751
|
|
Fenugreek (Trigonella foenum-graecum L.): A Palatable Spice, An Active Herb, A Promising Functional Food, and Even More. The Chemistry inside Spices & Herbs: Research and Development – Volume II 2022. [DOI: 10.2174/9781681089492122020009] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/22/2022]
|
752
|
|
Li C, Hu Y, Wu X, Stumpf SD, Qi Y, D'Alessandro JM, Nepal KK, Sarotti AM, Cao S, Blodgett JAV. Discovery of unusual dimeric piperazyl cyclopeptides encoded by a Lentzea flaviverrucosa DSM 44664 biosynthetic supercluster. Proc Natl Acad Sci U S A 2022;119:e2117941119. [PMID: 35439047 DOI: 10.1073/pnas.2117941119] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/19/2022] Open
Abstract
Actinomycetes produce many clinically useful drugs, especially antibiotics and anticancer agents. Rare actinomycetes are known to produce bioactive molecules but they remain underexplored compared to more common Streptomyces spp. Natural molecules having piperazate building blocks are often bioactive, and genome analyses previously indicated the rare actinomycete Lentzea flaviverrucosa DSM 44664 may encode for the production of such molecules. To discover these from complex fermentation mixtures, we devised and employed a targeted metabolomic approach that revealed petrichorin A, an unusual heterodimeric biaryl-cyclohexapeptide. Its structure was determined by using multi-dimensional nuclear magnetic resonance, theoretical calculations, and strain mutagenesis, and its biosynthesis implicated an atypical cytochrome p450 heterodimerization event. Petrichorin A demonstrated potent cytotoxicity, highlighting heterodimeric-biaryls as interesting features for future drug design. Rare actinomycetes represent an underexploited source of new bioactive compounds. Here, we report the use of a targeted metabologenomic approach to identify piperazyl compounds in the rare actinomycete Lentzea flaviverrucosa DSM 44664. These efforts to identify molecules that incorporate piperazate building blocks resulted in the discovery and structural elucidation of two dimeric biaryl-cyclohexapeptides, petrichorins A and B. Petrichorin B is a symmetric homodimer similar to the known compound chloptosin, but petrichorin A is unique among known piperazyl cyclopeptides because it is an asymmetric heterodimer. Due to the structural complexity of petrichorin A, solving its structure required a combination of several standard chemical methods plus in silico modeling, strain mutagenesis, and solving the structure of its biosynthetic intermediate petrichorin C for confident assignment. Furthermore, we found that the piperazyl cyclopeptides comprising each half of the petrichorin A heterodimer are made via two distinct nonribosomal peptide synthetase (NRPS) assembly lines, and the responsible NRPS enzymes are encoded within a contiguous biosynthetic supercluster on the L. flaviverrucosa chromosome. Requiring promiscuous cytochrome p450 crosslinking events for asymmetric and symmetric biaryl production, petrichorins A and B exhibited potent in vitro activity against A2780 human ovarian cancer, HT1080 fibrosarcoma, PC3 human prostate cancer, and Jurkat human T lymphocyte cell lines with IC50 values at low nM levels. Cyclic piperazyl peptides and their crosslinked derivatives are interesting drug leads, and our findings highlight the potential for heterodimeric bicyclic peptides such as petrichorin A for inclusion in future pharmaceutical design and discovery programs.
Collapse
|
753
|
|
Zhou H, Ni WJ, Huang W, Wang Z, Cai M, Sun YC. Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Front Immunol 2022;13:834942. [PMID: 35450063 DOI: 10.3389/fimmu.2022.834942] [Cited by in Crossref: 4] [Cited by in RCA: 3] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/18/2023] Open
Abstract
As the new year of 2020 approaches, an acute respiratory disease quietly caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease 2019 (COVID-19) was reported in Wuhan, China. Subsequently, COVID-19 broke out on a global scale and formed a global public health emergency. To date, the destruction that has lasted for more than two years has not stopped and has caused the virus to continuously evolve new mutant strains. SARS-CoV-2 infection has been shown to cause multiple complications and lead to severe disability and death, which has dealt a heavy blow to global development, not only in the medical field but also in social security, economic development, global cooperation and communication. To date, studies on the epidemiology, pathogenic mechanism and pathological characteristics of SARS-CoV-2-induced COVID-19, as well as target confirmation, drug screening, and clinical intervention have achieved remarkable effects. With the continuous efforts of the WHO, governments of various countries, and scientific research and medical personnel, the public’s awareness of COVID-19 is gradually deepening, a variety of prevention methods and detection methods have been implemented, and multiple vaccines and drugs have been developed and urgently marketed. However, these do not appear to have completely stopped the pandemic and ravages of this virus. Meanwhile, research on SARS-CoV-2-induced COVID-19 has also seen some twists and controversies, such as potential drugs and the role of vaccines. In view of the fact that research on SARS-CoV-2 and COVID-19 has been extensive and in depth, this review will systematically update the current understanding of the epidemiology, transmission mechanism, pathological features, potential targets, promising drugs and ongoing clinical trials, which will provide important references and new directions for SARS-CoV-2 and COVID-19 research.
Collapse
|
754
|
|
Fassler DJ, Torre-Healy LA, Gupta R, Hamilton AM, Kobayashi S, Van Alsten SC, Zhang Y, Kurc T, Moffitt RA, Troester MA, Hoadley KA, Saltz J. Spatial Characterization of Tumor-Infiltrating Lymphocytes and Breast Cancer Progression. Cancers (Basel) 2022;14:2148. [PMID: 35565277 DOI: 10.3390/cancers14092148] [Cited by in Crossref: 4] [Cited by in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/15/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) have been established as a robust prognostic biomarker in breast cancer, with emerging utility in predicting treatment response in the adjuvant and neoadjuvant settings. In this study, the role of TILs in predicting overall survival and progression-free interval was evaluated in two independent cohorts of breast cancer from the Cancer Genome Atlas (TCGA BRCA) and the Carolina Breast Cancer Study (UNC CBCS). We utilized machine learning and computer vision algorithms to characterize TIL infiltrates in digital whole-slide images (WSIs) of breast cancer stained with hematoxylin and eosin (H&E). Multiple parameters were used to characterize the global abundance and spatial features of TIL infiltrates. Univariate and multivariate analyses show that large aggregates of peritumoral and intratumoral TILs (forests) were associated with longer survival, whereas the absence of intratumoral TILs (deserts) is associated with increased risk of recurrence. Patients with two or more high-risk spatial features were associated with significantly shorter progression-free interval (PFI). This study demonstrates the practical utility of Pathomics in evaluating the clinical significance of the abundance and spatial patterns of distribution of TIL infiltrates as important biomarkers in breast cancer.
Collapse
|
755
|
|
Padder SA, Rather RA, Bhat SA, Shah MD, Baba TR, Mubarak NM. Dynamics, phylogeny and phyto-stimulating potential of chitinase synthesizing bacterial root endosymbiosiome of North Western Himalayan Brassica rapa L. Sci Rep 2022;12:6742. [PMID: 35468936 DOI: 10.1038/s41598-022-11030-0] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/21/2022] Open
Abstract
The less phytopathogen susceptibility in Himalayan Brassica rapa L. has made it an exceptional crop eluding synthetic pesticide inputs, thereby guarantying economically well-founded and ecologically sustainable agriculture. The relevance of niche microflora of this crop has not been deliberated in this context, as endosymbiosiome is more stable than their rhizosphere counterparts on account of their restricted acquaintance with altering environment; therefore, the present investigation was carried out to study the endophytic microfloral dynamics across the B. rapa germplasm in context to their ability to produce chitinase and to characterize the screened microflora for functional and biochemical comportments in relevance to plant growth stimulation. A total of 200 colonies of bacterial endophytes were isolated from the roots of B. rapa across the J&K UT, comprising 66 locations. After morphological, ARDRA, and sequence analysis, eighty-one isolates were selected for the study, among the isolated microflora Pseudomonas sp. Bacillus sp. dominated. Likewise, class γ-proteobacteria dominated, followed by Firmicutes. The diversity studies have exposed changing fallouts on all the critical diversity indices, and while screening the isolated microflora for chitinase production, twenty-two strains pertaining to different genera produced chitinase. After carbon source supplementation to the chitinase production media, the average chitinase activity was significantly highest in glycerol supplementation. These 22 strains were further studied, and upon screening them for their fungistatic behavior against six fungal species, wide diversity was observed in this context. The antibiotic sensitivity pattern of the isolated strains against chloramphenicol, rifampicin, amikacin, erythromycin, and polymyxin-B showed that the strains were primarily sensitive to chloramphenicol and erythromycin. Among all the strains, only eleven produced indole acetic acid, ten were able to solubilize tricalcium phosphate and eight produced siderophores. The hydrocyanic acid and ammonia production was observed in seven strains each. Thus, the present investigation revealed that these strains could be used as potential plant growth promoters in sustainable agriculture systems besides putative biocontrol agents.
