751
|
A Structure-Activity Relationship Study of Bis-Benzamides as Inhibitors of Androgen Receptor-Coactivator Interaction. Molecules 2019; 24:molecules24152783. [PMID: 31370197 PMCID: PMC6696232 DOI: 10.3390/molecules24152783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/05/2023] Open
Abstract
The interaction between androgen receptor (AR) and coactivator proteins plays a critical role in AR-mediated prostate cancer (PCa) cell growth, thus its inhibition is emerging as a promising strategy for PCa treatment. To develop potent inhibitors of the AR-coactivator interaction, we have designed and synthesized a series of bis-benzamides by modifying functional groups at the N/C-terminus and side chains. A structure-activity relationship study showed that the nitro group at the N-terminus of the bis-benzamide is essential for its biological activity while the C-terminus can have either a methyl ester or a primary carboxamide. Surveying the side chains with various alkyl groups led to the identification of a potent compound 14d that exhibited antiproliferative activity (IC50 value of 16 nM) on PCa cells. In addition, biochemical studies showed that 14d exerts its anticancer activity by inhibiting the AR-PELP1 interaction and AR transactivation.
Collapse
|
752
|
Abstract
In modern oncology, molecular tumor boards are the interface between the public healthcare system and clinical research institutions. An interdisciplinary team of medical and scientific experts assesses if extensive molecular testing for tumor profiling is appropriate and discusses therapeutic options for patients with newly diagnosed treatable alterations. In the field of metastatic prostate cancer, patients especially with a strong family history, young age of diagnosis and those who have exhausted standard treatments may benefit from molecular profiling. Expression of the androgen receptor splice variant 7 (AR-V7) predicts nonresponse to next-generation AR-directed therapy like abiraterone or enzalutamide. Different blood tests for AR-V7 detection are now commercially available. Mutations in the DNA repair pathway are another frequent event in metastatic prostate cancer. Homologous recombination defects sensitize cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors. In the TOPARP-A trial, the PARP inhibitor olaparib led to high response rates (88%) in patients with mutated DNA repair genes. Furthermore, patients with DNA mismatch repair deficiency and/or microsatellite instability seem to benefit from PD-1 inhibitors, particularly pembrolizumab. At this time neither PARP inhibitors nor PD-1 inhibitors are approved for metastatic prostate cancer treatment in Germany. Therefore, a recommendation of a molecular tumor board for biomarker-matched off-label use of approved drugs across entity barriers will support coverage by health insurance.
Collapse
Affiliation(s)
- A K Seitz
- Klinik und Poliklinik für Urologie und Kinderurologie, Zentrum Operative Medizin, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Deutschland.
| | - M M Heck
- Klinik und Poliklinik für Urologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - M W Kamer
- Klinik für Urologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Deutschland
| | - C Grüllich
- Klinik für Medizinische Onkologie, Nationales Zentrum für Tumorerkrankungen, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
753
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
754
|
Xu Z, Zhang Q, Shi J, Zhu W. Underestimated Noncovalent Interactions in Protein Data Bank. J Chem Inf Model 2019; 59:3389-3399. [PMID: 31294978 DOI: 10.1021/acs.jcim.9b00258] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Noncovalent interactions (NCIs) play essential roles in the structure and function of biomacromolecules. There are various NCIs, e.g., hydrogen bonds (HBs), cation-π and π-π interactions, and ionic bonds, among which HBs are the most widespread and well-studied. By utilizing the ratio of the observed HBs over pseudo HBs (1.0 Å longer than the HB distance criteria without angle constraints), we demonstrated that HBs in both protein-ligand and protein-protein interfaces are overlooked in structures deposited in PDB. After the QM/MM optimization of 12 protein-ligand complexes, we showed that the overlooked HBs could be recovered. With a systematic search in the PDB, we found that the HB number per residue (NHB/R) in proteins decreases as structural resolution becomes lower, implying that HBs are overlooked even today, regardless of the type of refinement approach used. Similarly, cation-π, π-π, and ionic interactions were found to be significantly lost, manifesting the universal underestimation of various NCIs. Considering the vital role of NCIs, it is important to recover the NCIs to facilitate drug design, to explore protein-protein interaction, and to study protein structure and function.
Collapse
Affiliation(s)
- Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Qian Zhang
- Department of Computer Science and Technology , East China Normal University , Shanghai 200241 , China
| | - Jiye Shi
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,Open Studio for Druggability Research of Marine Natural Products , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237 , China
| |
Collapse
|
755
|
Balanis NG, Sheu KM, Esedebe FN, Patel SJ, Smith BA, Park JW, Alhani S, Gomperts BN, Huang J, Witte ON, Graeber TG. Pan-cancer Convergence to a Small-Cell Neuroendocrine Phenotype that Shares Susceptibilities with Hematological Malignancies. Cancer Cell 2019; 36:17-34.e7. [PMID: 31287989 PMCID: PMC6703903 DOI: 10.1016/j.ccell.2019.06.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/04/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
Small-cell neuroendocrine cancers (SCNCs) are an aggressive cancer subtype. Transdifferentiation toward an SCN phenotype has been reported as a resistance route in response to targeted therapies. Here, we identified a convergence to an SCN state that is widespread across epithelial cancers and is associated with poor prognosis. More broadly, non-SCN metastases have higher expression of SCN-associated transcription factors than non-SCN primary tumors. Drug sensitivity and gene dependency screens demonstrate that these convergent SCNCs have shared vulnerabilities. These common vulnerabilities are found across unannotated SCN-like epithelial cases, small-round-blue cell tumors, and unexpectedly in hematological malignancies. The SCN convergent phenotype and common sensitivity profiles with hematological cancers can guide treatment options beyond tissue-specific targeted therapies.
Collapse
Affiliation(s)
- Nikolas G Balanis
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Katherine M Sheu
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Favour N Esedebe
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Saahil J Patel
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Bryan A Smith
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Jung Wook Park
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Salwan Alhani
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Brigitte N Gomperts
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
756
|
Huang C, Deng H, Wang Y, Jiang H, Xu R, Zhu X, Huang Z, Zhao X. Circular RNA circABCC4 as the ceRNA of miR-1182 facilitates prostate cancer progression by promoting FOXP4 expression. J Cell Mol Med 2019; 23:6112-6119. [PMID: 31270953 PMCID: PMC6714494 DOI: 10.1111/jcmm.14477] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
In recent years, circular RNAs (circRNAs) have been identified to be essential regulators of various human cancers. However, knowledge of the functions of circRNAs in prostate cancer remains very limited. The correlation between circABCC4 and human cancer is largely unknown. This study aims to investigate the biological functions of circABCC4 in prostate cancer progression and illustrate the underlying mechanism. We found that circABCC4 was remarkably up-regulated in prostate cancer tissues and cell lines and promoted FOXP4 expression by sponging miR-1182 in prostate cancer cells. CircABCC4 knockdown markedly suppressed prostate cancer cell proliferation, cell-cycle progression, migration and invasion in vitro. Furthermore, silencing of the circRNA also delayed tumor growth in vivo. Taken together, our findings indicated that circABCC4 facilitates the malignant behaviour of prostate cancer by promoting FOXP4 expression through sponging of miR-1182. The circABCC4-miR-1182-FOXP4 regulatory loop may be a promising therapeutic target for prostate cancer intervention.
Collapse
Affiliation(s)
- Changkun Huang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Huanghao Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Hongyi Jiang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xuan Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhichao Huang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
757
|
Green BJ, Nguyen V, Atenafu E, Weeber P, Duong BTV, Thiagalingam P, Labib M, Mohamadi RM, Hansen AR, Joshua AM, Kelley SO. Phenotypic Profiling of Circulating Tumor Cells in Metastatic Prostate Cancer Patients Using Nanoparticle-Mediated Ranking. Anal Chem 2019; 91:9348-9355. [DOI: 10.1021/acs.analchem.9b01697] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Vivian Nguyen
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Eshetu Atenafu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Phillip Weeber
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Bill T. V. Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Punithan Thiagalingam
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Reza M. Mohamadi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Aaron R. Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Anthony M. Joshua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
- Kinghorn Cancer Centre, St. Vincent’s Hospital Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Shana O. Kelley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
758
|
Gonthier K, Poluri RTK, Audet-Walsh É. Functional genomic studies reveal the androgen receptor as a master regulator of cellular energy metabolism in prostate cancer. J Steroid Biochem Mol Biol 2019; 191:105367. [PMID: 31051242 DOI: 10.1016/j.jsbmb.2019.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Sex-steroid hormones have been investigated for decades for their oncogenic properties in hormone-dependent cancers. The increasing body of knowledge on the biological actions of androgens in prostate cancer has led to the development of several targeted therapies that still represent the standard of care for cancer patients to this day. In the prostate, androgens promote cellular differentiation and proper tissue development. These hormones also promote the aberrant proliferation and survival of prostate cancer cells. Over the past few years, sequencing technologies for functional genomic analyses have rapidly expanded, revealing novel functions of sex-steroid hormone receptors other than their classic roles. In this article, we will focus on transcriptomic- and genomic-based evidence that demonstrates the importance of the androgen receptor signaling in the regulation of prostate cancer cell metabolism. This is significant because the reprogramming of cell metabolism is a hallmark of cancer. In fact, it is clear now that the androgen receptor contributes to the reprogramming of specific cellular metabolic pathways that promote tumor growth and disease progression, including aerobic glycolysis, mitochondrial respiration, fatty acid ß-oxidation, and de novo lipid synthesis. Overall, beyond regulating development, differentiation, and proliferation, the androgen receptor is also a master regulator of cellular energy metabolism.
