51
|
Wang L, Zhang Z, Wang H. Naringin attenuates cerebral ischemia-reperfusion injury in rats by inhibiting endoplasmic reticulum stress. Transl Neurosci 2021; 12:190-197. [PMID: 34046215 PMCID: PMC8134799 DOI: 10.1515/tnsci-2020-0170] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Objective This investigation was carried out with an aim of exploring neuroprotection by naringin (Nar) in rats with cerebral ischemia-reperfusion (CI/R) injury and its mechanism. Methods Rats were grouped into ischemia-reperfusion (I/R), sham operation (Sham), nimodipine control (NIM), and different doses of Nar (Nar-L, Nar-M, Nar-H) groups. With Zea Longa score for assessment of neurological deficits, dry and wet method for measurement of brain tissue water content, and (2,3,5-triphenyltetrazolium chloride) TTC staining for determination of cerebral infarction volume, the related parameters were obtained and compared. Subsequently, ELISA was introduced to detect levels of proinflammatory cytokines (TNF-α, IL-8) and anti-inflammatory cytokine (IL-10) in the serum as well as superoxide dismutase (SOD) and malondialdehyde (MDA) activities in brain tissue. Western blot was applied to evaluate endoplasmic reticulum stress (ERS)-related proteins expression, including glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), caspase-12, and activating transcription factor 6 (ATF-6). Results Nar significantly alleviated nerve injury and decreased brain tissue water content and brain infraction volume in CI/R injury rats in a concentration-dependent manner. Reduction of TNF-α, IL-8 as well as MDA content and elevation of IL-10 as well as SOD activity were confirmed to be caused by Nar treatment in a concentration-dependent manner. Meanwhile, ERS-related proteins also markedly decreased in the Nar groups. Conclusion Nar may achieve neuroprotection and alleviation of CI/R injury by anti-inflammation, anti-oxidation, and inhibiting ERS, and its efficacy is concentration-dependent.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Zhe Zhang
- Department of Emergency Medicine, The First People's Hospital of Yuhang District, Hangzhou 311100, China
| | - Haibin Wang
- Department of Radiology, Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
52
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
53
|
Deng Y, Tu Y, Lao S, Wu M, Yin H, Wang L, Liao W. The role and mechanism of citrus flavonoids in cardiovascular diseases prevention and treatment. Crit Rev Food Sci Nutr 2021; 62:7591-7614. [PMID: 33905288 DOI: 10.1080/10408398.2021.1915745] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cardiovascular diseases (CVDs) have been ranked as the leading cause of death in the world, whose global incidence is increasing year by year. Citrus, one of the most popular fruits in the world, is rich in flavonoids. Citrus flavonoids attract special attention due to a variety of biological activities, especially in the prevention and treatment of CVDs. The research progress of citrus flavonoids on CVDs have been constantly updated, but relatively fragmented, which needed to be systematically summarized. Hence, the recent research about citrus flavonoids and CVDs were reviewed, including the types and in vivo processes of citrus flavonoids, epidemiology study and mechanism on prevention and treatment of CVDs by citrus flavonoids. This review would provide a theoretical basis for the citrus flavonoids research and a new idea in the citrus industry development and application.
Collapse
Affiliation(s)
- Yudi Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yali Tu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shenghui Lao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengting Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hantong Yin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Linqing Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
54
|
Luo Y, Chen H, Tsoi B, Wang Q, Shen J. Danggui-Shaoyao-San (DSS) Ameliorates Cerebral Ischemia-Reperfusion Injury via Activating SIRT1 Signaling and Inhibiting NADPH Oxidases. Front Pharmacol 2021; 12:653795. [PMID: 33935765 PMCID: PMC8082392 DOI: 10.3389/fphar.2021.653795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Danggui-Shayao-San (DSS) is a famous Traditional Chinese Medicine formula that used for treating pain disorders and maintaining neurological health. Recent studies indicate that DSS has neuroprotective effects against ischemic brain damage but its underlining mechanisms remain unclear. Herein, we investigated the neuroprotective mechanisms of DSS for treating ischemic stroke. Adult male Sprague-Dawley (S.D.) rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus 22 h of reperfusion. Both ethanol extract and aqueous extract of DSS (12 g/kg) were orally administrated into the rats at 30 min prior to MCAO ischemic onset. We found that 1) ethanol extract of DSS, instead of aqueous extract, reduced infarct sizes and improved neurological deficit scores in the post-ischemic stroke rats; 2) Ethanol extract of DSS down-regulated the expression of the cleaved-caspase 3 and Bax, up-regulated bcl-2 and attenuated apoptotic cell death in the ischemic brains; 3) Ethanol extract of DSS decreased the production of superoxide and peroxynitrite; 4) Ethanol extract of DSS significantly down-regulated the expression of p67phox but has no effect on p47phox and iNOS statistically. 5) Ethanol extract of DSS significantly up-regulated the expression of SIRT1 in the cortex and striatum of the post-ischemic brains; 6) Co-treatment of EX527, a SIRT1 inhibitor, abolished the DSS’s neuroprotective effects. Taken together, DSS could attenuate oxidative/nitrosative stress and inhibit neuronal apoptosis against cerebral ischemic-reperfusion injury via SIRT1-dependent manner.
Collapse
Affiliation(s)
- Yunxia Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Endocrinology, Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bun Tsoi
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangang Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
55
|
Autophagy and Mitophagy as Essential Components of Atherosclerosis. Cells 2021; 10:cells10020443. [PMID: 33669743 PMCID: PMC7922388 DOI: 10.3390/cells10020443] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the greatest health problems affecting people worldwide. Atherosclerosis, in turn, is one of the most common causes of cardiovascular disease. Due to the high mortality rate from cardiovascular diseases, prevention and treatment at the earliest stages become especially important. This requires developing a deep understanding of the mechanisms underlying the development of atherosclerosis. It is well-known that atherogenesis is a complex multi-component process that includes lipid metabolism disorders, inflammation, oxidative stress, autophagy disorders and mitochondrial dysfunction. Autophagy is a cellular control mechanism that is critical to maintaining health and survival. One of the specific forms of autophagy is mitophagy, which aims to control and remove defective mitochondria from the cell. Particularly defective mitophagy has been shown to be associated with atherogenesis. In this review, we consider the role of autophagy, focusing on a special type of it—mitophagy—in the context of its role in the development of atherosclerosis.