Collapse
|
756
|
|
Periwal V, Bassler S, Andrejev S, Gabrielli N, Patil KR, Typas A, Patil KR. Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs. PLoS Comput Biol 2022;18:e1010029. [PMID: 35468126 DOI: 10.1371/journal.pcbi.1010029] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/19/2022] Open
Abstract
Natural compounds constitute a rich resource of potential small molecule therapeutics. While experimental access to this resource is limited due to its vast diversity and difficulties in systematic purification, computational assessment of structural similarity with known therapeutic molecules offers a scalable approach. Here, we assessed functional similarity between natural compounds and approved drugs by combining multiple chemical similarity metrics and physicochemical properties using a machine-learning approach. We computed pairwise similarities between 1410 drugs for training classification models and used the drugs shared protein targets as class labels. The best performing models were random forest which gave an average area under the ROC of 0.9, Matthews correlation coefficient of 0.35, and F1 score of 0.33, suggesting that it captured the structure-activity relation well. The models were then used to predict protein targets of circa 11k natural compounds by comparing them with the drugs. This revealed therapeutic potential of several natural compounds, including those with support from previously published sources as well as those hitherto unexplored. We experimentally validated one of the predicted pair’s activities, viz., Cox-1 inhibition by 5-methoxysalicylic acid, a molecule commonly found in tea, herbs and spices. In contrast, another natural compound, 4-isopropylbenzoic acid, with the highest similarity score when considering most weighted similarity metric but not picked by our models, did not inhibit Cox-1. Our results demonstrate the utility of a machine-learning approach combining multiple chemical features for uncovering protein binding potential of natural compounds.
Collapse
|
757
|
|
Almalki WH, Alotaibi NN, Alayaf AAM, Alotaibi AF, Althubiti MA. Phytochemical-based nanodrug delivery in cancer therapy. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns1.6134] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/18/2022] Open
Abstract
There are estimated to be 13.1 million cancer deaths by 2030, with 7.6 million deaths occurring each year. Phytochemicals have long been used in traditional medicine to cure cancer. However, conventional therapy for metastatic illness may fail if cancer cells become resistant to multiple anticancer drugs. Phytochemicals encapsulated in nano-based medication delivery devices were studied for their cancer- and chemo-preventive properties. Nanocarriers containing phytoconstituents have been studied in terms of loading efficiency, nanocarrier size, the release profile of the drug, and cell inhibition and treatment tests.
Collapse
|
758
|
|
Carlino F, Diana A, Piccolo A, Ventriglia A, Bruno V, De Santo I, Letizia O, De Vita F, Daniele B, Ciardiello F, Orditura M. Immune-Based Therapy in Triple-Negative Breast Cancer: From Molecular Biology to Clinical Practice. Cancers (Basel) 2022;14:2102. [PMID: 35565233 DOI: 10.3390/cancers14092102] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has been considered for many years an orphan disease in terms of therapeutic options, with conventional chemotherapy (CT) still representing the mainstay of treatment in the majority of patients. Although breast cancer (BC) has been historically considered a "cold tumor", exciting progress in the genomic field leading to the characterization of the molecular portrait and the immune profile of TNBC has opened the door to novel therapeutic strategies, including Immune Checkpoint Inhibitors (ICIs), Poly ADP-Ribose Polymerase (PARP) inhibitors and Antibody Drug Conjugates (ADCs). In particular, compared to standard CT, the immune-based approach has been demonstrated to improve progression-free survival (PFS) and overall survival (OS) in metastatic PD-L1-positive TNBC and the pathological complete response rate in the early setting, regardless of PD-L1 expression. To date, PD-L1 has been widely used as a predictor of the response to ICIs; however, many patients do not benefit from the addition of immunotherapy. Therefore, PD-L1 is not a reliable predictive biomarker of the response, and its accuracy remains controversial due to the lack of a consensus about the assay, the antibody, and the scoring system to adopt, as well as the spatial and temporal heterogeneity of the PD-L1 status. In the precision medicine era, there is an urgent need to identify more sensitive biomarkers in the BC immune oncology field other than just PD-L1 expression. Through the characterization of the tumor microenvironment (TME), the analysis of peripheral blood and the evaluation of immune gene signatures, novel potential biomarkers have been explored, such as the Tumor Mutational Burden (TMB), Microsatellite Instability/Mismatch Repair Deficiency (MSI/dMMR) status, genomic and epigenomic alterations and tumor-infiltrating lymphocytes (TILs). This review aims to summarize the recent knowledge on BC immunograms and on the biomarkers proposed to support ICI-based therapy in TNBC, as well as to provide an overview of the potential strategies to enhance the immune response in order to overcome the mechanisms of resistance.
Collapse
|
759
|
|
Paneru D, Tellez-Isaias G, Romano N, Lohakare G, Bottje WG, Lohakare J. Effect of Graded Levels of Fenugreek (Trigonella foenum-graecum L.) Seeds on the Growth Performance, Hematological Parameters, and Intestinal Histomorphology of Broiler Chickens. Vet Sci 2022;9. [PMID: 35622735 DOI: 10.3390/vetsci9050207] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/16/2022] Open
Abstract
Two experiments were conducted to evaluate the effects of fenugreek seeds (FS) as a potential alternative to antibiotic growth promoters in broiler chickens. In the first experiment, one-day-old Ross (n = 160) straight-run broilers were fed FS at 0 g, 2.5 g, 5 g, and 10 g/kg of diet during the starter (from 1 to 21 days) and finisher phase (from 22 to 35 days) with four replicates of ten birds each. In the second experiment, one-day-old Ross (n = 144) male broilers were fed 0 g, 5 g, and 10 g FS per kilogram of diet during the starter (from 1 to 21 days) and finisher phase (from 22 to 42 days) with six replicates of eight birds each. In addition to growth performance, hematological parameters and intestinal histomorphology were measured in the second experiment. FS linearly reduced the body weight gain (BWG) (p < 0.001), feed intake (FI) (p < 0.05), and increased feed conversion ratio (FCR) (p < 0.05) during the starter phase in both experiments. However, no significant effects on BWG, FI, and FCR were observed during the finisher phase. Moreover, the overall BWG and FI were linearly reduced (p < 0.05) with the increasing levels of FS, but BWG and FI were similar in the 5 g/kg FS group and control group. The inclusion of FS had a linear increase in white blood cell (WBC), heterophil, and lymphocyte count (p < 0.005) and the decrease in hematocrit % (p = 0.004) and total bilirubin (p = 0.001). The villus height and villus height: crypt depth ratio of jejunum and ileum were significantly lower in 5 g FS and 10 g FS treatments (p < 0.001) compared to the control. The result indicates that the dietary inclusion of FS reduces the early growth performance, increases the WBC counts, and negatively affects the intestinal morphology of broiler chickens.
Collapse
|
760
|
|
Hole DG, Collins P, Tesfaw A, Barrera L, Mascia MB, Turner WR. Make nature's role visible to achieve the SDGs. Glob Sustain 2022;5. [DOI: 10.1017/sus.2022.5] [Cited by in Crossref: 0] [Cited by in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/17/2022] Open
Abstract
Non-technical summary
Implicit in the UN's Sustainable Development Goal (SDG) Agenda is the notion that environmental sustainability is intertwined with, and underpins, the 17 Goals. Yet the language of the Goals, and their Targets and indicators is blind to the myriad ways in which nature supports people's health and wealth – which we argue represents a key impediment to progress. Using examples of nature–human wellbeing linkages, we assess the language of all 169 Targets to identify urgent research, policy, and action needed to spotlight and leverage nature's foundational role, to help enable truly sustainable development for all.
Technical summary
Nature's foundational role in helping achieve the SDGs is implicit rather than explicit in the language of SDGs Goals, Targets, and indicators. Drawing from the scientific literature describing how nature underpins human wellbeing, we carry out a systematic assessment of the language of all 169 Targets, categorizing which Targets are dependent upon nature for their achievement, could harm nature if attained through business-as-usual actions, or may synergistically benefit nature through their attainment. We find that half are dependent upon nature for their achievement – yet for more than two-thirds of those nature's role goes unstated and risks being downplayed or ignored. Moreover, while achieving the overwhelming majority of the 169 Targets could potentially benefit nature, more than 60% are likely to deliver ‘mixed outcomes’ – benefitting or harming nature depending on how they're achieved. Furthermore, of the 241 official indicators <5% track nature's role in achieving the parent Target. Our analysis provides insights important for increasing effectiveness across the SDG agenda regarding where to invest, how to enhance synergies and limit unanticipated impacts, and how to measure success. It also suggests a path for integrating the ‘nature that people need’ to achieve the SDGs into the CBD's post-2020 Global Biodiversity Framework.