Collapse
Affiliation(s)
- Kevin Gonthier
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada
| | - Raghavendra Tejo Karthik Poluri
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada.
| |
Collapse
|
759
|
Jathal MK, Steele TM, Siddiqui S, Mooso BA, D'Abronzo LS, Drake CM, Whang YE, Ghosh PM. Dacomitinib, but not lapatinib, suppressed progression in castration-resistant prostate cancer models by preventing HER2 increase. Br J Cancer 2019; 121:237-248. [PMID: 31209328 PMCID: PMC6738116 DOI: 10.1038/s41416-019-0496-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/14/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite overexpression of the ErbB (EGFR/HER2/ErbB3/ErbB4) family in castration-resistant prostate cancer (CRPC), some inhibitors of this family, including the dual EGFR/HER2 inhibitor lapatinib, failed in Phase II clinical trials. Hence, we investigated mechanisms of lapatinib resistance to determine whether alternate ErbB inhibitors can succeed. METHODS The CWR22 human tumour xenograft and its CRPC subline 22Rv1 and sera from lapatinib-treated CRPC patients from a previously reported Phase II trial were used to study lapatinib resistance. Mechanistic studies were conducted in LNCaP, C4-2 and 22Rv1 cell lines. RESULTS Lapatinib increased intratumoral HER2 protein, which encouraged resistance to this treatment in mouse models. Sera from CRPC patients following lapatinib treatment demonstrated increased HER2 levels. Investigation of the mechanism of lapatinib-induced HER2 increase revealed that lapatinib promotes HER2 protein stability, leading to membrane localisation, EGFR/HER2 heterodimerisation and signalling, elevating cell viability. Knockdown of HER2 and ErbB3, but not EGFR, sensitised CRPC cells to lapatinib. At equimolar concentrations, the recently FDA-approved pan-ErbB inhibitor dacomitinib decreased HER2 protein stability, prevented ErbB membrane localisation (despite continued membrane integrity) and EGFR/HER2 heterodimerisation, thereby decreasing downstream signalling and increasing apoptosis. CONCLUSIONS Targeting the EGFR axis using the irreversible pan-ErbB inhibitor dacomitinib is a viable therapeutic option for CRPC.
Collapse
Affiliation(s)
- Maitreyee K Jathal
- Department of Urology, University of California Davis, Sacramento, CA, United States
| | - Thomas M Steele
- Department of Urology, University of California Davis, Sacramento, CA, United States
| | - Salma Siddiqui
- VA Northern California Health Care System, Mather, CA, United States
| | - Benjamin A Mooso
- VA Northern California Health Care System, Mather, CA, United States
| | - Leandro S D'Abronzo
- Department of Urology, University of California Davis, Sacramento, CA, United States
| | - Christiana M Drake
- Department of Statistics, University of California Davis, Davis, CA, United States
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Paramita M Ghosh
- Department of Urology, University of California Davis, Sacramento, CA, United States.
- VA Northern California Health Care System, Mather, CA, United States.
- Department of Biochemistry-Molecular Medicine, University of California Davis, Sacramento, CA, United States.
| |
Collapse
|
760
|
Hu WY, Xu L, Chen B, Ou S, Muzzarelli KM, Hu DP, Li Y, Yang Z, Vander Griend DJ, Prins GS, Qin Z. Targeting prostate cancer cells with enzalutamide-HDAC inhibitor hybrid drug 2-75. Prostate 2019; 79:1166-1179. [PMID: 31135075 DOI: 10.1002/pros.23832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The progression of castration-resistant prostate cancer (CRPC) still relies on the function of androgen receptor (AR), achieved by evolving mechanisms to reactivate AR signaling under hormonal therapy. Histone deacetylase inhibitors (HDACis) disrupt cytoplasmic AR chaperone heat shock protein 90 (Hsp90) via HDAC6 inhibition, leading to AR degradation and growth suppression of prostate cancer (PCa) cells. However, current HDACis are not effective in clinical trials treating CRPC. METHODS We designed hybrid molecules containing partial chemical scaffolds of AR antagonist enzalutamide (Enz) and HDACi suberoylanilide hydroxamic acid (SAHA) as new anti-PCa agents. We previously demonstrated that Enz-HDACi hybrid drug 2-75 targets both AR and Hsp90, which inhibits the growth of Enz-resistant C4-2 cells. In the current study, we further investigate the molecular and cellular actions of 2-75 and test its anti-PCa effects in vivo. RESULTS Compared with Enz, 2-75 had greater AR antagonistic effects by decreasing the stability, transcriptional activity, and nuclear translocation of intracellular AR. In addition to inhibition of full-length AR (FL AR), 2-75 downregulated the AR-V7 variant in multiple PCa cell lines. Mechanistic studies indicated that the AR affinity of 2-75 retains the drug in the cytoplasm of AR + PCa cells and further directs 2-75 to the AR-associated protein complex, which permits localized effects on AR-associated Hsp90. Further, unlike pan-HDACi SAHA, the cytoplasm-retaining property allows 2-75 to significantly inhibit cytoplasmic HDAC6 with limited impact on nuclear HDACs. These selective cytoplasmic actions of 2-75 overcome the unfavorable resistance and toxicity properties associated with classical AR antagonists, HDACis, and Hsp90 inhibitors. Finally, 2-75 showed greater antitumor activities than Enz in vivo on SQ xenografts derived from LNCaP cells. CONCLUSIONS Novel therapeutic strategy using newly designed 2-75 and related AR antagonist-HDACi hybrid drugs has great potential for effective treatment of CRPC.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Bailing Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Siyu Ou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Kendall M Muzzarelli
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois
| | - Ye Li
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Gail S Prins
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois
| | - Zhihui Qin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
761
|
Laudato S, Aparicio A, Giancotti FG. Clonal Evolution and Epithelial Plasticity in the Emergence of AR-Independent Prostate Carcinoma. Trends Cancer 2019; 5:440-455. [PMID: 31311658 DOI: 10.1016/j.trecan.2019.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
In spite of an initial clinical response to androgen deprivation therapy (ADT), the majority of prostate cancer patients eventually develop castration-resistant prostate cancer (CRPC). Recent studies have highlighted the role of epithelial plasticity, including transdifferentiation and epithelial-to-mesenchymal transition (EMT), in the development of AR pathway-negative CRPC, a form of the disease that has increased in incidence after the introduction of potent AR inhibitors. In this review, we will discuss the switches between different cell fates that occur in response to AR blockade or acquisition of specific oncogenic mutations, such as those in TP53 and RB1, during the evolution to CRPC. We highlight the urgent need to dissect the mechanistic underpinnings of these transitions and identify novel vulnerabilities that can be targeted therapeutically.
Collapse
Affiliation(s)
- Sara Laudato
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. )
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
762
|
Identification of Novel Biomarkers of Homologous Recombination Defect in DNA Repair to Predict Sensitivity of Prostate Cancer Cells to PARP-Inhibitors. Int J Mol Sci 2019; 20:ijms20123100. [PMID: 31242618 PMCID: PMC6627216 DOI: 10.3390/ijms20123100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
One of the most common malignancies in men is prostate cancer, for which androgen deprivation is the standard therapy. However, prostate cancer cells become insensitive to anti-androgen treatment and proceed to a castration-resistant state with limited therapeutic options. Therefore, besides the androgen deprivation approach, novel biomarkers are urgently required for specific targeting in this deadly disease. Recently, germline or somatic mutations in the homologous recombination (HR) DNA repair genes have been identified in at least 20–25% of metastatic castration-resistant prostate cancers (mCRPC). Defects in genes involved in HR DNA repair can sensitize cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors, a class of drugs already approved by the Food and Drug Administration (FDA) for breast and ovarian cancer carrying germline mutations in BRCA1/2 genes. For advanced prostate cancer carrying Breast cancer1/2 (BRCA1/2) or ataxia telengiectasia mutated (ATM) mutations, preclinical studies and clinical trials support the use of PARP-inhibitors, which received breakthrough therapy designation by the FDA. Based on these assumptions, several trials including DNA damage response and repair (DDR) targeting have been launched and are ongoing for prostate cancer. Here, we review the state-of-the-art potential biomarkers that could be predictive of cancer cell synthetic lethality with PARP inhibitors. The identification of key molecules that are affected in prostate cancer could be assayed in future clinical studies to better stratify prostate cancer patients who might benefit from target therapy.
Collapse
|
763
|
Dougan J, Hawsawi O, Burton LJ, Edwards G, Jones K, Zou J, Nagappan P, Wang G, Zhang Q, Danaher A, Bowen N, Hinton C, Odero-Marah VA. Proteomics-Metabolomics Combined Approach Identifies Peroxidasin as a Protector against Metabolic and Oxidative Stress in Prostate Cancer. Int J Mol Sci 2019; 20:E3046. [PMID: 31234468 PMCID: PMC6627806 DOI: 10.3390/ijms20123046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Peroxidasin (PXDN), a human homolog of Drosophila PXDN, belongs to the family of heme peroxidases and has been found to promote oxidative stress in cardiovascular tissue, however, its role in prostate cancer has not been previously elucidated. We hypothesized that PXDN promotes prostate cancer progression via regulation of metabolic and oxidative stress pathways. We analyzed PXDN expression in prostate tissue by immunohistochemistry and found increased PXDN expression with prostate cancer progression as compared to normal tissue or cells. PXDN knockdown followed by proteomic analysis revealed an increase in oxidative stress, mitochondrial dysfunction and gluconeogenesis pathways. Additionally, Liquid Chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics confirmed that PXDN knockdown induced global reprogramming associated with increased oxidative stress and decreased nucleotide biosynthesis. We further demonstrated that PXDN knockdown led to an increase in reactive oxygen species (ROS) associated with decreased cell viability and increased apoptosis. Finally, PXDN knockdown decreased colony formation on soft agar. Overall, the data suggest that PXDN promotes progression of prostate cancer by regulating the metabolome, more specifically, by inhibiting oxidative stress leading to decreased apoptosis. Therefore, PXDN may be a biomarker associated with prostate cancer and a potential therapeutic target.
Collapse
Affiliation(s)
- Jodi Dougan
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Ohuod Hawsawi
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Liza J Burton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Gabrielle Edwards
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Kia Jones
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Peri Nagappan
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Guangdi Wang
- Department of Chemistry, Xavier University, New Orleans, LA 70125, USA.
| | - Qiang Zhang
- Department of Chemistry, Xavier University, New Orleans, LA 70125, USA.
| | - Alira Danaher
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Nathan Bowen
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Cimona Hinton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Valerie A Odero-Marah
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| |
Collapse
|
764
|
Pawar A, Gollavilli PN, Wang S, Asangani IA. Resistance to BET Inhibitor Leads to Alternative Therapeutic Vulnerabilities in Castration-Resistant Prostate Cancer. Cell Rep 2019; 22:2236-2245. [PMID: 29490263 DOI: 10.1016/j.celrep.2018.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/20/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
BRD4 plays a major role in the transcription networks orchestrated by androgen receptor (AR) in castration-resistant prostate cancer (CRPC). Several BET inhibitors (BETi) that displace BRD4 from chromatin are being evaluated in clinical trials for CRPC. Here, we describe mechanisms of acquired resistance to BETi that are amenable to targeted therapies in CRPC. BETi-resistant CRPC cells displayed cross-resistance to a variety of BETi in the absence of gatekeeper mutations, exhibited reduced chromatin-bound BRD4, and were less sensitive to BRD4 degraders/knockdown, suggesting a BRD4-independent transcription program. Transcriptomic analysis revealed reactivation of AR signaling due to CDK9-mediated phosphorylation of AR, resulting in sensitivity to CDK9 inhibitors and enzalutamide. Additionally, increased DNA damage associated with PRC2-mediated transcriptional silencing of DDR genes was observed, leading to PARP inhibitor sensitivity. Collectively, our results identify the therapeutic limitation of BETi as a monotherapy; however, our BETi resistance data suggest unique opportunities for combination therapies in treating CRPC.