Collapse
|
56
|
Naringin Exhibits Mas Receptor-Mediated Neuroprotection Against Amyloid Beta-Induced Cognitive Deficits and Mitochondrial Toxicity in Rat Brain. Neurotox Res 2021; 39:1023-1043. [PMID: 33534126 DOI: 10.1007/s12640-021-00336-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/07/2021] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with clinical manifestation of loss in cognitive functions in an individual. Though several drug candidates have been developed in the management of AD, an alternative option is still required due to serious adverse effects of the former. Recently, naringin exerts therapeutic benefits through rennin angiotensin system in experimental animals. However, its report on Mas receptor-mediated action against amyloid beta (Aβ)-induced mitochondrial dysfunction in AD-like animals is lacking. The experimental dementia was induced in the male rats by intracerebroventricular administration of Aβ(1-42) on day 1 (D-1) of the experimental schedule of 14 days. Naringin treatment for 14 days attenuated Aβ-induced cognitive impairments of the animals in Morris water maze (MWM) and Y-maze tests. Further, naringin ameliorated the Aβ-induced cholinergic dysfunction in terms of decrease in the activity of choline acetyl transferase (ChAT) and level of acetylcholine (ACh) and increase in the activity of acetylcholine esterase (AChE) in rat hippocampus, prefrontal cortex, and amygdala. Furthermore, naringin attenuated Aβ-induced decrease in mitochondrial function, integrity, and bioenergetics in all the brain regions. Naringin also attenuated Aβ-induced increase in mitochondrial and cytosolic calcium level in all the brain regions. Moreover, naringin reversed Aβ-induced increase in apoptosis and level of mitochondrial calcium uniporter and decrease in the level of hemeoxygenase-1 in all the brain regions. On the contrary, A779 significantly abolished the therapeutic potential of naringin on Aβ-induced alteration in behavioral, biochemical, and molecular observations in these experimental animals. Thus, these observations indicate that naringin could be potential alternative in the management of AD.
Collapse
|
57
|
Wang F, Yuan Q, Chen F, Pang J, Pan C, Xu F, Chen Y. Fundamental Mechanisms of the Cell Death Caused by Nitrosative Stress. Front Cell Dev Biol 2021; 9:742483. [PMID: 34616744 PMCID: PMC8488117 DOI: 10.3389/fcell.2021.742483] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Nitrosative stress, as an important oxygen metabolism disorder, has been shown to be closely associated with cardiovascular diseases, such as myocardial ischemia/reperfusion injury, aortic aneurysm, heart failure, hypertension, and atherosclerosis. Nitrosative stress refers to the joint biochemical reactions of nitric oxide (NO) and superoxide (O2 -) when an oxygen metabolism disorder occurs in the body. The peroxynitrite anion (ONOO-) produced during this process can nitrate several biomolecules, such as proteins, lipids, and DNA, to generate 3-nitrotyrosine (3-NT), which further induces cell death. Among these, protein tyrosine nitration and polyunsaturated fatty acid nitration are the most studied types to date. Accordingly, an in-depth study of the relationship between nitrosative stress and cell death has important practical significance for revealing the pathogenesis and strategies for prevention and treatment of various diseases, particularly cardiovascular diseases. Here, we review the latest research progress on the mechanisms of nitrosative stress-mediated cell death, primarily involving several regulated cell death processes, including apoptosis, autophagy, ferroptosis, pyroptosis, NETosis, and parthanatos, highlighting nitrosative stress as a unique mechanism in cardiovascular diseases.
Collapse
Affiliation(s)
- Fulin Wang
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Fengying Chen
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Fengying Chen,
| | - Jiaojiao Pang
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Chang Pan
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Feng Xu,
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
- Yuguo Chen,
| |
Collapse
|
58
|
Shao Z, Dou S, Zhu J, Wang H, Xu D, Wang C, Cheng B, Bai B. The Role of Mitophagy in Ischemic Stroke. Front Neurol 2020; 11:608610. [PMID: 33424757 PMCID: PMC7793663 DOI: 10.3389/fneur.2020.608610] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are important places for eukaryotes to carry out energy metabolism and participate in the processes of cell differentiation, cell information transmission, and cell apoptosis. Autophagy is a programmed intracellular degradation process. Mitophagy, as a selective autophagy, is an evolutionarily conserved cellular process to eliminate dysfunctional or redundant mitochondria, thereby fine-tuning the number of mitochondria and maintaining energy metabolism. Many stimuli could activate mitophagy to regulate related physiological processes, which could ultimately reduce or aggravate the damage caused by stimulation. Stroke is a common disease that seriously affects the health and lives of people around the world, and ischemic stroke, which is caused by cerebral vascular stenosis or obstruction, accounts for the vast majority of stroke. Abnormal mitophagy is closely related to the occurrence, development and pathological mechanism of ischemic stroke. However, the exact mechanism of mitophagy involved in ischemic stroke has not been fully elucidated. In this review, we discuss the process and signal pathways of mitophagy, the potential role of mitophagy in ischemic stroke and the possible signal transduction pathways. It will help deepen the understanding of mitophagy and provide new ideas for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ziqi Shao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Junge Zhu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiqing Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Xu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, China