Social media summary
Harmonizing links between the SDGs and the CBD's post-2020 Global Biodiversity Framework is vital for promoting sustainable development
Collapse
|
761
|
|
Kim D, Kang KH. Anti-Inflammatory and Anti-Bacterial Potential of Mulberry Leaf Extract on Oral Microorganisms. Int J Environ Res Public Health 2022;19:4984. [PMID: 35564380 DOI: 10.3390/ijerph19094984] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/25/2023] Open
Abstract
Mulberry leaves extract (Morus alba extracts; MAE) is known to have therapeutic potentials for numerous human diseases, including diabetes, neurological disorders, cardiovascular diseases, and cancers. However, there has not been sufficient research proving therapeutic effects on oral disease and its related oral risk factors. Thus, we investigated whether MAE has any anti-inflammatory and anti-bacterial effects on risk factors causing oral infectious diseases. To examine the anti-inflammatory response and bacterial inhibition of MAE, we measured intracellular reactive oxygen species (ROS) generation, production of pro-inflammatory cytokines, and the bacterial growth rate. Our study showed that MAE has anti-inflammatory activities, which inhibit the ROS generation and suppressed the production of pro-inflammatory cytokines (TNF-α and IL-6) in human monocyte THP-1 cells by stimulating lipopolysaccharide (LPS) and/or F. nucleatum, which are the virulent factors in periodontal diseases. Furthermore, MAE inhibited the bacterial growth on oral microorganisms (F. nucleatum and S. mutans) infected THP-1 cells. These findings suggested that MAE could be a potential natural source for therapeutic drugs in oral infectious disease.
Collapse
|
762
|
|
Gurnani M, Chauhan A, Ranjan A, Tuli HS, Alkhanani MF, Haque S, Dhama K, Lal R, Jindal T. Filamentous Thermosensitive Mutant Z: An Appealing Target for Emerging Pathogens and a Trek on Its Natural Inhibitors. Biology (Basel) 2022;11:624. [PMID: 35625352 DOI: 10.3390/biology11050624] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Antimicrobial resistance (AMR) is a pressing issue worldwide that must be addressed swiftly. It is driven by spontaneous evolution, bacterial mutation, and the dissemination of resistant genes via horizontal gene transfer. Researchers are working on many novel targets, which can become a pathway to inhibit harmful bacteria. Filamentous Thermosensitive mutant-Z (Fts-Z) is one such bacterial target that has gained popularity amongst scientists due to its conserved nature in bacteria and absence in eukaryotes. The aim of this work was to review the Fts-Z mechanism of action along with current studies on natural inhibitors for Fts-Z. Abstract Antibiotic resistance is a major emerging issue in the health care sector, as highlighted by the WHO. Filamentous Thermosensitive mutant Z (Fts-Z) is gaining significant attention in the scientific community as a potential anti-bacterial target for fighting antibiotic resistance among several pathogenic bacteria. The Fts-Z plays a key role in bacterial cell division by allowing Z ring formation. Several in vitro and in silico experiments have demonstrated that inhibition of Fts-Z can lead to filamentous growth of the cells, and finally, cell death occurs. Many natural compounds that have successfully inhibited Fts-Z are also studied. This review article intended to highlight the structural–functional aspect of Fts-Z that leads to Z-ring formation and its contribution to the biochemistry and physiology of cells. The current trend of natural inhibitors of Fts-Z protein is also covered.
Collapse
|
763
|
|
Zhang Y, Szostak M. Synthesis of Natural Products by C-H Functionalization of Heterocycless. Chemistry 2022;28:e202104278. [PMID: 35089624 DOI: 10.1002/chem.202104278] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/15/2022]
Abstract
Total synthesis is considered by many as the finest combination of art and science. During the last decades, several concepts were proposed for achieving the perfect vision of total synthesis, such as atom economy, step economy, or redox economy. In this context, C-H functionalization represents the most powerful platform that has emerged in the last years, empowering rapid synthesis of complex natural products and enabling diversification of bioactive scaffolds based on natural product architectures. In this review, we present an overview of the recent strategies towards the total synthesis of heterocyclic natural products enabled by C-H functionalization. Heterocycles represent the most common motifs in drug discovery and marketed drugs. The implementation of C-H functionalization of heterocycles enables novel tactics in the construction of core architectures, but also changes the logic design of retrosynthetic strategies and permits access to natural product scaffolds with novel and enhanced biological activities.
Collapse
|
764
|
|
Llera AS, Abdelhay ESFW, Artagaveytia N, Daneri-Navarro A, Müller B, Velazquez C, Alcoba EB, Alonso I, Alves da Quinta DB, Binato R, Bravo AI, Camejo N, Carraro DM, Castro M, Castro-Cervantes JM, Cataldi S, Cayota A, Cerda M, Colombo A, Crocamo S, Del Toro-Arreola A, Delgadillo-Cisterna R, Delgado L, Dreyer-Breitenbach M, Fejerman L, Fernández EA, Fernández J, Fernández W, Franco-Topete RA, Gabay C, Gaete F, Garibay-Escobar A, Gómez J, Greif G, Gross TG, Guerrero M, Henderson MK, Lopez-Muñoz ME, Lopez-Vazquez A, Maldonado S, Morán-Mendoza AJ, Nagai MA, Oceguera-Villanueva A, Ortiz-Martínez MA, Quintero J, Quintero-Ramos A, Reis RM, Retamales J, Rivera-Claisse E, Rocha D, Rodríguez R, Rosales C, Salas-González E, Sanchotena V, Segovia L, Sendoya JM, Silva-García AA, Trinchero A, Valenzuela O, Vedham V, Zagame L, Podhajcer OL; United States-Latin American Cancer Research Network (US-LACRN). The Transcriptomic Portrait of Locally Advanced Breast Cancer and Its Prognostic Value in a Multi-Country Cohort of Latin American Patients. Front Oncol 2022;12:835626. [PMID: 35433488 DOI: 10.3389/fonc.2022.835626] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/13/2022] Open
Abstract
Purposes Most molecular-based published studies on breast cancer do not adequately represent the unique and diverse genetic admixture of the Latin American population. Searching for similarities and differences in molecular pathways associated with these tumors and evaluating its impact on prognosis may help to select better therapeutic approaches. Patients and Methods We collected clinical, pathological, and transcriptomic data of a multi-country Latin American cohort of 1,071 stage II-III breast cancer patients of the Molecular Profile of Breast Cancer Study (MPBCS) cohort. The 5-year prognostic ability of intrinsic (transcriptomic-based) PAM50 and immunohistochemical classifications, both at the cancer-specific (OSC) and disease-free survival (DFS) stages, was compared. Pathway analyses (GSEA, GSVA and MetaCore) were performed to explore differences among intrinsic subtypes. Results PAM50 classification of the MPBCS cohort defined 42·6% of tumors as LumA, 21·3% as LumB, 13·3% as HER2E and 16·6% as Basal. Both OSC and DFS for LumA tumors were significantly better than for other subtypes, while Basal tumors had the worst prognosis. While the prognostic power of traditional subtypes calculated with hormone receptors (HR), HER2 and Ki67 determinations showed an acceptable performance, PAM50-derived risk of recurrence best discriminated low, intermediate and high-risk groups. Transcriptomic pathway analysis showed high proliferation (i.e. cell cycle control and DNA damage repair) associated with LumB, HER2E and Basal tumors, and a strong dependency on the estrogen pathway for LumA. Terms related to both innate and adaptive immune responses were seen predominantly upregulated in Basal tumors, and, to a lesser extent, in HER2E, with respect to LumA and B tumors. Conclusions This is the first study that assesses molecular features at the transcriptomic level in a multicountry Latin American breast cancer patient cohort. Hormone-related and proliferation pathways that predominate in PAM50 and other breast cancer molecular classifications are also the main tumor-driving mechanisms in this cohort and have prognostic power. The immune-related features seen in the most aggressive subtypes may pave the way for therapeutic approaches not yet disseminated in Latin America. Clinical Trial Registration ClinicalTrials.gov (Identifier: NCT02326857).
Collapse
|
765
|
|
El-Sayed ER, Hazaa MA, Shebl MM, Amer MM, Mahmoud SR, Khattab AA. Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Express 2022;12:46. [PMID: 35438322 DOI: 10.1186/s13568-022-01386-x] [Cited by in Crossref: 6] [Cited by in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/25/2023] Open
Abstract
The search for new bioactive compounds with innovative modes of action and chemistry are desperately needed to tackle the increased emergence of drug-resistant microbes. With this view, this paper was conducted for the isolation, identification, and biological evaluation of fungal endophytes of eleven different plant species. A total of 69 endophytic strains were isolated and tested for the presence of bioactive metabolites with antifungal, antibacterial, anticancer, and antioxidant properties in their extracts. Upon screening, two promising strains were found to have all the before-mentioned activities. These strains were Aspergillus sydowii isolated from the bark of Ricinus communis and Aspergillus flavus isolated from the twigs of Psidium guajava. Major compounds present in extracts of the two strains were identified by GC-Mass analyses. Several well-known bioactive compounds as well as unreported ones were identified in the fungal extracts of the two strains. Furthermore, gamma irradiation (at 1000 Gy) of the fungal cultures resulted in improved bioactivities of extracts from the two strains. These findings recommend the two fungal strains as sources of antimicrobial, anticancer, and antioxidant compounds which may aid in the development of novel drugs. The presented research also explains the high-value of fungal endophytes as untapped sources of bioactive metabolites. Discovery of two promising fungal endophytes with divers’ range of bioactivities Extracts of the two strains showed antimicrobial, anticancer, and antioxidant activities Exposure to gamma rays at 1000 Gy significantly enhanced all the bioactivities.
