51
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
52
|
Tronnet S, Garcie C, Brachmann AO, Piel J, Oswald E, Martin P. High iron supply inhibits the synthesis of the genotoxin colibactin by pathogenic Escherichia coli through a non-canonical Fur/RyhB-mediated pathway. Pathog Dis 2017. [DOI: 10.1093/femspd/ftx066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Sophie Tronnet
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France
- Université Toulouse III Paul Sabatier, 31000 Toulouse, France
| | - Christophe Garcie
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France
- Université Toulouse III Paul Sabatier, 31000 Toulouse, France
- CHU Toulouse, Service de Bactériologie-Hygiène, 31000 Toulouse, France
| | - Alexander O. Brachmann
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH), 8093 Zurich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH), 8093 Zurich, Switzerland
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France
- Université Toulouse III Paul Sabatier, 31000 Toulouse, France
- CHU Toulouse, Service de Bactériologie-Hygiène, 31000 Toulouse, France
| | - Patricia Martin
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France
- Université Toulouse III Paul Sabatier, 31000 Toulouse, France
- CHU Toulouse, Service de Bactériologie-Hygiène, 31000 Toulouse, France
| |
Collapse
|
53
|
Abstract
Human-associated microorganisms have the potential to biosynthesize numerous secondary metabolites that may mediate important host-microbe and microbe-microbe interactions. However, there is currently a limited understanding of microbiome-derived natural products. A variety of complementary discovery approaches have begun to illuminate this microbial "dark matter," which will in turn allow detailed mechanistic studies of the effects of these molecules on microbiome and host. Herein, we review recent efforts to uncover microbiome-derived natural products, describe the key approaches that were used to identify and characterize these metabolites, discuss potential functional roles of these molecules, and highlight challenges related to this emerging research area.
Collapse
Affiliation(s)
- Matthew R Wilson
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Li Zha
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Emily P Balskus
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
54
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 582] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
55
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
56
|
Trautman EP, Healy AR, Shine EE, Herzon SB, Crawford JM. Domain-Targeted Metabolomics Delineates the Heterocycle Assembly Steps of Colibactin Biosynthesis. J Am Chem Soc 2017; 139:4195-4201. [PMID: 28240912 DOI: 10.1021/jacs.7b00659] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) comprise giant multidomain enzymes responsible for the "assembly line" biosynthesis of many genetically encoded small molecules. Site-directed mutagenesis, protein biochemical, and structural studies have focused on elucidating the catalytic mechanisms of individual multidomain proteins and protein domains within these megasynthases. However, probing their functions at the cellular level typically has invoked the complete deletion (or overexpression) of multidomain-encoding genes or combinations of genes and comparing those mutants with a control pathway. Here we describe a "domain-targeted" metabolomic strategy that combines genome editing with pathway analysis to probe the functions of individual PKS and NRPS catalytic domains at the cellular metabolic level. We apply the approach to the bacterial colibactin pathway, a genotoxic NRPS-PKS hybrid pathway found in certain Escherichia coli. The pathway produces precolibactins, which are converted to colibactins by a dedicated peptidase, ClbP. Domain-targeted metabolomics enabled the characterization of "multidomain signatures", or functional readouts of NRPS-PKS domain contributions to the pathway-dependent metabolome. These multidomain signatures provided experimental support for individual domain contributions to colibactin biosynthesis and delineated the assembly line timing events of colibactin heterocycle formation. The analysis also led to the structural characterization of two reactive precolibactin metabolites. We demonstrate the fate of these reactive intermediates in the presence and absence of ClbP, which dictates the formation of distinct product groups resulting from alternative cyclization cascades. In the presence of the peptidase, the reactive intermediates are converted to a known genotoxic scaffold, providing metabolic support of our mechanistic model for colibactin-induced genotoxicity. Domain-targeted metabolomics could be more widely used to characterize NRPS-PKS pathways with unprecedented genetic and metabolic precision.
Collapse
Affiliation(s)
- Eric P Trautman
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Alan R Healy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Emilee E Shine
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States
| |
Collapse
|
57
|
Garg N, Luzzatto-Knaan T, Melnik AV, Caraballo-Rodríguez AM, Floros DJ, Petras D, Gregor R, Dorrestein PC, Phelan VV. Natural products as mediators of disease. Nat Prod Rep 2017; 34:194-219. [PMID: 27874907 PMCID: PMC5299058 DOI: 10.1039/c6np00063k] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2016Humans are walking microbial ecosystems, each harboring a complex microbiome with the genetic potential to produce a vast array of natural products. Recent sequencing data suggest that our microbial inhabitants are critical for maintaining overall health. Shifts in microbial communities have been correlated to a number of diseases including infections, inflammation, cancer, and neurological disorders. Some of these clinically and diagnostically relevant phenotypes are a result of the presence of small molecules, yet we know remarkably little about their contributions to the health of individuals. Here, we review microbe-derived natural products as mediators of human disease.
