601
|
Jin M, Xiao Z, Zhang S, Men X, Li X, Zhang B, Zhou T, Hsiao CD, Liu K. Possible involvement of Fas/FasL-dependent apoptotic pathway in α-bisabolol induced cardiotoxicity in zebrafish embryos. CHEMOSPHERE 2019; 219:557-566. [PMID: 30553216 DOI: 10.1016/j.chemosphere.2018.12.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
α-Bisabolol, an unsaturated monocyclic sesquiterpene alcohol, is a common ingredient in many pharmaceuticals and personal care products (PPCPs). Despite being widely used, little is known about its toxic effects on organisms and aquatic environment. In this study, we investigated the developmental toxicity of α-Bisabolol, especially its effects on the cardiac development using zebrafish embryos as a model. Embryos at 4 h post-fertilization (hpf) were exposed to 10, 30, 50, 70, 90, and 100 μM α-Bisabolol until 144 hpf. α-Bisabolol caused phenotypic defects and the most striking one is the heart malformation. Treatment of α-Bisabolol significantly increased the cardiac malformation rate, the SV-BA distance, as well as the pericardial edema area, and reduced heart rate in a concentration-dependent manner. Notably, considerable numbers of apoptotic cells were mainly observed in the heart region of zebrafish treated with α-Bisabolol. Further study on α-Bisabolol induced apoptosis in the zebrafsh heart suggested that an activation of Fas/FasL-dependent apoptotic pathway. Taken together, our study investigated the cardiotoxicity of α-Bisabolol on zebrafish embryonic development and its underlying molecular mechanism, shedding light on the full understanding of α-Bisabolol toxicity on living organisms and its environmental impact.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China.
| | - Zhixin Xiao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, 266101, Shandong Province, PR China
| | - Xia Li
- Yinfeng Cryomedicine Technology Co., Ltd, 1109 Gang Xin San Road, Jinan, 250103, Shandong Province, PR China
| | - Baoyue Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Tianxia Zhou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China.
| |
Collapse
|
602
|
Guillossou R, Le Roux J, Mailler R, Vulliet E, Morlay C, Nauleau F, Gasperi J, Rocher V. Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? CHEMOSPHERE 2019; 218:1050-1060. [PMID: 30609484 DOI: 10.1016/j.chemosphere.2018.11.182] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Several advanced treatments, such as ozonation or activated carbon adsorption, are currently considered for the removal of organic micropollutants (OMPs) in wastewater treatment plants (WWTP). However, little is known on the overall performances of a WWTP upgraded with those processes and the benefits provided regarding the elimination of multiple families of OMPs. In this study, 5 sampling campaigns were performed to determine the removal of 48 OMPs in a WWTP followed by an activated carbon pilot. The primary treatment had no effect on OMPs (removals < 20%), whereas the biological treatment removed OMPs that can be easily sorbed onto sludges or biodegraded (>60%). The additional elimination provided by the advanced treatment was not significant (<10%) for OMPs already well removed in the WWTP) but was substantial (>30%) for recalcitrant OMPs. Removals higher than 60% were obtained for all OMPs (except azithromycin and sulfamethoxazole) over the WWTP and the activated carbon pilot. The adsorption conditions (10 g/m3 fresh activated carbon addition) were not sufficient to achieve the 80% removal targeted in Switzerland for compounds suggested as indicator substances for wastewater treatment. A higher dose of activated carbon or the combination with another advanced treatment should be used to achieve a satisfactory removal of those compounds.
Collapse
Affiliation(s)
- Ronan Guillossou
- Université Paris-Est, Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR MA 102 - AgroParisTech, 61 Avenue du Général de Gaulle, Créteil Cedex, France.
| | - Julien Le Roux
- Université Paris-Est, Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR MA 102 - AgroParisTech, 61 Avenue du Général de Gaulle, Créteil Cedex, France
| | - Romain Mailler
- Syndicat Interdépartemental pour l'Assainissement de l'Agglomération Parisienne (SIAAP), Direction Innovation et Environnement, 82 Avenue Kléber, Colombes, France
| | - Emmanuelle Vulliet
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, Villeurbanne, France
| | - Catherine Morlay
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut National des Sciences Appliquées-Lyon, MATEIS, UMR 5510, Villeurbanne, France
| | - Fabrice Nauleau
- Saur, Direction de la Recherche et du Développement, Maurepas, France
| | - Johnny Gasperi
- Université Paris-Est, Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR MA 102 - AgroParisTech, 61 Avenue du Général de Gaulle, Créteil Cedex, France.
| | - Vincent Rocher
- Syndicat Interdépartemental pour l'Assainissement de l'Agglomération Parisienne (SIAAP), Direction Innovation et Environnement, 82 Avenue Kléber, Colombes, France
| |
Collapse
|
603
|
Parra Guardado AL, Belleville MP, Rostro Alanis MDJ, Parra Saldivar R, Sanchez-Marcano J. Effect of redox mediators in pharmaceuticals degradation by laccase: A comparative study. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
604
|
Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN. Emerging contaminants of high concern and their enzyme-assisted biodegradation - A review. ENVIRONMENT INTERNATIONAL 2019; 124:336-353. [PMID: 30660847 DOI: 10.1016/j.envint.2019.01.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/07/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
Abstract
The widespread occurrence and adverse environmental and health-related impacts of various types of emerging contaminants (ECs) have become an issue of high concern. With ever increasing scientific knowledge, socio-economic awareness, health-related problems and ecological apprehensions, people are more concerned about the widespread ECs, around the globe. Among ECs, biologically active compounds from pharmaceutical, cosmeceutical, biomedical, personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), and flame-retardants are of paramount concern. The presence and persistence of ECs in water bodies are of continued and burning interest, worldwide. Various types of ECs are being discharged knowingly/unknowingly with/without partial treatments into the aquatic environments that pose serious health issues and affects the entire living ecosystem. So far, various approaches have been developed for ECs degradation and removal to diminish their adverse impact. Many previous and/or ongoing studies have focused on contaminants degradation and efficient removal via numerous treatment strategies, i.e. (1) physical, (2) chemical and (3) biological. However, the experimental evidence is lacking to enable specific predictions about ECs mechanistic degradation and removal fate across various in-practice systems. In this context, the deployment oxidoreductases such as peroxidases (lignin peroxidases, manganese-dependent peroxidases, and horseradish peroxidase), aromatic dioxygenases, various oxygenases, laccases, and tyrosinases have received considerable research attention. Immobilization is highlighted as a promising approach to improve enzyme catalytic performance and stabilization, as well as, to protect the three-dimensional structure of the enzyme against the undesirable consequences of harsh reaction environment. This work overviews the current and state-of-the-art critical aspect related to hazardous pollutants at large and ECs in particular by the immobilized oxidoreductase enzymes. The first part of the review focuses on the occurrence, physiochemical behavior, potent sources and significant routes of ECs. Following that, environmentally-related adverse impacts and health-related issues of ECs are discussed in the second part. In the third part, biodegradation and removal strategies with a comparative overview of several conventional vs. non-conventional methods are presented briefly. The fourth part majorly focuses on operational modes of different oxidoreductase enzyme-based biocatalytic processes for the biodegradation and biotransformation of a wide array of harmful environmental contaminants. Finally, the left behind research gaps, concluding remarks as well as future trends and recommendations in the use of carrier-immobilized oxidoreductases for environmental perspective are also discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Adeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
605
|
Qiu W, Sun J, Fang M, Luo S, Tian Y, Dong P, Xu B, Zheng C. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:334-341. [PMID: 30412878 DOI: 10.1016/j.scitotenv.2018.10.398] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 05/23/2023]
Abstract
The occurrence and distribution of antibiotics were investigated in surface water and sediment collected from the main rivers of Shenzhen, China. Total concentrations of 20 selected antibiotics ranged from 36.510 to 1075.687 ng L-1 (mean 244.992 ng L-1) in 31 water samples and from 28.124 to 2728.810 ng g-1 (mean 680.169 ng g-1) in 31 sediment samples. Notably, STZ and SDZ were the dominant antibiotics in both water and sediment as their higher concentrations compared with the other compounds. Furthermore, comprehensive profiling of antibiotic resistance genes (ARGs) and microbial community was performed to gain an understanding of the evolution and dissemination of ARGs in microbial communities caused by the occurrence of antibiotics in sediment samples from Maozhou River. As a result, the sul1 gene was found to be the most abundant ARG and Proteobacteria was the most abundant microorganism in all the samples (37.4-51.7%), followed by Bacteroidetes (15.3-18.4%). Statistical analysis figured out the relations among antibiotics, ARGs and microbial community. A specific conclusion could be drawn from the positive correlations among the bla_d gene, Fusobacteria, and sulfamethoxazole. It suggests that antibiotics may be positively linked to the expression of ARGs in certain bacteria, and thus high reproduction would occur within the bacterial community. Overall, the widespread distribution of ARGs underscores the need for further research on the mechanism of antibiotics influence as emerging contaminants in the environment and the associated risks to microbial community.
Collapse
Affiliation(s)
- Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Sun
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meijuan Fang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shusheng Luo
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiqun Tian
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Dong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Water Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Bentuo Xu
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
606
|
Jaria G, Calisto V, Silva CP, Gil MV, Otero M, Esteves VI. Obtaining granular activated carbon from paper mill sludge - A challenge for application in the removal of pharmaceuticals from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:393-400. [PMID: 30412884 DOI: 10.1016/j.scitotenv.2018.10.346] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/28/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
In this work, a granular activated carbon (GAC) was produced using primary paper mill sludge (PS) as raw material and ammonium lignosulfonate (AL) as binder agent. PS is a residue from the pulp and paper industry and AL is a by-product of the cellulose pulp manufacture and the proposed production scheme contributes for their valorisation together with important savings in GAC precursors. The produced GAC (named PSA-PA) and a commercially available GAC (GACN), used as reference material, were physically and chemically characterized. Then, these materials were tested in batch experiments for the adsorption of carbamazepine (CBZ), sulfamethoxazole (SMX), and paroxetine (PAR) from ultra-pure water and wastewater. Even though GACN and PSA-PA possess very similar specific surface areas (SBET) (629 and 671 m2 g-1, respectively), PSA-PA displayed lower maximum adsorption capacities (qm) than GACN for the pharmaceuticals here studied (6 ± 1-44 ± 5 mg g-1 and 49 ± 6-106 ± 40 mg g-1, respectively). This may be related to the comparatively higher incidence of mesopores in GACN, which might have positively influenced its adsorptive performance. Moreover, the highest hydrophobic character and degree of aromaticity of GACN could also have contributed to its adsorption capacity. On the other hand, the performance of both GACs was significantly affected by the matrix in the case of CBZ and SMX, with lower qm in wastewater than in ultra-pure water. However, the adsorption of PAR was not affected by the matrix. Electrostatic interactions and pH effects might also have influenced the adsorption of the pharmaceutical compounds in wastewater.