| |
Collapse
|
59
|
Zhang Y, He Y, Wu M, Chen H, Zhang L, Yang D, Wang Q, Shen J. Rehmapicroside ameliorates cerebral ischemia-reperfusion injury via attenuating peroxynitrite-mediated mitophagy activation. Free Radic Biol Med 2020; 160:526-539. [PMID: 32784031 DOI: 10.1016/j.freeradbiomed.2020.06.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
Peroxynitrite (ONOO-)-mediated mitophagy activation represents a vital pathogenic mechanism in ischemic stroke. Our previous study suggests that ONOO- mediates Drp1 recruitment to the damaged mitochondria for excessive mitophagy, aggravating cerebral ischemia/reperfusion injury and the ONOO--mediated mitophagy activation could be a crucial therapeutic target for improving outcome of ischemic stroke. In the present study, we tested the neuroprotective effects of rehmapicroside, a natural compound from a medicinal plant, on inhibiting ONOO--mediated mitophagy activation, attenuating infarct size and improving neurological functions by using the in vitro cultured PC12 cells exposed to oxygen glucose deprivation with reoxygenation (OGD/RO) condition and the in vivo rat model of middle cerebral artery occlusion (MCAO) for 2 h of transient cerebral ischemia plus 22 h of reperfusion. The major discoveries include following aspects: (1) Rehmapicroside reacted with ONOO- directly to scavenge ONOO-; (2) Rehmapicroside decreased O2- and ONOO-, up-regulated Bcl-2 but down-regulated Bax, Caspase-3 and cleaved Caspase-3, and down-regulated PINK1, Parkin, p62 and the ratio of LC3-II to LC3-I in the OGD/RO-treated PC12 cells; (3) Rehmapicroside suppressed 3-nitrotyrosine formation, Drp1 nitration as well as NADPH oxidases and iNOS expression in the ischemia-reperfused rat brains; (4) Rehmapicroside prevented the translocations of PINK1, Parkin and Drp1 into the mitochondria for mitophagy activation in the ischemia-reperfused rat brains; (5) Rehmapicroside ameliorated infarct sizes and improved neurological deficit scores in the rats with transient MCAO cerebral ischemia. Taken together, rehmapicroside could be a potential drug candidate against cerebral ischemia-reperfusion injury, and its neuroprotective mechanisms could be attributed to inhibiting the ONOO--mediated mitophagy activation.
Collapse
Affiliation(s)
- Yifan Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, PR China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yacong He
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lu Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dan Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Jiangang Shen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, PR China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
60
|
Huang Y, Pan L, Wu T. Improvement of cerebral ischemia-reperfusion injury by L-3-n-butylphthalide through promoting angiogenesis. Exp Brain Res 2020; 239:341-350. [PMID: 33180154 DOI: 10.1007/s00221-020-05978-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury may lead to a poor prognosis for ischemic stroke patients after reperfusion therapy, and currently, lacks effective therapeutic intervention. This study aimed to investigate the effects of L-3-n-butylphthalide (L-NBP) on cerebral I/R injury in rats. Rat models of cerebral I/R injury were established using the middle cerebral artery occlusion/refusion (MACO/R) surgery and were administrated intragastrically with L-NBP or vehicle. We found that L-NBP attenuated the histological damages and reduced the brain hematoma in MACO/R rats. L-NBP also significantly improved the neurological function, alleviated the brain edema, and reduced the permeability of blood-brain barrier of MACO/R rats. Moreover, we detected that L-NBP considerably facilitated microvessel formation in the lesion area of brain in MACO/R rats. Finally, we found that L-NBP significantly increased the protein and mRNA expression levels of Nrf2, HIF-1α, and VEGF in the brain of MACO/R rats. In conclusion, our results demonstrated that L-NBP exerted significant beneficial effects on cerebral I/R injury in rats through promoting angiogenesis, which may be associated with the activation of Nrf2/HIF-1α/VEGF signaling pathway. Our results suggested that L-NBP could be a potential therapeutic drug for cerebral I/R injury.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pharmacy, The People's Hospital of Yichun City, Yichun, 336000, People's Republic of China
| | - Lishou Pan
- Department of Neurology, The People's Hospital of Yichun City, Yichun, 336000, People's Republic of China
| | - Ting Wu
- Department of Pharmacy, The People's Hospital of Yichun City, Yichun, 336000, People's Republic of China.
| |
Collapse
|
61
|
Wu J, Bai Y, Wang Y, Ma J. Melatonin and regulation of autophagy: Mechanisms and therapeutic implications. Pharmacol Res 2020; 163:105279. [PMID: 33161138 DOI: 10.1016/j.phrs.2020.105279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential subcellular units that generate basic energy for the cell, as well as influence Ca2+ flux, apoptosis, and cell signaling. Mitophagy can selectively remove impaired mitochondria to preserve mitochondrial function, which is crucial for normal cellular maintenance. Mitochondrial dysfunction and mitophagy are widely reported to be linked to various pathogeneses. In addition, there is increasing evidence regarding the beneficial role of melatonin in the regulation and intervention of mitophagy progression. In this review, we focus on specific pathological conditions, including ischemia/reperfusion injury (IRI), cancer and neurodegenerative diseases, and elucidate the essential role of melatonin in the modulation of mitophagy in each of these distinct disorders.