Collapse
|
766
|
|
Siddiqui R, Boghossian A, Khatoon B, Kawish M, Alharbi AM, Shah MR, Alfahemi H, Khan NA. Antiamoebic Properties of Metabolites against Naegleria fowleri and Balamuthia mandrillaris. Antibiotics (Basel) 2022;11:539. [PMID: 35625183 DOI: 10.3390/antibiotics11050539] [Cited by in Crossref: 0] [Cited by in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/05/2023] Open
Abstract
Naegleria fowleri and Balamuthia mandrillaris are free-living, opportunistic protists, distributed widely in the environment. They are responsible for primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE), the fatal central nervous infections with mortality rates exceeding 90%. With the rise of global warming and water shortages resulting in water storage in tanks (where these amoebae may reside), the risk of infection is increasing. Currently, as a result of a lack of awareness, many cases may be misdiagnosed. Furthermore, the high mortality rate indicates the lack of effective drugs available. In this study, secondary metabolites from the plants Rinorea vaundensis and Salvia triloba were tested for their anti-amoebic properties against N. fowleri and B. mandrillaris. Three of the nine compounds showed potent and significant anti-amoebic activities against both N. fowleri and B. mandrillaris: ursolic acid, betulinic acid, and betulin. Additionally, all compounds depicted limited or minimal toxicity to human cells and were capable of reducing amoeba-mediated host cell death. Moreover, the minimum inhibitory concentration required to inhibit 50% of amoebae growth, the half-maximal effective concentration, and the maximum non-toxic dose against human cells of the compounds were determined. These effective plant-derived compounds should be utilized as potential therapies against infections due to free-living amoebae, but future research is needed to realize these expectations.
Collapse
|
767
|
|
Lim H, Hong H, Hwang S, Kim SJ, Seo SY, No KT. Identification of Novel Natural Product Inhibitors against Matrix Metalloproteinase 9 Using Quantum Mechanical Fragment Molecular Orbital-Based Virtual Screening Methods. Int J Mol Sci 2022;23:4438. [PMID: 35457257 DOI: 10.3390/ijms23084438] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases involved in multiple cellular processes. Among the MMP isoforms, MMP-9 regulates cancer invasion, rheumatoid arthritis, and osteoarthritis by degrading extracellular matrix proteins present in the tumor microenvironment and cartilage and promoting angiogenesis. Here, we identified two potent natural product inhibitors of the non-catalytic hemopexin domain of MMP-9 using a novel quantum mechanical fragment molecular orbital (FMO)-based virtual screening workflow. The workflow integrates qualitative pharmacophore modeling, quantitative binding affinity prediction, and a raw material search of natural product inhibitors with the BMDMS-NP library. In binding affinity prediction, we made a scoring function with the FMO method and applied the function to two protein targets (acetylcholinesterase and fibroblast growth factor 1 receptor) from DUD-E benchmark sets. In the two targets, the FMO method outperformed the Glide docking score and MM/PBSA methods. By applying this workflow to MMP-9, we proposed two potent natural product inhibitors (laetanine 9 and genkwanin 10) that interact with hotspot residues of the hemopexin domain of MMP-9. Laetanine 9 and genkwanin 10 bind to MMP-9 with a dissociation constant (KD) of 21.6 and 0.614 μM, respectively. Overall, we present laetanine 9 and genkwanin 10 for MMP-9 and demonstrate that the novel FMO-based workflow with a quantum mechanical approach is promising to discover potent natural product inhibitors of MMP-9, satisfying the pharmacophore model and good binding affinity.
Collapse
|
768
|
|
Levasseur M, Hebra T, Elie N, Guérineau V, Touboul D, Eparvier V. Classification of Environmental Strains from Order to Genus Levels Using Lipid and Protein MALDI-ToF Fingerprintings and Chemotaxonomic Network Analysis. Microorganisms 2022;10:831. [PMID: 35456880 DOI: 10.3390/microorganisms10040831] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/16/2022] Open
Abstract
During the last two decades, MALDI-ToF mass spectrometry has become an efficient and widely-used tool for identifying clinical isolates. However, its use for classification and identification of environmental microorganisms remains limited by the lack of reference spectra in current databases. In addition, the interpretation of the classical dendrogram-based data representation is more difficult when the quantity of taxa or chemotaxa is larger, which implies problems of reproducibility between users. Here, we propose a workflow including a concurrent standardized protein and lipid extraction protocol as well as an analysis methodology using the reliable spectra comparison algorithm available in MetGem software. We first validated our method by comparing protein fingerprints of highly pathogenic bacteria from the Robert Koch Institute (RKI) open database and then implemented protein fingerprints of environmental isolates from French Guiana. We then applied our workflow for the classification of a set of protein and lipid fingerprints from environmental microorganisms and compared our results to classical genetic identifications using 16S and ITS region sequencing for bacteria and fungi, respectively. We demonstrated that our protocol allowed general classification at the order and genus level for bacteria whereas only the Botryosphaeriales order can be finely classified for fungi.
Collapse
|
769
|
|
Dumitraș DA, Andrei S. Recent Advances in the Antiproliferative and Proapoptotic Activity of Various Plant Extracts and Constituents against Murine Malignant Melanoma. Molecules 2022;27:2585. [PMID: 35458783 DOI: 10.3390/molecules27082585] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Indexed: 11/16/2022] Open
Abstract
Although conventional medicine, chemical drug synthesis and pharmaceutical research are advancing at a rapid pace, nature remains a major supplier of biological molecules. Natural bioactive compounds are studied closely especially as an alternative to the limitations of conventional therapy in many diseases, melanoma being one of them. Malignant melanoma is a highly aggressive type of cancer, and the current methods of treatment used are cryotherapy, external surgery, radiation therapy, chemotherapy, photodynamic therapy, biological therapy, and targeted drug therapy. Unfortunately, these treatment methods are often inefficient, extremely expensive and cause many side effects, which is why focusing on melanoma chemoprevention and adjuvant therapy with natural herbal phytoconstituents is an emerging strategy to prevent, cure or treat melanoma. This review aims to examine the latest discoveries in terms of potential natural bioactive compounds that possess important activity against the development and spread of murine melanoma cancer. In particular, the use of different phytochemicals such as phenolic acids, flavonoids, anthocyanins, terpenoids, essential oils and carotenoids in vitro and in vivo models will be discussed. These data are helpful in guiding researchers in the direction of studying phytonutrients with important effects in the prevention and treatment of melanoma.
Collapse
|
770
|
|
Felice MR, Maugeri A, De Sarro G, Navarra M, Barreca D. Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int J Mol Sci 2022;23:4411. [PMID: 35457229 DOI: 10.3390/ijms23084411] [Cited by in Crossref: 2] [Cited by in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have always represented valuable allies in the battle against several illnesses, particularly cancer. In this field, flavonoids are known to modulate a wide panel of mechanisms involved in tumorigenesis, thus rendering them worthy candidates for both cancer prevention and treatment. In particular, it was reported that flavonoids regulate apoptosis, as well as hamper migration and proliferation, crucial events for the progression of cancer. In this review, we collect recent evidence concerning the anti-cancer properties of the flavonols myricetin and kaempferol, discussing their mechanisms of action to give a thorough overview of their noteworthy capabilities, which are comparable to those of their most famous analogue, namely quercetin. On the whole, these flavonols possess great potential, and hence further study is highly advised to allow a proper definition of their pharmaco-toxicological profile and assess their potential use in protocols of chemoprevention and adjuvant therapies.
Collapse
|
771
|
|
Parihar RD, Dhiman U, Bhushan A, Gupta PK, Gupta P. Heterorhabditis and Photorhabdus Symbiosis: A Natural Mine of Bioactive Compounds. Front Microbiol 2022;13:790339. [PMID: 35422783 DOI: 10.3389/fmicb.2022.790339] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/12/2022] Open
Abstract
Phylum Nematoda is of great economic importance. It has been a focused area for various research activities in distinct domains across the globe. Among nematodes, there is a group called entomopathogenic nematodes, which has two families that live in symbiotic association with bacteria of genus Xenorhabdus and Photorhabdus, respectively. With the passing years, researchers have isolated a wide array of bioactive compounds from these symbiotically associated nematodes. In this article, we are encapsulating bioactive compounds isolated from members of the family Heterorhabditidae inhabiting Photorhabdus in its gut. Isolated bioactive compounds have shown a wide range of biological activity against deadly pathogens to both plants as well as animals. Some compounds exhibit lethal effects against fungi, bacteria, protozoan, insects, cancerous cell lines, neuroinflammation, etc., with great potency. The main aim of this article is to collect and analyze the importance of nematode and its associated bacteria, isolated secondary metabolites, and their biomedical potential, which can serve as potential leads for further drug discovery.
