Bernard D. Loss of Pla2r1 decreases cellular senescence and age-related alterations caused by aging and Western diets. Aging Cell 2023:e13971. [PMID: 37667516 DOI: 10.1111/acel.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023] Open
Abstract
Cellular senescence is induced by many stresses including telomere shortening, DNA damage, oxidative, or metabolic stresses. Senescent cells are stably cell cycle arrested and they secrete many factors including cytokines and chemokines. Accumulation of senescent cells promotes many age-related alterations and diseases. In this study, we investigated the role of the pro-senescent phospholipase A2 receptor 1 (PLA2R1) in regulating some age-related alterations in old mice and in mice subjected to a Western diet, whereas aged wild-type mice displayed a decreased ability to regulate their glycemia during glucose and insulin tolerance tests, aged Pla2r1 knockout (KO) mice efficiently regulated their glycemia and displayed fewer signs of aging. Loss of Pla2r1 was also found protective against the deleterious effects of a Western diet. Moreover, these Pla2r1 KO mice were partially protected from diet-induced senescent cell accumulation, steatosis, and fibrosis. Together these results support that Pla2r1 drives several age-related alterations, especially in the liver, arising during aging or through a Western diet.
Collapse
Affiliation(s)
- AmƩlie Massemin
- Centre de Recherche en CancƩrologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre LƩon BƩrard, UniversitƩ de Lyon, Lyon, France
- Equipe LabellisƩe la Ligue Contre le Cancer, Lyon, France
| | - Delphine Goehrig
- Centre de Recherche en CancƩrologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre LƩon BƩrard, UniversitƩ de Lyon, Lyon, France
- Equipe LabellisƩe la Ligue Contre le Cancer, Lyon, France
| | - Jean-Michel Flaman
- Centre de Recherche en CancƩrologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre LƩon BƩrard, UniversitƩ de Lyon, Lyon, France
- Equipe LabellisƩe la Ligue Contre le Cancer, Lyon, France
| | - Sara Jaber
- Centre de Recherche en CancƩrologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre LƩon BƩrard, UniversitƩ de Lyon, Lyon, France
| | - Audrey Griveau
- Centre de Recherche en CancƩrologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre LƩon BƩrard, UniversitƩ de Lyon, Lyon, France
| | - Sophia Djebali
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, Ćcole Normale SupĆ©rieure de Lyon, UniversitĆ© de Lyon, UniversitĆ© Claude Bernard Lyon 1, Lyon, France
| | - Elisabeth Marcos
- INSERM U955, DƩpartement de Physiologie - Explorations fonctionnelles, HƓpital Henri Mondor, AP-HP, FHU SENEC, CrƩteil, France
| | - LƩa Payen
- Laboratoire de Biochimie et Biologie MolƩculaire, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre BƩnite, France
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, Ćcole Normale SupĆ©rieure de Lyon, UniversitĆ© de Lyon, UniversitĆ© Claude Bernard Lyon 1, Lyon, France
| | - Romain Parent
- Centre de Recherche en CancƩrologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre LƩon BƩrard, UniversitƩ de Lyon, Lyon, France
| | - Serge Adnot
- INSERM U955, DƩpartement de Physiologie - Explorations fonctionnelles, HƓpital Henri Mondor, AP-HP, FHU SENEC, CrƩteil, France
| | - Philippe Bertolino
- Centre de Recherche en CancƩrologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre LƩon BƩrard, UniversitƩ de Lyon, Lyon, France
- Equipe LabellisƩe la Ligue Contre le Cancer, Lyon, France
| | - Jennifer Rieusset
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Lyon 1 University, Pierre bƩnite, France
| | - Antonin Tortereau
- VetAgro Sup, Interactions Cellules Environnement (ICE), UniversitƩ de Lyon, Marcy l'Etoile, France
| | - David Vindrieux
- Centre de Recherche en CancƩrologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre LƩon BƩrard, UniversitƩ de Lyon, Lyon, France
- Equipe LabellisƩe la Ligue Contre le Cancer, Lyon, France
| | - David Bernard
- Centre de Recherche en CancƩrologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre LƩon BƩrard, UniversitƩ de Lyon, Lyon, France
- Equipe LabellisƩe la Ligue Contre le Cancer, Lyon, France
| |
Collapse
|
6
|