Collapse
Affiliation(s)
- Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yaguang Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
62
|
Kalyoncu Ş, Yilmaz B, Demir M, Tuncer M, Bozdağ Z, Ince O, Bozdayi MA, Ulusal H, Taysi S. Melatonin attenuates ovarian ischemia reperfusion injury in rats by decreasing oxidative stress index and peroxynitrite. Turk J Med Sci 2020; 50:1513-1522. [PMID: 32927928 PMCID: PMC7605088 DOI: 10.3906/sag-2004-135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Background/aim To evaluate the protective effect of melatonin on ovarian ischemia reperfusion injury in a rat model. Materials and methods Forty-eight rats were separated equally into 6 groups. Group 1: sham; Group 2: surgical control with 3-h bilateral ovarian torsion and detorsion; Group 3: intraperitoneal 5% ethanol (1 mL) just after detorsion (as melatonin was dissolved in ethanol); Group 4: 10 mg/kg intraperitoneal melatonin 30 min before 3-h torsion; Group 5:10 mg/kg intraperitoneal melatonin just after detorsion; Group 6:10 mg/kg intraperitoneal melatonin 30 min before torsion and just after detorsion. Both ovaries and blood samples were obtained 7 days after detorsion for histopathological and biochemical analysis. Results In Group 1, serum levels of total oxidant status (TOS) (μmol H2O2 equivalent/g wet tissue)were significantly lower than in Group2 (P = 0.0023), while tissue TOS levels were lower than in Group 3 (P = 0.0030). Similarly, serum and tissue levels of peroxynitrite in Group 6were significantly lower than those ofGroup 2 (P = 0.0023 and P = 0.040, respectively). Moreover, serum oxidative stress index (OSI) (arbitrary unit) levels were significantly increased in Group 2 when compared to groups 1 and 6 (P = 0.0023 and P= 0.0016, respectively) and in Group 3 with respect to groups 1, 4, 5, and 6 (P = 0.0023, P = 0.0026, P = 0.0008, and P = 0.0011, respectively). Furthermore, there was a significant decrease in histopathological scores including follicular degeneration, vascular congestion, hemorrhage, and inflammation in the melatonin and sham groups in comparison with control groups. Additionally, primordial follicle count was significantly higher in Group 6 than in Group 2 (P = 0.0002). Conclusion Melatonin attenuates ischemia reperfusion damage in a rat torsion/detorsion model by improving histopathological and biochemical findings including OSI and peroxynitrite.
Collapse
Affiliation(s)
- Şenol Kalyoncu
- Department of Obstetrics and Gynecology, TOBB ETU University Hospital, Ankara, Turkey
| | - Bülent Yilmaz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Mustafa Demir
- Department of Obstetrics and Gynecology, ANKA Hospital, Gaziantep, Turkey
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Zehra Bozdağ
- Department of Pathology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Onur Ince
- Department of Obstetrics and Gynecology, Faculty of Medicine, Health Science University, Kütahya, Turkey
| | - Mehmet Akif Bozdayi
- Department of Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Hasan Ulusal
- Department of Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Seyithan Taysi
- Department of Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
63
|
Chen JL, Wang XX, Chen L, Tang J, Xia YF, Qian K, Qin ZH, Waeber C, Sheng R. A sphingosine kinase 2-mimicking TAT-peptide protects neurons against ischemia-reperfusion injury by activating BNIP3-mediated mitophagy. Neuropharmacology 2020; 181:108326. [PMID: 32966847 DOI: 10.1016/j.neuropharm.2020.108326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 12/30/2022]
Abstract
We have previously shown that sphingosine kinase 2 (SPK2) interacts with Bcl-2 via its BH3 domain, activating autophagy by inducing the dissociation of Beclin-1/Bcl-2 complexes, and that a TAT-SPK2 peptide containing the BH3 domain of SPK2 protects neurons against ischemic injury. The goals of the present study were to establish the functional significance of these findings, by testing whether TAT-SPK2 was effective in a mouse model of ischemic stroke, and to explore potential underlying mechanisms. Mice were administered with TAT-SPK2 by intraperitoneal injection before or after transient middle cerebral artery occlusion (tMCAO). Infarct volume, neurological deficit and brain water content were assessed 24 h after reperfusion. Mitophagy inhibitor Mdivi-1 and BNIP3 siRNAs were used to examine the involvement of BNIP3-dependent mitophagy in the neuroprotection of TAT-SPK2. Mitophagy was quantified by immunoblotting, immunofluorescence and electron microscopy. The interaction between TAT-SPK2 and Bcl-2, Bcl-2 and BNIP3 was detected by co-immunoprecipitation. In the tMCAO model, pre-treatment with TAT-SPK2 significantly reduced infarct volume, improved neurological function and decreased brain edema. Neuroprotection by TAT-SPK2 was still seen when the peptide was administered 3 h after reperfusion. TAT-SPK2 also significantly improved functional recovery and reduced long-term brain atrophy of the ischemic hemisphere 30 days after administration. Our studies further showed that TAT-SPK2 directly binds to Bcl-2 and disrupts Bcl-2/Beclin-1 or Bcl-2/BNIP3 complexes to induce mitophagy. These results suggest that TAT-SPK2 protects neurons against ischemia reperfusion injury by activating BNIP3-mediated mitophagy. Agents exploiting this molecular mechanism are potential candidates for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jia-Li Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Xin-Xin Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Lei Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jie Tang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Yun-Fei Xia
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ke Qian
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Christian Waeber
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cork, Ireland
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
64
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
65
|
Kalyoncu S, Yilmaz B, Demir M, Tuncer M, Bozdag Z, Ince O, Akif Bozdayi M, Ulusal H, Taysi S. Octreotide and lanreotide decrease ovarian ischemia-reperfusion injury in rats by improving oxidative and nitrosative stress. J Obstet Gynaecol Res 2020; 46:2050-2058. [PMID: 32748523 DOI: 10.1111/jog.14379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022]
Abstract
AIM To investigate the protective effect of octreotide and lanreotide on ovarian damage in experimental ovarian ischemia-reperfusion injury. METHODS Fifty-six rats were separated into seven groups; group 1: sham group, group 2: surgical control group with 3-h torsion and detorsion, group 3: 0.02 mg/kg s.c. octreotide 30 min before 3-h torsion, group 4; octreotide just after detorsion for 7 days, group 5: octreotide 30 min before torsion and just after detorsion for 7 days, group 6: single time 20 mg/kg s.c. lanreotide before torsion, group 7: single time lanreotide just after detorsion. RESULTS All histopathological scores except congestion were significantly lower in group 1 than other groups. In addition, hemorrhage (group 2 vs 4: P < 0.05), degeneration (group 2 vs 4: P < 0.05, group 2 vs 5: P < 0.01 and group 2 vs 6: P < 0.05) and total damage score (group 2 vs 4: P < 0.05, group 2 vs 5: P < 0.05, group 2 vs 6: P < 0.05 and group 2 vs 7: P < 0.05) were significantly lower than other groups. Moreover, ovarian tissue total oxidant status and oxidative stress index levels were significantly decreased in groups 5 (both P < 0.05) and 7 (both P < 0.05) when compared to group 2. Furthermore, tissue levels of peroxynitrite were significantly higher in group 2 than groups 1, 3 and 5 (all P < 0.05). CONCLUSIONS Octreotide and lanreotide have a protective role against ischemia-reperfusion damage in rat torsion detorsion model by improving histopathological and biochemical findings including tissue levels of total oxidant status, oxidative stress index and peroxynitrite.