Collapse
Affiliation(s)
- Guilaine Jaria
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Patrícia Silva
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - María Victoria Gil
- Instituto Nacional del Carbón, INCAR-CSIC, Calle Francisco Pintado Fe 26, 33011 Oviedo, Spain
| | - Marta Otero
- Department of Environment and Planning & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
607
|
Zhang R, Wang Z, Zhou Z, Li D, Wang T, Su P, Yang Y. Highly Effective Removal of Pharmaceutical Compounds from Aqueous Solution by Magnetic Zr-Based MOFs Composites. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05244] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ruiqi Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixin Zhou
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Di Li
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tiefeng Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
608
|
The effects of main anoxic section oxidation-reduction potential on the metabolism of PHA and TP in continuous-flow single-sludge treatment system. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-018-0213-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
609
|
de Morais e Silva L, Lorenzo VP, Lopes WS, Scotti L, Scotti MT. Predictive Computational Tools for Assessment of Ecotoxicological Activity of Organic Micropollutants in Various Water Sources in Brazil. Mol Inform 2019; 38:e1800156. [DOI: 10.1002/minf.201800156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/06/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Luana de Morais e Silva
- Post-Graduate Program in Science and Environmental TechnologyDepartment of Sanitary and Environmental EngineeringState University of Paraíba 58429500 Campina Grande, PB Brazil
| | - Vitor Prates Lorenzo
- Federal Institute of Education, Science and Technology Sertão Pernambucano 56316686 Petrolina, Pernambuco Brazil
| | - Wilton Silva Lopes
- Post-Graduate Program in Science and Environmental TechnologyDepartment of Sanitary and Environmental EngineeringState University of Paraíba 58429500 Campina Grande, PB Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive ProductsFederal University of Paraíba 58051-900 João Pessoa, PB Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive ProductsFederal University of Paraíba 58051-900 João Pessoa, PB Brazil
| |
Collapse
|
610
|
Cerrato G, Bianchi CL, Galli F, Pirola C, Morandi S, Capucci V. Micro-TiO 2 coated glass surfaces safely abate drugs in surface water. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:328-334. [PMID: 30321837 DOI: 10.1016/j.jhazmat.2018.09.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The ingredients of Pharmaceuticals and Personal Care Products (PPCPs) persist in water and conventional treatment plants are not able to remove them efficiently. Sonochemical treatment is insufficient to mineralize organics such as ibuprofen into CO2 and H2O. TiO2 degrades ibuprofen (IBP) under UV light; however, it does not reach a high grade of conversion. Here, we investigated the mineralization of ibuprofen to CO2 by TiO2 UV-C photocatalysis. We replaced nano-sized P25 (the standard catalyst) with a micro-sized commercial sample of TiO2 to preclude the use of nanoparticles which are dangerous for human health and because typical filtration systems are expensive and inefficient. We deposited micro-TiO2 on glass Raschig rings to ensure an easy recovery and reuse of the photocatalyst and we studied its performance both with a batch and a continuous reactor. Micro-TiO2 mineralized 100% of IBP in 24 h. TiO2-coated glass Raschig rings degraded 87% of IBP in 6 h of UV-C irradiation in a continuous reactor, with a mineralization of 25%. Electronspray ionization mass spectrometer (ESI-MS, positive mode) analyses identified 13 different byproducts and we hypothised a degradration pathway for IBP degradation.
Collapse
Affiliation(s)
- G Cerrato
- Università degli Studi di Torino, Dip. Chimica & NIS Interdept. Centre, via P. Giuria 7, 10125 Torino, Italy; INSTM - Consorzio Interuniversitario per la scienza e tecnologia dei Materiali, via G. Giusti 9, 50121 Firenze, Italy.
| | - C L Bianchi
- Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy; INSTM - Consorzio Interuniversitario per la scienza e tecnologia dei Materiali, via G. Giusti 9, 50121 Firenze, Italy
| | - F Galli
- Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy; INSTM - Consorzio Interuniversitario per la scienza e tecnologia dei Materiali, via G. Giusti 9, 50121 Firenze, Italy
| | - C Pirola
- Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy; INSTM - Consorzio Interuniversitario per la scienza e tecnologia dei Materiali, via G. Giusti 9, 50121 Firenze, Italy
| | - S Morandi
- Università degli Studi di Torino, Dip. Chimica & NIS Interdept. Centre, via P. Giuria 7, 10125 Torino, Italy; INSTM - Consorzio Interuniversitario per la scienza e tecnologia dei Materiali, via G. Giusti 9, 50121 Firenze, Italy
| | - V Capucci
- GranitiFiandre SpA, 41042 Fiorano M.se, Italy
| |
Collapse
|
611
|
Vergili I, Kaya Y, Gönder ZB, Boergers A, Tuerk J. Occurence and Prioritization of Pharmaceutical Active Compounds in Domestic/Municipal Wastewater Treatment Plants. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:252-258. [PMID: 30666389 DOI: 10.1007/s00128-019-02550-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
In this study, pharmaceutically active compounds (PhACs) were analyzed in the influent and effluent of a domestic wastewater treatment plant in Turkey and a municipal wastewater treatment plant in Germany and the toxicity of these wastewaters were estimated using a toxic unit (TU) approach. A total of 21 and 32 PhACs were detected in the domestic wastewater and the municipal wastewater, respectively. The TUs estimated for PhACs in municipal wastewater were higher than the TUs estimated for PhACs present in domestic wastewater. The levels of the anti-anxiety drug, oxazepam were estimated to be in the high risk category (HQ > 10) in both wastewaters. In bench-scale tests with ozonation, the removals of four PhACs in the municipal wastewater were investigated. At a dose of 2 mg/L ozone, 97%-98% of diclofenac and carbamazepine were removed. The lowest removal rate at 71% was observed for metoprolol.
Collapse
Affiliation(s)
- Ilda Vergili
- Faculty of Engineering, Department of Environmental Engineering, Istanbul University -Cerrahpasa, Avcilar Campus, Avcilar, 34320, Istanbul, Turkey.
| | - Yasemin Kaya
- Faculty of Engineering, Department of Environmental Engineering, Istanbul University -Cerrahpasa, Avcilar Campus, Avcilar, 34320, Istanbul, Turkey
| | - Z Beril Gönder
- Faculty of Engineering, Department of Environmental Engineering, Istanbul University -Cerrahpasa, Avcilar Campus, Avcilar, 34320, Istanbul, Turkey
| | - Andrea Boergers
- Institut für Energie-und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Jochen Tuerk
- Institut für Energie-und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| |
Collapse
|
612
|
Photocatalytic removal of diclofenac by Ti doped BiOI microspheres under visible light irradiation: Kinetics, mechanism, and pathways. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
613
|
Salas LA, Baker ER, Nieuwenhuijsen MJ, Marsit CJ, Christensen BC, Karagas MR. Maternal swimming pool exposure during pregnancy in relation to birth outcomes and cord blood DNA methylation among private well users. ENVIRONMENT INTERNATIONAL 2019; 123:459-466. [PMID: 30622071 PMCID: PMC6599635 DOI: 10.1016/j.envint.2018.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 05/19/2023]
Abstract
Swimming in pools during pregnancy may expose the fetus to water disinfection by-products (DBP). As yet, our understanding of the impacts on DBPs on the fetus is uncertain. Individuals with public water systems are typically exposed to DBPs through drinking, showering and bathing, whereas among those on private water systems, swimming in pools may be the primary exposure source. We analyzed the effects of maternal swimming on birth outcomes and cord blood epigenetic changes in the New Hampshire Birth Cohort Study, a cohort of pregnant women with households on private water systems. Information about swimming in pools during pregnancy was obtained from 1033 women via questionnaires. Swimming pool use and duration were modeled using linear regression with newborn weight, length, and head circumference (z-scores) and genome wide cord blood DNA methylation as the outcomes and with adjustment for potential confounders. Overall 19.7% of women reported swimming in a pool during pregnancy. Among swimmers, duration of swimming was inversely related to head circumference (-0.02 z-score per 10% increase in duration, P = 0.004). No associations were observed with birth weight, length or DNA methylation modifications. Our findings suggest swimming pool exposure may impact the developing fetus although longer-term studies are needed.
Collapse
Affiliation(s)
- Lucas A Salas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA; The Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon 03756, NH, USA.
| | - Emily R Baker
- Department of Obstetrics and Gynecology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA.
| | - Mark J Nieuwenhuijsen
- ISGlobal, The Barcelona Institute for Global Health, Barcelona 08003, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain.
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta 30322, GA, USA.
| | - Brock C Christensen
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon 03756, NH, USA; Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon 03756, NH, USA.
| | - Margaret R Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA; The Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon 03756, NH, USA.
| |
Collapse
|
614
|
Peñas-Garzón M, Gómez-Avilés A, Bedia J, Rodriguez JJ, Belver C. Effect of Activating Agent on the Properties of TiO₂/Activated Carbon Heterostructures for Solar Photocatalytic Degradation of Acetaminophen. MATERIALS 2019; 12:ma12030378. [PMID: 30691067 PMCID: PMC6384744 DOI: 10.3390/ma12030378] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
Abstract
Several activated carbons (ACs) were prepared by chemical activation of lignin with different activating agents (FeCl3, ZnCl2, H3PO4 and KOH) and used for synthesizing TiO2/activated carbon heterostructures. These heterostructures were obtained by the combination of the activated carbons with a titania precursor using a solvothermal treatment. The synthesized materials were fully characterized (Wavelength-dispersive X-ray fluorescence (WDXRF), X-ray diffraction (XRD), Scanning electron microscopy (SEM), N2 adsorption-desorption, Fourier transform infrared (FTIR) and UV-visible diffuse reflectance spectra (UV-Vis DRS) and further used in the photodegradation of a target pharmaceutical compound (acetaminophen). All heterostructures were composed of anatase phase regardless of the activated carbon used, while the porous texture and surface chemistry depended on the chemical compound used to activate the lignin. Among all heterostructures studied, that obtained by FeCl3-activation yielded complete conversion of acetaminophen after 6 h of reaction under solar-simulated irradiation, also showing high conversion after successive cycles. Although the reaction rate was lower than the observed with bare TiO2, the heterostructure showed higher settling velocity, thus being considerably easier to recover from the reaction medium.