Garicano Vilar E, Sanz Rojo S, López Oliva S, MartĆnez S, TerrĆ©n Lora A, San Mauro Martin I. Effect of MetioNacĀ® in patients with metabolic syndrome who are at risk of metabolic dysfunction associated fatty liver disease: a randomized controlled trial. NUTR HOSP 2023; 40:755-762. [PMID: 37409712 DOI: 10.20960/nh.04635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Introduction Introduction: metabolic syndrome comprises a combination of diabetes, high blood pressure, and obesity, and metabolic associated fatty liver disease (MAFLD) is associated with it. Objective: to evaluate the effect of supplementation with S-adenosyl-L-methionine + N-acetylcysteine + thioctic acid + vitamin B6 (MetioNacĀ®) for 3 months on lipidic and biochemical parameters in subjects with metabolic syndrome and at risk of MAFLD. The reduction in body weight and the oxidative stress markers malondialdehyde (MDA) and superoxide dismutase (SOD) were also evaluated. Methods: patients with metabolic syndrome, at risk of MAFLD (FIB-4 < 1.30), and with an indication for weight reduction were recruited (n = 15). Control group followed a semipersonalized Mediterranean diet (MD) for weight reduction, according to the recommendations of the Spanish Society for the Study of Obesity (SEEDO). Experimental group, in addition to the MD, took three capsules of MetioNacĀ® supplement per day. Results: compared with the control group, subjects taking MetioNacĀ® showed significant (p < 0.05) reductions in the levels of TG and VLDL-c, as well as in total cholesterol, LDL-c, and glucose levels. They also showed increased levels of HDL-c. Levels of AST and ALT decreased after the intervention with MetioNacĀ®, but this decrease did not reach statistical significance. Weight loss was observed in both groups. Conclusion: supplementation with MetioNacĀ® may be protective against hyperlipidemia, insulin resistance, and overweight among metabolic syndrome patients. Further studies on this issue are needed in a larger population.
Collapse
|
7
|
Salavatizadeh M, Soltanieh S, Ataei Kachouei A, Abdollahi Fallahi Z, Kord-Varkaneh H, Poustchi H, Mansour A, Khamseh ME, Alaei-Shahmiri F, Santos HO, Hekmatdoost A. Association between dietary glycemic index and non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1228072. [PMID: 37674617 PMCID: PMC10478091 DOI: 10.3389/fendo.2023.1228072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023] Open
Abstract
Objective Managing dietary glycemic index (GI) deserves further attention in the interplay between non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). This study aimed to evaluate the relationship between dietary GI and the odds of NAFLD in patients with T2DM. Methods A cross-sectional study was carried out between April 2021 and February 2022, including 200 participants with T2DM aged 18-70 years, of which 133 had NAFLD and 67 were in the non-NAFLD group. Cardiometabolic parameters were analyzed using standard biochemical kits and dietary intake was assessed using a validated food frequency questionnaire. Binary logistic regression was applied to explore odds ratios (ORs) and 95% confidence intervals (CIs) for NAFLD according to tertiles of dietary GI. Results Highest vs. lowest tertile (< 57 vs. > 60.89) of energy-adjusted GI was not associated with the odds of having NAFLD (OR 1.25, 95% CI = 0.6-2.57; P-trend = 0.54) in the crude model. However, there was an OR of 3.24 (95% CI = 1.03-10.15) accompanied by a significant trend (P-trend = 0.04) after full control for potential confounders (age, gender, smoking status, duration of diabetes, physical activity, waist circumference, HbA1c, triglycerides, total cholesterol, dietary intake of total carbohydrates, simple carbohydrates, fat, and protein). Conclusion High dietary GI is associated with increased odds of NAFLD in subjects with T2DM. However, interventional and longitudinal cohort studies are required to confirm these findings.
Collapse
Affiliation(s)
- Marieh Salavatizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Soltanieh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Ataei Kachouei
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Kord-Varkaneh
- Department of Nutrition and Food Hygiene, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad E. Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Alaei-Shahmiri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Shah A, Wondisford FE. Gluconeogenesis Flux in Metabolic Disease. Annu Rev Nutr 2023; 43:153-177. [PMID: 37603427 DOI: 10.1146/annurev-nutr-061121-091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Gluconeogenesis is a critical biosynthetic process that helps maintain whole-body glucose homeostasis and becomes altered in certain medical diseases. We review gluconeogenic flux in various medical diseases, including common metabolic disorders, hormonal imbalances, specific inborn genetic errors, and cancer. We discuss how the altered gluconeogenic activity contributes to disease pathogenesis using data from experiments using isotopic tracer and spectroscopy methodologies. These in vitro, animal, and human studies provide insights into the changes in circulating levels of available gluconeogenesis substrates and the efficiency of converting those substrates to glucose by gluconeogenic organs. We highlight ongoing knowledge gaps, discuss emerging research areas, and suggest future investigations. A better understanding of altered gluconeogenesis flux may ultimately identify novel and targeted treatment strategies for such diseases.