Collapse
Affiliation(s)
- Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | | | - Dimitrios J. Floros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Rachel Gregor
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Vanessa V. Phelan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
58
|
Trautman EP, Crawford JM. Linking Biosynthetic Gene Clusters to their Metabolites via Pathway- Targeted Molecular Networking. Curr Top Med Chem 2016; 16:1705-16. [PMID: 26456470 PMCID: PMC5055756 DOI: 10.2174/1568026616666151012111046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022]
Abstract
The connection of microbial biosynthetic gene clusters to the small molecule metabolites they encode is central to the discovery and characterization of new metabolic pathways with ecological and pharmacological potential. With increasing microbial genome sequence information being deposited into publicly available databases, it is clear that microbes have the coding capacity for many more biologically active small molecules than previously realized. Of increasing interest are the small molecules encoded by the human microbiome, as these metabolites likely mediate a variety of currently uncharacterized human-microbe interactions that influence health and disease. In this mini-review, we describe the ongoing biosynthetic, structural, and functional characterizations of the genotoxic colibactin pathway in gut bacteria as a thematic example of linking biosynthetic gene clusters to their metabolites. We also highlight other natural products that are produced through analogous biosynthetic logic and comment on some current disconnects between bioinformatics predictions and experimental structural characterizations. Lastly, we describe the use of pathway-targeted molecular networking as a tool to characterize secondary metabolic pathways within complex metabolomes and to aid in downstream metabolite structural elucidation efforts.
Collapse
Affiliation(s)
| | - Jason M Crawford
- Department of Chemistry, Faculty of Yale University, P.O. Box: 27392, West Haven, CT, 06516, USA.
| |
Collapse
|
59
|
Healy AR, Nikolayevskiy H, Patel JR, Crawford JM, Herzon SB. A Mechanistic Model for Colibactin-Induced Genotoxicity. J Am Chem Soc 2016; 138:15563-15570. [PMID: 27934011 DOI: 10.1021/jacs.6b10354] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Precolibactins and colibactins represent a family of natural products that are encoded by the clb gene cluster and are produced by certain commensal, extraintestinal, and probiotic E. coli. clb+ E. coli induce megalocytosis and DNA double-strand breaks in eukaryotic cells, but paradoxically, this gene cluster is found in the probiotic Nissle 1917. Evidence suggests precolibactins are converted to genotoxic colibactins by colibactin peptidase (ClbP)-mediated cleavage of an N-acyl-d-Asn side chain, and all isolation efforts have employed ΔclbP strains to facilitate accumulation of precolibactins. It was hypothesized that colibactins form unsaturated imines that alkylate DNA by cyclopropane ring opening (2 → 3). However, as no colibactins have been isolated, this hypothesis has not been tested experimentally. Additionally, precolibactins A-C (7-9) contain a pyridone that cannot generate the unsaturated imines that form the basis of this hypothesis. To resolve this, we prepared 13 synthetic colibactin derivatives and evaluated their DNA binding and alkylation activity. We show that unsaturated imines, but not the corresponding pyridone derivatives, potently alkylate DNA. The imine, unsaturated lactam, and cyclopropane are essential for efficient DNA alkylation. A cationic residue enhances activity. These studies suggest that precolibactins containing a pyridone are not responsible for the genotoxicity of the clb cluster. Instead, we propose that these are off-pathway fermentation products produced by a facile double cyclodehydration route that manifests in the absence of viable ClbP. The results presented herein provide a foundation to begin to connect metabolite structure with the disparate phenotypes associated with clb+ E. coli.
Collapse
Affiliation(s)
- Alan R Healy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Herman Nikolayevskiy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Jaymin R Patel
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Molecular, Cellular, and Developmental Biology, Yale University , New Haven, Connecticut 06520, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
60
|
Li ZR, Li J, Gu JP, Lai JYH, Duggan BM, Zhang WP, Li ZL, Li YX, Tong RB, Xu Y, Lin DH, Moore BS, Qian PY. Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin. Nat Chem Biol 2016; 12:773-5. [PMID: 27547923 PMCID: PMC5030165 DOI: 10.1038/nchembio.2157] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022]
Abstract
Colibactin is an as-yet-uncharacterized genotoxic secondary metabolite produced by human gut bacteria. Here we report the biosynthetic discovery of two new precolibactin molecules from Escherichia coli, including precolibactin-886, which uniquely incorporates the highly sought genotoxicity-associated aminomalonate building block into its unprecedented macrocyclic structure. This work provides new insights into the biosynthetic logic and mode of action of this colorectal-cancer-linked microbial chemical.
Collapse
Affiliation(s)
- Zhong-Rui Li
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States
| | - Jin-Ping Gu
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jennifer Y. H. Lai
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Brendan M. Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, United States
| | - Wei-Peng Zhang
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhi-Long Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yong-Xin Li
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Rong-Biao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Ecoenvironmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Dong-Hai Lin
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, United States
| | - Pei-Yuan Qian
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
61
|
Simple and rapid direct cloning and heterologous expression of natural product biosynthetic gene cluster in Bacillus subtilis via Red/ET recombineering. Sci Rep 2016; 6:34623. [PMID: 27687863 PMCID: PMC5043344 DOI: 10.1038/srep34623] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/08/2016] [Indexed: 11/16/2022] Open
Abstract
Heterologous expression of biosynthetic pathways is an important way to research and discover microbial natural products. Bacillus subtilis is a suitable host for the heterologous production of natural products from bacilli and related Firmicutes. Existing technologies for heterologous expression of large biosynthetic gene clusters in B. subtilis are complicated. Herein, we present a simple and rapid strategy for direct cloning based heterologous expression of biosynthetic pathways in B. subtilis via Red/ET recombineering, using a 5.2 kb specific direct cloning vector carrying homologous sequences to the amyE gene in B. subtilis and CcdB counterselection marker. Using a two-step procedure, two large biosynthetic pathways for edeine (48.3 kb) and bacillomycin (37.2 kb) from Brevibacillus brevis X23 and B. amyloliquefaciens FZB42, respectively, were directly cloned and subsequently integrated into the chromosome of B. subtilis within one week. The gene cluster for bacillomycin was successfully expressed in the heterologous host, although edeine production was not detectable. Compared with similar technologies, this method offers a simpler and more feasible system for the discovery of natural products from bacilli and related genera.