Collapse
Affiliation(s)
- Aishwarya Pawar
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paradesi Naidu Gollavilli
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA.
| |
Collapse
|
765
|
Hensley PJ, Cao Z, Pu H, Dicken H, He D, Zhou Z, Wang C, Koochekpour S, Kyprianou N. Predictive and targeting value of IGFBP-3 in therapeutically resistant prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:188-202. [PMID: 31317059 PMCID: PMC6627542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Our previous studies demonstrated that a novel quinazoline derivative, DZ-50, inhibited prostate cancer epithelial cell invasion and survival by targeting insulin-like-growth factor binding protein-3 (IGFBP-3) and mediating epithelial-mesenchymal transition (EMT) conversion to mesenchymal-epithelial transition (MET). This study investigated the therapeutic value of DZ-50 agent in in vitro and in vivo models of advanced prostate cancer and the ability of the compound to overcome resistance to antiandrogen (enzalutamide) in prostate tumors. APPROACH LNCaP and LNCaP-enzalutamide resistant human prostate cancer (LNCaP-ER) cells, as well as 22Rv1 and enzalutamide resistant, 22Rv1-ER were used as cell models. The effects of DZ-50 and the antiandrogen, enzalutamide (as single agents or in combination) on cell death, EMT-MET interconversion, and expression of IGFBP3 and the androgen receptor (AR), were examined. The TRAMP mouse model of prostate cancer progression was used as a pre-clinical model. Transgenic mice (20-wks of age) were treated with DZ-50 (100 mg/kg for 2 wks, oral gavage daily) and prostate tumors were subjected to immunohistochemical assessment of apoptosis, cell proliferation, markers of EMT and differentiation and IGFBP-3 and AR expression. A tissue microarray (TMA) was analyzed for expression of IGBP-3, the target of DZ-50 and its association with tumor progression and biochemical recurrence. RESULTS We found that treatment with DZ-50 enhanced the anti-tumor response to the antiandrogen via promoting EMT to MET interconversion, in vitro. This DZ-50-mediated phenotypic reversal to MET leads to prostate tumor re-differentiation in vivo, by targeting nuclear IGFBP-3 expression (without affecting AR). Analysis of human prostate cancer specimens and TCGA patient cohorts revealed that overexpression of IGBP-3 protein correlated with tumor recurrence and poor patient survival. CONCLUSIONS These findings provide significant new insights into (a) the predictive value of IGFBP-3 in prostate cancer progression and (b) the antitumor action of DZ-50, [in combination or sequencing with enzalutamide] as a novel approach for the treatment of therapeutically resistant prostate cancer.
Collapse
Affiliation(s)
| | - Zheng Cao
- Department of Urology, University of KentuckyLexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Hong Pu
- Department of Urology, University of KentuckyLexington, KY, USA
| | - Haley Dicken
- Department of Toxicology and Cancer Biology, University of KentuckyLexington, KY, USA
| | - Daheng He
- Department of Markey Cancer Center, University of KentuckyLexington, KY, USA
| | - Zhaohe Zhou
- Department of Markey Cancer Center, University of KentuckyLexington, KY, USA
| | - Chi Wang
- Department of Markey Cancer Center, University of KentuckyLexington, KY, USA
| | | | - Natasha Kyprianou
- Department of Urology, University of KentuckyLexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
- Department of Toxicology and Cancer Biology, University of KentuckyLexington, KY, USA
| |
Collapse
|
766
|
CK2 Pro-Survival Role in Prostate Cancer Is Mediated via Maintenance and Promotion of Androgen Receptor and NFκB p65 Expression. Pharmaceuticals (Basel) 2019; 12:ph12020089. [PMID: 31197122 PMCID: PMC6631211 DOI: 10.3390/ph12020089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022] Open
Abstract
The prosurvival protein kinase CK2, androgen receptor (AR), and nuclear factor kappa B (NFκB) interact in the function of prostate cells, and there is evidence of crosstalk between these signals in the pathobiology of prostate cancer (PCa). As CK2 is elevated in PCa, and AR and NFκB are involved in the development and progression of prostate cancer, we investigated their interaction in benign and malignant prostate cells in the presence of altered CK2 expression. Our results show that elevation of CK2 levels caused increased levels of AR and NFκB p65 in prostate cells of different phenotypes. Analysis of TCGA PCa data indicated that AR and CK2α RNA expression are strongly correlated. Small molecule inhibition or molecular down-regulation of CK2 caused reduction in AR mRNA expression and protein levels in PCa cells and in orthotopic xenograft tumors by various pathways. Among these, regulation of AR protein stability plays a unifying role in CK2 maintenance of AR protein levels. Our results show induction of various endoplasmic reticulum stress signals after CK2 inhibition, which may play a role in the PCa cell death response. Of note, CK2 inhibition caused loss of cell viability in both parental and enzalutamide-resistant castrate-resistant PCa cells. The present work elucidates the specific link of CK2 to the pathogenesis of PCa in association with AR and NFκB expression; further, the observation that inhibition of CK2 can exert a growth inhibitory effect on therapy-resistant PCa cells emphasizes the potential utility of CK2 inhibition in patients who are on enzalutamide treatment for advanced cancer.
Collapse
|
767
|
Snow O, Lallous N, Singh K, Lack N, Rennie P, Cherkasov A. Androgen receptor plasticity and its implications for prostate cancer therapy. Cancer Treat Rev 2019; 81:101871. [PMID: 31698174 DOI: 10.1016/j.ctrv.2019.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Acquired resistance to a drug treatment is a common problem across many cancers including prostate cancer (PCa) - one of the major factors for male mortality. The androgen receptor (AR) continues to be the main therapeutic PCa target and despite the success of modern targeted therapies such as enzalutamide, resistance to these drugs eventually develops. The AR has found many ways to adapt to treatments including overexpression and production of functional, constitutively active splice variants. However, of particular importance are point mutations in the ligand binding domain of the protein that convert anti-androgens into potent AR agonists. This mechanism appears to be especially prevalent with the AR in spite of some distant similarities to other hormone nuclear receptors. Despite the AR being one of the most studied and attended targets in cancer, those gain-of-function mutations in the receptor remain a significant challenge for the development of PCa therapies. This drives the need to fully characterize such mutations and to consistently screen PCa patients for their occurrence to prevent adverse reactions to anti-androgen drugs. Novel treatments should also be developed to overcome this resistance mechanism and more attention should be given to the possibility of similar occurrences in other cancers.
Collapse
Affiliation(s)
- Oliver Snow
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada; School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, BC, Canada
| | - Nada Lallous
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Kriti Singh
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Nathan Lack
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Paul Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada.
| |
Collapse
|
768
|
Lu YT, Delijani K, Mecum A, Goldkorn A. Current status of liquid biopsies for the detection and management of prostate cancer. Cancer Manag Res 2019; 11:5271-5291. [PMID: 31239778 PMCID: PMC6559244 DOI: 10.2147/cmar.s170380] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, new therapeutic options have become available for prostate cancer (PC) patients, generating an urgent need for better biomarkers to guide the choice of therapy and monitor treatment response. Liquid biopsies, including circulating tumor cells (CTCs), circulating nucleic acids, and exosomes, have been developed as minimally invasive assays allowing oncologists to monitor PC patients with real-time cellular or molecular information. While CTC counts remain the most extensively validated prognostic biomarker to monitor treatment response, recent advances demonstrate that CTC morphology and androgen receptor characterization can provide additional information to guide the choice of treatment. Characterization of cell-free DNA (cfDNA) is another rapidly emerging field with novel technologies capable of monitoring the evolution of treatment relevant alterations such as those in DNA damage repair genes for poly (ADP-ribose) polymerase (PARP) inhibition. In addition, several new liquid biopsy fields are emerging, including the characterization of heterogeneity, CTC RNA sequencing, the culture and xenografting of CTCs, and the characterization of extracellular vesicles (EVs) and circulating microRNAs. This review describes the clinical utilization of liquid biopsies in the management of PC patients and emerging liquid biopsy technologies with the potential to advance personalized cancer therapy.
Collapse
Affiliation(s)
- Yi-Tsung Lu
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kevin Delijani
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Andrew Mecum
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
769
|
Abstract
Stem/progenitor cells play central roles in processes of organogenesis and tissue maintenance, whereas cancer stem cells (CSCs) are thought to drive tumor malignancy. Here, we review recent progress in the identification and analysis of normal prostate stem/progenitor cells as well as putative CSCs in both genetically engineered mouse models as well as in human tissue. We also discuss studies that have investigated the cell type of origin for prostate cancer. In addition, we provide a critical assessment of methodologies used in stem cell analyses and outline directions for future research.