Collapse
|
772
|
|
Njoga EO, Mshelbwala PP, Abah KO, Awoyomi OJ, Wangdi K, Pewan SB, Oyeleye FA, Galadima HB, Alhassan SA, Okoli CE, Kwaja EZ, Onwumere-Idolor OS, Atadiose EO, Awoyomi PO, Ibrahim MA, Lawan KM, Zailani SA, Salihu MD, Rupprecht CE. COVID-19 Vaccine Hesitancy and Determinants of Acceptance among Healthcare Workers, Academics and Tertiary Students in Nigeria. Vaccines (Basel) 2022;10:626. [PMID: 35455375 DOI: 10.3390/vaccines10040626] [Cited by in Crossref: 9] [Cited by in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has resulted in millions of human deaths, prompting the rapid development and regulatory approval of several vaccines. Although Nigeria implemented a COVID-19 vaccination program on 15 March 2021, low vaccine acceptance remains a major challenge. To provide insight on factors associated with COVID-19 vaccine hesitancy (VH), we conducted a national survey among healthcare workers, academics, and tertiary students, between 1 September 2021 and 31 December 2021. We fitted a logistic regression model to the data and examined factors associated with VH to support targeted health awareness campaigns to address public concerns and improve vaccination rates on par with global efforts. A total of 1525 respondents took part in the survey, composed of healthcare-workers (24.5%, 373/1525), academics (26.9%, 410/1525), and students (48.7%, 742/1525). Only 29% (446/1525) of the respondents were vaccinated at the time of this study. Of the 446 vaccinated respondents, 35.7% (159/446), 61.4% (274/446) and 2.9% (13/446) had one, two and three or more doses, respectively. Reasons for VH included: difficulty in the vaccination request/registration protocols (21.3%, 633/1079); bad feelings towards the vaccines due to negative social media reports/rumours (21.3%, 633/1079); personal ideology/religious beliefs against vaccination (16.7%, 495/1079); and poor confidence that preventive measures were enough to protect against COVID-19 (11%, 323/1079). Some health concerns that deterred unvaccinated respondents were: innate immunity issues (27.7%, 345/1079); allergic reaction concerns (24.6%, 307/1079); and blood clot problems in women (21.4%, 266/1079). In the multivariable model, location of respondents/geopolitical zones, level of education, testing for COVID-19, occupation/job description and religion were significantly associated with VH. Findings from this study underscore the need for targeted awareness creation to increase COVID-19 vaccination coverage in Nigeria and elsewhere. Besides professionals, similar studies are recommended in the general population to develop appropriate public health interventions to improve COVID-19 vaccine uptake.
Collapse
|
773
|
|
Mannochio-russo H, de Almeida RF, Nunes WDG, Bueno PCP, Caraballo-rodríguez AM, Bauermeister A, Dorrestein PC, Bolzani VS. Untargeted Metabolomics Sheds Light on the Diversity of Major Classes of Secondary Metabolites in the Malpighiaceae Botanical Family. Front Plant Sci 2022;13:854842. [PMID: 35498703 DOI: 10.3389/fpls.2022.854842] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/22/2022] Open
Abstract
Natural products produced by plants are one of the most investigated natural sources, which substantially contributed to the development of the natural products field. Even though these compounds are widely explored, the literature still lacks comprehensive investigations aiming to explore the evolution of secondary metabolites produced by plants, especially if classical methodologies are employed. The development of sensitive hyphenated techniques and computational tools for data processing has enabled the study of large datasets, being valuable assets for chemosystematic studies. Here, we describe a strategy for chemotaxonomic investigations using the Malpighiaceae botanical family as a model. Our workflow was based on MS/MS untargeted metabolomics, spectral searches, and recently described in silico classification tools, which were mapped into the latest molecular phylogeny accepted for this family. The metabolomic analysis revealed that different ionization modes and extraction protocols significantly impacted the chemical profiles, influencing the chemotaxonomic results. Spectral searches within public databases revealed several clades or genera-specific molecular families, being potential chemical markers for these taxa, while the in silico classification tools were able to expand the Malpighiaceae chemical space. The classes putatively annotated were used for ancestral character reconstructions, which recovered several classes of metabolites as homoplasies (i.e., non-exclusive) or synapomorphies (i.e., exclusive) for all sampled clades and genera. Our workflow combines several approaches to perform a comprehensive evolutionary chemical study. We expect it to be used on further chemotaxonomic investigations to expand chemical knowledge and reveal biological insights for compounds classes in different biological groups.
Collapse
|
774
|
|
Tzoras E, Zerdes I, Tsiknakis N, Manikis GC, Mezheyeuski A, Bergh J, Matikas A, Foukakis T. Dissecting Tumor-Immune Microenvironment in Breast Cancer at a Spatial and Multiplex Resolution. Cancers (Basel) 2022;14:1999. [PMID: 35454904 DOI: 10.3390/cancers14081999] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/01/2023] Open
Abstract
The tumor immune microenvironment (TIME) is an important player in breast cancer pathophysiology. Surrogates for antitumor immune response have been explored as predictive biomarkers to immunotherapy, though with several limitations. Immunohistochemistry for programmed death ligand 1 suffers from analytical problems, immune signatures are devoid of spatial information and histopathological evaluation of tumor infiltrating lymphocytes exhibits interobserver variability. Towards improved understanding of the complex interactions in TIME, several emerging multiplex in situ methods are being developed and gaining much attention for protein detection. They enable the simultaneous evaluation of multiple targets in situ, detection of cell densities/subpopulations as well as estimations of functional states of immune infiltrate. Furthermore, they can characterize spatial organization of TIME—by cell-to-cell interaction analyses and the evaluation of distribution within different regions of interest and tissue compartments—while digital imaging and image analysis software allow for reproducibility of the various assays. In this review, we aim to provide an overview of the different multiplex in situ methods used in cancer research with special focus on breast cancer TIME at the neoadjuvant, adjuvant and metastatic setting. Spatial heterogeneity of TIME and importance of longitudinal evaluation of TIME changes under the pressure of therapy and metastatic progression are also addressed.
Collapse
|
775
|
|
Barrero MJ, Cejas P, Long HW, Ramirez de Molina A. Nutritional Epigenetics in Cancer. Adv Nutr 2022;13:1748-61. [PMID: 35421212 DOI: 10.1093/advances/nmac039] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/28/2023] Open
Abstract
Alterations in the epigenome are well known to affect cancer development and progression. Epigenetics is highly influenced by the environment, including diet, which is a source of metabolic substrates that influence the synthesis of cofactors or substrates for chromatin and RNA modifying enzymes. In addition, plants are a common source of bioactives that can directly modify the activity of these enzymes. Here, we review and discuss the impact of diet on epigenetic mechanisms, including chromatin and RNA regulation, and its potential implications for cancer prevention and treatment.
Collapse
|
776
|
|
Patil SS, Jachak GR, Rama Krishna G, Argade N, Reddy DS. Total Synthesis of 12,13‐Dibenzyl‐Banistenoside B and Analogs. European J Org Chem. [DOI: 10.1002/ejoc.202200222] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/09/2022]
|
777
|
|
Invernizzi L, Moyo P, Cassel J, Isaacs FJ, Salvino JM, Montaner LJ, Tietjen I, Maharaj V. Use of hyphenated analytical techniques to identify the bioactive constituents of Gunnera perpensa L., a South African medicinal plant, which potently inhibit SARS-CoV-2 spike glycoprotein–host ACE2 binding. Anal Bioanal Chem. [PMID: 35419694 DOI: 10.1007/s00216-022-04041-3] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/16/2022]
Abstract
SARS-CoV-2, the causative agent of COVID-19, continues to cause global morbidity and mortality despite the increasing availability of vaccines. Alongside vaccines, antivirals are urgently needed to combat SARS-CoV-2 infection and spread, particularly in resource-limited regions which lack access to existing therapeutics. Small molecules isolated from medicinal plants may be able to block cellular entry by SARS-CoV-2 by antagonising the interaction of the viral spike glycoprotein receptor-binding domain (RBD) with the host angiotensin-converting enzyme II (ACE2) receptor. As the medicinal plant Gunnera perpensa L. is being used by some South African traditional healers for SARS-CoV-2/COVID-19 management, we hypothesised that it may contain chemical constituents that inhibit the RBD-ACE2 interaction. Using a previously described AlphaScreen-based protein interaction assay, we show here that the DCM:MeOH extract of G. perpensa readily disrupts RBD (USA-WA1/2020)-ACE2 interactions with a half-maximal inhibition concentration (IC50) of < 0.001 µg/mL, compared to an IC50 of 0.025 µg/mL for the control neutralising antibody REGN10987. Employing hyphenated analytical techniques like UPLC-IMS-HRMS (method developed and validated as per the International Conference on Harmonization guidelines), we identified two ellagitannins, punicalin (2.12% w/w) and punicalagin (1.51% w/w), as plant constituents in the DCM:MeOH extract of G. perpensa which antagonised RBD-ACE2 binding with respective IC50s of 9 and 29 nM. This good potency makes both compounds promising leads for development of future entry-based SARS-CoV-2 antivirals. The results also highlight the advantages of combining reverse pharmacology (based on medicinal plant use) with hyphenated analytical techniques to expedite identification of urgently needed antivirals.