Collapse
|
62
|
Garcie C, Tronnet S, Garénaux A, McCarthy AJ, Brachmann AO, Pénary M, Houle S, Nougayrède JP, Piel J, Taylor PW, Dozois CM, Genevaux P, Oswald E, Martin P. The Bacterial Stress-Responsive Hsp90 Chaperone (HtpG) Is Required for the Production of the Genotoxin Colibactin and the Siderophore Yersiniabactin inEscherichia coli. J Infect Dis 2016; 214:916-24. [DOI: 10.1093/infdis/jiw294] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023] Open
|
63
|
Taieb F, Petit C, Nougayrède JP, Oswald E. The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin. EcoSal Plus 2016; 7. [PMID: 27419387 PMCID: PMC11575708 DOI: 10.1128/ecosalplus.esp-0008-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
While the DNA damage induced by ionizing radiation and by many chemical compounds and drugs is well characterized, the genotoxic insults inflicted by bacteria are only scarcely documented. However, accumulating evidence indicates that we are exposed to bacterial genotoxins. The prototypes of such bacterial genotoxins are the Cytolethal Distending Toxins (CDTs) produced by Escherichia coli and Salmonella enterica serovar Typhi. CDTs display the DNase structure fold and activity, and induce DNA strand breaks in the intoxicated host cell nuclei. E. coli and certain other Enterobacteriaceae species synthesize another genotoxin, colibactin. Colibactin is a secondary metabolite, a hybrid polyketide/nonribosomal peptide compound synthesized by a complex biosynthetic machinery. In this review, we summarize the current knowledge on CDT and colibactin produced by E. coli and/or Salmonella Typhi. We describe their prevalence, genetic determinants, modes of action, and impact in infectious diseases or gut colonization, and discuss the possible involvement of these genotoxigenic bacteria in cancer.
Collapse
Affiliation(s)
- Frederic Taieb
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Claude Petit
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Eric Oswald
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| |
Collapse
|
64
|
"Cre/loxP plus BAC": a strategy for direct cloning of large DNA fragment and its applications in Photorhabdus luminescens and Agrobacterium tumefaciens. Sci Rep 2016; 6:29087. [PMID: 27364376 PMCID: PMC4929569 DOI: 10.1038/srep29087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 01/23/2023] Open
Abstract
Heterologous expression has been proven to be a valid strategy for elucidating the natural products produced by gene clusters uncovered by genome sequencing projects. Efforts have been made to efficiently clone gene clusters directly from genomic DNA and several approaches have been developed. Here, we present an alternative strategy based on the site-specific recombinase system Cre/loxP for direct cloning gene clusters. A type three secretion system (T3SS) gene cluster (~32 kb) from Photorhabdus luminescens TT01 and DNA fragment (~78 kb) containing the siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58 have been successfully cloned into pBeloBAC11 with “Cre/loxP plus BAC” strategy. Based on the fact that Cre/loxP system has successfully used for genomic engineering in a wide range of organisms, we believe that this strategy could be widely used for direct cloning of large DNA fragment.
Collapse
|
65
|
RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. Nat Protoc 2016; 11:1175-90. [PMID: 27254463 DOI: 10.1038/nprot.2016.054] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Full-length RecE and RecT from Rac prophage mediate highly efficient linear-linear homologous recombination that can be used to clone large DNA regions directly from genomic DNA into expression vectors, bypassing library construction and screening. Homologous recombination mediated by Redαβ from lambda phage has been widely used for recombinant DNA engineering. Here we present a protocol for direct cloning and engineering of biosynthetic gene clusters, large operons or single genes from genomic DNA using one Escherichia coli host that harbors both RecET and Redαβ systems. The pipeline uses standardized cassettes for horizontal gene transfer options, as well as vectors with different replication origins configured to minimize recombineering background through the use of selectively replicating templates or CcdB counterselection. These optimized reagents and protocols facilitate fast acquisition of transgenes from genomic DNA preparations, which are ready for heterologous expression within 1 week.
Collapse
|
66
|
Brachmann AO, Garcie C, Wu V, Martin P, Ueoka R, Oswald E, Piel J. Colibactin biosynthesis and biological activity depend on the rare aminomalonyl polyketide precursor. Chem Commun (Camb) 2016; 51:13138-41. [PMID: 26191546 DOI: 10.1039/c5cc02718g] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The as-yet unidentified E. coli metabolite colibactin induces DNA damage in eukaryotic cells and promotes tumorigenesis. Its wide distribution in pathogenic and probiotic strains has raised great interest in its structure and biosynthesis. Here we show that colibactin formation involves a rare aminomalonyl unit used as a building block.