Collapse
Affiliation(s)
- Manuel Peñas-Garzón
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain.
| | - Almudena Gómez-Avilés
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain.
| | - Jorge Bedia
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain.
| | - Juan J Rodriguez
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain.
| | - Carolina Belver
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
615
|
Loise de Morais Calado S, Esterhuizen-Londt M, Cristina Silva de Assis H, Pflugmacher S. Phytoremediation: green technology for the removal of mixed contaminants of a water supply reservoir. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:372-379. [PMID: 30656959 DOI: 10.1080/15226514.2018.1524843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Iraí Reservoir, a water supply in Brazil, is constantly impacted by anthropogenic activities such as waste inputs from agriculture, hospitals and urbanization, resulting toxic cyanobacterial blooms causing economic, social and environmental problems. This study assessed the concentration of some common contaminants of the Iraí Reservoir, namely paracetamol, diclofenac and microcystin-LR and tested whether a laboratory scale Green Liver System® would serve as a suitable technology to remove these contaminants. Further, the study investigated whether the pollutants caused adverse effects to the macrophytes using catalase as a biomarker for oxidative stress and investigated whether biotransformation (glutathione S-transferase) was a main route for detoxification. Egeria densa, Ceratophyllum demersum and Myriophyllum aquaticum were exposed to a mixture of the three contaminants for 14 days in a concentration range similar to those detected in the reservoir. The plants removed 93% of diclofenac and 100% of MC-LR after 14 days. Paracetamol could not be detected. Catalase and glutathione S-transferase enzyme activities remained unaltered after the 14-day exposure, indicating that the mixture did not cause oxidative stress. The study showed that the aquatic macrophytes used are suitable tools to apply in a Green Liver System® for the remediation of mixed pollutants.
Collapse
Affiliation(s)
| | - Maranda Esterhuizen-Londt
- b Ecotoxicology in an Urban Environment, Ecosystems and Environmental Research Programme, Faculty of Biological and Environmental Sciences , University of Helsinki , Lahti , Finland
| | | | - Stephan Pflugmacher
- b Ecotoxicology in an Urban Environment, Ecosystems and Environmental Research Programme, Faculty of Biological and Environmental Sciences , University of Helsinki , Lahti , Finland
- c Joint Laboratory of Applied Ecotoxicology , Korea Institute of Science and Technology Europe (KIST) , Saarbrücken , Germany
| |
Collapse
|
616
|
Krzeminski P, Tomei MC, Karaolia P, Langenhoff A, Almeida CMR, Felis E, Gritten F, Andersen HR, Fernandes T, Manaia CM, Rizzo L, Fatta-Kassinos D. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1052-1081. [PMID: 30340253 DOI: 10.1016/j.scitotenv.2018.08.130] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 05/18/2023]
Abstract
Contaminants of emerging concern (CEC) discharged in effluents of wastewater treatment plants (WWTPs), not specifically designed for their removal, pose serious hazards to human health and ecosystems. Their impact is of particular relevance to wastewater disposal and re-use in agricultural settings due to CEC uptake and accumulation in food crops and consequent diffusion into the food-chain. This is the reason why the chemical CEC discussed in this review have been selected considering, besides recalcitrance, frequency of detection and entity of potential hazards, their relevance for crop uptake. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been included as microbial CEC because of the potential of secondary wastewater treatment to offer conditions favourable to the survival and proliferation of ARB, and dissemination of ARGs. Given the adverse effects of chemical and microbial CEC, their removal is being considered as an additional design criterion, which highlights the necessity of upgrading conventional WWTPs with more effective technologies. In this review, the performance of currently applied biological treatment methods for secondary treatment is analysed. To this end, technological solutions including conventional activated sludge (CAS), membrane bioreactors (MBRs), moving bed biofilm reactors (MBBRs), and nature-based solutions such as constructed wetlands (CWs) are compared for the achievable removal efficiencies of the selected CEC and their potential of acting as reservoirs of ARB&ARGs. With the aim of giving a picture of real systems, this review focuses on data from full-scale and pilot-scale plants treating real urban wastewater. To achieve an integrated assessment, technologies are compared considering also other relevant evaluation parameters such as investment and management costs, complexity of layout and management, present scale of application and need of a post-treatment. Comparison results allow the definition of design and operation strategies for the implementation of CEC removal in WWTPs, when agricultural reuse of effluents is planned.
Collapse
Affiliation(s)
- Pawel Krzeminski
- Section of Systems Engineering and Technology, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - Maria Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy.
| | - Popi Karaolia
- Department of Civil and Environmental Engineering and Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Alette Langenhoff
- Sub-department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ewa Felis
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, ul. Akademicka 2, 44-100 Gliwice, Poland
| | - Fanny Gritten
- CEBEDEAU, Research and Expertise Center for Water, Allée de la Découverte 11 (B53), Quartier Polytech 1, B-4000 Liège, Belgium
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Telma Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Celia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
617
|
Oliveira C, Lima DLD, Silva CP, Calisto V, Otero M, Esteves VI. Photodegradation of sulfamethoxazole in environmental samples: The role of pH, organic matter and salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1403-1410. [PMID: 30340285 DOI: 10.1016/j.scitotenv.2018.08.235] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/02/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
Sulfamethoxazole (SMX) is the most representative antibiotic of the sulfonamides group used in both human and veterinary medicine, and thus frequently detected in water resources. This has caused special concern due to the pronounced toxicity and potential to foster bacterial resistance of this drug. Therefore, and to further understand the fate of SMX in the aquatic environment, its photodegradation under simulated solar radiation was here studied in ultrapure water and in different environmental samples, namely estuarine water, freshwater and wastewater. SMX underwent very fast photodegradation in ultrapure water, presenting a half-life time (t1/2) of 0.86 h. However, in environmental samples, the SMX photodegradation rate was much slower, with 5.4 h < t1/2 < 7.8 h. The main novelty of this work was to prove that pH, salinity and dissolved organic matter are determinant factors in the decrease of the SMX photodegradation rate observed in environmental samples and, thus, they will influence the SMX fate and persistence, potentially increasing the risks associated to the presence of this pollutant in the environment.
Collapse
Affiliation(s)
- Cindy Oliveira
- Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Diana L D Lima
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Complementary Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal.
| | - Carla Patrícia Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marta Otero
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
618
|
Dong L, Liu W, Yu Y, Hou L, Gu P, Chen G. Preparation, characterization, and application of macroporous activated carbon (MAC) suitable for the BAC water treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1359-1367. [PMID: 30180343 DOI: 10.1016/j.scitotenv.2018.07.280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 05/24/2023]
Abstract
To address the sharp decrease in efficiency of the biological activated carbon (BAC) process at low temperatures, a new type of activated carbon (AC), macroporous activated carbon (MAC), was developed from bamboo waste scraps via a special compression, carbonation and activation process without the introduction of chemicals. MAC contains not only the micron-level macropores (Vmaco > 0.71 ml/g) sufficient for bacteria to access and multiply, but ensures the developed smaller pores (particularly micropores, Vmicro > 0.41 ml/g) and a higher hardness (>90%). In addition, the desired volume of macropores with an adiabatic function, which will provide livable space environment for bacteria, can be obtained by adjusting the compression ratio (1:5-1:10). Because of the maximum macropore volume (Vmaco = 0.805 ml/g) and the most abundant macropore distribution (particularly diameters>10,000 nm), MAC (1:6) was selected for the parallel experiment in the laboratory, taking three representative commercial ACs (PICABIOL® 2, raw coal AC-1 and briquetting AC-2) as controls, in which the filtration effluent of a water treatment plant was used as the influent and glucose was added to accelerate bacterial growth. The results showed that MAC (1:6) exhibited the highest DOC removal and biological activity at room/low temperatures (4 °C), indicating that the abundant macropores distribution with adiabatic function in MAC (1:6) is conducive to the growth and breeding of microorganisms. It is equivalent to artificially increasing the surface suitable for bacteria attachment. This is coupled with the higher adsorption capacity for pollutants supplied by the developed micropores in MAC, which provided the substrate for bacteria growth, thus forming a benign circle for water treatment by the BAC process. The results provide significant technical support for BAC's application, particularly at cold temperatures.
Collapse
Affiliation(s)
- Lihua Dong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Environment, Tsinghua University, Beijing 100084, China.
| | - Wenjun Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Xi'an High-tech Institute, Xi'an 710025, China
| | - Ping Gu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
619
|
A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts 2019. [DOI: 10.3390/catal9010052] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review analyzes the preparation and characterization of metal organic frameworks (MOFs) and their application as photocatalysts for water purification. The study begins by highlighting the problem of water scarcity and the different solutions for purification, including photocatalysis with semiconductors, such as MOFs. It also describes the different methodologies that can be used for the synthesis of MOFs, paying attention to the purification and activation steps. The characterization of MOFs and the different approaches that can be followed to learn the photocatalytic processes are also detailed. Finally, the work reviews literature focused on the degradation of contaminants from water using MOF-based photocatalysts under light irradiation.
Collapse
|
620
|
Charuaud L, Jarde E, Jaffrezic A, Thomas MF, Le Bot B. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:169-186. [PMID: 30179788 DOI: 10.1016/j.jhazmat.2018.08.075] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
Veterinary pharmaceuticals (VPs) increasingly used in animal husbandry have led to their presence in aquatic environments -surface water (SW) or groundwater (GW) - and even in tap water. This review focuses on studies from 2007 to 2017. Sixty-eight different veterinary pharmaceutical residues (VPRs) have been quantified worldwide in natural waters at concentrations ranging from nanograms per liter (ng L-1) to several micrograms per liter (μg L-1). An extensive up-to-date on sales and tonnages of VPs worldwide has been performed. Tetracyclines (TCs) antibiotics are the most sold veterinary pharmaceuticals worldwide. An overview of VPRs degradation pathways in natural waters is provided. VPRs can be degraded or transformed by biodegradation, hydrolysis or photolysis. Photo-degradation appears to be the major degradation pathway in SW. This review then reports occurrences of VPRs found in tap water, and presents data on VPRs removal in drinking water treatment plants (DWTPs) at each step of the process. VPRs have been quantified in tap water at ng L-1 concentration levels in four studies of the eleven studies dealing with VPRs occurrence in tap water. Overall removals of VPRs in DWTPs generally exceed 90% and advanced treatment processes (oxidation processes, adsorption on activated carbon, membrane filtration) greatly contribute to these removals. However, studies performed on full-scale DWTPs are scarce. A large majority of fate studies in DWTPs have been conducted under laboratory at environmentally irrelevant conditions (high concentration of VPRs (mg L-1), use of deionized water instead of natural water, high concentration of oxidant, high contact time etc.). Also, studies on VPRs occurrence and fate in tap water focus on antibiotics. There is a scientific gap on the occurrence and fate of antiparatic drugs in tap waters.