Collapse
Affiliation(s)
- Senol Kalyoncu
- Obstetrics and Gynecology Clinic, TOBB ETU University Hospital, Ankara, Turkey
| | - Bulent Yilmaz
- Department of Obstetrics and Gynecology, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Mustafa Demir
- Obstetrics and Gynecology Clinic, ANKA Hospital, Gaziantep, Turkey
| | - Meltem Tuncer
- Department of Physiology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Zehra Bozdag
- Department of Pathology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Onur Ince
- Department of Obstetrics and Gynecology, Kutahya Health Sciences University, Faculty of Medicine, Kutahya, Turkey
| | - Mehmet Akif Bozdayi
- Department of Biochemistry, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Hasan Ulusal
- Department of Biochemistry, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Seyithan Taysi
- Department of Biochemistry, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| |
Collapse
|
66
|
Guan X, Zhang H, Qin H, Chen C, Hu Z, Tan J, Zeng L. CRISPR/Cas9-mediated whole genomic wide knockout screening identifies mitochondrial ribosomal proteins involving in oxygen-glucose deprivation/reperfusion resistance. J Cell Mol Med 2020; 24:9313-9322. [PMID: 32618081 PMCID: PMC7417733 DOI: 10.1111/jcmm.15580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/18/2020] [Accepted: 06/13/2020] [Indexed: 01/06/2023] Open
Abstract
Recanalization therapy by intravenous thrombolysis or endovascular therapy is critical for the treatment of cerebral infarction. However, the recanalization treatment will also exacerbate acute brain injury and even severely threatens human life due to the reperfusion injury. So far, the underlying mechanisms for cerebral ischaemia-reperfusion injury are poorly understood and effective therapeutic interventions are yet to be discovered. Therefore, in the research, we subjected SK-N-BE(2) cells to oxygen-glucose deprivation/reperfusion (OGDR) insult and performed a pooled genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) knockout screen to discover new potential therapeutic targets for cerebral ischaemia-reperfusion injury. We used Metascape to identify candidate genes which might involve in OGDR resistance. We found that the genes contributed to OGDR resistance were primarily involved in neutrophil degranulation, mitochondrial translation, and regulation of cysteine-type endopeptidase activity involved in apoptotic process and response to oxidative stress. We then knocked down some of the identified candidate genes individually. We demonstrated that MRPL19, MRPL32, MRPL52 and MRPL51 inhibition increased cell viability and attenuated OGDR-induced apoptosis. We also demonstrated that OGDR down-regulated the expression of MRPL19 and MRPL51 protein. Taken together, our data suggest that genome-scale screening with Cas9 is a reliable tool to analyse the cellular systems that respond to OGDR injury. MRPL19 and MRPL51 contribute to OGDR resistance and are supposed to be promising targets for the treatment of cerebral ischaemia-reperfusion damage.
Collapse
Affiliation(s)
- Xinjie Guan
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Medical GeneticsCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Animal Model for Human DiseasesCentral South UniversityChangshaHunanChina
| | - Hainan Zhang
- Department of NeurologySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Haiyun Qin
- Department of NeurologySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chunli Chen
- Department of NeurologySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhiping Hu
- Department of NeurologySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jieqiong Tan
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Medical GeneticsCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Animal Model for Human DiseasesCentral South UniversityChangshaHunanChina
| | - Liuwang Zeng
- Department of NeurologySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
67
|
Xu H, Shen J, Xiao J, Chen F, Wang M. Neuroprotective effect of cajaninstilbene acid against cerebral ischemia and reperfusion damages by activating AMPK/Nrf2 pathway. J Adv Res 2020; 34:199-210. [PMID: 35024191 PMCID: PMC8655138 DOI: 10.1016/j.jare.2020.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction Ischemic stroke is one of the leading causes of death worldwide. Recently, neuroprotection is regarded as an important preventative and therapeutic strategy for ischemic stroke. Cajaninstilbene acid (CSA), a unique stilbenoid with a styryl group, is a potential neuroprotective agent. Objectives Hence, this study aimed to evaluate the neuroprotective effect and molecular mechanism of CSA against cerebral ischemia/reperfusion (I/R) damages. Methods Cerebral ischemia was modeled by oxygen and glucose deprivation (OGD) in SH-SY5Y cells or transient intraluminal suture middle cerebral artery occlusion (MCAO) in rats, and tert-butyl hydroperoxide (t-BHP) was used to induce oxidative stress in SH-SY5Y cells. CSA (2.5, 5 mg/kg) was intraperitoneally given upon reperfusion after 2 h of MCAO. The signaling pathways were analyzed by Western blotting and inhibitor blocking. Results CSA possessed significant neuroprotective activity, as evidenced by the reduced cell death in OGD/R or t-BHP injured SH-SY5Y cells, and decreased infarct volume and neurological deficits in MCAO/R rats. Further studies indicated that the protective effect was achieved via the antioxidant activity of CSA, which decreased the oxidative stress and its related mitochondrial dysfunction in SH-SY5Y cells. Notably, Nrf2 was activated in SH-SY5Y cells and MCAO/R rats by CSA, and the inhibition of Nrf2 by brusatol weakened CSA-mediated neuroprotection. Furthermore, after applying a series of kinase inhibitors, CSA-induced Nrf2 activation was markedly inhibited by BML-275 (an AMPK inhibitor), implying that AMPK was the dominant kinase to regulate the Nrf2 pathway for CSA’s neuroprotective effects with enhanced AMPK phosphorylation observed both in vivo and in vitro. Conclusion CSA exerted neuroprotection via activating the AMPK/Nrf2 pathway to reduce I/R-induced cellular oxidative stress and mitochondrial disfunction. CSA could be a potential neuroprotective drug candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
68
|
Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules 2020; 25:molecules25133060. [PMID: 32635481 PMCID: PMC7412508 DOI: 10.3390/molecules25133060] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of diverse mechanisms that lead to cytoprotection have been described to date. Perhaps, not surprisingly, the role of mitochondria in these phenomena is notable. In addition to being metabolic centers, due to their role in cell catabolism, ATP synthesis, and biosynthesis these organelles are triggers and/or end-effectors of a large number of signaling pathways. Their role in the regulation of the intrinsic apoptotic pathway, calcium homeostasis, and reactive oxygen species signaling is well documented. In this review, we aim to characterize the prospects of influencing cytoprotective mitochondrial signaling routes by natural substances of plant origin, namely, flavonoids (e.g., flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, and isoflavones). Flavonoids are a family of widely distributed plant secondary metabolites known for their beneficial effects on human health and are widely applied in traditional medicine. Their pharmacological characteristics include antioxidative, anticarcinogenic, anti-inflammatory, antibacterial, and antidiabetic properties. Here, we focus on presenting mitochondria-mediated cytoprotection against various insults. Thus, the role of flavonoids as antioxidants and modulators of antioxidant cellular response, apoptosis, mitochondrial biogenesis, autophagy, and fission and fusion is reported. Finally, an emerging field of flavonoid-mediated changes in the activity of mitochondrial ion channels and their role in cytoprotection is outlined.