Collapse
|
778
|
|
Khan F, Tabassum N, Bamunuarachchi NI, Kim YM. Phloroglucinol and Its Derivatives: Antimicrobial Properties toward Microbial Pathogens. J Agric Food Chem 2022. [PMID: 35418233 DOI: 10.1021/acs.jafc.2c00532] [Cited by in Crossref: 0] [Cited by in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
Phloroglucinol (PG) is a natural product isolated from plants, algae, and microorganisms. Aside from that, the number of PG derivatives has expanded due to the discovery of their potential biological roles. Aside from its diverse biological activities, PG and its derivatives have been widely utilized to treat microbial infections caused by bacteria, fungus, and viruses. The rapid emergence of antimicrobial-resistant microbial infections necessitates the chemical synthesis of numerous PG derivatives in order to meet the growing demand for drugs. This review focuses on the use of PG and its derivatives to control microbial infection and the underlying mechanism of action. Furthermore, as future perspectives, some of the various alternative strategies, such as the use of PG and its derivatives in conjugation, nanoformulation, antibiotic combination, and encapsulation, have been thoroughly discussed. This review will enable the researcher to investigate the possible antibacterial properties of PG and its derivatives, either free or in the form of various formulations.
Collapse
|
779
|
|
Singh A, Sarkar D, Singh SK. Effect of Trigonella foenum-graecum L. seed extract on the reproductive system of male mice and possible mechanism of its action on spermatogenesis. Andrologia 2022;:e14429. [PMID: 35415897 DOI: 10.1111/and.14429] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/30/2022]
Abstract
Fenugreek seed exhibits antidiabetic, antineoplastic, hepatoprotective, antidepressant and immunomodulatory properties. Fenugreek also causes antifertility effects in rodents. However, the impact of fenugreek seed on male reproduction and the possible mode of its action are not properly evaluated. Herein, we examined the effect of aqueous seed extract of fenugreek (FSE) and the possible mechanism of its action on male reproductive health in mice. Parkes mice were orally administered FSE (600 mg/kg body weight/day) or distilled water for 28 and 56 days, respectively. Various sperm parameters, histopathology, serum testosterone level and fertility indices were assessed. Furthermore, steroidogenic enzymes activities, oxidative status and germ cell dynamics in the testis were evaluated. Toxicological endpoints were also assessed. Treatment with FSE caused degenerative changes in the testis histoarchitecture. The treatment also affected various sperm parameters and concentrations of sialic acid and fructose in the epididymis and seminal vesicle, respectively. Fenugreek treatment also had negative impact on oxidative status and germ cell dynamics in the testis; fertility indices were also affected in female mice impregnated by the extract-treated male mice, though libido of the treated male mice remained unaffected. Results show that treatment with FSE caused adverse effects on the male reproductive health and pregnancy outcome in Parkes mice.
Collapse
|
780
|
|
Lombe BK, Winand L, Diettrich J, Töbermann M, Hiller W, Kaiser M, Nett M. Discovery, Biosynthetic Origin, and Heterologous Production of Massinidine, an Antiplasmodial Alkaloid. Org Lett 2022. [PMID: 35412834 DOI: 10.1021/acs.orglett.2c00963] [Cited by in Crossref: 2] [Cited by in RCA: 3] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/22/2022]
Abstract
Bacteria of the genus Massilia represent an underexplored source of bioactive natural products. Here, we report the discovery of massinidine (1), a guanidine alkaloid with antiplasmodial activity, from these microbes. The unusual scaffold of massinidine is shown to originate from l-phenylalanine, acetate, and l-arginine. Massinidine biosynthesis genes were identified in the native producer and validated through heterologous expression in Myxococcus xanthus. Bioinformatic analyses indicate that the potential for massinidine biosynthesis is distributed in various proteobacteria.
Collapse
|
781
|
|
Azam F, Khan MA, Khan A, Ahmad S, Zofair SFF, Younus H. In silico and in vitro studies on the inhibition of laccase activity by Ellagic acid: Implications in drug designing for the treatment of Cryptococcal infections. Int J Biol Macromol 2022;209:642-54. [PMID: 35421416 DOI: 10.1016/j.ijbiomac.2022.04.060] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text]
Abstract
In recent years, the increased frequency of drug-resistant strains of Cryptococcus neoformans has depleted our antifungal armory. In the present study, we investigated the inhibitory potential of ellagic acid (EA) against C. neoformans laccase through in silico and in vitro studies. For the first time, a homology modelling was established to model laccase and modelled protein served as a receptor for docking EA. Thermodynamic stability of the docked complex was ascertained by molecular dynamics simulation (MD). The analysis of root mean square deviation and fluctuation of alpha carbons of protein justifies the stability of the bound EA in the binding pocket of laccase. Frontier molecular orbitals of the EA was studied by density functional theory-based optimization by using the Lee-Yang-Parr correlation functional (B3LYP) approach. Negative values of the highest occupied/unoccupied molecular orbitals (HOMO/LUMO) indicated that laccase with EA forms a stable complex. Interestingly, EA inhibited laccase activity both in vitro and in yeast cells of C. neoformans. Moreover, EA treatment remarkably inhibited the proliferation of C. neoformans inside macrophages. The findings of the present study unveil the molecular basis of the interactions of laccase with EA, which may prove to be beneficial for designing laccase inhibitors as potential anti-cryptococcal agents.
Collapse
|
782
|
|
Walther F, Berther JL, Lalos A, Ramser M, Eichelberger S, Mechera R, Soysal S, Muenst S, Posabella A, Güth U, Stadlmann S, Terracciano L, Droeser RA, Zeindler J, Singer G. High ratio of pCXCR4/CXCR4 tumor infiltrating immune cells in primary high grade ovarian cancer is indicative for response to chemotherapy. BMC Cancer 2022;22. [PMID: 35397601 DOI: 10.1186/s12885-022-09374-x] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ovarian cancer (OC) is the fifth most common malignant female cancer with a high mortality, mainly because of aggressive high-grade serous carcinomas (HGSOC), but also due to absence of specific early symptoms and effective detection strategies. The CXCL12-CXCR4 axis is considered to have a prognostic impact and to serve as potential therapeutic target. Therefore we investigated the role of pCXCR4 and CXCR4 expression of the tumor cells and of tumor infiltrating immune cells (TIC) in high-grade serous OC and their association with the recurrence-free (RFS) and overall survival (OS).
Methods
A tissue microarray of 47 primary high grade ovarian serous carcinomas and their recurrences was stained with primary antibodies directed against CXCR4 and pCXCR4. Beside the evaluation of the absolute tumor as well as TIC expression in primary and recurrent cancer biopsies the corresponding ratios for pCXCR4 and CXCR4 were generated and analyzed. The clinical endpoints were response to chemotherapy, OS as well as RFS.
Results
Patients with a high pCXCR4/CXCR4 TIC ratio in primary cancer biopsies showed a significant longer RFS during the first two years (p = 0.025). However, this effect was lost in the long-term analysis including a follow-up period of 5 years (p = 0.128). Interestingly, the Multivariate Cox regression analysis showed that a high pCXCR4/CXCR4 TIC ratio in primary cancer independently predicts longer RFS (HR 0.33; 95CI 0.13 - 0.81; p = 0.015). Furthermore a high dichotomized distribution of CXCR4 positive tumor expression in recurrent cancer biopsies showed a significantly longer 6-month RFS rate (p = 0.018) in comparison to patients with low CXCR4 positive tumor expression. However, this effect was not independent of known risk factors in a Multivariate Cox regression (HR 0.57; 95CI 0.24 - 1.33; p = 0.193).
Conclusions
To the best of our knowledge we show for the first time that a high pCXCR4/CXCR4 TIC ratio in primary HGSOC biopsies is indicative for better RFS and response to chemotherapy.
Highlights
• We observed a significant association between high pCXCR4/CXCR4 TIC ratio and better RFS in primary cancer biopsies, especially during the early postoperative follow-up and independent of known risk factors for recurrence.
• High CXCR4 tumor expression in recurrent HGSOC biopsies might be indicative for sensitivity to chemotherapy. We found evidence that at the beginning of the disease (early follow-up) the role of the immune response seems to be the most crucial factor for progression. On the other hand in recurrent/progressive disease the biology of the tumor itself becomes more important for prognosis.
• We explored for the first time the predictive and prognostic role of pCXCR4/CXCR4 TIC ratio in high-grade serous ovarian cancer.