Collapse
Affiliation(s)
- Lise Charuaud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Emilie Jarde
- Univ Rennes, CNRS, Géosciences Rennes - UMR6118, 35000 Rennes, France
| | | | - Marie-Florence Thomas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
621
|
Zhu B, Wei N. Biocatalytic Degradation of Parabens Mediated by Cell Surface Displayed Cutinase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:354-364. [PMID: 30507170 DOI: 10.1021/acs.est.8b05275] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Parabens are emerging environmental contaminants with known endocrine-disrupting effects. This study created a novel biocatalyst (named as SDFsC) by expressing the enzyme Fusarium solani pisi cutinase (FsC) on the cell surface of Baker's yeast Sacchromycese cerevisiae and demonstrated successful enzyme-mediated removal of parabens for the first time. Parabens with different side chain structures had different degradation rates by the SDFsC. The SDFsC preferentially degraded the parabens with relatively long alkyl or aromatic side chains. The structure-dependent degradability was in a good agreement with the binding energy between the active site of FsC and different parabens. In real wastewater effluent solution, the SDFsC effectively degraded 800 μg/L of propylparaben, butylparaben, and benzylparaben, either as a single compound or as a mixture, within 48 h. The estrogenic activity of parabens was considerably reduced as the parent parabens were degraded into 4-hydroxybenzoic acid via hydrolysis pathway by the SDFsC. The SDFsC showed superior reusability and maintained 93% of its initial catalytic activity after six rounds of paraben degradation reaction. Results from this study provide scientific basis for developing biocatalysis as a green chemistry alternative for advanced treatment of parabens in sustainable water reclamation.
Collapse
Affiliation(s)
- Baotong Zhu
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , 156 Fitzpatrick Hall , Notre Dame , Indiana 46556 , United States
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , 156 Fitzpatrick Hall , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
622
|
Jiménez-Salcedo M, Monge M, Tena MT. Photocatalytic degradation of ibuprofen in water using TiO 2/UV and g-C 3N 4/visible light: Study of intermediate degradation products by liquid chromatography coupled to high-resolution mass spectrometry. CHEMOSPHERE 2019; 215:605-618. [PMID: 30342405 DOI: 10.1016/j.chemosphere.2018.10.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
The photocatalytic degradation of ibuprofen with TiO2 nanoparticles (NPs) and UV light and with graphitic carbon nitride (g-C3N4) 2D nanosheets and visible light are proposed and compared as advanced oxidation treatments for the removal of ibuprofen in water. By-products formed with both photocatalytic systems have been tentatively identified based on the results of ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry, using a quadrupole-time of flight mass spectrometer in positive and negative ionization modes, which allowed to obtain the elementary composition of their precursors and fragment ions. The removal of ibuprofen and the by-product formation were studied at three pH values. Ibuprofen depletion followed pseudo fist-order kinetics with rate constants of 0.04, 1.0 and 0.0006 min-1 at pH 2.50, 5.05 and 12.04 for TiO2/UV and 0.03, 0.007 and 0.0005 min-1 at pH 2.51, 5.05 and 11.33 for g-C3N4/vis, respectively. Around eighteen by-products have been detected with slight differences between the two photocatalytic systems studied. The evolution of the main common by-products (tentatively identified as 1-(4-ethylphenyl)-2-methylpropan-1-one, 1-(4-isobutylphenyl)ethan-1-ol, 1-(4-ethylphenyl)-2-methylpropan-1-ol and 1(-4-acetylphenyl)-2-methylpropan-1-one) were monitored and the results were consistent with reaction pathways based on hydroxyl radical attacks following/followed by decarboxylation. Moreover, some by-products have been reported for the first time in the photocatalytic oxidation of ibuprofen.
Collapse
Affiliation(s)
- Marta Jiménez-Salcedo
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), University of La Rioja, C/ Madre de Dios 51, E-26006 Logroño La Rioja, Spain
| | - Miguel Monge
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), University of La Rioja, C/ Madre de Dios 51, E-26006 Logroño La Rioja, Spain.
| | - María Teresa Tena
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), University of La Rioja, C/ Madre de Dios 51, E-26006 Logroño La Rioja, Spain.
| |
Collapse
|
623
|
Sharma BM, Bečanová J, Scheringer M, Sharma A, Bharat GK, Whitehead PG, Klánová J, Nizzetto L. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1459-1467. [PMID: 30235631 DOI: 10.1016/j.scitotenv.2018.07.235] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 05/03/2023]
Abstract
Pharmaceuticals, personal care products (PPCPs), and artificial sweeteners (ASWs) are contaminants of emerging concern commonly found in the aquatic environments. In India, studies reporting environmental occurrence of these contaminants are scarce. In this study, we investigated the occurrence and distribution of 15 PPCPs and five ASWs in the river and groundwater (used untreated as drinking water) at several sites along the Ganges River. Based on the measured groundwater concentrations, we estimated the life-long human health risk from exposure to PPCPs through drinking. In addition, we estimated the risk of exposure to PPCPs and ASWs in the river water for aquatic organisms. The sum of detected PPCPs in the river water ranged between 54.7-826 ng/L, with higher concentrations in the severely anthropogenically influenced middle and lower reaches of the Ganges. The highest concentration among the PPCPs in the river water was of caffeine (743 ng/L). The sum of detected ASWs in river water ranged between 0.2-102 ng/L. Similar to PPCPs, the sum of ASWs in the river water was higher in the middle and lower reaches of the Ganges. In groundwater, the sum of detected PPCPs ranged between 34-293 ng/L, whereas of ASWs ranged between 0.5-25 ng/L. Negligible risk for humans was estimated from PPCPs in the drinking groundwater sources along the Ganges River, whereas moderate risks to PPCPs and ASWs (namely: caffeine, sulfamethoxazole, triclocarban, triclosan, and sucralose) were estimated for aquatic organisms in the Ganges River.
Collapse
Affiliation(s)
- Brij Mohan Sharma
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic.
| | - Jitka Bečanová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic; Graduate School of Oceanography, University of Rhode Island, RI 02882, USA
| | - Martin Scheringer
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic; Institute for Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Anežka Sharma
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic
| | - Girija K Bharat
- Mu Gamma Consultants Pvt. Ltd., Sector-50, Gurgaon, Haryana 122018, India; The Energy and Resources Institute (TERI), Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Paul G Whitehead
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, United Kingdom
| | - Jana Klánová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic
| | - Luca Nizzetto
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic; Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, Oslo 0349, Norway
| |
Collapse
|
624
|
Rath S, Fostier AH, Pereira LA, Dioniso AC, de Oliveira Ferreira F, Doretto KM, Maniero Peruchi L, Viera A, de Oliveira Neto OF, Dal Bosco SM, Martínez-Mejía MJ. Sorption behaviors of antimicrobial and antiparasitic veterinary drugs on subtropical soils. CHEMOSPHERE 2019; 214:111-122. [PMID: 30261417 DOI: 10.1016/j.chemosphere.2018.09.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 05/22/2023]
Abstract
Brazil is one of the world's largest producers of animal protein, requiring the large-scale use of veterinary drugs. The administration of antimicrobials and antiparasitics is a common practice. However, there is a lack of information on how these drugs impact the environment. Antimicrobials are capable of altering the soil microbial population and are responsible for the development of multidrug-resistant microbial strains. Therefore, it is important to evaluate the fate and transport of these compounds in the environment, and one parameter used for this purpose is the soil-water partition coefficient. In this work, an assessment was made of the soil sorption behaviors of 18 drugs from seven different families, including antimicrobials (sulfonamides, fluoroquinolones, amphenicols, and macrolides) and antiparasitic drugs (milbemycin, avermectins, and benzimidazoles). Seven subtropical soils of different textural classes were tested. The Freundlich sorption coefficients, expressed as μg1-1/n (cm3)1/n g-1, were in the following ranges: 0.45 to 19 (sulfonamides), 72 to 2410 (fluoroquinolones), 9 to 58 (thiabendazole), 0.03 to 0.48 (florfenicol), 105 to 424 (moxidectin), 14 to 184 (avermectins), and 1.5 to 74 (macrolides). The results showed that the drugs belonging to the same family, with chemical structures in common, presented similar behaviors regarding sorption and desorption, for the different soils tested and are generally in agreement with soils from temperate regions. The data set obtained in this work give an overview of the fate of the veterinary drugs in Brazilian subtropical soils with different textures and composition and can be very helpful for exposure risk assessments.