Collapse
|
69
|
Naringin Targets NFKB1 to Alleviate Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury in PC12 Cells Via Modulating HIF-1α/AKT/mTOR-Signaling Pathway. J Mol Neurosci 2020; 71:101-111. [PMID: 32557145 DOI: 10.1007/s12031-020-01630-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022]
Abstract
This study was designed to investigate the effect of naringin in oxygen-glucose deprivation/reoxygenation (OGD/R) model and its mechanism. The target gene of naringin and the enriched pathways of the gene were searched and identified using bioinformatics analysis. Then OGD/R model was built using PC12 cells, after which the cells were treated with different concentrations of naringin. Subsequently, cell proliferation and apoptosis were evaluated by cell counting kit-8 (CCK-8) and flow cytometry assays, respectively. Meanwhile, the expression of NFKB1 in PC12 cells underwent OGD/R-induced injury was detected by qRT-PCR, while apoptosis-related and pathway-related proteins were checked by Western blot. DCF-DA kit was utilized to measure the level of ROS. Our results revealed that NFKB1, which was upregulated in MACO rats and OGD/R-treated PC12 cells, was a target gene of naringin. Naringin could alleviate OGD/R-induced injury via promoting the proliferation, and repressing the apoptosis of PC12 cells through regulating the expression of NFKB1 and apoptosis-associated proteins and ROS level. Besides, the depletion of NFKB1 was positive to cell proliferation but negative to cell apoptosis. Moreover, the depletion of NFKB1 enhanced the influences of naringin on cell proliferation and apoptosis as well as the expression of apoptosis-related proteins and ROS level. Western blotting indicated that both naringin treatment and depletion of NFKB1 could increase the expression of HIF-1α, p-AKT, and p-mTOR compared with OGD/R group. What's more, treatment by naringin and si-NFKB1 together could significantly increase these effects. Nevertheless, the expression of AKT and mTOR among each group was almost not changed. In conclusion, naringin could prevent the OGD/R-induced injury in PC12 cells in vitro by targeting NFKB1 and regulating HIF-1α/AKT/mTOR-signaling pathway, which might provide novel ideas for the therapy of cerebral ischemia-reperfusion (I/R) injury.
Collapse
|
70
|
Chen S, Chen H, Du Q, Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front Physiol 2020; 11:433. [PMID: 32508671 PMCID: PMC7248223 DOI: 10.3389/fphys.2020.00433] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress and inflammation are two critical pathological processes of cerebral ischemia-reperfusion injury. Myeloperoxidase (MPO) is a critical inflammatory enzyme and therapeutic target triggering both oxidative stress and neuroinflammation in the pathological process of cerebral ischemia-reperfusion injury. MPO is presented in infiltrated neutrophils, activated microglial cells, neurons, and astrocytes in the ischemic brain. Activation of MPO can catalyze the reaction of chloride and H2O2 to produce HOCl. MPO also mediates oxidative stress by promoting the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), modulating the polarization and inflammation-related signaling pathways in microglia and neutrophils. MPO can be a therapeutic target for attenuating oxidative damage and neuroinflammation in ischemic stroke. Targeting MPO with inhibitors or gene deficiency significantly reduced brain infarction and improved neurological outcomes. This article discusses the important roles of MPO in mediating oxidative stress and neuroinflammation during cerebral ischemia-reperfusion injury and reviews the current understanding of the underlying mechanisms. Furthermore, we summarize the active compounds from medicinal herbs with potential as MPO inhibitors for anti-oxidative stress and anti-inflammation to attenuate cerebral ischemia-reperfusion injury, and as adjunct therapeutic agents for extending the window of thrombolytic treatment. We highlight that targeting MPO could be a promising strategy for alleviating ischemic brain injury, which merits further translational study.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
71
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
72
|
Yang Y, Li T, Li Z, Liu N, Yan Y, Liu B. Role of Mitophagy in Cardiovascular Disease. Aging Dis 2020; 11:419-437. [PMID: 32257551 PMCID: PMC7069452 DOI: 10.14336/ad.2019.0518] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and mitochondrial dysfunction is the primary contributor to these disorders. Recent studies have elaborated on selective autophagy-mitophagy, which eliminates damaged and dysfunctional mitochondria, stabilizes mitochondrial structure and function, and maintains cell survival and growth. Numerous recent studies have reported that mitophagy plays an important role in the pathogenesis of various cardiovascular diseases. This review summarizes the mechanisms underlying mitophagy and advancements in studies on the role of mitophagy in cardiovascular disease.