Collapse
Affiliation(s)
- Ankit Shah
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA; ,
| | - Fredric E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA; ,
| |
Collapse
|
9
|
Asatullina Z, Sineglazova AV. Cardiac Structure and Function in Patients With Obesity and Non-alcoholic Fatty Liver Disease. Cureus 2023; 15:e43711. [PMID: 37724205 PMCID: PMC10505491 DOI: 10.7759/cureus.43711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/20/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide. The global prevalence of NAFLD is expected to increase dramatically with the increasing prevalence of obesity and type 2 diabetes mellitus (T2DM). The role of NAFLD as a cardiometabolic risk factor or component of metabolic syndrome on the heart remains unclear. Thus, the independent effect of NAFLD on structural and functional heart parameters warrants validation. Our goal was to study cardiac structure and function in subjects with obesity and NAFLD. Methods A total of 164 patients were examined in this cross-sectional study. Participants were grouped based on BMIĀ and the presence or absence of abdominal obesity (AO) and/or NAFLD. The subjects were divided into four groups:Ā group 1: normal BMI without AO and NAFLD; group 2: BMI ā„ 25 kg/m2Ā or AO without NAFLD; group 3: BMI ā„ 25 kg/m2Ā and AO without NAFLD;Ā group 4: patients with BMI ā„ 25 kg/m2,Ā AO, and NAFLD. We performed a thorough clinical examination, a biochemical blood analysis, and echocardiography. Indices of liver steatosis and fibrosis were calculated. A study of liver assessment of the controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) was conducted. Statistical analysis was performed using IBM SPSS Statistics version 26 (IBM Corp., Armonk, NY). Results The mean age of the participants was 35.0 (31.0-38.5) years. We found a higher frequency of multiple cardiometabolic risk factors in the general cohort. However, on comparing groups 3 and 4, we found a higher frequency of hyperinsulinemia, homeostatic model assessment of insulin resistance (HOMA-IR), and obesity (p < 0.05). To assess the role of NAFLD independent of obesity, we conducted further analyses after adjusting for BMI. Among patients with NAFLD, we observed a similar trend for parameters of carbohydrate metabolism (p < 0.005).Ā In individuals with NAFLD, an increase in left atrial (LA) volume, interventricular septal (IVS) thickness, and left ventricular (LV) myocardial mass, and a decrease in LV ejection fraction and LV stroke volume index were found (p < 0.005). The hepatic steatosis index (HSI) correlated with LA volume, LV end-systolic volume (ESV) and LV end-diastolic volume (EDV), stroke volume, and LV myocardial mass. An association between an increase in CAP score and an increase in the LA volume, stroke volume index, IVS thickness, LV myocardial mass, and the values of LSM with an increase in the LA volume was established. Conclusion The presence of NAFLD without cardiovascular disease and diabetes mellitus revealed an association with the structural and functional parameters of the heart.Ā The results of this study can also be used to improve the effectiveness of a comprehensive assessment of patients and to develop strategies for the primary and secondary prevention of heart failure with preserved ejection fraction in NAFLD.
Collapse
Affiliation(s)
- Zemfira Asatullina
- Primary Care and General Practice, Kazan State Medical University, Kazan, RUS
| | | |
Collapse
|
10
|
Pei X, Bai T, Luo Y, Zhang Z, Li S, Fan Y, Liu TX. Acetyl coenzymeĀ A carboxylase modulates lipogenesis and sugar homeostasis in Blattella germanica. Insect Sci 2023. [PMID: 37486126 DOI: 10.1111/1744-7917.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023]
Abstract
Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzymeĀ A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B.Ā germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B.Ā germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.