Collapse
Affiliation(s)
- Susanne Rath
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil.
| | - Anne Hélène Fostier
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil
| | - Leandro Alves Pereira
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil
| | - Andreza Camilotti Dioniso
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil
| | - Fabrício de Oliveira Ferreira
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil
| | - Keity Margareth Doretto
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil
| | - Livia Maniero Peruchi
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil
| | - Alessandra Viera
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil
| | - Odilon França de Oliveira Neto
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil
| | - Sandra Maria Dal Bosco
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil
| | - Mónica J Martínez-Mejía
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas 13084-971 SP, Brazil
| |
Collapse
|
625
|
Martín-Pozo L, de Alarcón-Gómez B, Rodríguez-Gómez R, García-Córcoles MT, Çipa M, Zafra-Gómez A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 2019; 192:508-533. [DOI: 10.1016/j.talanta.2018.09.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
626
|
Al Hakim S, Baalbaki A, Tantawi O, Ghauch A. Chemically and thermally activated persulfate for theophylline degradation and application to pharmaceutical factory effluent. RSC Adv 2019; 9:33472-33485. [PMID: 35529119 PMCID: PMC9073359 DOI: 10.1039/c9ra05362j] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/26/2019] [Indexed: 11/29/2022] Open
Abstract
Degradation of PPCPs by AOPs has gained major interest in the past decade. In this work, theophylline (TP) oxidation was studied in thermally (TAP) and chemically (CAP) activated persulfate systems, separately and in combination (TCAP). For [TP]0 = 10 mg L−1, (i) TAP resulted in 60% TP degradation at [PS]0 = 5 mM and T = 60 °C after 60 min of reaction and (ii) CAP showed slight degradation at room temperature; however, (iii) TCAP resulted in complete TP degradation for [PS]0 = [Fe2+]0 = 2 mM at T = 60 °C following a pseudo-first order reaction rate with calculated kobs = 5.6 (±0.4) × 10−2 min−1. In the TCAP system, the [PS]0 : [Fe2+]0 ratio of 1 : 1 presented the best results. A positive correlation was obtained between the TP degradation rate and increasing temperature and [PS]0, and a negative correlation was obtained with increasing pH. Both chloride and humic acid inhibited the degradation process, while nitrates enhanced it. TP dissolved in spring, sea and waste water simulating real effluents showed lower degradation rates than in DI water. Waste water caused the highest inhibition (kobs = 2.6 (±0.6) × 10−4 min−1). Finally, the TCAP system was tested on a real factory effluent highly charged with TP, e.g. [TP]0 = 160 mg L−1, with successful degradation under the conditions of 60 °C and [PS]0 = [Fe2+]0 = 50 mM. Chemically activated persulfate in heated medium showed synergistic effect toward full degradation of theophylline in industrial factory effluents. This makes such AOP a well-adapted technology to treat highly concentrated hazardous pharmaceuticals.![]()
Collapse
Affiliation(s)
- Suha Al Hakim
- American University of Beirut
- Faculty of Arts and Sciences
- Department of Chemistry
- 1107-2020 Beirut
- Lebanon
| | - Abbas Baalbaki
- American University of Beirut
- Faculty of Arts and Sciences
- Department of Chemistry
- 1107-2020 Beirut
- Lebanon
| | - Omar Tantawi
- American University of Beirut
- Faculty of Arts and Sciences
- Department of Chemistry
- 1107-2020 Beirut
- Lebanon
| | - Antoine Ghauch
- American University of Beirut
- Faculty of Arts and Sciences
- Department of Chemistry
- 1107-2020 Beirut
- Lebanon
| |
Collapse
|
627
|
Mbhele ZE, Ncube S, Madikizela LM. Synthesis of a molecularly imprinted polymer and its application in selective extraction of fenoprofen from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36724-36735. [PMID: 30382513 DOI: 10.1007/s11356-018-3602-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
The presence of various classes of pharmaceutical drugs in different environmental compartments has been reported worldwide. In South Africa, the detection of pharmaceuticals especially the non-steroidal anti-inflammatory drugs is recent, and more studies are being done in order to fully understand their fate in the aquatic environment. With considerations for the need of better sample preparation techniques, this study synthesized a molecularly imprinted polymer for the selective extraction of a non-steroidal anti-inflammatory drug, fenoprofen in aqueous environmental samples. Batch adsorption studies showed that adsorption of fenoprofen onto the cavities of the polymer followed a Langmuir isotherm as well as a pseudo second order model implying formation of a monolayer on the surface through chemisorption. The polymer had a maximum adsorption capacity of 38.8 mg g-1 and a Langmuir surface area of 1607 m2 g-1. The imprinted polymer was then used as the selective sorbent for solid phase extraction in the analysis of fenoprofen from wastewater followed by chromatographic determination. The analytical method gave a detection limit of 0.64 ng mL-1 and recovery of 99.6%. The concentration of fenoprofen detected in influent and effluent samples from two wastewater treatment plants ranged from 24 to 58 ng mL-1. The ability of the treatment plants to remove fenoprofen during wastewater processing based on the difference in concentrations in influent and effluent samples was found to be 41%. This work has shown that there is a possibility of release of fenoprofen from wastewater treatment plants into surface water sources.
Collapse
Affiliation(s)
- Zama Emmaculate Mbhele
- Department of Chemistry, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa
| | - Somandla Ncube
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | | |
Collapse
|
628
|
Semerjian L, Shanableh A, Semreen MH, Samarai M. Human health risk assessment of pharmaceuticals in treated wastewater reused for non-potable applications in Sharjah, United Arab Emirates. ENVIRONMENT INTERNATIONAL 2018; 121:325-331. [PMID: 30241020 DOI: 10.1016/j.envint.2018.08.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals and personal care products are an integral part of societal health yet their presence in various environmental compartments, including treated wastewaters, has sparked concerns towards possible human and ecological health effects. The current study aims to characterize human health risks posed by ten pharmaceuticals quantified in wastewater treatment plant effluents where water is reused mainly for landscape irrigation. Receptors were identified as children playing in green areas, adult landscape workers, and adult users of athletic and golf courses irrigated by treated wastewater. The human health risk assessment model exhibited safe exposure (RQ < 1) to all pharmaceuticals for all receptors through both dermal and ingestion exposure pathways. RQs were highest for the landscape worker followed by children playing in green areas and then adult using the athletic fields. RQs were highest to lowest in the following order of pharmaceuticals: acetaminophen, metoprolol, ciprofloxacin, erythromycin, ofloxacin, sulfadiazine, sulfamethoxazole, sulfapyridine, risperidone, and sulfamethazine. Such risk assessment findings aid in supporting decisions to optimize wastewater treatment and reuse strategies, as well as safeguard public and environmental health.
Collapse
Affiliation(s)
- Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Mufid Samarai
- Sharjah Research Academy, Government of Sharjah, P.O. Box 2580, Sharjah, United Arab Emirates
| |
Collapse
|
629
|
Yan Q, Xu Y, Yu Y, Zhu ZW, Feng G. Effects of pharmaceuticals on microbial communities and activity of soil enzymes in mesocosm-scale constructed wetlands. CHEMOSPHERE 2018; 212:245-253. [PMID: 30145416 DOI: 10.1016/j.chemosphere.2018.08.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Cyperus alternifolius based mesocosm-scale constructed wetland was employed to remove pharmaceuticals. We investigated the microbial community composition using phosphor lipid fatty acids (PFLAs) analysis and substrate enzyme activity during long-term exposure to pharmaceuticals in mesocosm-scale constructed wetlands. The results showed that there was no visible inhibition effect of pharmaceuticals on CW substrate enzymes activities in the experimental range (0-500 μg/L). Microbial communities, as revealed by PFLAs, were enhanced by the presence of plants, while the PFLAs content was highest when the pharmaceutical concentration was 10 μg/L or 30 μg/L at CWs. Except for anaerobic bacteria and Saturated fatty acids, the maximum PLFAs levels were reached when the pharmaceuticals were 10 μg/L or 30 μg/L, while Bacteria, G (-), fungal bacteria, Aerobic bacteria and Monounsaturated fatty acids were remarkably affected by high pharmaceuticals (100-500 μg/L). However, the main microbial florae were not changed among the treatments. In this study, the removal efficiencies of the studied pharmaceuticals in Planted (30) was greatest, which could be attributed to the higher microbial biomass. These results indicate that C. alternifolius can phytoremediate pharmaceutical-contaminated waters in CWs. Individual fatty acid cannot be used to represent specific species; therefore, more approaches to species identification such as rRNA-based methods must be included in future studies to better understand the metabolic mechanisms of microorganisms involved in the removal of studied pharmaceuticals and improve the performance of CWs.
Collapse
Affiliation(s)
- Qing Yan
- China National Rice Research Institute, Hangzhou, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China.
| | - Yufeng Xu
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yonghong Yu
- China National Rice Research Institute, Hangzhou, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China
| | - Zhi Wei Zhu
- China National Rice Research Institute, Hangzhou, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China.
| | - Guozhong Feng
- China National Rice Research Institute, Hangzhou, China.
| |
Collapse
|
630
|
Kalhori EM, Ghahramani E, Al-Musawi TJ, Saleh HN, Sepehr MN, Zarrabi M. Effective reduction of metronidazole over the cryptomelane-type manganese oxide octahedral molecular sieve (K-OMS-2) catalyst: facile synthesis, experimental design and modeling, statistical analysis, and identification of by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34164-34180. [PMID: 30284713 DOI: 10.1007/s11356-018-3352-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
High concentrations of antibiotic compounds within pharmaceutical wastewater have hazardous impacts toward environment and human health. Therefore, there is an immediate requirement of efficient treatment method for removal of antibiotics from aquatic environment. In the present study, the cryptomelane catalyst-type manganese oxide octahedral molecular sieve (K-OMS-2) was synthesized in the presence of benzyl alcohol as a reducing agent and cetyltrimethylammonium bromide as a structure-directing agent and then utilized to reduce the metronidazole. The central composite design method was the experimental design adopted. The FESEM analysis revealed that the K-OMS-2 surface contained many uniformly cylindrical aggregates less than about 40 nm in diameter and about 80-100 nm in length. Besides, a high specific surface area of 129 m2/g and average pore size of 45.47 nm were recorded. According to the TGA/DTA analysis, the prepared catalyst revealed high thermal stability. The maximum metronidazole degradation (95.36%) was evident at conditions of pH = 3, catalyst mass = 0.97 g/L, contact time = 200 min, and metronidazole concentration = 20 mg/L. Metronidazole did not form a complex with nitrate, fluoride, sulfate, or hardness. These ions exerted a negligible effect on metronidazole reduction using the K-OMS-2 catalyst, except for hardness, which reduced the removal efficiency of metronidazole by 17%. The FTIR and LC-MS revealed a complex mechanism involved in the metronidazole degradation by the K-OMS-2 involving the formation of an amino group, a hydroxyelated compound via N-denitration, and hydrogenation process on the K-OMS-2 catalyst surface.