Collapse
Affiliation(s)
- Yibo Yang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Youyou Yan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
73
|
Li W, Deng R, Jing X, Chen J, Yang D, Shen J. Acteoside ameliorates experimental autoimmune encephalomyelitis through inhibiting peroxynitrite-mediated mitophagy activation. Free Radic Biol Med 2020; 146:79-91. [PMID: 31634539 DOI: 10.1016/j.freeradbiomed.2019.10.408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease in central nervous system (CNS) with limited therapeutic drugs. In the present study, we explored the anti-inflammatory/neuroprotective properties of Acteoside (AC), an active compound from medicinal herb Radix Rehmanniae (RR), and neuroprotective effects of AC on MS pathology by using an experimental autoimmune encephalomyelitis (EAE) model. We tested the hypothesis that AC could alleviate EAE pathogenesis through inhibiting inflammation and ONOO--mediated mitophagy activation in vivo and in vitro. The results showed that AC treatment effectively ameliorated neurological deficit score and postponed disease onset in the EAE mice. AC treatment inhibited inflammation/demyelination, alleviated peripheral activation and CNS infiltration of encephalitogenic CD4+ T cells and CD11b+ activated microglia/macrophages in the spinal cord of EAE mice. Meanwhile, AC treatment reduced ONOO- production, down-regulated the expression of iNOS and NADPH oxidases, and inhibited neuronal apoptotic cell death and mitochondrial damage in the spinal cords of the EAE mice. Furthermore, AC treatment decreased the ratio of LC3-II to LC3-I in mitochondrial fraction, and inhibited the translocation of Drp1 to the mitochondria. In vitro studies further proved that AC possessed strong ONOO- scavenging capability and protected the neuronal cells from nitrative cytotoxicity via suppressing ONOO--mediated excessive mitophagy. Taken together, Acteoside could be a potential therapeutic agent for multiple sclerosis treatment. The suppression of ONOO--induced excessive mitophagy activation could be one of the critical mechanisms contributing to its anti-inflammatory and anti-demyelinating properties.
Collapse
Affiliation(s)
- Wenting Li
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Ruixia Deng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoshu Jing
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Dan Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Jiangang Shen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
74
|
Overexpression of transcription factor EB regulates mitochondrial autophagy to protect lipopolysaccharide-induced acute lung injury. Chin Med J (Engl) 2019; 132:1298-1304. [PMID: 30946071 PMCID: PMC6629347 DOI: 10.1097/cm9.0000000000000243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is characterized by an acute inflammatory process, and oxidative stress in the lung tissue leads to a lack of effective therapeutics. This study aimed to identify whether the overexpression of transcription factor EB (TFEB) regulates mitophagy to protect against lipopolysaccharide (LPS)-induced ALI. METHODS We detected the expression of inflammatory factors, cytochrome c (Cyt.c) and nicotinamide adenine dinucleotide phosphate (NADPH), and autophagy-related proteins and observed the changes in lung histopathology induced by ALI in rats and the changes in the cell ultrastructure of primary alveolar type II epithelial cells induced by changing the expression of TFEB in the context of ALI. RESULTS The overexpression of TFEB could reduce the expression of proinflammatory factors, such as IL-1 and IL-6, and increase the expression of anti-inflammatory factors, such as IL-10, both in vitro and in vivo. In addition, the overexpression of TFEB could reduce the Cyt.c and NADPH levels both in vivo and in vitro. The overexpression of TFEB could upregulate the expression of autophagy-related proteins, such as lysosomal-associated membrane protein 1 (LAMP1), microtubule-associated protein light chain 3B (LC3B), and Beclin both in vivo and in vitro, and promote mitochondrial autophagy. The overexpression of TFEB significantly improved the histopathologic changes induced by LPS-induced ALI in rats. However, low TFEB expression produced the opposite results. CONCLUSION TFEB overexpression can decrease inflammation and mitochondrial damage in the lung tissue and alveolar epithelial cells through regulating mitochondrial autophagy to protect against LPS-induced ALI. Therefore, TFEB is likely a potential therapeutic target in LPS-induced ALI.
Collapse
|
75
|
Wang Y, Li B, Song X, Shen R, Wang D, Yang Y, Feng Y, Cao C, Zhang G, Liu W. Mito-Specific Ratiometric Terbium(III)-Complex-Based Luminescent Probe for Accurate Detection of Endogenous Peroxynitrite by Time-Resolved Luminescence Assay. Anal Chem 2019; 91:12422-12427. [DOI: 10.1021/acs.analchem.9b03024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yingzhe Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Boya Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xuerui Song
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rong Shen
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yang Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yan Feng
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chen Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guolin Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
76
|
Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol 2019; 132:110646. [PMID: 31252025 DOI: 10.1016/j.fct.2019.110646] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/26/2019] [Accepted: 06/23/2019] [Indexed: 12/23/2022]
Abstract
Neurological illnesses are multifactorial incurable debilitating disorders that may cause neurodegeneration. These diseases influence approximately 30 million people around the world. Despite several therapies, effective management of such disorders remains a global challenge. Thus, natural products might offer an alternative therapy for the treatment of various neurological disorders. Polyphenols, such as curcumin, resveratrol, myricetin, mangiferin and naringin (NRG) have been shown to possess promising potential in the treatment of neurogenerative illness. In this review, we have targeted the therapeutic potential of naringin as a neuroprotective agent. The overall neuroprotective effects and different possible underlying mechanisms related to NRG are discussed. In light of the strong evidence for the neuropharmacological efficacy of NRG in various experimental paradigms, it is concluded that this molecule should be further considered and studied as a potential candidate for neurotherapeutics, focusing on mechanistic and clinical trials to ascertain its efficacy.