Collapse
Affiliation(s)
- Jia J Li
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
770
|
Tarasov VA, Naboka AV, Makhotkin MA, Chikunov IE, Tyutyakina MG, Chebotarev DA, Cherkasova EN, Kogan MI, Chibichyan MB, Matishov DG. The Influence of microRNAs in Regulation of Hormone Dependence in Prostate Cancer Cells. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
771
|
Beretta GL, Zaffaroni N. Androgen Receptor-Directed Molecular Conjugates for Targeting Prostate Cancer. Front Chem 2019; 7:369. [PMID: 31192191 PMCID: PMC6546842 DOI: 10.3389/fchem.2019.00369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Due to its central role in the cellular biology of prostate cancer (PC), androgen receptor (AR) still remains an important therapeutic target for fighting this tumor. Several drugs targeting AR have been reported so far, and many new molecules are expected for the future. In spite of their antitumor efficacy, these drugs are not selective for malignant cells and are subjected to AR-mediated activation of drug resistance mechanisms that are responsible for several drawbacks, including systemic toxicity and disease recurrence and metastasis. Among the several strategies considered to overcome these drawbacks, very appealing appears the design of hybrid small-molecule conjugates targeting AR to drive drug action on receptor-positive PC cells. These compounds are designed around on an AR binder, which selectively engages AR with high potency, coupled with a moiety endowed with different pharmacological properties. In this review we focus on two classes of compounds: a) small-molecules and AR-ligand based conjugates that reduce AR expression, which allow down-regulation of AR levels by activating its proteasome-mediated degradation, and b) AR-ligand-based conjugates for targeting small-molecules, in which the AR binder tethers small-molecules, including conventional antitumor drugs (e.g., cisplatin, doxorubicin, histone deacetylase inhibitors, as well as photo-sensitizers) and selectively directs drug action toward receptor-positive PC cells.
Collapse
Affiliation(s)
- Giovanni L Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
772
|
Fujii S, Kagechika H. Androgen receptor modulators: a review of recent patents and reports (2012-2018). Expert Opin Ther Pat 2019; 29:439-453. [PMID: 31092069 DOI: 10.1080/13543776.2019.1618831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Androgen receptor (AR) is one of the most promising targets of drug discovery because of its importance in male reproductive systems and homeostasis of bone and muscle. Various AR-modulating agents have been developed and used clinically to treat androgen-dependent disorders, including prostate cancer, and some new-generation antiandrogens have recently been approved. Intensive studies are underway to develop various AR-modulating compounds, including conventional antagonists, tissue-specific AR modulators (SARMs), degraders, and nonconventional AR-modulating compounds that target sites other than the ligand-binding domain (LBD), such as the N-terminal domain (NTD) or the DNA-binding domain (DBD). AREAS COVERED The authors provide an overview of AR-modulating agents from 2012 to 2018. EXPERT OPINION The LBD has been the primary target for AR modulation, and important AR-modulating agents, including SARMs and recently approved antiandrogens such as enzalutamide and apalutamide, have been developed as conventional LBD antagonists. Development of LBD-targeting antiandrogens to treat prostate cancer is a kind of cat-and-mouse game between clinical agents and AR mutations, and therefore next-generation antiandrogens are still required. Development of nonconventional AR-modulating agents targeting NTD and DBD, is likely to be a promising approach to develop multiple and synergistic strategies able to overcome any kind of androgen-dependent condition.
Collapse
Affiliation(s)
- Shinya Fujii
- a Institute for Quantitative Biosciences , The University of Tokyo , Tokyo , Japan
| | - Hiroyuki Kagechika
- b Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , Tokyo , Japan
| |
Collapse
|
773
|
Civenni G, Albino D, Shinde D, Vázquez R, Merulla J, Kokanovic A, Mapelli SN, Carbone GM, Catapano CV. Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells. Front Oncol 2019; 9:385. [PMID: 31143708 PMCID: PMC6521702 DOI: 10.3389/fonc.2019.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carlo V. Catapano
- Institute of Oncology (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
774
|
Gonthier K, Poluri RTK, Weidmann C, Tadros M, Audet-Walsh É. Reprogramming of Isocitrate Dehydrogenases Expression and Activity by the Androgen Receptor in Prostate Cancer. Mol Cancer Res 2019; 17:1699-1709. [DOI: 10.1158/1541-7786.mcr-19-0020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/22/2019] [Accepted: 05/01/2019] [Indexed: 11/16/2022]
|
775
|
Gaur S, Gross ME, Liao CP, Qian B, Shih JC. Effect of Monoamine oxidase A (MAOA) inhibitors on androgen-sensitive and castration-resistant prostate cancer cells. Prostate 2019; 79:667-677. [PMID: 30693539 PMCID: PMC7462252 DOI: 10.1002/pros.23774] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Monoamine oxidase A (MAOA) is best known for its role in neuro-transmitter regulation. Monoamine oxidase inhibitors are used to treat atypical depression. MAOA is highly expressed in high grade prostate cancer and modulates tumorigenesis and progression in prostate cancer. Here, we investigated the potential role of MAOA inhibitors (MAOAIs) in relation to the androgen receptor (AR) pathway and resistance to antiandrogen treatment in prostate cancer. METHODS We examined MAOA expression and the effect of MAOI treatment in relation to AR-targeted treatments using the LNCaP, C4-2B, and 22Rv1 human prostate cancer cell lines. MAOA, AR-full length (AR-FL), AR splice variant 7 (AR-V7), and PSA expression was evaluated in the presence of MAOAIs (clorgyline, phenelzine), androgenic ligand (R1881), and antiandrogen (enzalutamide) treatments. An enzalutamide resistance cell line was generated to test the effect of MAOAI treatment in this model. RESULTS We observed that MAOAIs, particularly clorgyline and phenelzine, were effective at decreasing MAOA activity in human prostate cancer cells. MAOAIs significantly decreased growth of LNCaP, C4-2B, and 22Rv1 cells and produced additive growth inhibitory effects when combined with enzalutamide. Clorgyline decreased expression of AR-FL and AR-V7 in 22Rv1 cells and was effective at decreasing growth of an enzalutamide-resistant C4-2B cell line with increased AR-V7 expression. CONCLUSIONS MAOAIs decrease growth and proliferation of androgen-sensitive and castration-resistant prostate cancer cells. Clorgyline, in particular, decreases expression of AR-FL and AR-V7 expression and decreases growth of an enzalutamide-resistant cell line. These findings provide preclinical validation of MAOA inhibitors either alone or in combination with antiandrogens for therapeutic intent in patients with advanced forms of prostate cancer.
Collapse
Affiliation(s)
- Shikha Gaur
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Mitchell E. Gross
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chun-Peng Liao
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bin Qian
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Jean C. Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
- USC-Taiwan Center for Translational Research, Los Angeles, California
- Program for Cancer Biology and Drug Discovery, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
776
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
777
|
Gritsina G, Gao WQ, Yu J. Transcriptional repression by androgen receptor: roles in castration-resistant prostate cancer. Asian J Androl 2019; 21:215-223. [PMID: 30950412 PMCID: PMC6498738 DOI: 10.4103/aja.aja_19_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023] Open
Abstract
Androgen receptor (AR), a hormonal transcription factor, plays important roles during prostate cancer progression and is a key target for therapeutic interventions. While androgen-deprivation therapies are initially successful in regressing prostate tumors, the disease ultimately comes back as castration-resistant prostate cancer (CRPC) or at the late stage as neuroendocrine prostate cancer (NEPC). CRPC remains largely dependent on hyperactive AR signaling in the milieu of low androgen, while NEPC is negative of AR expression but positive of many AR-repressed genes. Recent technological advances in genome-wide analysis of transcription factor binding sites have revealed an unprecedented set of AR target genes. In addition to its well-known function in activating gene expression, AR is increasingly known to also act as a transcriptional repressor. Here, we review the molecular mechanisms by which AR represses gene expression. We also summarize AR-repressed genes that are aberrantly upregulated in CRPC and NEPC and represent promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Galina Gritsina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wei-Qiang Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
778
|
Blee AM, Huang H. Lineage plasticity-mediated therapy resistance in prostate cancer. Asian J Androl 2019; 21:241-248. [PMID: 29900883 PMCID: PMC6498731 DOI: 10.4103/aja.aja_41_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/08/2018] [Indexed: 12/21/2022] Open
Abstract
Therapy resistance is a significant challenge for prostate cancer treatment in clinic. Although targeted therapies such as androgen deprivation and androgen receptor (AR) inhibition are effective initially, tumor cells eventually evade these strategies through multiple mechanisms. Lineage reprogramming in response to hormone therapy represents a key mechanism that is increasingly observed. The studies in this area have revealed specific combinations of alterations present in adenocarcinomas that provide cells with the ability to transdifferentiate and perpetuate AR-independent tumor growth after androgen-based therapies. Interestingly, several master regulators have been identified that drive plasticity, some of which also play key roles during development and differentiation of the cell lineages in the normal prostate. Thus, further study of each AR-independent tumor type and understanding underlying mechanisms are warranted to develop combinational therapies that combat lineage plasticity in prostate cancer.
Collapse
Affiliation(s)
- Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
779
|
Interplay Between SOX9, Wnt/β-Catenin and Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Int J Mol Sci 2019; 20:ijms20092066. [PMID: 31027362 PMCID: PMC6540097 DOI: 10.3390/ijms20092066] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.