Collapse
Affiliation(s)
- Xiaojin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Tiantian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Zhanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Yongliang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Li L, Qin Y, Xin X, Wang S, Liu Z, Feng X. The great potential of flavonoids as candidate drugs for NAFLD. Biomed Pharmacother 2023; 164:114991. [PMID: 37302319 DOI: 10.1016/j.biopha.2023.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of approximately 25 % and is associated with high morbidity and high mortality. NAFLD is a leading cause of cirrhosis and hepatocellular carcinoma. Its pathophysiology is complex and still poorly understood, and there are no drugs used in the clinic to specifically treat NAFLD. Its pathogenesis involves the accumulation of excess lipids in the liver, leading to lipid metabolism disorders and inflammation. Phytochemicals with the potential to prevent or treat excess lipid accumulation have recently received increasing attention, as they are potentially more suitable for long-term use than are traditional therapeutic compounds. In this review, we summarize the classification, biochemical properties, and biological functions of flavonoids and how they are used in the treatment of NAFLD. Highlighting the roles and pharmacological uses of these compounds will be of importance for enhancing the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Liangge Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xijian Xin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shendong Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
12
|
Wen Z, Lin YH, Wang S, Fujiwara N, Rong R, Jin KW, Yang DM, Yao B, Yang S, Wang T, Xie Y, Hoshida Y, Zhu H, Xiao G. Deep-Learning-Based Hepatic Ploidy Quantification Using H&E Histopathology Images. Genes (Basel) 2023; 14:genes14040921. [PMID: 37107679 PMCID: PMC10137944 DOI: 10.3390/genes14040921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Polyploidy, the duplication of the entire genome within a single cell, is a significant characteristic of cells in many tissues, including the liver. The quantification of hepatic ploidy typically relies on flow cytometry and immunofluorescence (IF) imaging, which are not widely available in clinical settings due to high financial and time costs. To improve accessibility for clinical samples, we developed a computational algorithm to quantify hepatic ploidy using hematoxylin-eosin (H&E) histopathology images, which are commonly obtained during routine clinical practice. Our algorithm uses a deep learning model to first segment and classify different types of cell nuclei in H&E images. It then determines cellular ploidy based on the relative distance between identified hepatocyte nuclei and determines nuclear ploidy using a fitted Gaussian mixture model. The algorithm can establish the total number of hepatocytes and their detailed ploidy information in a region of interest (ROI) on H&E images. This is the first successful attempt to automate ploidy analysis on H&E images. Our algorithm is expected to serve as an important tool for studying the role of polyploidy in human liver disease.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruichen Rong
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin W Jin
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Donghan M Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Yao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shengjie Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Children's Research Institute Mouse Genome Engineering Core, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Jana S, Brahma S, Arora S, Wladyka CL, Hoang P, Blinka S, Hough R, Horn JL, Liu Y, Wang LJ, Depeille P, Smith E, Montgomery RB, Lee JK, Haffner MC, Vakar-Lopez F, Grivas P, Wright JL, Lam HM, Black PC, Roose JP, Ryazanov AG, Subramaniam AR, Henikoff S, Hsieh AC. Transcriptional-translational conflict is a barrier to cellular transformation and cancer progression. Cancer Cell 2023; 41:853-870.e13. [PMID: 37084735 DOI: 10.1016/j.ccell.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
We uncover a tumor-suppressive process in urothelium called transcriptional-translational conflict caused by deregulation of the central chromatin remodeling component ARID1A. Loss of Arid1a triggers an increase in a nexus of pro-proliferation transcripts, but a simultaneous inhibition of the eukaryotic elongation factor 2 (eEF2), which results in tumor suppression. Resolution of this conflict through enhancing translation elongation speed enables the efficient and precise synthesis of a network of poised mRNAs resulting in uncontrolled proliferation, clonogenic growth, and bladder cancer progression. We observe a similar phenomenon in patients with ARID1A-low tumors, which also exhibit increased translation elongation activity through eEF2. These findings have important clinical implications because ARID1A-deficient, but not ARID1A-proficient, tumors are sensitive to pharmacologic inhibition of protein synthesis. These discoveries reveal an oncogenic stress created by transcriptional-translational conflict and provide a unified gene expression model that unveils the importance of the crosstalk between transcription and translation in promoting cancer.
Collapse
Affiliation(s)
- Sujata Jana
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sandipan Brahma
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Patrick Hoang
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Steven Blinka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rowan Hough
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jessie L Horn
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yuzhen Liu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Li-Jie Wang
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Philippe Depeille
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric Smith
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Funda Vakar-Lopez
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Petros Grivas
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jonathan L Wright
- Department of Urology, University of Washington, Seattle, WA 98915, USA
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA 98915, USA
| | - Peter C Black
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | - Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Genome Sciences, University of Washington, Seattle, WA 98915, USA.