Collapse
Affiliation(s)
- A O Brachmann
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
67
|
Healy AR, Vizcaino MI, Crawford JM, Herzon SB. Convergent and Modular Synthesis of Candidate Precolibactins. Structural Revision of Precolibactin A. J Am Chem Soc 2016; 138:5426-32. [PMID: 27025153 PMCID: PMC5049697 DOI: 10.1021/jacs.6b02276] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The colibactins are hybrid polyketide-nonribosomal peptide natural products produced by certain strains of commensal and extraintestinal pathogenic Escherichia coli. The metabolites are encoded by the clb gene cluster as prodrugs termed precolibactins. clb(+) E. coli induce DNA double-strand breaks in mammalian cells in vitro and in vivo and are found in 55-67% of colorectal cancer patients, suggesting that mature colibactins could initiate tumorigenesis. However, elucidation of their structures has been an arduous task as the metabolites are obtained in vanishingly small quantities (μg/L) from bacterial cultures and are believed to be unstable. Herein we describe a flexible and convergent synthetic route to prepare advanced precolibactins and derivatives. The synthesis proceeds by late-stage union of two complex precursors (e.g., 28 + 17 → 29a, 90%) followed by a base-induced double dehydrative cascade reaction to form two rings of the targets (e.g., 29a → 30a, 79%). The sequence has provided quantities of advanced candidate precolibactins that exceed those obtained by fermentation, and is envisioned to be readily scaled. These studies have guided a structural revision of the predicted metabolite precolibactin A (from 5a or 5b to 7) and have confirmed the structures of the isolated metabolites precolibactins B (3) and C (6). Synthetic precolibactin C (6) was converted to N-myristoyl-d-asparagine and its corresponding colibactin by colibactin peptidase ClbP. The synthetic strategy outlined herein will facilitate mechanism of action and structure-function studies of these fascinating metabolites, and is envisioned to accommodate the synthesis of additional (pre)colibactins as they are isolated.
Collapse
Affiliation(s)
- Alan R. Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Maria I. Vizcaino
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
68
|
MATE transport of the E. coli-derived genotoxin colibactin. Nat Microbiol 2016; 1:15009. [PMID: 27571755 DOI: 10.1038/nmicrobiol.2015.9] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
Various forms of cancer have been linked to the carcinogenic activities of microorganisms(1-3). The virulent gene island polyketide synthase (pks) produces the secondary metabolite colibactin, a genotoxic molecule(s) causing double-stranded DNA breaks(4) and enhanced colorectal cancer development(5,6). Colibactin biosynthesis involves a prodrug resistance strategy where an N-terminal prodrug scaffold (precolibactin) is assembled, transported into the periplasm and cleaved to release the mature product(7-10). Here, we show that ClbM, a multidrug and toxic compound extrusion (MATE) transporter, is a key component involved in colibactin activity and transport. Disruption of clbM attenuated pks+ E. coli-induced DNA damage in vitro and significantly decreased the DNA damage response in gnotobiotic Il10(-/-) mice. Colonization experiments performed in mice or zebrafish animal models indicate that clbM is not implicated in E. coli niche establishment. The X-ray structure of ClbM shows a structural motif common to the recently described MATE family. The 12-transmembrane ClbM is characterized as a cation-coupled antiporter, and residues important to the cation-binding site are identified. Our data identify ClbM as a precolibactin transporter and provide the first structure of a MATE transporter with a defined and specific biological function.
Collapse
|
69
|
Gut symbionts from distinct hosts exhibit genotoxic activity via divergent colibactin biosynthesis pathways. Appl Environ Microbiol 2016; 81:1502-12. [PMID: 25527542 DOI: 10.1128/aem.03283-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Secondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown family of secondary metabolites produced by Escherichia coli via a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA damage upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs of this pathway have only been found in closely related Enterobacteriaceae, while a divergent variant of this gene cluster was recently discovered in a marine alphaproteobacterial Pseudovibrio strain. Herein, we sequenced the genome of Frischella perrara PEB0191, a bacterial gut symbiont of honey bees and identified a homologous colibactin biosynthetic pathway related to those found in Enterobacteriaceae. We show that the colibactin genomic island (GI) has conserved gene synteny and biosynthetic module architecture across F. perrara, Enterobacteriaceae, and the Pseudovibrio strain. Comparative metabolomics analyses of F. perrara and E. coli further reveal that these two bacteria produce related colibactin pathway-dependent metabolites. Finally, we demonstrate that F. perrara, like E. coli, causes DNA damage in eukaryotic cells in vitro in a colibactin pathway-dependent manner. Together, these results support that divergent variants of the colibactin biosynthetic pathway are widely distributed among bacterial symbionts, producing related secondary metabolites and likely endowing its producer with functional capabilities important for diverse symbiotic associations.
Collapse
|
70
|
Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2). Sci Rep 2015; 5:15081. [PMID: 26459865 PMCID: PMC4602208 DOI: 10.1038/srep15081] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022] Open
Abstract
Linear plus linear homologous recombination-mediated recombineering (LLHR) is ideal for obtaining natural product biosynthetic gene clusters from pre-digested bacterial genomic DNA in one or two steps of recombineering. The natural product salinomycin has a potent and selective activity against cancer stem cells and is therefore a potential anti-cancer drug. Herein, we separately isolated three fragments of the salinomycin gene cluster (salO-orf18) from Streptomyces albus (S. albus) DSM41398 using LLHR and assembled them into intact gene cluster (106 kb) by Red/ET and expressed it in the heterologous host Streptomyces coelicolor (S. coelicolor) A3(2). We are the first to report a large genomic region from a Gram-positive strain has been cloned using LLHR. The successful reconstitution and heterologous expression of the salinomycin gene cluster offer an attractive system for studying the function of the individual genes and identifying novel and potential analogues of complex natural products in the recipient strain.