Collapse
Affiliation(s)
- Ebrahim Mohammadi Kalhori
- Department of Environmental Health Engineering, Research Center for Health, Safety and Environment, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Esmaeil Ghahramani
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Tariq J Al-Musawi
- Department of Civil Engineering, Faculty of Engineering, Isra University, Amman, Jordan
| | - Hossien Najafi Saleh
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydarieh, Iran
| | - Mohammad Noori Sepehr
- Department of Environmental Health Engineering, Research Center for Health, Safety and Environment, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mansur Zarrabi
- Department of Environmental Health Engineering, Research Center for Health, Safety and Environment, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
631
|
Frontistis Z. Degradation of the Nonsteroidal Anti-Inflammatory Drug Piroxicam by Iron Activated Persulfate: The Role of Water Matrix and Ultrasound Synergy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2600. [PMID: 30469354 PMCID: PMC6265816 DOI: 10.3390/ijerph15112600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/18/2022]
Abstract
This work examined the oxidation of Piroxicam (PIR), a representative nonsteroidal anti-inflammatory drug using iron activated persulfate. The effect of persulfate dosing was vital for the efficiency of the process. The addition of 20 mg/L sodium persulfate (SPS) eliminated 500 μg/L of PIR in less than 20 min at natural pH. PIR decomposition followed pseudo-first-order kinetics, and the observed kinetic constant increased by 2.1 times when the initial concentration of PIR decreased from 2000 to 250 μg/L. Acidic pH favored the PIR destruction, while both sulfate and hydroxyl radicals are involved in PIR destruction at natural pH. The effect of inorganic ions like bicarbonate and chlorides was almost insignificant on PIR removal. The presence of humic acid reduced PIR removal from 100% to 67% after 20 min of treatment with 2 mg/L Fe2+ and 20 mg/L SPS. The experiment that was performed with bottled water showed similar efficiency with ultrapure water, while in the case of secondary effluent, PIR removal decreased by 26% after 30 min of treatment. The Fe2+/SPS/ultrasound hybrid process showed a low degree of synergy (18.3%). The ecotoxicity of aqueous solution using the Vibrio fischeri as an indicator was reduced during the treatment, although with a different trend from the removal of PIR, possibly due to byproducts derived from the oxidation of secondary effluent and PIR.
Collapse
Affiliation(s)
- Zacharias Frontistis
- Department of Environmental Engineering, University of Western Macedonia, GR-50100 Kozani, Greece.
| |
Collapse
|
632
|
Ncube S, Madikizela LM, Chimuka L, Nindi MM. Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. WATER RESEARCH 2018; 145:231-247. [PMID: 30142521 DOI: 10.1016/j.watres.2018.08.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 05/27/2023]
Abstract
The therapeutic efficacy of antiretroviral drugs as well as challenges and side effects against the human immunodeficiency virus is well documented and reviewed. Evidence is available in literature indication that antiretrovirals are only partially transformed and become completely excreted from the human body in their original form and/or as metabolites in urine and feces. The possibility of massive release of antiretrovirals through human excreta that enters surface water through surface runoff and wastewater treatment plant effluents is now of environmental concern because the public might be experiencing chronic exposure to antiretrovirals. The primary concern of this review is limited data concerning environmental fate and ecotoxicity of antiretrovirals and their metabolites. The review aims to provide a comprehensive insight into the evaluation of antiretrovirals in environmental samples. The objective is therefore to assess the extent of analysis of antiretrovirals in environmental samples and also look at strategies including instrumentation and predictive models that have been reported in literature on the fate and ecotoxicological effects due to presence of antiretrovirals in different environmental compartments. The review also looks at current challenges and offers possible areas of exploration that could help minimize the presence of antiretrovirals in the environment.
Collapse
Affiliation(s)
- Somandla Ncube
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Lawrence M Madikizela
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Mathew M Nindi
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa.
| |
Collapse
|
633
|
Li X, Chu Z, Yang J, Li M, Du M, Zhao X, Zhu ZJ, Li Y. Synthetic Musks: A Class of Commercial Fragrance Additives in Personal Care Products (PCPs) Causing Concern as Emerging Contaminants. ADVANCES IN MARINE BIOLOGY 2018; 81:213-280. [PMID: 30471657 DOI: 10.1016/bs.amb.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthetic musks (SMs) are promising fragrance additives used in personal care products (PCPs). The widespread presence of SMs in environmental media remains a serious risk because of their harmful effects. Recently, the environmental hazards of SMs have been widely reported in various environmental samples including those from coastal and marine regions. This paper provides a systematic review of SMs, including their classification, synthetic routes, analysis and occurrence in environmental samples, fate and toxicity in the environment, as well as the associated risk assessment and pollution control. Research gaps and future opportunities were also identified with the hope of raising interest in this topic.
Collapse
Affiliation(s)
- Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Zhenhua Chu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Jiawen Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Minghao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Zhiwen Joy Zhu
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China.
| |
Collapse
|
634
|
Baratpour P, Moussavi G. The accelerated biodegradation and mineralization of acetaminophen in the H 2O 2-stimulated upflow fixed-bed bioreactor (UFBR). CHEMOSPHERE 2018; 210:1115-1123. [PMID: 30208537 DOI: 10.1016/j.chemosphere.2018.07.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The biodegradation and mineralization of acetaminophen (ACT) was evaluated in the upflow fixed-bed bioreactor (UFBR) inoculated with a biomass containing mixture of Pseudomonas spp. and Bacillus spp. as the dominant bacteria under H2O2 stimulation. The effect of various main operational variables was evaluated on the performance of the UFBR for ACT removal. The maximum ACT removal was obtained at the H2O2:ACT molar ratio of 14. H2O2 induced the bacteria in biofilm for the in-situ generation of peroxidase resulted in the acceleration of ACT decomposition into more biodegradable intermediates. Over 99% of ACT and 72% of its TOC at initial ACT concentrations up to 300 mg/L could be eliminated under optimum H2O2:ACT molar ratio in the batch UFBR within 12 h recirculation time. The specific biodegradation rate of ACT increased from 1.0 to 4.1 mg ACT/gbiomass.h when the inlet loading rate was increased from 8.3 to 41.7 g ACT/m3.h. In addition, the complete biodegradation and TOC removal of ACT was observed in the continuous UFBR at the hydraulic retention time of 6 h and the presence of 1-20 g/L salinity without inhibition. The presence of H2O2 could efficiently stimulate the production of bacterial peroxidase, which in turn resulted in the acceleration of ACT biodegradation and mineralization. Therefore, the H2O2-stimulated UFBR is an efficient and viable technique for in-situ production of peroxidase used for acceleration of ACT biodegradation.
Collapse
Affiliation(s)
- Parisa Baratpour
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Moussavi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
635
|
Guan J, Yan X, Zhao Y, Lu J, Sun Y, Peng X. Investigation of the molecular interactions of triclocarban with human serum albumin using multispectroscopies and molecular modeling. J Biomol Struct Dyn 2018; 37:3550-3565. [DOI: 10.1080/07391102.2018.1520149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiao Guan
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
| | - Xin Yan
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
| | - Yajing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Jing Lu
- Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi, People’s Republic of China
| | - Yinhe Sun
- Tianjin Institute of Metrological Supervision and Testing, Nankai District, Tianjin, People’s Republic of China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
636
|
Maceda-Veiga A, Mac Nally R, de Sostoa A. Water-quality impacts in semi-arid regions: can natural 'green filters' mitigate adverse effects on fish assemblages? WATER RESEARCH 2018; 144:628-641. [PMID: 30096689 DOI: 10.1016/j.watres.2018.07.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
The effective aridity in riparian areas is increasing from climate change and from human water consumption, which exacerbates the impacts of effluents from wastewater-treatment plants and from catchment run-off in rivers. The potential of natural riparian areas to act as 'green filters' has long been recognized, but the possible ecological benefits of natural riparian areas over large-scale environmental gradients on fish have not been explored in detail. Using an extensive data-set from northeastern Spain (99,700 km2, 15 catchments, 530 sites), ours is the first study to ask whether natural riparian vegetation can mitigate the effects of pollution on fish in rivers experiencing water scarcity. We used multimodel inference to explore the additive and interactive effects of riparian vegetation with nutrient pollution and water conductivity, which are among the world's worst river stressors, on multiple fish guilds, including widely distributed species and highly invasive alien fish species. Most models (54%) supported the additive effects of water-quality factors on fish, after having accounted for the influence of geography and hydrological alterations. Although many fewer models (7%) included riparian vegetation as an important predictor, riparian vegetation modulated the forms of the associations between fish and pollution. The relationship of nutrient pollution with native and alien fish richness changed from negative to positive with greater riparian structure or species richness. However, we found the opposite effect for the mean body size of sedentary fish, and only positive additive effects of riparian richness for the probability of occurrence of pelagic fish. Ammonium and nitrite concentrations adversely affected fish in these rivers up to 10 years after the enforcement of the implementation of the Water Framework Directive by the European Union. High conductivity also much affects fish, having negatives associations with migratory, pelagic, invertivorous and native fish, and positive associations with sedentary, benthic, omnivorous and alien fish. Therefore, the current status of natural riparian areas is unlikely to fully mitigate water-quality impacts on fish. The conservation of freshwater resources in semi-arid regions, such as north-eastern Spain, requires improved waste-water treatments and better agriculture practices.
Collapse
Affiliation(s)
- Alberto Maceda-Veiga
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Institute of Research in Biodiversity, Universitat de Barcelona (IRBio-UB), 08028, Barcelona, Spain; Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), 41092, Sevilla, Spain.
| | - Ralph Mac Nally
- Institute for Applied Ecology, University of Canberra, Bruce, 2617, ACT, Australia; Sunrise Ecological Research Institute, Ocean Grove, 3226, Australia
| | - Adolfo de Sostoa
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Institute of Research in Biodiversity, Universitat de Barcelona (IRBio-UB), 08028, Barcelona, Spain
| |
Collapse
|
637
|
Cerqueira MBR, Soares KL, Caldas SS, Primel EG. Sample as solid support in MSPD: A new possibility for determination of pharmaceuticals, personal care and degradation products in sewage sludge. CHEMOSPHERE 2018; 211:875-883. [PMID: 30103143 DOI: 10.1016/j.chemosphere.2018.07.165] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
A method based on matrix-solid phase dispersion (MSPD), focused on the principles of green analytical chemistry, aimed at the use of alternative solid supports and less toxic solvents, was developed for the simultaneous determination of 19 pharmaceuticals, 4 personal care products (PPCPs) and 4 degradation products in sewage sludge samples. Higher recoveries were achieved when 2 g sample was macerated for 5 min in a glass mortar, transferred to a centrifuge tube, and 1 min vortex agitation with 5 mL methanol. The performance of the method was evaluated through linearity, recovery, precision (intra-day), method detection and quantification limits (MDL and MQL) and matrix effect. The calibration curves prepared in methanol and in the matrix extract showed a correlation coefficient ranging from 0.98 to 0.99. MQL values ranged from 1.25 to 1250 ng g-1. Recoveries between 50 and 120% were reached with RSDs lower than 20% for most compounds. The method presented low and medium matrix effects for most analytes. This method was successfully applied to real samples and of the 27 compounds determined, amitriptyline, carbamazepine, diclofenac, haloperidol, ketoconazole, miconazole, albendazole, mebendazole, thiabendazole, triclosan and triclocarban were detected in concentrations between 2.5 and 5400 ng g-1.