| |
Collapse
|
14
|
Li X, Abdel-Moneim AME, Hua J, Zhao L, Hu Z, Pang X, Wang S, Chen Z, Yang B. Effects of Sodium Chromate Exposure on Gene Expression Profiles of Primary Rat Hepatocytes (In Vitro). Biol Trace Elem Res 2023; 201:1913-1934. [PMID: 35653032 DOI: 10.1007/s12011-022-03294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
Chromium exposure has adverse impacts on human health and the environment, whereas chromate-induced hepatotoxicity's detailed mechanism is still unclear. Therefore, the purpose of the current study was to reveal the crucial signaling pathways and genes linked to sodium chromate-induced hepatotoxicity. GSE19662, a gene expression microarray, was obtained from Gene Expression Omnibus (GEO). Six primary rat hepatocyte (PRH) samples from GSE19662 include sodium chromate-treated (nā=ā3) and the control PRH samples (nā=ā3). A total of 2,525 differentially expressed genes (DEGs) were obtained, especially 962, and 1,563 genes were up- and downregulated in sodium chromate-treated PRHs compared to the control. Gene ontology (GO) enrichment analysis suggested that those DEGs were involved in multiple biological processes, including the response to toxic substances, the positive regulation of apoptotic process, lipid and cholesterol metabolic process, and others. Signaling pathway enrichment analysis indicated that the DEGs were mainly enriched in MAPK, PI3K-Akt, PPAR, AMPK, cellular senescence, hepatitis B, fatty acid biosynthesis, etc. Moreover, many genes, including CYP2E1, CYP1A2, CYP2C13, CDK1, NDC80, and CCNB1, might contribute to sodium chromate-induced hepatotoxicity. Taken together, this study enhances our knowledge of the potential molecular mechanisms of sodium chromate-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaofeng Li
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| | - Jinling Hua
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Lei Zhao
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhongze Hu
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xunsheng Pang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shujuan Wang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhihao Chen
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Bing Yang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
15
|
Ito Y, Uda S, Kokaji T, Hirayama A, Soga T, Suzuki Y, Kuroda S, Kubota H. Comparison of hepatic responses to glucose perturbation between healthy and obese mice based on the edge type of network structures. Sci Rep 2023; 13:4758. [PMID: 36959243 PMCID: PMC10036622 DOI: 10.1038/s41598-023-31547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Interactions between various molecular species in biological phenomena give rise to numerous networks. The investigation of these networks, including their statistical and biochemical interactions, supports a deeper understanding of biological phenomena. The clustering of nodes associated with molecular species and enrichment analysis is frequently applied to examine the biological significance of such network structures. However, these methods focus on delineating the function of a node. As such, in-depth investigations of the edges, which are the connections between the nodes, are rarely explored. In the current study, we aimed to investigate the functions of the edges rather than the nodes. To accomplish this, for each network, we categorized the edges and defined the edge type based on their biological annotations. Subsequently, we used the edge type to compare the network structures of the metabolome and transcriptome in the livers of healthy (wild-type) and obese (ob/ob) mice following oral glucose administration (OGTT). The findings demonstrate that the edge type can facilitate the characterization of the state of a network structure, thereby reducing the information available through datasets containing the OGTT response in the metabolome and transcriptome.
Collapse
Affiliation(s)
- Yuki Ito
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Shinsuke Uda
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Toshiya Kokaji
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5, Takayamacho, Ikoma, Nara, 630-0192, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Shinya Kuroda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
16
|
Peng K, Wang S, Liu R, Zhou L, Jeong GH, Jeong IH, Liu X, Kiyokawa H, Xue B, Zhao B, Shi H, Yin J. Effects of UBE3A on Cell and Liver Metabolism through the Ubiquitination of PDHA1 and ACAT1. Biochemistry 2023; 62:1274-1286. [PMID: 36920305 PMCID: PMC10077595 DOI: 10.1021/acs.biochem.2c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is substantiated by the reprogramming of liver metabolic pathways that disrupts the homeostasis of lipid and glucose metabolism and thus promotes the progression of the disease. The metabolic pathways associated with NAFLD are regulated at different levels from gene transcription to various post-translational modifications including ubiquitination. Here, we used a novel orthogonal ubiquitin transfer platform to identify pyruvate dehydrogenase A1 (PDHA1) and acetyl-CoA acetyltransferase 1 (ACAT1), two important enzymes that regulate glycolysis and ketogenesis, as substrates of E3 ubiquitin ligase UBE3A/E6AP. We found that overexpression of UBE3A accelerated the degradation of PDHA1 and promoted glycolytic activities in HEK293 cells. Furthermore, a high-fat diet suppressed the expression of UBE3A in the mouse liver, which was associated with increased ACAT1 protein levels, while forced expression of UBE3A in the mouse liver resulted in decreased ACAT1 protein contents. As a result, the mice with forced expression of UBE3A in the liver exhibited enhanced accumulation of triglycerides, cholesterol, and ketone bodies. These results reveal the role of UBE3A in NAFLD development by inducing the degradation of ACAT1 in the liver and promoting lipid storage. Overall, our work uncovers an important mechanism underlying the regulation of glycolysis and lipid metabolism through UBE3A-mediated ubiquitination of PDHA1 and ACAT1 to regulate their stabilities and enzymatic activities in the cell.
Collapse
|