Collapse
|
71
|
Zhu Y, Zhang W, Chen Y, Yuan C, Zhang H, Zhang G, Ma L, Zhang Q, Tian X, Zhang S, Zhang C. Characterization of Heronamide Biosynthesis Reveals a Tailoring Hydroxylase and Indicates Migrated Double Bonds. Chembiochem 2015; 16:2086-93. [PMID: 26194087 DOI: 10.1002/cbic.201500281] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Yiguang Zhu
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Yaolong Chen
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Chengshan Yuan
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Si Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| |
Collapse
|
72
|
Abstract
Developments in the use of genomics to guide natural product discovery and a recent emphasis on understanding the molecular mechanisms of microbiota-host interactions have converged on the discovery of small molecules from the human microbiome. Here, we review what is known about small molecules produced by the human microbiota. Numerous molecules representing each of the major metabolite classes have been found that have a variety of biological activities, including immune modulation and antibiosis. We discuss technologies that will affect how microbiota-derived molecules are discovered in the future and consider the challenges inherent in finding specific molecules that are critical for driving microbe-host and microbe-microbe interactions and understanding their biological relevance.
Collapse
Affiliation(s)
- Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Michael A Fischbach
- Department of Bioengineering and Therapeutic Sciences and the California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
73
|
Bode HB. Die Mikroben in uns und der Wettlauf um die Struktur und Biosynthese von Colibactin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
74
|
Bode HB. The Microbes inside Us and the Race for Colibactin. Angew Chem Int Ed Engl 2015; 54:10408-11. [PMID: 26184782 DOI: 10.1002/anie.201505341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany) http://www.uni-frankfurt.de/fb/fb15/institute/inst-3-mol-biowiss/AK-Bode. .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt a. M. (Germany).
| |
Collapse
|
75
|
|
76
|
Lemercier C. When our genome is targeted by pathogenic bacteria. Cell Mol Life Sci 2015; 72:2665-76. [PMID: 25877988 PMCID: PMC11114081 DOI: 10.1007/s00018-015-1900-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/20/2015] [Accepted: 04/02/2015] [Indexed: 01/19/2023]
Abstract
Eukaryotic cells repair thousands of lesions arising in the genome at each cell cycle. The most hazardous damage is likely DNA double-strand breaks (DSB) that cleave the double helix backbone. DSBs occur naturally during T cell receptor and immunoglobulin gene recombination in lymphocytes. DSBs can also arise as a consequence of exogenous stresses (e.g., ionizing irradiation, chemotherapeutic drugs, viruses) or oxidative processes. An increasing number of studies have reported that infection with pathogenic bacteria also alters the host genome, producing DSB and other modifications on DNA. This review focuses on recent data on bacteria-induced DNA damage and the known strategies used by these pathogens to maintain a physiological niche in the host. Even after DNA repair in infected cells, "scars" often remain on chromosomes and might generate genomic instability at the next cell division. Chronic inflammation in tissue, combined with infection and DNA damage, can give rise to genomic instability and eventually cancer. A functional link between the DNA damage response and the innate immune response has been recently established. Pathogenic bacteria also highjack the host cell cycle, often acting on the stability of the master regulator p53, or dampen the DNA damage response to support bacterial replication in an appropriate reservoir. Except in a few cases, the molecular mechanisms responsible for DNA lesions are poorly understood, although ROS release during infection is a serious candidate for generating DNA breaks. Thus, chronic or repetitive infections with genotoxic bacteria represent a common source of DNA lesions that compromise host genome integrity.
Collapse
Affiliation(s)
- Claudie Lemercier
- INSERM, UMR_S 1038, BGE (Large Scale Biology), 38054, Grenoble, France,
| |
Collapse
|
77
|
Li ZR, Li Y, Lai JYH, Tang J, Wang B, Lu L, Zhu G, Wu X, Xu Y, Qian PY. Critical Intermediates Reveal New Biosynthetic Events in the Enigmatic Colibactin Pathway. Chembiochem 2015; 16:1715-9. [PMID: 26052818 DOI: 10.1002/cbic.201500239] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 01/19/2023]
Abstract
Colibactin is a potent genotoxin that induces DNA double-strand breaks; it is produced by Escherichia coli strains harboring a pks+ island. However, the structure of this compound remains elusive. Here, using transformation-associated recombination (TAR) cloning to perform heterologous expression, we took advantage of the significantly increased yield of colibactin pathway-related compounds to determine and isolate a series of vital (pre)colibactin intermediates. The chemical structures of compounds 8, 10 and 11 were identified by NMR and MS(n) analyses. The new 1H-pyrrolo[3,4-c]pyridine-3,6(2H,5H)-dione- and thiazole-containing compound 10 provides new insights regarding the biosynthetic pathway to (pre)colibactin and establishes foundations for future investigation of the intriguing (pre)colibactin structures and its modes of action.