Collapse
|
783
|
|
Charria-girón E, Surup F, Marin-felix Y. Diversity of biologically active secondary metabolites in the ascomycete order Sordariales. Mycol Prog 2022;21. [DOI: 10.1007/s11557-022-01775-3] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 10/18/2022]
Abstract
AbstractAscomycetes belonging to the order Sordariales are a well-known reservoir of secondary metabolites with potential beneficial applications. Species of the Sordariales are ubiquitous, and they are commonly found in soils and in lignicolous, herbicolous, and coprophilous habitats. Some of their species have been used as model organisms in modern fungal biology or were found to be prolific producers of potentially useful secondary metabolites. However, the majority of sordarialean species are poorly studied. Traditionally, the classification of the Sordariales has been mainly based on morphology of the ascomata, ascospores, and asexual states, characters that have been demonstrated to be homoplastic by modern taxonomic studies based on multi-locus phylogeny. Herein, we summarize for the first time relevant information about the available knowledge on the secondary metabolites and the biological activities exerted by representatives of this fungal order, as well as a current outlook of the potential opportunities that the recent advances in omic tools could bring for the discovery of secondary metabolites in this order.
Collapse
|
784
|
|
Mu J, Wu Y, Jiang C, Cai L, Li D, Cao J. Progress in Applicability of Scoring Systems Based on Nutritional and Inflammatory Parameters for Ovarian Cancer. Front Nutr 2022;9:809091. [PMID: 35464000 DOI: 10.3389/fnut.2022.809091] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancer is a malignancy that seriously endangers women’s health; its case fatality rate ranks first among the gynecological malignancies. The status of nutrition of ovarian cancer patients is related to their prognoses. Thus, it is important to evaluate, monitor, and improve the nutritional status of ovarian cancer patients during their treatment. Currently, there are several tools for examining malnutrition and nutritional assessment, including NRI (nutrition risk index), PG-SGA (patient-generated subjective global assessment), and NRS 2002 (nutritional risk screening 2002). In addition to malnutrition risk examination and related assessment tools, the evaluation of muscle mass, C-reactive protein, lymphocytes, and other inflammation status indicators, such as neutrophils to lymphocytes ratio, lymphocyte-to-monocyte ratio, and C-reactive protein-albumin ratio, is of great importance. The nutritional status of ovarian cancer patients undergoing surgery affects their postoperative complications and survival rates. Accurate evaluation of perioperative nutrition in ovarian cancer patients is crucial in clinical settings. An intelligent nutritional diagnosis can be developed based on the results of its systematic and comprehensive assessment, which would lay a foundation for the implementation of personalized and precise nutritional therapy.
Collapse
|
785
|
|
Green KD, Pang AH, Thamban Chandrika N, Garzan A, Baughn AD, Tsodikov OV, Garneau-Tsodikova S. Discovery and Optimization of 6-(1-Substituted pyrrole-2-yl)-s-triazine Containing Compounds as Antibacterial Agents. ACS Infect Dis 2022;8:757-67. [PMID: 35239306 DOI: 10.1021/acsinfecdis.1c00450] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/29/2022]
Abstract
Antimicrobial drug resistance is a major health issue plaguing healthcare worldwide and leading to hundreds of thousands of deaths globally each year. Tackling this problem requires discovery and development of new antibacterial agents. In this study, we discovered novel 6-(1-substituted pyrrole-2-yl)-s-triazine containing compounds that potently inhibited the growth of Staphylococcus aureus regardless of its methicillin-resistant status, displaying minimum inhibitory concentration (MIC) values as low as 1 μM. The presence of a single imidazole substituent was critical to the antibacterial activity of these compounds. Some of the compounds also inhibited several nontubercular mycobacteria. We have shown that these molecules are potent bacteriostatic agents and that they are nontoxic to mammalian cells at relevant concentrations. Further development of these compounds as novel antimicrobial agents will be aimed at expanding our armamentarium of antibiotics.
Collapse
|
786
|
|
Kaari M, Manikkam R, Baskaran A. Exploring Newer Biosynthetic Gene Clusters in Marine Microbial Prospecting. Mar Biotechnol (NY) 2022. [PMID: 35394575 DOI: 10.1007/s10126-022-10118-y] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/28/2022]
Abstract
Marine microbes genetically evolved to survive varying salinity, temperature, pH, and other stress factors by producing different bioactive metabolites. These microbial secondary metabolites (SMs) are novel, have high potential, and could be used as lead molecule. Genome sequencing of microbes revealed that they have the capability to produce numerous novel bioactive metabolites than observed under standard in vitro culture conditions. Microbial genome has specific regions responsible for SM assembly, termed biosynthetic gene clusters (BGCs), possessing all the necessary genes to encode different enzymes required to generate SM. In order to augment the microbial chemo diversity and to activate these gene clusters, various tools and techniques are developed. Metagenomics with functional gene expression studies aids in classifying novel peptides and enzymes and also in understanding the biosynthetic pathways. Genome shuffling is a high-throughput screening approach to improve the development of SMs by incorporating genomic recombination. Transcriptionally silent or lower level BGCs can be triggered by artificially knocking promoter of target BGC. Additionally, bioinformatic tools like antiSMASH, ClustScan, NAPDOS, and ClusterFinder are effective in identifying BGCs of existing class for annotation in genomes. This review summarizes the significance of BGCs and the different approaches for detecting and elucidating BGCs from marine microbes.
Collapse
|
787
|
|
Martiz RM, Patil SM, Abdulaziz M, Babalghith A, Al-areefi M, Al-ghorbani M, Mallappa Kumar J, Prasad A, Mysore Nagalingaswamy NP, Ramu R. Defining the Role of Isoeugenol from Ocimum tenuiflorum against Diabetes Mellitus-Linked Alzheimer’s Disease through Network Pharmacology and Computational Methods. Molecules 2022;27:2398. [PMID: 35458596 DOI: 10.3390/molecules27082398] [Cited by in Crossref: 20] [Cited by in RCA: 19] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
The present study involves the integrated network pharmacology and phytoinformatics-based investigation of phytocompounds from Ocimum tenuiflorum against diabetes mellitus-linked Alzheimer’s disease. It aims to investigate the mechanism of the Ocimum tenuiflorum phytocompounds in the amelioration of diabetes mellitus-linked Alzheimer’s disease through network pharmacology, druglikeness and pharmacokinetics, molecular docking simulations, GO analysis, molecular dynamics simulations, and binding free energy analyses. A total of 14 predicted genes of the 26 orally bioactive compounds were identified. Among these 14 genes, GAPDH and AKT1 were the most significant. The network analysis revealed the AGE-RAGE signaling pathway to be a prominent pathway linked to GAPDH with 50.53% probability. Upon the molecular docking simulation with GAPDH, isoeugenol was found to possess the most significant binding affinity (−6.0 kcal/mol). The molecular dynamics simulation and binding free energy calculation results also predicted that isoeugenol forms a stable protein–ligand complex with GAPDH, where the phytocompound is predicted to chiefly use van der Waal’s binding energy (−159.277 kj/mol). On the basis of these results, it can be concluded that isoeugenol from Ocimum tenuiflorum could be taken for further in vitro and in vivo analysis, targeting GAPDH inhibition for the amelioration of diabetes mellitus-linked Alzheimer’s disease.
Collapse
|
788
|
|
Tewari D, Priya A, Bishayee A, Bishayee A. Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin Transl Med 2022;12:e795. [PMID: 35384373 DOI: 10.1002/ctm2.795] [Cited by in Crossref: 3] [Cited by in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/19/2022] Open
Abstract
Background Cancer is the world's second leading cause of death, but a significant advancement in cancer treatment has been achieved within the last few decades. However, major adverse effects and drug resistance associated with standard chemotherapy have led towards targeted treatment options. Objectives Transforming growth factor‐β (TGF‐β) signaling plays a key role in cell proliferation, differentiation, morphogenesis, regeneration, and tissue homeostasis. The prime objective of this review is to decipher the role of TGF‐β in oncogenesis and to evaluate the potential of various natural and synthetic agents to target this dysregulated pathway to confer cancer preventive and anticancer therapeutic effects. Methods Various authentic and scholarly databases were explored to search and obtain primary literature for this study. The Preferred Reporting Items for Systematic Reviews and Meta‐Analysis (PRISMA) criteria was followed for the review. Results Here we provide a comprehensive and critical review of recent advances on our understanding of the effect of various bioactive natural molecules on the TGF‐β signaling pathway to evaluate their full potential for cancer prevention and therapy. Conclusion Based on emerging evidence as presented in this work, TGF‐β‐targeting bioactive compounds from natural sources can serve as potential therapeutic agents for prevention and treatment of various human malignancies.