Collapse
|
780
|
Chen X, Shi H, Bi X, Li Y, Huang Z. Targeting the deubiquitinase STAMBPL1 triggers apoptosis in prostate cancer cells by promoting XIAP degradation. Cancer Lett 2019; 456:49-58. [PMID: 31004702 DOI: 10.1016/j.canlet.2019.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
The zinc metalloprotease STAM-binding protein-like 1 (STAMBPL1) has been identified as a deubiquitinase by specifically cleaving Lys-63-linked polyubiquitin chains, but its cellular function remains unclear. Here we described the potential role of STAMBPL1 in suppression of the intrinsic apoptosis. We observed substantially high amounts of STAMBPL1 proteins in androgen-independent prostate cancer PC3 and DU145 cell lines. STAMBPL1 RNAi depletion triggered caspase-3/-7-dependent apoptosis in PC3 and DU145 cells. STAMBPL1 knockdown-induced apoptosis was accompanied by accumulation of cellular ROS and a decrease in endogenous caspase inhibitor XIAP protein content. Treatment cells with antioxidant NAC delayed STAMBPL1 silencing-induced apoptosis, whereas ectopic expression of XIAP almost completely abrogated apoptosis. We further elucidated that STAMBPL1 knockdown diverted XIAP protein to lysosomal degradation pathway. Taken together, these studies show that STAMBPL1 depletion induces apoptosis by promoting XIAP lysosomal degradation, and suggest that targeting deubiquitinase STAMBPL1 might offer promising therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Xi Chen
- Department of Urology, National Cancer Center, National Clinical Research Center For Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongzhe Shi
- Department of Urology, National Cancer Center, National Clinical Research Center For Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingang Bi
- Department of Urology, National Cancer Center, National Clinical Research Center For Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yajian Li
- Department of Urology, National Cancer Center, National Clinical Research Center For Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
781
|
Gao Y, Li L, Li T, Ma L, Yuan M, Sun W, Cheng HL, Niu L, Du Z, Quan Z, Fan Y, Fan J, Luo C, Wu X. Simvastatin delays castration‑resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin‑1. Int J Oncol 2019; 54:2054-2068. [PMID: 31081050 PMCID: PMC6521936 DOI: 10.3892/ijo.2019.4774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
The failure of androgen deprivation therapy in prostate cancer treatment mainly results from drug resistance to androgen receptor antagonists. Although an aberrant caveolin‑1 (Cav‑1) expression has been reported in multiple tumor cell lines, it is unknown whether it is responsible for the progression of castration‑resistant prostate cancer (CRPC). Thus, the aim of the present study was to determine whether Cav‑1 can be used as a key molecule for the prevention and treatment of CRPC, and to explore its mechanism of action in CRPC. For this purpose, tissue and serum samples from patients with primary prostate cancer and CRPC were analyzed using immunohistochemistry and enzyme‑linked immunosorbent assay, which revealed that Cav‑1 was overexpressed in CRPC. Furthermore, Kaplan‑Meier survival analysis and univariate Cox proportional hazards regression analysis demonstrated that Cav‑1 expression in tumors was an independent risk factor for the occurrence of CRPC and was associated with a shorter recurrence‑free survival time in patients with CRPC. Receiver operating characteristic curves suggested that serum Cav‑1 could be used as a diagnostic biomarker for CRPC (area under the curve, 0.876) using a cut‑off value of 0.68 ng/ml (with a sensitivity of 82.1% and specificity of 80%). In addition, it was determined that Cav‑1 induced the invasion and migration of CRPC cells by the activation of the H‑Ras/phosphoinositide‑specific phospholipase Cε signaling cascade in the cell membrane caveolae. Importantly, simvastatin was able to augment the anticancer effects of androgen receptor antagonists by downregulating the expression of Cav‑1. Collectively, the findings of this study provide evidence that Cav‑1 is a promising predictive biomarker for CRPC and that lowering cholesterol levels with simvastatin or interfering with the expression of Cav‑1 may prove to be a useful strategy with which to prevent and/or treat CRPC.
Collapse
Affiliation(s)
- Yingying Gao
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Luo Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Ting Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Lei Ma
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Hong Lin Cheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Lingfang Niu
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Zhongbo Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Yanru Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Jiaxin Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Chunli Luo
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| |
Collapse
|
782
|
Lin J, Lu Y, Zhang X, Mo Q, Yu L. Effect of miR-200c on proliferation, invasion and apoptosis of prostate cancer LNCaP cells. Oncol Lett 2019; 17:4299-4304. [PMID: 30944624 PMCID: PMC6444304 DOI: 10.3892/ol.2019.10102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/28/2019] [Indexed: 01/24/2023] Open
Abstract
Effect of miRNA-200c (miR-200c) on the proliferation, invasion and apoptosis of prostate cancer cell line LNCaP was investigated. The difference in miR-200c expression was observed using RT-qPCR in the NC group (transfected empty plasmid), simulation group (simulation sequence) and inhibition group (transferred inhibition sequence), which were established by transfecting LNCaP cells with a kit. The proliferation, invasion and apoptosis of cells after transfection were detected using the cell counting kit-8 (CCK-8) method, Transwell chamber and flow cytometry. RT-qPCR detection showed that the relative expression of miR-200c in LNCaP cells significantly increased compared with RWPE-1 cells (P<0.05). The difference was statistically significant in the relative expression of miR-200c cells among NC group, simulation group and inhibition group after transfection (P<0.05) and they significantly decreased in NC group of cells compared with the simulation group (P<0.05). CCK-8 detection showed that there were differences at the 2nd, 3rd, 4th and 5th days of growth in the NC group, simulation group and inhibition group of cells (P<0.05) and there was a difference in the proliferation ability between NC group and simulation group (P<0.05). Transwell chamber detection showed that there was a difference in the invasion ability among NC group, simulation group and inhibition group of cells (P<0.05), among which the number of passed membrane cells in inhibition group was significantly smaller than that in NC group and simulation group (P<0.05), and the difference was not statistically significant between NC group and simulation group (P>0.05). Flow cytometry detection of the apoptosis ability of each group of cells showed that there was a difference in the apoptotic rate in the NC, simulation and inhibition groups (P<0.05). The low expression of miR-200c is beneficial to inhibit the proliferation and invasion of LNCaP cells in vitro and to promote apoptosis, which may be a potential target for prostate cancer biotherapy.
Collapse
Affiliation(s)
- Jianxi Lin
- Shengzhou People's Hospital, Shengzhou, Zhejiang 312400, P.R. China
| | - Yi Lu
- Shengzhou People's Hospital, Shengzhou, Zhejiang 312400, P.R. China
| | - Xiao Zhang
- Shengzhou People's Hospital, Shengzhou, Zhejiang 312400, P.R. China
| | - Qiwang Mo
- Shengzhou People's Hospital, Shengzhou, Zhejiang 312400, P.R. China
| | - Ling Yu
- Shengzhou People's Hospital, Shengzhou, Zhejiang 312400, P.R. China
| |
Collapse
|
783
|
Torquato S, Pallavajjala A, Goldstein A, Valda Toro P, Silberstein JL, Lee J, Nakazawa M, Waters I, Chu D, Shinn D, Groginski T, Hughes RM, Simons BW, Khan H, Feng Z, Carducci MA, Paller CJ, Denmeade SR, Kressel B, Eisenberger MA, Antonarakis ES, Trock BJ, Park BH, Hurley PJ. Genetic Alterations Detected in Cell-Free DNA Are Associated With Enzalutamide and Abiraterone Resistance in Castration-Resistant Prostate Cancer. JCO Precis Oncol 2019; 3:PO.18.00227. [PMID: 31131348 PMCID: PMC6532665 DOI: 10.1200/po.18.00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Androgen receptor (AR) gene alterations, including ligand-binding domain mutations and copy number (CN) gain, have yet to be fully established as predictive markers of resistance to enzalutamide and abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC). The goal of this study was to validate AR gene alterations detected in cell-free DNA (cfDNA) as markers of enzalutamide and abiraterone resistance in patients with mCRPC. METHODS Patients with mCRPC (N = 62) were prospectively enrolled between 2014 and 2018. Blood was collected before therapies-enzalutamide (n = 25), abiraterone (n = 35), or enzalutamide and abiraterone (n = 2)-and at disease progression. We used deep next-generation sequencing to analyze cfDNA for sequence variants and CN status in AR and 45 additional cancer-associated genes. Primary end points were prostate-specific antigen response, progression-free survival (PFS), and overall survival (OS). RESULTS Elevated tumor-specific cfDNA (circulating tumor DNA) was associated with a worse prostate-specific antigen response (hazard ratio [HR], 3.17; 95% CI, 1.11 to 9.05; P = .031), PFS (HR, 1.76; 95% CI, 1.03 to 3.01; P = .039), and OS (HR, 2.92; 95% CI, 1.40 to 6.11; P = .004). AR ligand-binding domain missense mutations (HR, 2.51; 95% CI, 1.15 to 5.72; P = .020) were associated with a shorter PFS in multivariable models. AR CN gain was associated with a shorter PFS; however, significance was lost in multivariable modeling. Genetic alterations in tumor protein p53 (HR, 2.70; 95% CI, 1.27 to 5.72; P = .009) and phosphoinositide 3-kinase pathway defects (HR, 2.62; 95% CI, 1.12 to 6.10; P = .026) were associated with a worse OS in multivariable models. CONCLUSION These findings support the conclusion that high circulating tumor DNA burden is associated with worse outcomes to enzalutamide and abiraterone in men with mCRPC. Tumor protein p53 loss and phosphoinositide 3-kinase pathway defects were associated with worse OS in men with mCRPC. AR status associations with outcomes were not robust, and additional validation is needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin Lee
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Ian Waters
- Johns Hopkins School of Medicine, Baltimore, MD
| | - David Chu
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | - Hamda Khan
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | | | | | - Ben H. Park
- Johns Hopkins School of Medicine, Baltimore, MD
- Johns Hopkins University, Baltimore, MD
| | | |
Collapse
|
784
|
Discovery of deshydroxy bicalutamide derivatives as androgen receptor antagonists. Eur J Med Chem 2019; 167:49-60. [DOI: 10.1016/j.ejmech.2019.01.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 11/19/2022]
|
785
|
Braadland PR, Urbanucci A. Chromatin reprogramming as an adaptation mechanism in advanced prostate cancer. Endocr Relat Cancer 2019; 26:R211-R235. [PMID: 30844748 DOI: 10.1530/erc-18-0579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Tumor evolution is based on the ability to constantly mutate and activate different pathways under the selective pressure of targeted therapies. Epigenetic alterations including those of the chromatin structure are associated with tumor initiation, progression and drug resistance. Many cancers, including prostate cancer, present enlarged nuclei, and chromatin appears altered and irregular. These phenotypic changes are likely to result from epigenetic dysregulation. High-throughput sequencing applied to bulk samples and now to single cells has made it possible to study these processes in unprecedented detail. It is therefore timely to review the impact of chromatin relaxation and increased DNA accessibility on prostate cancer growth and drug resistance, and their effects on gene expression. In particular, we focus on the contribution of chromatin-associated proteins such as the bromodomain-containing proteins to chromatin relaxation. We discuss the consequence of this for androgen receptor transcriptional activity and briefly summarize wider gain-of-function effects on other oncogenic transcription factors and implications for more effective prostate cancer treatment.