Collapse
Affiliation(s)
- Zhong-Rui Li
- Division of Life Science and Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
| | - Yongxin Li
- Division of Life Science and Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
| | - Jennifer Y H Lai
- Division of Life Science and Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
| | - Jianqiang Tang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental, Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen 518060 (P. R. China)
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine, Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1st Haidanan Road, Lincheng, Zhoushan 316022 (P. R. China)
| | - Liang Lu
- Division of Life Science and Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou, Jiangsu 225009 (P. R. China)
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632 (P. R. China)
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental, Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen 518060 (P. R. China)
| | - Pei-Yuan Qian
- Division of Life Science and Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China).
| |
Collapse
|
78
|
Fu C, Keller L, Bauer A, Brönstrup M, Froidbise A, Hammann P, Herrmann J, Mondesert G, Kurz M, Schiell M, Schummer D, Toti L, Wink J, Müller R. Biosynthetic Studies of Telomycin Reveal New Lipopeptides with Enhanced Activity. J Am Chem Soc 2015; 137:7692-705. [DOI: 10.1021/jacs.5b01794] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
| | - Lena Keller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Armin Bauer
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Mark Brönstrup
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Alexandre Froidbise
- TSU Infectious Diseases, Sanofi R&D, 195 Route d‘Espagne, 31036 Toulouse, France
| | - Peter Hammann
- R&D TSU Infectious Diseases, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Guillaume Mondesert
- TSU Infectious Diseases, Sanofi R&D, 195 Route d‘Espagne, 31036 Toulouse, France
| | - Michael Kurz
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Matthias Schiell
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Dietmar Schummer
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Luigi Toti
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Joachim Wink
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
79
|
Bian X, Plaza A, Zhang Y, Müller R. Two more pieces of the colibactin genotoxin puzzle from Escherichia coli show incorporation of an unusual 1-aminocyclopropanecarboxylic acid moiety. Chem Sci 2015; 6:3154-3160. [PMID: 28706687 PMCID: PMC5490422 DOI: 10.1039/c5sc00101c] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Colibactin represents a structurally undefined class of bacterial genotoxin inducing DNA damage and genomic instability in mammalian cells, thus promoting tumour development and exacerbating lymphopenia in animal models. The colibactin biosynthetic gene cluster (clb) has been known for ten years and it encodes a hybrid nonribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) assembly line. Nevertheless, the final chemical product(s) remain unknown. Previously, we and others reported several colibactin pathway-related metabolites including N-myristoyl-d-asparagine (1) as part of a prodrug precursor that is cleaved from the putative precolibactin to form active colibactin by the peptidase ClbP. Herein, we report two new colibactin pathway-related metabolites (2 and 3) isolated from a clbP mutant of the probiotic E. coli Nissle 1917 strain. Their structures were established by HRMS and NMR. Compound 2 shows an additional 4-aminopenatanoic acid moiety with respect to 1, while 3 is characterized by the presence of an unusual 7-methyl-4-azaspiro[2.4]hept-6-en-5-one residue. Moreover, we propose the biosynthetic pathway towards both intermediates on the basis of extensive gene inactivation and feeding experiments. The identification of 2 and 3 provides further insight into colibactin biosynthesis including the involvement and formation of a rare 1-aminocyclopropanecarboxylic acid unit. Thus, our work establishes additional steps of the pathway forming the bacterial genotoxin colibactin.
Collapse
Affiliation(s)
- Xiaoying Bian
- Department of Microbial Natural Products , Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Department of Pharmaceutical Biotechnology , Saarland University , Campus C2 3 , 66123 Saarbrücken , Germany . ; Tel: +49-681-30270201
- Shandong University-Helmholtz Institute of Biotechnology , State Key Laboratory of Microbial Technology , School of Life Science , Shandong University , Zhuzhou Road 168 , 266101 Qingdao , P. R. China . ; Tel: +86-531-88363082
| | - Alberto Plaza
- Department of Microbial Natural Products , Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Department of Pharmaceutical Biotechnology , Saarland University , Campus C2 3 , 66123 Saarbrücken , Germany . ; Tel: +49-681-30270201
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology , State Key Laboratory of Microbial Technology , School of Life Science , Shandong University , Zhuzhou Road 168 , 266101 Qingdao , P. R. China . ; Tel: +86-531-88363082
| | - Rolf Müller
- Department of Microbial Natural Products , Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Department of Pharmaceutical Biotechnology , Saarland University , Campus C2 3 , 66123 Saarbrücken , Germany . ; Tel: +49-681-30270201
| |
Collapse
|
80
|
Abstract
Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of E. coli present in the human colon have been linked to initiating inflammation-induced colorectal cancer through an unknown small molecule-mediated process. The responsible nonribosomal peptide-polyketide hybrid pathway encodes “colibactin,” a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labeling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin’s DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.
Collapse
|
81
|
Li Y, Li Z, Yamanaka K, Xu Y, Zhang W, Vlamakis H, Kolter R, Moore BS, Qian PY. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis. Sci Rep 2015; 5:9383. [PMID: 25807046 PMCID: PMC4894447 DOI: 10.1038/srep09383] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022] Open
Abstract
Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning “plug-and-play” approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.