Collapse
Affiliation(s)
- Maristela B R Cerqueira
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande-FURG, Av Itália, Km 8, s/n, Rio Grande, Rio Grande, do Sul State, 96201-900, Brazil
| | - Karina L Soares
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande-FURG, Av Itália, Km 8, s/n, Rio Grande, Rio Grande, do Sul State, 96201-900, Brazil
| | - Sergiane S Caldas
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande-FURG, Av Itália, Km 8, s/n, Rio Grande, Rio Grande, do Sul State, 96201-900, Brazil
| | - Ednei G Primel
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande-FURG, Av Itália, Km 8, s/n, Rio Grande, Rio Grande, do Sul State, 96201-900, Brazil.
| |
Collapse
|
638
|
Montemurro N, García-Vara M, Peña-Herrera JM, Lladó J, Barceló D, Pérez S. Conventional and Advanced Processes for the Removal of Pharmaceuticals and Their Human Metabolites from Wastewater. ACTA ACUST UNITED AC 2018. [DOI: 10.1021/bk-2018-1302.ch002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Nicola Montemurro
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Manuel García-Vara
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Juan Manuel Peña-Herrera
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Jordi Lladó
- Department of Mining, Industrial and TIC Engineering (EMIT), Universitat Politécnica de Catalunya (UPC), Manresa, Barcelona 08242, Spain
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Sandra Pérez
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| |
Collapse
|
639
|
Cao M, Feng Y, Zhang Y, Kang W, Lian K, Ai L. Studies on the metabolism and degradation of vancomycin in simulated in vitro and aquatic environment by UHPLC-Triple-TOF-MS/MS. Sci Rep 2018; 8:15471. [PMID: 30341315 PMCID: PMC6195508 DOI: 10.1038/s41598-018-33826-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022] Open
Abstract
Vancomycin is one of the most commonly used glycopeptide antiobiotics, and as such is an important emerging environmental contaminant. Pharmaceuticals and personal care products (PPCPs), such as antibiotics, are problematic since wastewater treatment processes are not completely effective at removing these chemical compounds. Since wastewater treatment processes are not completely effective, vancomycin occurs in surface water. Vancomycin and its metabolites in vivo and degradation products in aquatic environment may lead to undesirable ecological effects that threaten the environment or cause undesirable reactions that affect human health. We aimed to study vancomycin metabolism in vitro and its natural degradation in aquatic environment, as well as explore for related metabolites and degradation products. Accordingly, we established four systems, using a constant temperature oscillator at 37 °C for 10 days for vancomycin in activated rat liver microsomes (experimental system), inactivated rat liver microsomes (control system), phosphate buffer saline (PBS system) and pure water (pure water system), as well as an additional system of activated rat liver microsomes without vancomycin (blank system). The metabolism and degradation of vancomycin were studied using a high resolution and high sensitivity ultra-high performance liquid chromatography (UHPLC)-Triple-time of flight (TOF)-mass spectrometry (MS) method in positive ion mode. The compared result of activated rat liver microsomes system and inactivated rat liver microsomes system confirms that vancomycin is not metabolized in the liver. Vancomycin was degraded in the four non-blank incubation systems. The MetabolitePilot 2.0 software was used for screening the probable degradation products, as well as for establishing its associated degradation pathways. Eventually, four degradation products were identified and their chemical structures were deduced. The results of this study provide a foundation for evaluation of the effects of vancomycin and its degradation products on environmental safety and human health in the future.
Collapse
Affiliation(s)
- Mengsi Cao
- Department of sanitary inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanru Feng
- Department of sanitary inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Zhang
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, China
| | - Weijun Kang
- Department of sanitary inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.,Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Kaoqi Lian
- Department of sanitary inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China. .,Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Lianfeng Ai
- Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang, 050051, China.
| |
Collapse
|
640
|
Park N, Choi Y, Kim D, Kim K, Jeon J. Prioritization of highly exposable pharmaceuticals via a suspect/non-target screening approach: A case study for Yeongsan River, Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:570-579. [PMID: 29800850 DOI: 10.1016/j.scitotenv.2018.05.081] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/20/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) in the Yeongsan River, Korea were prioritized via suspect and non-target analysis using LC-HRMS (QExactive plus Orbitrap) followed by semi-quantitative analysis to confirm the priority of PPCPs. A scoring and ranking system for prioritization was suggested based on occurrence frequency and chromatographic peak area or concentration. Through suspect and non-target screening, more than 50 PPCPs were tentatively identified and ranked by the scoring system. Among them, 28 substances were finally confirmed using reference standards. For estimating concentration, 26 confirmed PPCPs and 12 additional substances not included in the first ranking were semi-quantitatively analyzed. We found that carbamazepine, metformin, paraxanthine, naproxen, and fluconazole occurred 100% of the time above the limit of quantification in 14 samples, whereas carbamazepine, metformin, paraxanthine, caffeine, and cimetidine showed maximum concentrations above 1000 ng/L. Thus, in the final prioritization list, carbamazepine, metformin, and paraxanthine shared first place, followed by caffeine, cimetidine, lidocaine, naproxen, cetirizine, climbazole, fexofenadine, tramadol, and fluconazole, with scores of 100 or above. We suggest that these 12 PPCPs are the most highly exposable substances, and thus must be considered in future water monitoring in the Yeongsan River.
Collapse
Affiliation(s)
- Naree Park
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Deokwon Kim
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Kyunghyun Kim
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
641
|
Jang D, Jeong S, Jang A, Kang S. Relating solute properties of contaminants of emerging concern and their rejection by forward osmosis membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:673-678. [PMID: 29803038 DOI: 10.1016/j.scitotenv.2018.05.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
To elucidate the transport of emerging contaminants (CECs) in forward osmosis (FO) membrane process according to their solute properties, the rejections of CECs with various molecular weight, octanol/water partition coefficient (log Kow), and dissociation constant (pKa) were investigated. Among 12 selected CECs, negatively charged CECs exhibited the highest rejection efficiency than neutral or positively charged CECs due to the electrostatic repulsion between negatively charged CECs and membrane surfaces as well as diffusional hindrance by reversely transported salts from draw stream. The statistical analysis showed that the molecular weight was strongly correlated with the rejection of neutral CECs by size exclusion. Moreover, the correlation between adsorption and log Kow value of neutral CECs was observed due to the hydrophobic interaction. Positively charged CECs exhibited higher adsorption, but lower rejection than the negatively charged CECs due to the locally increased concentration by adsorption, and subsequent migration in FO membrane.
Collapse
Affiliation(s)
- Duksoo Jang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sanghyun Jeong
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
642
|
Desbiolles F, Malleret L, Tiliacos C, Wong-Wah-Chung P, Laffont-Schwob I. Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:1334-1348. [PMID: 29929299 DOI: 10.1016/j.scitotenv.2018.04.351] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 05/03/2023]
Abstract
Due to their pseudo-persistence and their biological activity, pharmaceuticals are emerging contaminants of major concern for the environment. The aim of this review is to provide an updated inventory of the contamination of aquatic environments by 43 drugs representing different classes of pharmaceuticals, such as antibiotics, anti-inflammatory drugs, anti-depressants, sex hormones, lipid regulators and beta-blockers. The data collected is focused on contamination levels reported in marine coastal waters and in waste and river waters flowing into the Mediterranean Sea. The most widely produced/prescribed classes of medicines are compared with the substances most widely searched for in the environment. Ranges of pollution levels according to the type of water body are also presented, to examine the fate in sewage treatment plants and the persistence in the environment of the targeted molecules. Levels of pharmaceuticals ranged from 100 to 10,000 or even 100,000 ng·L-1 in sewage waters, dropping to 1 to 10,000 ng·L-1 in rivers and to not detected to 3000 ng·L-1 in sea water. However, this paper evidences a lack of data for seawater and also for several countries along the southern coast of the Mediterranean Sea. In order to assess the risk for aquatic ecosystems associated with pharmaceuticals, experimental ecotoxicological values obtained using normalized acute and/or chronic bioassays carried out with different trophic levels were collected for each drug. Targeted biological species and associated bioassays are classified on the basis of their sensitivity to each class of compounds. Occurrence and ecotoxicology are then linked by using the Hazard Quotient (HQ) to assess the environmental risk caused by pharmaceuticals in the Mediterranean Basin. Correlations between HQ and frequency of detection of pharmaceuticals highlighted thirteen compounds that are cause for concern in Mediterranean fresh and sea waters, such as 17α-ethinylestradiol, metoprolol, 8 antibiotics and 3 analgesics/anti-inflammatories.
Collapse
Affiliation(s)
- Fanny Desbiolles
- Aix Marseille Univ, CNRS, LCE, UMR 7376, ECCOREV FR 3098, Marseille, France; Aix Marseille Univ, CNRS, IRD, Avignon Université, IMBE, Marseille, France
| | - Laure Malleret
- Aix Marseille Univ, CNRS, LCE, UMR 7376, ECCOREV FR 3098, Marseille, France.
| | - Christophe Tiliacos
- Seakalia, Technopôle de Château Gombert, 3 allée des Maraîchers, 13013 Marseille, France
| | | | - Isabelle Laffont-Schwob
- Aix Marseille Univ, CNRS, IRD, Avignon Université, IMBE, Marseille, France; Aix Marseille Univ, IRD, LPED, UMR 151, Marseille, France
| |
Collapse
|
643
|
Awfa D, Ateia M, Fujii M, Johnson MS, Yoshimura C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO 2 composites: A critical review of recent literature. WATER RESEARCH 2018; 142:26-45. [PMID: 29859390 DOI: 10.1016/j.watres.2018.05.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/09/2018] [Accepted: 05/19/2018] [Indexed: 05/14/2023]
Abstract
The high concentrations of pharmaceuticals and personal care products (PPCP) that found in water in many locations are of concern. Among the available water treatment methods, heterogeneous photocatalysis using TiO2 is an emerging and viable technology to overcome the occurrence of PPCP in natural and waste water. The combination of carbonaceous materials (e.g., activated carbon, carbon nanotubes and graphene nanosheets) with TiO2, a recent development, gives significantly improved performance. In this article, we present a critical review of the development and fabrication of carbonaceous-TiO2 and its application to PPCP removal including its influence on water chemistry, and the relevant operational parameters. Finally, we present an analysis of current priorities in the ongoing research and development of carbonaceous-TiO2 for the photodegradation of PPCP.