Collapse
Affiliation(s)
- Peder Rustøen Braadland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, Norway
| |
Collapse
|
786
|
Wang L, Dehm SM, Hillman DW, Sicotte H, Tan W, Gormley M, Bhargava V, Jimenez R, Xie F, Yin P, Qin S, Quevedo F, Costello BA, Pitot HC, Ho T, Bryce AH, Ye Z, Li Y, Eiken P, Vedell PT, Barman P, McMenomy BP, Atwell TD, Carlson RE, Ellingson M, Eckloff BW, Qin R, Ou F, Hart SN, Huang H, Jen J, Wieben ED, Kalari KR, Weinshilboum RM, Wang L, Kohli M. A prospective genome-wide study of prostate cancer metastases reveals association of wnt pathway activation and increased cell cycle proliferation with primary resistance to abiraterone acetate-prednisone. Ann Oncol 2019; 29:352-360. [PMID: 29069303 DOI: 10.1093/annonc/mdx689] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Genomic aberrations have been identified in metastatic castration-resistant prostate cancer (mCRPC), but molecular predictors of resistance to abiraterone acetate/prednisone (AA/P) treatment are not known. Patients and methods In a prospective clinical trial, mCRPC patients underwent whole-exome sequencing (n = 82) and RNA sequencing (n = 75) of metastatic biopsies before initiating AA/P with the objective of identifying genomic alterations associated with resistance to AA/P. Primary resistance was determined at 12 weeks of treatment using criteria for progression that included serum prostate-specific antigen measurement, bone and computerized tomography imaging and symptom assessments. Acquired resistance was determined using the end point of time to treatment change (TTTC), defined as time from enrollment until change in treatment from progressive disease. Associations of genomic and transcriptomic alterations with primary resistance were determined using logistic regression, Fisher's exact test, single and multivariate analyses. Cox regression models were utilized for determining association of genomic and transcriptomic alterations with TTTC. Results At 12 weeks, 32 patients in the cohort had progressed (nonresponders). Median study follow-up was 32.1 months by which time 58 patients had switched treatments due to progression. Median TTTC was 10.1 months (interquartile range: 4.4-24.1). Genes in the Wnt/β-catenin pathway were more frequently mutated and negative regulators of Wnt/β-catenin signaling were more frequently deleted or displayed reduced mRNA expression in nonresponders. Additionally, mRNA expression of cell cycle regulatory genes was increased in nonresponders. In multivariate models, increased cell cycle proliferation scores (≥ 50) were associated with shorter TTTC (hazard ratio = 2.11, 95% confidence interval: 1.17-3.80; P = 0.01). Conclusions Wnt/β-catenin pathway activation and increased cell cycle progression scores can serve as molecular markers for predicting resistance to AA/P therapy.
Collapse
Affiliation(s)
- L Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, USA
| | - S M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA; Department of Urology, University of Minnesota, Minneapolis, USA
| | - D W Hillman
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA
| | - H Sicotte
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA
| | - W Tan
- Department of Medicine, Mayo Clinic, Jacksonville, USA
| | - M Gormley
- Janssen Research and Development, Spring House, Philadelphia, USA
| | - V Bhargava
- Janssen Research and Development, Spring House, Philadelphia, USA
| | - R Jimenez
- Department of Pathology and Lab Medicine, Mayo Clinic, Rochester, USA
| | - F Xie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, USA
| | - P Yin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, USA
| | - S Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, USA
| | - F Quevedo
- Department of Oncology, Mayo Clinic, Rochester, USA
| | - B A Costello
- Department of Oncology, Mayo Clinic, Rochester, USA
| | - H C Pitot
- Department of Oncology, Mayo Clinic, Rochester, USA
| | - T Ho
- Department of Medicine, Mayo Clinic, Scottsdale, USA
| | - A H Bryce
- Department of Medicine, Mayo Clinic, Scottsdale, USA
| | - Z Ye
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, USA
| | - Y Li
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA
| | - P Eiken
- Department of Radiology, Mayo Clinic, Rochester, USA
| | - P T Vedell
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA
| | - P Barman
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA
| | - B P McMenomy
- Department of Radiology, Mayo Clinic, Rochester, USA
| | - T D Atwell
- Department of Radiology, Mayo Clinic, Rochester, USA
| | - R E Carlson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA
| | - M Ellingson
- Medical Genetics, Mayo Clinic, Rochester, USA
| | - B W Eckloff
- Medical Genome Facility, Mayo Clinic, Rochester, USA
| | - R Qin
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA
| | - F Ou
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA
| | - S N Hart
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA
| | - H Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, USA
| | - J Jen
- Medical Genome Facility, Mayo Clinic, Rochester, USA; Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, USA
| | - E D Wieben
- Medical Genome Facility, Mayo Clinic, Rochester, USA
| | - K R Kalari
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, USA
| | - R M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, USA
| | - L Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, USA.
| | - M Kohli
- Department of Oncology, Mayo Clinic, Rochester, USA.
| |
Collapse
|
787
|
Usmani S, Orevi M, Stefanelli A, Zaniboni A, Gofrit ON, Bnà C, Illuminati S, Lojacono G, Noventa S, Savelli G. Neuroendocrine differentiation in castration resistant prostate cancer. Nuclear medicine radiopharmaceuticals and imaging techniques: A narrative review. Crit Rev Oncol Hematol 2019; 138:29-37. [PMID: 31092382 DOI: 10.1016/j.critrevonc.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Androgen Deprivation Therapy (ADT) is the primary treatment for patients suffering from relapsing or advanced prostate cancer (PC). Hormone therapy generally guarantees adequate clinical control of the disease for some years, even in those patients affected by widespread skeletal and soft tissue metastases. Despite ADT, however, most patients treated with hormones eventually progress to castration-resistant prostate cancer (CRPC), for which there are no effective treatments. This clinical reality is an open challenge to the oncologist because of those neoplasms which elaborate neuroendocrine differentiation (NED). METHODS An online search of current and past literature on NED in CRPC was performed. Relevant articles dealing with the biological and pathological basis of NED, with nuclear medicine imaging in CRPC and somatostatin treatment in NED were analyzed. EVIDENCE FROM THE LITERATURE NED may arise in prostate cancer patients in the late stages of ADT. The onset of NED offers prognostic insight because it reflects a dramatic increase in the aggressive nature of the neoplasm. Several genetic, molecular, cytological and immunohistochemical markers are associated with this transformation. Among these, overexpression of somatostatin receptors, seen through Nuclear Medicine testing, is one of the most studied. CONCLUSIONS Preliminary studies show that the overexpression of somatostatin receptors related to NED in CRPC may easily be studied in vivo with PET/CT. This finding offers a potentially useful objective for targeted therapy in CRPC. If the overexpression of SSTRs is shown to afflict a significant segment of patients with CRPC, this will open further study of possible therapeutic options based on this marker.
Collapse
Affiliation(s)
- Sharjeel Usmani
- Department of Nuclear Medicine, Kuwait Cancer Control Center Al Sabah Medical District, 70653, Kuwait
| | - Marina Orevi
- Nuclear Medicine Division, Kiryat Hadassah, POB 12000, Jerusalem 91120, Israel
| | - Antonella Stefanelli
- Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Alberto Zaniboni
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | | | - Claudio Bnà
- Radiology Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Sonia Illuminati
- Radiology Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Giulia Lojacono
- Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Silvia Noventa
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Giordano Savelli
- Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy.
| |
Collapse
|
788
|
Fittall MW, Van Loo P. Translating insights into tumor evolution to clinical practice: promises and challenges. Genome Med 2019; 11:20. [PMID: 30925887 PMCID: PMC6440005 DOI: 10.1186/s13073-019-0632-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accelerating technological advances have allowed the widespread genomic profiling of tumors. As yet, however, the vast catalogues of mutations that have been identified have made only a modest impact on clinical medicine. Massively parallel sequencing has informed our understanding of the genetic evolution and heterogeneity of cancers, allowing us to place these mutational catalogues into a meaningful context. Here, we review the methods used to measure tumor evolution and heterogeneity, and the potential and challenges for translating the insights gained to achieve clinical impact for cancer therapy, monitoring, early detection, risk stratification, and prevention. We discuss how tumor evolution can guide cancer therapy by targeting clonal and subclonal mutations both individually and in combination. Circulating tumor DNA and circulating tumor cells can be leveraged for monitoring the efficacy of therapy and for tracking the emergence of resistant subclones. The evolutionary history of tumors can be deduced for late-stage cancers, either directly by sampling precursor lesions or by leveraging computational approaches to infer the timing of driver events. This approach can identify recurrent early driver mutations that represent promising avenues for future early detection strategies. Emerging evidence suggests that mutational processes and complex clonal dynamics are active even in normal development and aging. This will make discriminating developing malignant neoplasms from normal aging cell lineages a challenge. Furthermore, insight into signatures of mutational processes that are active early in tumor evolution may allow the development of cancer-prevention approaches. Research and clinical studies that incorporate an appreciation of the complex evolutionary patterns in tumors will not only produce more meaningful genomic data, but also better exploit the vulnerabilities of cancer, resulting in improved treatment outcomes.
Collapse
Affiliation(s)
- Matthew W Fittall
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Peter Van Loo
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
789
|
Radium-223 Within the Evolving Treatment Options for Metastatic Castration-resistant Prostate Cancer: Recommendations from a European Expert Working Group. Eur Urol Oncol 2019; 3:455-463. [PMID: 31411991 DOI: 10.1016/j.euo.2019.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/26/2019] [Indexed: 11/22/2022]
Abstract
Several ongoing clinical trials are investigating novel therapies and combinations of existing therapies for the treatment of patients with metastatic castration-resistant prostate cancer. One such trial, ERA 223, has shown that the combination of abiraterone plus radium-223 did not improve symptomatic skeletal event-free survival compared with abiraterone plus placebo. Furthermore, an increase in bone fractures was observed with the combination of abiraterone and radium-223 in the study, particularly in patients not receiving bone health agents (denosumab or zoledronic acid). The results led to a change in the indication of radium-223 in Europe and also highlighted a need for greater awareness of bone health in patients with prostate cancer. Following a meeting to discuss these issues, we report in this article our views on the role of radium-223 within the emerging treatment options for patients with metastatic castration-resistant prostate cancer. We discuss best practices, and provide expert recommendations for preserving bone health and sequencing of life-prolonging therapies in patients with prostate cancer in order to achieve optimal outcomes. PATIENT SUMMARY: We provide recommendations on maintaining bone health, sequencing of treatments, and the role of radium-223 therapy in prostate cancer. Radium-223 is a valuable treatment option for patients with castration-resistant prostate cancer and bone metastases. Monitoring and maintaining bone health are essential for patients with prostate cancer, and should be considered at the initiation of androgen deprivation therapy.