Collapse
Affiliation(s)
- Yongxin Li
- 1] KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong [2] Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States
| | - Zhongrui Li
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Kazuya Yamanaka
- 1] Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States [2] JNC Corporation, Yokohama Research Center, 5-1 Okawa, Kanazawa-ku, Yokohama, Kanagawa 2368605, Japan
| | - Ying Xu
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Weipeng Zhang
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hera Vlamakis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Bradley S Moore
- 1] Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States [2] Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, United States
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
82
|
Brotherton CA, Wilson M, Byrd G, Balskus EP. Isolation of a metabolite from the pks island provides insights into colibactin biosynthesis and activity. Org Lett 2015; 17:1545-8. [PMID: 25753745 DOI: 10.1021/acs.orglett.5b00432] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Colibactin is a structurally uncharacterized, genotoxic natural product produced by commensal and pathogenic strains of E. coli that harbor the pks island. A new metabolite has been isolated from a pks(+) E. coli mutant missing an essential biosynthetic enzyme. The unusual azaspiro[2.4] bicyclic ring system of this molecule provides new insights into colibactin biosynthesis and suggests a mechanism through which colibactin and other pks-derived metabolites may exert genotoxicity.
Collapse
Affiliation(s)
- Carolyn A Brotherton
- †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew Wilson
- †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Gary Byrd
- ‡Small Molecule Mass Spectrometry Facility, Faculty of Arts and Sciences Division of Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Emily P Balskus
- †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
83
|
Abstract
This highlight reviews recent studies of colibactin, a structurally uncharacterized genotoxin synthesized by members of the human gut microbiota.
Collapse
Affiliation(s)
- Emily P. Balskus
- Department of Chemistry and Chemical Biology
- Harvard University
- Cambridge
- USA
| |
Collapse
|
84
|
Tang Y, Frewert S, Harmrolfs K, Herrmann J, Karmann L, Kazmaier U, Xia L, Zhang Y, Müller R. Heterologous expression of an orphan NRPS gene cluster from Paenibacillus larvae in Escherichia coli revealed production of sevadicin. J Biotechnol 2014; 194:112-4. [PMID: 25529345 DOI: 10.1016/j.jbiotec.2014.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022]
Abstract
The Gram-positive bacterium Paenibacillus larvae is the causative agent of the fateful honey bee disease American Foulbrood (AFB). Sequence analysis of P. larvae genomic DNA showed the presence of numerous nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) encoding gene clusters, not correlating with secondary metabolite production. As NRPS and PKS derived metabolites are known to exhibit diverse biological activities, their identification is of particular interest for infection and drug research. Here an 11.6kb orphan NRPS gene cluster was directly cloned from the genomic DNA of P. larvae and expressed in Escherichia coli resulting in the production of sevadicin. Isolation of the metabolite was followed by structural characterization, synthesis and bioactivity studies.
Collapse
Affiliation(s)
- Ying Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, PR China; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research & Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Simon Frewert
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research & Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research & Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research & Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Lisa Karmann
- Institute for Organic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Institute for Organic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, PR China
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Life Science College, Shandong University, 250100 Jinan, PR China.
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research & Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
85
|
Park H, Kevany BM, Dyer DH, Thomas MG, Forest KT. A polyketide synthase acyltransferase domain structure suggests a recognition mechanism for its hydroxymalonyl-acyl carrier protein substrate. PLoS One 2014; 9:e110965. [PMID: 25340352 PMCID: PMC4207774 DOI: 10.1371/journal.pone.0110965] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/27/2014] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that the acyl transferase domain of ZmaA (ZmaA-AT) is involved in the biosynthesis of the aminopolyol polyketide/nonribosomal peptide hybrid molecule zwittermicin A from cereus UW85, and that it specifically recognizes the precursor hydroxymalonyl-acyl carrier protein (ACP) and transfers the hydroxymalonyl extender unit to a downstream second ACP via a transacylated AT domain intermediate. We now present the X-ray crystal structure of ZmaA-AT at a resolution of 1.7 Å. The structure shows a patch of solvent-exposed hydrophobic residues in the area where the AT is proposed to interact with the precursor ACP. We addressed the significance of the AT/ACP interaction in precursor specificity of the AT by testing whether malonyl- or methylmalonyl-ACP can be recognized by ZmaA-AT. We found that the ACP itself biases extender unit selection. Until now, structural information for ATs has been limited to ATs specific for the CoA-linked precursors malonyl-CoA and (2S)-methylmalonyl-CoA. This work contributes to polyketide synthase engineering efforts by expanding our knowledge of AT/substrate interactions with the structure of an AT domain that recognizes an ACP-linked substrate, the rare hydroxymalonate. Our structure suggests a model in which ACP interaction with a hydrophobic motif promotes secondary structure formation at the binding site, and opening of the adjacent substrate pocket lid to allow extender unit binding in the AT active site.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian M. Kevany
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. Dyer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (MGT); (KTF)
| | - Katrina T. Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (MGT); (KTF)
| |
Collapse
|
86
|
Fusobacterium and Enterobacteriaceae: important players for CRC? Immunol Lett 2014; 162:54-61. [PMID: 24972311 DOI: 10.1016/j.imlet.2014.05.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/13/2022]
Abstract
The gut microbiota plays an essential role in regulating intestinal homeostasis through its capacity to modulate various biological activities ranging from barrier, immunity and metabolic function. Not surprisingly, microbial dysbiosis is associated with numerous intestinal disorders including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). In this piece, we will review recent evidence that gut microbial dysbiosis can influence intestinal disease, including colitis and CRC. We will discuss the biological events implicated in the development of microbial dysbiosis and the emergence of CRC-associated microorganisms, focusing on Escherichia coli and Fusobacterium nucleatum. Finally, the mechanisms by which E. coli and F. nucleatum exert potentially carcinogenic effects on the host will be reviewed.