Collapse
Affiliation(s)
- Dion Awfa
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Mohamed Ateia
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, United States; PSIPW Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Saudi Arabia.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
644
|
K'oreje KO, Kandie FJ, Vergeynst L, Abira MA, Van Langenhove H, Okoth M, Demeestere K. Occurrence, fate and removal of pharmaceuticals, personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin, Kenya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:336-348. [PMID: 29751313 DOI: 10.1016/j.scitotenv.2018.04.331] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Although there is increased global environmental concern about emerging organic micropollutants (EOMPs) such as pharmaceuticals, personal care products (PPCPs) and polar pesticides, limited information is available on their occurrence in Africa. This study presents unique data on concentrations and loads of 31 PPCPs and 10 pesticides in four wastewater stabilization ponds (WSPs) and receiving rivers (flowing through urban centres) in Kenya. The WSPs indicate a high potential to remove pharmaceutically active compounds (PhACs) with removals by up to >4 orders of magnitude (>99.99% removal), mainly occurring at the facultative stage. However, there are large differences in removal among the different classes, and a shift in the relative PhACs occurrence is observed during wastewater treatment. Whereas the influent is dominated by high-consumption PhACs like anti-inflammatory drugs (e.g. paracetamol and ibuprofen, up to 1000 μg L-1), the most recalcitrant PhACs including mainly antibiotics (e.g. sulfadoxin and sulfamethoxazole) and antiretrovirals (e.g. lamivudine and nevirapine) are largely abundant (up to 100 μg L-1) in treated effluent. Overall, concentrations of EOMPs in the Nzoia Basin rivers are the highest in dry season (except pesticides) and in small tributaries. They are of the same order of magnitude as those measured in the western world, but clearly lower than what we recently measured in the Ngong River, Nairobi region. Based on the specific consumption patterns and recalcitrant behavior, high concentrations (>1000 ng L-1) are observed in the rivers for PPCPs like lamivudine, zidovudine, sulfamethoxazole and methylparaben. Concentration levels of pesticides are in general one order of magnitude lower (<250 ng L-1). Our data suggest a continuous input of EOMPs to the rivers from both point (WSPs) and diffuse (urban centres) sources. To better understand and manage the impact of both sources, EOMP removal mechanisms in WSPs and their attenuation in rivers merit further research.
Collapse
Affiliation(s)
- Kenneth Otieno K'oreje
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Water Resources Authority (WRA), P.O. Box 45250, Nairobi, Kenya; Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya.
| | - Faith Jebiwot Kandie
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Leendert Vergeynst
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | | | - Herman Van Langenhove
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Maurice Okoth
- Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya; Kenya Methodist University, P.O. Box 267-60200, Meru, Kenya.
| | - Kristof Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
645
|
The Systematic Adsorption of Diclofenac onto Waste Red Bricks Functionalized with Iron Oxides. WATER 2018. [DOI: 10.3390/w10101343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, waste red bricks were incorporated with iron oxides (goethite and hematite) and used for the removal of diclofenac (DCF) from aqueous solutions. The prepared waste red bricks were systematically characterized by XRF, XRD, BET, and SEM. The batch experiments were systematically conducted by investigating the adsorption kinetics, isotherms, thermodynamics, pH, and ionic strength effect. Results showed that the incorporation of iron oxides could enhance the adsorption capacity of DCF onto waste bricks, while the increased effect of hematite was better than goethite. DCF was adsorbed rapidly onto waste bricks, and the adsorption kinetic fitted the pseudo-second-order model perfectly, which could be attributed to the strong interaction between DCF and iron oxides. The increasing pH values decreased the adsorption capacity greatly, which may be due to the electrostatic repulsive interactions. The adsorption of DCF onto waste bricks was an exothermic reaction, and the adsorption isotherms fitted well with the Langmuir model. This study offers new guidelines for the utilization of construction waste, and shows useful methods for the elimination of micropollutants from aqueous solution.
Collapse
|
646
|
Madikizela LM, Ncube S, Chimuka L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:477-486. [PMID: 29709865 DOI: 10.1016/j.scitotenv.2018.04.297] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/22/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Sizeable amount of research has been conducted on the possible uptake of pharmaceuticals by plants from contaminated soil and water used for irrigation of crops. In most cases, pharmaceuticals are taken by roots and translocated into various tissues by transpiration and diffusion. Due to the plant uptake, the occurrence of pharmaceuticals in food sources such as vegetables is a public concern. Few review papers focusing on the uptake of pharmaceuticals, in particular antibiotics, and their translocation in plant tissues have been published. In the current review paper, the work conducted on the uptake of pharmaceuticals belonging to different therapeutic groups such as antibiotics, non-steroidal anti-inflammatory drugs, β-blockers and antiepileptics is reviewed. Such work includes the occurrence of pharmaceuticals in plants, translocation once taken by plants, toxicity studies as well as implications and future studies. Furthermore, the advantages and drawbacks associated with the detection and uptake of these pharmaceuticals by plants are discussed. In addition, the physico-chemical properties that could influence the plant uptake of pharmaceuticals are deliberated.
Collapse
Affiliation(s)
| | - Somandla Ncube
- Molecular Sciences Institute, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| |
Collapse
|
647
|
|
648
|
Zhang Y, Wang B, Cagnetta G, Duan L, Yang J, Deng S, Huang J, Wang Y, Yu G. Typical pharmaceuticals in major WWTPs in Beijing, China: Occurrence, load pattern and calculation reliability. WATER RESEARCH 2018; 140:291-300. [PMID: 29730561 DOI: 10.1016/j.watres.2018.04.056] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceutically active compounds (PhACs) are recognized as one of the most serious emerging micropollutants. Wastewater treatment plants are the major way through which such contaminants enter the environment. Therefore, an appropriate management of PhACs in these facilities can reduce their release into the environment. In particular, a proper sampling methodology is necessary to identify and quantify micropollutants in wastewater. In this study, 37 pharmaceuticals (including 23 antibiotics) are investigated in eight major wastewater treatment plants in Beijing. An optimized sampling methodology is successfully implemented to monitor bihourly variation of the contaminants, thus averting uncertainties derived from conventional sampling methods. In this way, more accurate pharmaceutical load patterns are determined and discussed. Thanks to the synchronous data on pharmaceutical concentration and wastewater flow, we also compare performances of various treatment processes and optimize different calculation methods for removal efficiency.
Collapse
Affiliation(s)
- Yizhe Zhang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Bin Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| | - Giovanni Cagnetta
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Lei Duan
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Jian Yang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| |
Collapse
|
649
|
Mazzitelli JY, Budzinski H, Cachot J, Geffard O, Marty P, Chiffre A, François A, Bonnafe E, Geret F. Evaluation of psychiatric hospital wastewater toxicity: what is its impact on aquatic organisms? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26090-26102. [PMID: 29971740 DOI: 10.1007/s11356-018-2501-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The primary source of pharmaceuticals to the aquatic environment is the discharge of wastewater effluents. Pharmaceuticals are a large and diverse group of compounds. Among them, psychotropic substances are particularly interesting to study due to their specific known mode of action. The present study was performed to investigate the effects of wastewater effluents from a psychiatric hospital wastewater treatment plant (WWTP) on several aquatic organisms. All the analyzed pharmaceuticals (10 compounds) were detected in WWTP effluents as well as in the receiving river. Although the environmental concentrations were generally at trace levels (ng L-1 to μg L-1), induce toxic effects were observed. This study showed the effects of the WWTP effluents on the oogenesis and/or embryogenesis of amphipod crustacean Gammarus fossarum, Japanese fish medaka Oryzias latipes, mollusk Radix peregra, and planarian Schmidtea polychroa. A decrease of the number of oocytes and produced embryos was observed for G. fossarum and S. polychroa. Similarly, the hatching rate of R. peregra was affected by effluents. In the receiving river, the macroinvertebrate community was affected by the wastewater effluents discharge.
Collapse
Affiliation(s)
- Jean-Yves Mazzitelli
- Laboratoire Biochimie et Toxicologie des Substances Bioactives (EA BTSB 7417), University of Toulouse, INU Champollion, Albi, France
| | | | - Jérôme Cachot
- EPOC UMR 5805, University of Bordeaux, Pessac, France
| | - Olivier Geffard
- Irstea, UR MALY (Freshwater Systems, Ecology and Pollution), Villeurbanne, France
| | - Pierre Marty
- Laboratoire Biochimie et Toxicologie des Substances Bioactives (EA BTSB 7417), University of Toulouse, INU Champollion, Albi, France
| | | | - Adeline François
- Irstea, UR MALY (Freshwater Systems, Ecology and Pollution), Villeurbanne, France
| | - Elsa Bonnafe
- Laboratoire Biochimie et Toxicologie des Substances Bioactives (EA BTSB 7417), University of Toulouse, INU Champollion, Albi, France
| | - Florence Geret
- Laboratoire Biochimie et Toxicologie des Substances Bioactives (EA BTSB 7417), University of Toulouse, INU Champollion, Albi, France.
| |
Collapse
|
650
|
Mezzelani M, Gorbi S, Regoli F. Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. MARINE ENVIRONMENTAL RESEARCH 2018; 140:41-60. [PMID: 29859717 DOI: 10.1016/j.marenvres.2018.05.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 05/17/2023]
Abstract
Pharmaceuticals are nowadays recognized as a threat for aquatic ecosystems. The growing consumption of these compounds and the enhancement of human health in the past two decades have been paralleled by the continuous input of such biologically active molecules in natural environments. Waste water treatment plants (WWTPs) have been identified as a major route for release of pharmaceuticals in aquatic bodies where concentrations ranging from ng/L to μg/L are ubiquitously detected. Since medicines principles are designed to be effective at very low concentrations, they have the potential to interfere with biochemical and physiological processes of aquatic species over their entire life cycle. Investigations on occurrence, bioaccumulation and effects in non target organisms are fragmentary, particularly for marine ecosystems, and related to only a limited number over the 4000 substances classified as pharmaceuticals: hence, there is a urgent need to prioritize the environmental sustainability of the most relevant compounds. The aim of this review is to summarize the main adverse effects documented for marine species exposed in both field and laboratory conditions to different classes of pharmaceuticals including non-steroidal anti-inflammatory drugs, psychiatric, cardiovascular, hypocholesterolaemic drugs, steroid hormones and antibiotics. Despite a great scientific advancement has been achieved, our knowledge is still limited on pharmaceuticals behavior in chemical mixtures, as well as their interactions with other environmental stressors. Complex ecotoxicological effects are increasingly documented and multidisciplinary, integrated approaches will be helpful to clarify the environmental hazard of these "emerged" pollutants in marine environment.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|