Collapse
|
790
|
Guo D, Ji X, Peng F, Zhong Y, Chu B, Su Y, He Y. Photostable and Biocompatible Fluorescent Silicon Nanoparticles for Imaging-Guided Co-Delivery of siRNA and Doxorubicin to Drug-Resistant Cancer Cells. NANO-MICRO LETTERS 2019; 11:27. [PMID: 34137971 PMCID: PMC7770907 DOI: 10.1007/s40820-019-0257-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/06/2019] [Indexed: 05/06/2023]
Abstract
The development of effective and safe vehicles to deliver small interfering RNA (siRNA) and chemotherapeutics remains a major challenge in RNA interference-based combination therapy with chemotherapeutics, which has emerged as a powerful platform to treat drug-resistant cancer cells. Herein, we describe the development of novel all-in-one fluorescent silicon nanoparticles (SiNPs)-based nanomedicine platform for imaging-guided co-delivery of siRNA and doxorubicin (DOX). This approach enhanced therapeutic efficacy in multidrug-resistant breast cancer cells (i.e., MCF-7/ADR cells). Typically, the SiNP-based nanocarriers enhanced the stability of siRNA in a biological environment (i.e., medium or RNase A) and imparted the responsive release behavior of siRNA, resulting in approximately 80% down-regulation of P-glycoprotein expression. Co-delivery of P-glycoprotein siRNA and DOX led to > 35-fold decrease in the half maximal inhibitory concentration of DOX in comparison with free DOX, indicating the pronounced therapeutic efficiency of the resultant nanocomposites for drug-resistant breast cancer cells. The intracellular time-dependent release behaviors of siRNA and DOX were revealed through tracking the strong and stable fluorescence of SiNPs. These data provide valuable information for designing effective RNA interference-based co-delivery carriers.
Collapse
Affiliation(s)
- Daoxia Guo
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xiaoyuan Ji
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fei Peng
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yiling Zhong
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
791
|
Cato L, de Tribolet-Hardy J, Lee I, Rottenberg JT, Coleman I, Melchers D, Houtman R, Xiao T, Li W, Uo T, Sun S, Kuznik NC, Göppert B, Ozgun F, van Royen ME, Houtsmuller AB, Vadhi R, Rao PK, Li L, Balk SP, Den RB, Trock BJ, Karnes RJ, Jenkins RB, Klein EA, Davicioni E, Gruhl FJ, Long HW, Liu XS, Cato ACB, Lack NA, Nelson PS, Plymate SR, Groner AC, Brown M. ARv7 Represses Tumor-Suppressor Genes in Castration-Resistant Prostate Cancer. Cancer Cell 2019; 35:401-413.e6. [PMID: 30773341 PMCID: PMC7246081 DOI: 10.1016/j.ccell.2019.01.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/23/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
Androgen deprivation therapy for prostate cancer (PCa) benefits patients with early disease, but becomes ineffective as PCa progresses to a castration-resistant state (CRPC). Initially CRPC remains dependent on androgen receptor (AR) signaling, often through increased expression of full-length AR (ARfl) or expression of dominantly active splice variants such as ARv7. We show in ARv7-dependent CRPC models that ARv7 binds together with ARfl to repress transcription of a set of growth-suppressive genes. Expression of the ARv7-repressed targets and ARv7 protein expression are negatively correlated and predicts for outcome in PCa patients. Our results provide insights into the role of ARv7 in CRPC and define a set of potential biomarkers for tumors dependent on ARv7.
Collapse
Affiliation(s)
- Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonas de Tribolet-Hardy
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Irene Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jaice T Rottenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Diana Melchers
- PamGene International B.V., 5211 HH Den Bosch, the Netherlands
| | - René Houtman
- PamGene International B.V., 5211 HH Den Bosch, the Netherlands
| | - Tengfei Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA 02215, USA
| | - Wei Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA 02215, USA
| | - Takuma Uo
- Department of Medicine, University of Washington School of Medicine and GRECC-VAPSHCS, Seattle, WA 98104, USA
| | - Shihua Sun
- Department of Medicine, University of Washington School of Medicine and GRECC-VAPSHCS, Seattle, WA 98104, USA
| | - Nane C Kuznik
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Bettina Göppert
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Fatma Ozgun
- School of Medicine, Koç University, 34450 Istanbul, Turkey
| | - Martin E van Royen
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| | - Raga Vadhi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Prakash K Rao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lewyn Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bruce J Trock
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Friederike J Gruhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA 02215, USA
| | - Andrew C B Cato
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nathan A Lack
- School of Medicine, Koç University, 34450 Istanbul, Turkey; Vancouver Prostate Center, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stephen R Plymate
- Department of Medicine, University of Washington School of Medicine and GRECC-VAPSHCS, Seattle, WA 98104, USA.
| | - Anna C Groner
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
792
|
Reina-Campos M, Linares JF, Duran A, Cordes T, L'Hermitte A, Badur MG, Bhangoo MS, Thorson PK, Richards A, Rooslid T, Garcia-Olmo DC, Nam-Cha SY, Salinas-Sanchez AS, Eng K, Beltran H, Scott DA, Metallo CM, Moscat J, Diaz-Meco MT. Increased Serine and One-Carbon Pathway Metabolism by PKCλ/ι Deficiency Promotes Neuroendocrine Prostate Cancer. Cancer Cell 2019; 35:385-400.e9. [PMID: 30827887 PMCID: PMC6424636 DOI: 10.1016/j.ccell.2019.01.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/13/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Abstract
Increasingly effective therapies targeting the androgen receptor have paradoxically promoted the incidence of neuroendocrine prostate cancer (NEPC), the most lethal subtype of castration-resistant prostate cancer (PCa), for which there is no effective therapy. Here we report that protein kinase C (PKC)λ/ι is downregulated in de novo and during therapy-induced NEPC, which results in the upregulation of serine biosynthesis through an mTORC1/ATF4-driven pathway. This metabolic reprogramming supports cell proliferation and increases intracellular S-adenosyl methionine (SAM) levels to feed epigenetic changes that favor the development of NEPC characteristics. Altogether, we have uncovered a metabolic vulnerability triggered by PKCλ/ι deficiency in NEPC, which offers potentially actionable targets to prevent therapy resistance in PCa.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Sanford Burnham Prebys Graduate School of Biomedical Sciences, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Juan F Linares
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Angeles Duran
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Antoine L'Hermitte
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mehmet G Badur
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Munveer S Bhangoo
- Division of Hematology-Oncology Scripps Clinic, 10666 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phataraporn K Thorson
- Depatment of Pathology, Scripps Clinic Medical Group, 10666 Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alicia Richards
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tarmo Rooslid
- Conrad Prebys Center for Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dolores C Garcia-Olmo
- Centre de Recerca Experimental Biomèdica Aplicada (CREBA), IRBLLEIDA, 25138 Lleida, Spain
| | - Syongh Y Nam-Cha
- Pathology Department, Director of the Research Unit Biobank, University of Castilla-La Mancha, School of Medicine, 02006 Albacete, Spain
| | - Antonio S Salinas-Sanchez
- Urology Department, Research Unit, University Hospital Complex of Albacete, School of Medicine, 02006 Albacete, Spain
| | - Ken Eng
- Department of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David A Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
793
|
Veras Ribeiro Filho H, Tambones IL, Mariano Gonçalves Dias M, Bernardi Videira N, Bruder M, Amorim Amato A, Migliorini Figueira AC. Modulation of nuclear receptor function: Targeting the protein-DNA interface. Mol Cell Endocrinol 2019; 484:1-14. [PMID: 30703486 DOI: 10.1016/j.mce.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that modulate several biological processes. Traditionally, modulation of NRs has been focused on the development of ligands that recognize and bind to the ligand binding domain (LBD), resulting in activation or repression of transcription through the recruitment of coregulators. However, for more severe diseases, such as breast and prostate cancer, the conventional treatment addressing LBD modulation is not always successful, due to tumor resistance. To overcome these challenges and aiming to modulate NR activity by inhibiting the NR-DNA interaction, new studies focus on the development of molecules targeting alternative sites and domains on NRs. Here, we discuss two different approaches for this alternative NR modulation: one targeting the NR DNA binding domain (DBD); and the other targeting the DNA sites recognized by NRs. Our aim is to present the challenges and perspectives for developing specific inhibitors for each purpose, alongside with already reported examples.
Collapse
Affiliation(s)
- Helder Veras Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, 13083-970, Brazil
| | - Izabella Luisa Tambones
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, 13083-970, Brazil
| | - Marieli Mariano Gonçalves Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Molecular and Functional Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, SP, 13083-970, Brazil
| | - Natalia Bernardi Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil
| | - Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil
| | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Science, University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
794
|
Kulik G. ADRB2-Targeting Therapies for Prostate Cancer. Cancers (Basel) 2019; 11:E358. [PMID: 30871232 PMCID: PMC6468358 DOI: 10.3390/cancers11030358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that β-2 adrenergic receptor (ADRB2) signaling contributes to the progression and therapy resistance of prostate cancer, whereas availability of clinically tested β-blocker propranolol makes this pathway especially attractive as potential therapeutic target. Yet even in tumors with active ADRB2 signaling propranolol may be ineffective. Inhibition of apoptosis is one of the major mechanisms by which activation of ADRB2 contributes to prostate cancer pathophysiology. The signaling network that controls apoptosis in prostate tumors is highly redundant, with several signaling pathways targeting a few critical apoptosis regulatory molecules. Therefore, a comprehensive analysis of ADRB2 signaling in the context of other signaling mechanisms is necessary to identify patients who will benefit from propranolol therapy. This review discusses how information on the antiapoptotic mechanisms activated by ADRB2 can guide clinical trials of ADRB2 antagonist propranolol as potential life-extending therapy for prostate cancer. To select patients for clinical trials of propranolol three classes of biomarkers are proposed. First, biomarkers of ADRB2/cAMP-dependent protein kinase (PKA) pathway activation; second, biomarkers that inform about activation of other signaling pathways unrelated to ADRB2; third, apoptosis regulatory molecules controlled by ADRB2 signaling and other survival signaling pathways.
Collapse
Affiliation(s)
- George Kulik
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, USA.