Collapse
|
87
|
Vizcaino MI, Engel P, Trautman E, Crawford JM. Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules. J Am Chem Soc 2014; 136:9244-7. [PMID: 24932672 PMCID: PMC4091280 DOI: 10.1021/ja503450q] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The
gene cluster responsible for synthesis of the unknown molecule
“colibactin” has been identified in mutualistic and
pathogenic Escherichia coli. The pathway
endows its producer with a long-term persistence phenotype in the
human bowel, a probiotic activity used in the treatment of ulcerative
colitis, and a carcinogenic activity under host inflammatory conditions.
To date, functional small molecules from this pathway have not been
reported. Here we implemented a comparative metabolomics and targeted
structural network analyses approach to identify a catalog of small
molecules dependent on the colibactin pathway from the meningitis
isolate E. coli IHE3034 and the probiotic E. coli Nissle 1917. The structures of 10 pathway-dependent
small molecules are proposed based on structural characterizations
and network relationships. The network will provide a roadmap for
the structural and functional elucidation of a variety of other small
molecules encoded by the pathway. From the characterized small molecule
set, in vitro bacterial growth inhibitory and mammalian
CNS receptor antagonist activities are presented.
Collapse
Affiliation(s)
- Maria I Vizcaino
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | | | | | | |
Collapse
|
88
|
Vizcaino MI, Guo X, Crawford JM. Merging chemical ecology with bacterial genome mining for secondary metabolite discovery. J Ind Microbiol Biotechnol 2014; 41:285-99. [PMID: 24127069 PMCID: PMC3946945 DOI: 10.1007/s10295-013-1356-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/23/2013] [Indexed: 12/24/2022]
Abstract
The integration of chemical ecology and bacterial genome mining can enhance the discovery of structurally diverse natural products in functional contexts. By examining bacterial secondary metabolism in the framework of its ecological niche, insights into the upregulation of orphan biosynthetic pathways and the enhancement of the enzyme substrate supply can be obtained, leading to the discovery of new secondary metabolic pathways that would otherwise be silent or undetected under typical laboratory cultivation conditions. Access to these new natural products (i.e., the chemotypes) facilitates experimental genotype-to-phenotype linkages. Here, we describe certain functional natural products produced by Xenorhabdus and Photorhabdus bacteria with experimentally linked biosynthetic gene clusters as illustrative examples of the synergy between chemical ecology and bacterial genome mining in connecting genotypes to phenotypes through chemotype characterization. These Gammaproteobacteria share a mutualistic relationship with nematodes and a pathogenic relationship with insects and, in select cases, humans. The natural products encoded by these bacteria distinguish their interactions with their animal hosts and other microorganisms in their multipartite symbiotic lifestyles. Though both genera have similar lifestyles, their genetic, chemical, and physiological attributes are distinct. Both undergo phenotypic variation and produce a profuse number of bioactive secondary metabolites. We provide further detail in the context of regulation, production, processing, and function for these genetically encoded small molecules with respect to their roles in mutualism and pathogenicity. These collective insights more widely promote the discovery of atypical orphan biosynthetic pathways encoding novel small molecules in symbiotic systems, which could open up new avenues for investigating and exploiting microbial chemical signaling in host-bacteria interactions.
Collapse
Affiliation(s)
- Maria I. Vizcaino
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Xun Guo
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06510, USA
- Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| |
Collapse
|
89
|
Kudo F, Miyanaga A, Eguchi T. Biosynthesis of natural products containing β-amino acids. Nat Prod Rep 2014; 31:1056-73. [DOI: 10.1039/c4np00007b] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Amino acids are unique components involved in a wide variety of natural products such as anticancer agents taxol, bleomycin, cytotoxic microcystin, enediyne compound C-1027 chromophore, nucleoside antibiotic blasticidin S, and macrolactam antibiotic vicenistatin. The biosynthesis and incorporation mechanisms are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| |
Collapse
|
90
|
Reimer D, Bode HB. A natural prodrug activation mechanism in the biosynthesis of nonribosomal peptides. Nat Prod Rep 2014; 31:154-9. [DOI: 10.1039/c3np70081j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ThisHighlightdescribes the recently discovered prodrug activation mechanism found in the biosynthesis of nonribosomally produced peptides and peptide/polyketide hybrids as well as related mechanisms.
Collapse
Affiliation(s)
- Daniela Reimer
- Merck Stiftungsprofessur für Molekulare Biotechnologie
- Fachbereich Biowissenschaften
- Goethe Universität Frankfurt
- 60438 Frankfurt am Main, Germany
| | - Helge B. Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie
- Fachbereich Biowissenschaften
- Goethe Universität Frankfurt
- 60438 Frankfurt am Main, Germany
| |
Collapse
|
91
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
92
|
Ongley SE, Bian X, Neilan BA, Müller R. Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Nat Prod Rep 2013; 30:1121-38. [PMID: 23832108 DOI: 10.1039/c3np70034h] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heterologous expression of microbial natural product biosynthetic pathways coupled with advanced DNA engineering enables optimisation of product yields, functional elucidation of cryptic gene clusters, and generation of novel derivatives. This review summarises the recent advances in cloning and maintenance of natural product biosynthetic gene clusters for heterologous expression and the efforts fundamental for discovering novel natural products in the post-genomics era, with a focus on polyketide synthases (PKSs) and non-ribosomal polypeptide synthetases (NRPS).
Collapse
Affiliation(s)
- Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|