Collapse
|
789
|
|
Fu Z, Li S, Liu J, Zhang C, Jian C, Wang L, Zhang Y, Shi C. Natural Product Alantolactone Targeting AKR1C1 Suppresses Cell Proliferation and Metastasis in Non-Small-Cell Lung Cancer. Front Pharmacol 2022;13:847906. [PMID: 35370661 DOI: 10.3389/fphar.2022.847906] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/29/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths, characterized by high invasion and metastasis. Aldo-keto reductase family 1 member C1 (AKR1C1) plays an important role in cancer cell proliferation and metastasis, and has gained attention as an anticancer drug target. Here, we report that the natural sesquiterpene lactone alantolactone (ALA) was shown to bind directly to AKR1C1 through the Proteome Integral Solubility Alteration (PISA) analysis, a label-free target identification approach based on thermal proteome profiling. Acting as a specific inhibitor of AKR1C1, ALA selectively inhibits the activity of AKR1C1 and ALA treatment in human non-small-cell lung cancer (NSCLC) cell results in a reduction in cell proliferation and metastasis, inhibition of AKR1C1 expression, and deactivation of STAT3. Moreover, ALA inhibited tumor growth in vivo, and the inhibition of AKR1C1 and STAT3 activation were also found in the murine xenograft model. Collectively, our work not only gives mechanistic insights to explain the bioactivity of ALA in anticancer but also provides opportunities of developing novel sesquiterpene lactone-based AKR1C1 inhibitors for the treatment of NSCLC.
Collapse
|
790
|
|
Magbanua MJM, Gumusay O, Kurzrock R, van 't Veer LJ, Rugo HS. Immunotherapy in Breast Cancer and the Potential Role of Liquid Biopsy. Front Oncol 2022;12:802579. [PMID: 35372077 DOI: 10.3389/fonc.2022.802579] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/27/2022] Open
Abstract
Liquid biopsy biomarkers, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), are noninvasive diagnostics that could complement predictive and prognostic tools currently used in the clinic. Recent trials of immunotherapy have shown promise in improving outcomes in a subset of breast cancer patients. Biomarkers could improve the efficacy of immune checkpoint inhibitors by identifying patients whose cancers are more likely to respond to immunotherapy. In this review, we discuss the current applications of liquid biopsy and emerging technologies for evaluation of immunotherapy response and outcomes in breast cancer. We also provide an overview of the status of immunotherapy in breast cancer.
Collapse
|
791
|
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2021;12:762654. [PMID: 35370628 DOI: 10.3389/fphar.2021.762654] [Cited by in Crossref: 7] [Cited by in RCA: 8] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
|
792
|
|
Kuo Y, Wang Y, Peng W, Chi N, Lee T, Wang C. Coriloxin Exerts Antitumor Effects in Human Lung Adenocarcinoma Cells. Int J Mol Sci 2022;23:3991. [PMID: 35409350 DOI: 10.3390/ijms23073991] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/01/2023] Open
Abstract
Both in Taiwan and around the world, lung cancer is a primary cause of cancer-related deaths. In Taiwan, the most prevalent form of lung cancer is lung adenocarcinoma, a type of non-small-cell lung carcinoma. Although numerous lung cancer therapies are available, their clinical outcomes are unsatisfactory. Natural products, including fungal metabolites, are excellent sources of pharmaceutical compounds used in cancer treatment. We employed in vitro cell invasion, cell proliferation, cell migration, cell viability, and colony formation assays with the aim of evaluating the effects of coriloxin, isolated from fermented broths of Nectria balsamea YMJ94052402, on human lung adenocarcinoma CL1-5 and/or A549 cells. The potential targets regulated by coriloxin were examined through Western blot analysis. The cytotoxic effect of coriloxin was more efficiently exerted on lung adenocarcinoma cells than on bronchial epithelial cells. Moreover, low-concentration coriloxin significantly suppressed adenocarcinoma cells’ proliferative, migratory, and clonogenic abilities. These inhibitory effects were achieved through ERK/AKT inactivation, epithelial–mesenchymal transition regulation, and HLJ1 expression. Our findings suggest that coriloxin can be used as a multitarget anticancer agent. Further investigations of the application of coriloxin as an adjuvant therapy in lung cancer treatment are warranted.
Collapse
|
793
|
|
Melder T, Lindemann P, Welle A, Trouillet V, Heißler S, Nazaré M, Selbach M. Compound interaction screen on a photoactivatable cellulose membrane (CISCM) identifies drug targets.. [DOI: 10.1101/2022.04.03.486868] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/24/2022]
Abstract
AbstractIdentifying the protein targets of drugs is an important but tedious process. Existing proteomic approaches enable unbiased target identification but lack the throughput needed to screen larger compound libraries. Here, we present a compound interaction screen on a photoactivatable cellulose membrane (CISCM) that enables target identification of several drugs in parallel. To this end, we use diazirine-based undirected photoaffinity labeling (PAL) to immobilize compounds on cellulose membranes. Functionalized membranes are then incubated with protein extract and specific targets are identified via quantitative affinity purification and mass spectrometry. CISCM reliably identifies known targets of natural products in less than three hours of analysis time per compound. In summary, we show that combining undirected photoimmobilization of compounds on cellulose with quantitative interaction proteomics provides an efficient means to identify the targets of natural products.
Collapse
|
794
|
|
Li Z, Gu M, Xu X, Zhang J, Zhang H, Han C. Promising natural lysine specific demethylase 1 inhibitors for cancer treatment: advances and outlooks. Chin J Nat Med 2022;20:241-57. [DOI: 10.1016/s1875-5364(22)60141-9] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/24/2022]
|
795
|
|
Kohn OF, Lew SQ, Wong SS, Sam R, Chen HC, Raiman JG, Leehey DJ, Tzamaloukas AH, Ing TS. Using herbs medically without knowing their composition: are we playing Russian roulette? Curr Med Res Opin 2022;:1-10. [PMID: 35362342 DOI: 10.1080/03007995.2022.2061706] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/03/2022]
Abstract
Herbal medicine, a form of complementary and alternative medicine (CAM), is used throughout the world, in both developing and developed countries. The ingredients in herbal medicines are not standardized by any regulatory agency. Variability exists in the ingredients as well as in their concentrations. Plant products may become contaminated with bacteria and fungi during storage. Therefore, harm can occur to the kidney, liver, and blood components after ingestion. We encourage scientific studies to identify the active ingredients in herbs and to standardize their concentrations in all herbal preparations. Rigorous studies need to be performed in order to understand the effect of herbal ingredients on different organ systems as well as these substances' interaction with other medications.
Collapse
|
796
|
|
Hui C, Wang Z, Xie Y, Liu J. Contemporary synthesis of bioactive cyclobutane natural products. Green Synthesis and Catalysis 2022. [DOI: 10.1016/j.gresc.2022.04.006] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/24/2022] Open
|
797
|
|
Vanguri RS, Fenn KM, Kearney MR, Wang Q, Guo H, Marks DK, Chin C, Alcus CF, Thompson JB, Leu C, Hibshoosh H, Kalinsky KM, Mathews JC, Nadeem S, Hollmann TJ, Connolly EP. Tumor immune microenvironment and response to neoadjuvant chemotherapy in hormone receptor/HER2+ early stage breast cancer. Clin Breast Cancer 2022. [DOI: 10.1016/j.clbc.2022.04.002] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/23/2022]
|
798
|
|
Ghzaiel I, Zarrouk A, Essadek S, Martine L, Hammouda S, Yammine A, Ksila M, Nury T, Meddeb W, Tahri Joutey M, Mihoubi W, Caccia C, Leoni V, Samadi M, Acar N, Andreoletti P, Hammami S, Ghrairi T, Vejux A, Hammami M, Lizard G. Protective effects of milk thistle (Sylibum marianum) seed oil and α-tocopherol against 7β-hydroxycholesterol-induced peroxisomal alterations in murine C2C12 myoblasts: nutritional insights associated with the concept of pexotherapy. Steroids 2022. [DOI: 10.1016/j.steroids.2022.109032] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/11/2022]
|
799
|
|
Cheung LK, Yada RY. Predicting global diet-disease relationships at the atomic level: a COVID-19 case study. Curr Opin Food Sci 2022;44:100804. [PMID: 35004187 DOI: 10.1016/j.cofs.2021.12.013] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/11/2022]
Abstract
Over the past few months, numerous studies harnessed in silico methods such as molecular docking to evaluate food compounds for inhibitory activity against coronavirus infection and replication. These studies capitalize on the efficiency of computational methods to quickly guide subsequent research and examine diet-disease relationships, and their sudden widespread utility may signal new opportunities for future antiviral and bioactive food research. Using Coronavirus Disease 2019 (COVID-19) research as a case study, we herein provide an overview of findings from studies using molecular docking to study food compounds as potential inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), explore considerations for the critical interpretation of study findings, and discuss how these studies help shape larger conversations of diet and disease.
Collapse
|
800
|
|
Liu Z, Wang C, Chen X, Zhu J, Sun X, Xia Q, Lu Z, Qiao J, Zhou Y, Wang H, Wang Y, Yan M. Pathological response and predictive role of tumour-infiltrating lymphocytes in HER2-positive early breast cancer treated with neoadjuvant pyrotinib plus trastuzumab and chemotherapy (Panphila): a multicentre phase 2 trial. Eur J Cancer 2022;165:157-68. [DOI: 10.1016/j.ejca.2022.01.022] [Cited by in Crossref: 4] [Cited by in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/22/2022]
|