- Department of Life Sciences, Alfaisal University, Riyadh 11533, Saudi Arabia.
| |
Collapse
|
795
|
Clinical utility of androgen receptor gene aberrations in circulating cell-free DNA as a biomarker for treatment of castration-resistant prostate cancer. Sci Rep 2019; 9:4030. [PMID: 30858508 PMCID: PMC6411952 DOI: 10.1038/s41598-019-40719-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/22/2019] [Indexed: 11/08/2022] Open
Abstract
The therapeutic landscape of castration-resistant prostate cancer (CRPC) has rapidly expanded. There is a need to develop noninvasive biomarkers to guide treatment. We established a highly sensitive method for analyzing androgen receptor gene (AR) copy numbers (CN) and mutations in plasma circulating cell-free DNA (cfDNA) and evaluated the AR statuses of patients with CRPC. AR amplification was detectable in VCaP cell line (AR amplified) genomic DNA (gDNA) diluted to 1.0% by digital PCR (dPCR). AR mutation were detectable in LNCaP cell line (AR T878A mutated) gDNA diluted to 0.1% and 1.0% by dPCR and target sequencing, respectively. Next, we analyzed AR status in cfDNA from 102 patients. AR amplification and mutations were detected in 47 and 25 patients, respectively. As a biomarker, AR aberrations in pretreatment cfDNA were associated with poor response to abiraterone, but not enzalutamide. In serial cfDNA analysis from 41 patients, most AR aberrations at baseline diminished with effective treatments, whereas in some patients with disease progression, AR amplification or mutations emerged. The analysis of AR in cfDNA is feasible and informative procedure for treating patients with CRPC. cfDNA may become a useful biomarker for precision medicine in CRPC.
Collapse
|
796
|
Yan Y, An J, Yang Y, Wu D, Bai Y, Cao W, Ma L, Chen J, Yu Z, He Y, Jin X, Pan Y, Ma T, Wang S, Hou X, Weroha SJ, Karnes RJ, Zhang J, Westendorf JJ, Wang L, Chen Y, Xu W, Zhu R, Wang D, Huang H. Dual inhibition of AKT-mTOR and AR signaling by targeting HDAC3 in PTEN- or SPOP-mutated prostate cancer. EMBO Mol Med 2019. [PMID: 29523594 PMCID: PMC5887910 DOI: 10.15252/emmm.201708478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AKT‐mTOR and androgen receptor (AR) signaling pathways are aberrantly activated in prostate cancer due to frequent PTEN deletions or SPOP mutations. A clinical barrier is that targeting one of them often activates the other. Here, we demonstrate that HDAC3 augments AKT phosphorylation in prostate cancer cells and its overexpression correlates with AKT phosphorylation in patient samples. HDAC3 facilitates lysine‐63‐chain polyubiquitination and phosphorylation of AKT, and this effect is mediated by AKT deacetylation at lysine 14 and 20 residues and HDAC3 interaction with the scaffold protein APPL1. Conditional homozygous deletion of Hdac3 suppresses prostate tumorigenesis and progression by concomitant blockade of AKT and AR signaling in the Pten knockout mouse model. Pharmacological inhibition of HDAC3 using a selective HDAC3 inhibitor RGFP966 inhibits growth of both PTEN‐deficient and SPOP‐mutated prostate cancer cells in culture, patient‐derived organoids and xenografts in mice. Our study identifies HDAC3 as a common upstream activator of AKT and AR signaling and reveals that dual inhibition of AKT and AR pathways is achievable by single‐agent targeting of HDAC3 in prostate cancer.
Collapse
Affiliation(s)
- Yuqian Yan
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jian An
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yinhui Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Di Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yang Bai
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - William Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Linlin Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junhui Chen
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhendong Yu
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Xin Jin
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tao Ma
- Department of Biomedical Statistics and Informatics, Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Liguo Wang
- Department of Biomedical Statistics and Informatics, Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Wanhai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Runzhi Zhu
- Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dejie Wang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China .,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA .,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
797
|
Ebron JS, Shankar E, Singh J, Sikand K, Weyman CM, Gupta S, Lindner DJ, Liu X, Campbell MJ, Shukla GC. MiR-644a Disrupts Oncogenic Transformation and Warburg Effect by Direct Modulation of Multiple Genes of Tumor-Promoting Pathways. Cancer Res 2019; 79:1844-1856. [PMID: 30808676 DOI: 10.1158/0008-5472.can-18-2993] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/18/2018] [Accepted: 02/22/2019] [Indexed: 11/16/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is defined by tumor microenvironment heterogeneity affecting intrinsic cellular mechanisms including dysregulated androgen signaling, aerobic glycolysis (Warburg effect), and aberrant activation of transcription factors including androgen receptor (AR) and c-Myc. Using in vitro, in vivo, and animal models, we find a direct correlation between miR-644a downregulation and dysregulation of essential cellular processes. MiR-644a downregulated expression of diverse tumor microenvironment drivers including c-Myc, AR coregulators, and antiapoptosis factors Bcl-xl and Bcl2. Moreover, miR-644a modulates epithelial-mesenchymal transition (EMT) by directly targeting EMT-promoting factors ZEB1, cdk6, and Snail. Finally, miR-644a expression suppresses the Warburg effect by direct targeting of c-Myc, Akt, IGF1R, and GAPDH expression. RNA sequencing analysis revealed an analogous downregulation of these factors in animal tumor xenografts. These data demonstrate miR-644a mediated fine-tuning of oncogenesis, stimulating pathways and resultant potentiation of enzalutamide therapy in CRPC patients. SIGNIFICANCE: This study demonstrates that miR-644a therapeutically influences the CRPC tumor microenvironment by suppressing androgen signaling and additional genes involved in metabolism, proliferation, Warburg effect, and EMT, to potentiate the enzalutamide therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/8/1844/F1.large.jpg.
Collapse
Affiliation(s)
- Jey S Ebron
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Jagjit Singh
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
| | - Kavleen Sikand
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Crystal M Weyman
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Daniel J Lindner
- Translational Hematology and Oncology Research, Taussig Cancer Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Moray J Campbell
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Girish C Shukla
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio. .,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio.,Department of Cancer Biology, Learner Research institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
798
|
Computer-Aided Discovery of Small Molecules Targeting the RNA Splicing Activity of hnRNP A1 in Castration-Resistant Prostate Cancer. Molecules 2019; 24:molecules24040763. [PMID: 30791548 PMCID: PMC6413181 DOI: 10.3390/molecules24040763] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 12/28/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a versatile RNA-binding protein playing a critical role in alternative pre-mRNA splicing regulation in cancer. Emerging data have implicated hnRNP A1 as a central player in a splicing regulatory circuit involving its direct transcriptional control by c-Myc oncoprotein and the production of the constitutively active ligand-independent alternative splice variant of androgen receptor, AR-V7, which promotes castration-resistant prostate cancer (CRPC). As there is an urgent need for effective CRPC drugs, targeting hnRNP A1 could, therefore, serve a dual purpose of preventing AR-V7 generation as well as reducing c-Myc transcriptional output. Herein, we report compound VPC-80051 as the first small molecule inhibitor of hnRNP A1 splicing activity discovered to date by using a computer-aided drug discovery approach. The inhibitor was developed to target the RNA-binding domain (RBD) of hnRNP A1. Further experimental evaluation demonstrated that VPC-80051 interacts directly with hnRNP A1 RBD and reduces AR-V7 messenger levels in 22Rv1 CRPC cell line. This study lays the groundwork for future structure-based development of more potent and selective small molecule inhibitors of hnRNP A1–RNA interactions aimed at altering the production of cancer-specific alternative splice isoforms.
Collapse
|
799
|
Abstract
INTRODUCTION Five new agents have been shown to prolong survival in patients with metastatic castration-resistant prostate cancer, including two targeting androgen receptor signaling (abiraterone acetate plus prednisone; enzalutamide). Recognition that these tumors remain driven by androgen receptor signaling has prompted clinical evaluation of these agents at earlier states in the prostate cancer disease continuum, along with the continued development of new agents targeting this pathway. Areas covered: This article focuses on apalutamide, a next-generation nonsteroidal antiandrogen, with current literature queried in PubMed/Medline. A narrative review strategy describes studies from engineering of the compound through to a 5-year outlook. Expert commentary: In the phase III SPARTAN study, apalutamide significantly improved metastasis-free survival in patients with nonmetastatic castration-resistant prostate cancer - the first treatment approved by the US Food and Drug Administration for this indication. Phase III studies are under way to determine the clinical benefit of apalutamide in other disease states. Given the multiplicity of prostate cancer treatment options now available, there is a need to maximize individual patient benefit through the development and validation of predictive biomarkers of sensitivity to drugs that can be used in real time to determine the optimal sequence and combinations of treatments for patients in need.
Collapse
Affiliation(s)
- Dana E Rathkopf
- a Sidney Kimmel Center for Prostate and Urologic Cancers, Genitourinary Oncology Service, Department of Medicine , Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College , New York , NY , USA
| | - Howard I Scher
- a Sidney Kimmel Center for Prostate and Urologic Cancers, Genitourinary Oncology Service, Department of Medicine , Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College , New York , NY , USA
| |
Collapse
|
800
|
Davies A, Conteduca V, Zoubeidi A, Beltran H. Biological Evolution of Castration-resistant Prostate Cancer. Eur Urol Focus 2019; 5:147-154. [PMID: 30772358 DOI: 10.1016/j.euf.2019.01.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 01/12/2023]
Abstract
CONTEXT Recent studies focused on the molecular characterization of metastatic prostate cancer have identified genomic subsets and emerging resistance patterns. Detection of these alterations in patients has potential implications for therapy selection and prognostication. OBJECTIVE The primary objective is to review the current landscape of clinical and molecular biomarkers in advanced prostate cancer and understand how they may reflect underlying tumor biology. We also discuss how these features may potentially impact earlier stages of the disease. EVIDENCE ACQUISITION A literature search was performed of recent clinical biomarker/genomic studies focused on advanced metastatic prostate cancer as well as relevant preclinical studies investigating how these alterations influence therapy response or resistance. EVIDENCE SYNTHESIS Metastatic castration-resistant prostate cancer is commonly driven by androgen receptor signaling even after progression on potent hormonal agents, but other alterations may also be present or emerge during therapy resistance such as DNA repair gene aberrations or combined loss of tumor suppressor genes. Biological implications of these changes are context dependent, which may affect their detection and interpretation. CONCLUSIONS Molecular changes occur during prostate cancer progression and treatment resistance. Detection of genomic alterations has potential to influence therapy choice. Additional studies are warranted to elucidate the evolution of these changes and their impact in earlier stages of the disease. PATIENT SUMMARY We review the biology of advanced prostate cancer, and highlight opportunities and challenges for using biological or molecular assays to help guide individualized treatment decisions for patients.
Collapse
Affiliation(s)
- Alastair Davies
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Vincenza Conteduca
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Amina Zoubeidi
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.
| | - Himisha Beltran
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|