Collapse
|
77
|
Bai X, Ng KKH, Hu JJ, Ye S, Yang D. Small-Molecule-Based Fluorescent Sensors for Selective Detection of Reactive Oxygen Species in Biological Systems. Annu Rev Biochem 2019; 88:605-633. [DOI: 10.1146/annurev-biochem-013118-111754] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) encompass a collection of intricately linked chemical entities characterized by individually distinct physicochemical properties and biological reactivities. Although excessive ROS generation is well known to underpin disease development, it has become increasingly evident that ROS also play central roles in redox regulation and normal physiology. A major challenge in uncovering the relevant biological mechanisms and deconvoluting the apparently paradoxical roles of distinct ROS in human health and disease lies in the selective and sensitive detection of these transient species in the complex biological milieu. Small-molecule-based fluorescent sensors enable molecular imaging of ROS with great spatial and temporal resolution and have thus been appreciated as excellent tools for aiding discoveries in modern redox biology. We review a selection of state-of-the-art sensors with demonstrated utility in biological systems. By providing a systematic overview based on underlying chemical sensing mechanisms, we wish to highlight the strengths and weaknesses in prior sensor works and propose some guiding principles for the development of future probes.
Collapse
Affiliation(s)
| | | | - Jun Jacob Hu
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Sen Ye
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| |
Collapse
|
78
|
Tsoi B, Wang S, Gao C, Luo Y, Li W, Yang D, Yang D, Shen J. Realgar and cinnabar are essential components contributing to neuroprotection of Angong Niuhuang Wan with no hepatorenal toxicity in transient ischemic brain injury. Toxicol Appl Pharmacol 2019; 377:114613. [PMID: 31207256 DOI: 10.1016/j.taap.2019.114613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
Realgar and cinnabar are commonly used mineral medicine containing arsenic and mercury in Traditional Chinese Medicine (TCM). Angong Niuhuang Wan (AGNHW) is a representative realgar- and cinnabar-containing TCM formula for treating acute ischemic stroke, but its toxicology and neuropharmacological effects are not well addressed. In this study, we compared the neuropharmacological effects of AGNHW and modified AGNHW in an experimental ischemic stroke rat model. Male SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus 22 h of reperfusion. Although oral administration of AGNHW for 7 days in the rats increased arsenic level in the blood and liver tissue, there were no significant changes in the arsenic level in kidney, mercury level in the blood, liver and kidney as well as hepatic and renal functions in MCAO rats. AGNHW revealed neuroprotective properties by reducing infarction volume, preserving blood-brain barrier integrity and improving neurological functions against cerebral ischemia-reperfusion injury. Interestingly, removing realgar and/or cinnabar from AGNHW abolished the neuroprotective effects. Meanwhile, AGNHW could scavenge peroxynitrite, down-regulate the expression of p47phox, 3-NT and MMP-9 and up-regulate the expression of ZO-1 and claudin-5 in the ischemic brains, which were abolished by removing realgar and/or cinnabar from AGNHW. Notably, realgar or cinnabar had no neuroprotection when used alone. Taken together, oral administration of AGNHW for one week should be safe for treating ischemic stroke with neuroprotective effects. Realgar and cinnabar are necessary elements with synergetic actions with other herbal materials for the neuroprotective effects of AGNHW against cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Bun Tsoi
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Songlin Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chong Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yunhao Luo
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenting Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dan Yang
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Depo Yang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
79
|
Tsoi B, Chen X, Gao C, Wang S, Yuen SC, Yang D, Shen J. Neuroprotective Effects and Hepatorenal Toxicity of Angong Niuhuang Wan Against Ischemia-Reperfusion Brain Injury in Rats. Front Pharmacol 2019; 10:593. [PMID: 31191319 PMCID: PMC6548905 DOI: 10.3389/fphar.2019.00593] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Angong Niuhuang Wan (AGNHW) is a classic prescription in traditional Chinese medicine (TCM) used for stroke treatment, but its efficacies remain to be confirmed. With its arsenic- and mercury-containing materials, the application of AGNHW raises great safety concerns. Herein, we aim to explore the neuropharmacological effects against cerebral ischemia-reperfusion injury and evaluate the toxicological effects of AGNHW for better use. Male SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) and following 22 h of reperfusion. AGNHW (257 mg/kg, 1× AGNHW) were orally administered for pharmacological effects and 257, 514, and 1,028 mg/kg (equivalent to 1×, 2×, 4× AGNHW) were used for the toxicological study. The results revealed that AGNHW treatment reduced the infarct size and protected the blood-brain barrier (BBB) integrity in the MCAO rat ischemic stroke model. AGNHW treatment up-regulated bcl-2 expression and down-regulated the expressions of Bax, p47phox, inducible nitric oxide synthase (iNOS), and 3-nitrotyrosine (3-NT), and inhibited the expressions and activities of matrix metalloproteinase-2 (MMP-2), MMP-9, and reserved tight junction protein zonula occludens-1 (ZO-1) and claudin-5 in the ischemic brains. These results indicated that the neuroprotective mechanisms of AGNHW could be associated with its antioxidant properties by inhibiting oxidative/nitrative stress-mediated MMP activation and protecting tight junction proteins in the ischemic brains. Administration of 1× AGNHW for 7 days would not induce the accumulation of mercury in blood, liver, and kidney at day 14. Administration of 2× AGNHW and 4× AGNHW for 7 days increased the level of mercury in the kidney. For arsenic level, administration of 1× AGNHW for 7 days would increase the level of arsenic in the liver and blood without increase of arsenic in the kidney at day 14. Administration of 2× AGNHW and 4× AGNHW for 7 days would further increase the level of arsenic in the liver and blood. There is no influence on body weight, organ index, histological structures, and renal and liver functions. These results suggest that short-term treatment of AGNHW within 1 week should be safe and has neuroprotective effects against cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Bun Tsoi
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xingmiao Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chong Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Songlin Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sau Chu Yuen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Depo Yang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|