51
|
Gogliotti RG, Senter RK, Rook JM, Ghoshal A, Zamorano R, Malosh C, Stauffer SR, Bridges TM, Bartolome JM, Daniels JS, Jones CK, Lindsley CW, Conn PJ, Niswender CM. mGlu5 positive allosteric modulation normalizes synaptic plasticity defects and motor phenotypes in a mouse model of Rett syndrome. Hum Mol Genet 2016; 25:1990-2004. [PMID: 26936821 PMCID: PMC5062588 DOI: 10.1093/hmg/ddw074] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2015] [Revised: 02/04/2016] [Accepted: 02/29/2016] [Indexed: 11/14/2022] Open
Abstract
Rett syndrome (RS) is a neurodevelopmental disorder that shares many symptomatic and pathological commonalities with idiopathic autism. Alterations in protein synthesis-dependent synaptic plasticity (PSDSP) are a hallmark of a number of syndromic forms of autism; in the present work, we explore the consequences of disruption and rescue of PSDSP in a mouse model of RS. We report that expression of a key regulator of synaptic protein synthesis, the metabotropic glutamate receptor 5 (mGlu5) protein, is significantly reduced in both the brains of RS model mice and in the motor cortex of human RS autopsy samples. Furthermore, we demonstrate that reduced mGlu5 expression correlates with attenuated DHPG-induced long-term depression in the hippocampus of RS model mice, and that administration of a novel mGlu5 positive allosteric modulator (PAM), termed VU0462807, can rescue synaptic plasticity defects. Additionally, treatment of Mecp2-deficient mice with VU0462807 improves motor performance (open-field behavior and gait dynamics), corrects repetitive clasping behavior, as well as normalizes cued fear-conditioning defects. Importantly, due to the rationale drug discovery approach used in its development, our novel mGlu5 PAM improves RS phenotypes and synaptic plasticity defects without evoking the overt adverse effects commonly associated with potentiation of mGlu5 signaling (i.e. seizures), or affecting cardiorespiratory defects in RS model mice. These findings provide strong support for the continued development of mGlu5 PAMs as potential therapeutic agents for use in RS, and, more broadly, for utility in idiopathic autism.
Collapse
Affiliation(s)
- Rocco G Gogliotti
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rebecca K Senter
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jerri M Rook
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ayan Ghoshal
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rocio Zamorano
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chrysa Malosh
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA, Department of Chemistry and
| | - Shaun R Stauffer
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA, Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA and
| | - Thomas M Bridges
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jose M Bartolome
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A., Toledo 45007, Spain
| | - J Scott Daniels
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA, Department of Chemistry and
| | - P Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA, Vanderbilt Kennedy Center
| | - Colleen M Niswender
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA, Vanderbilt Kennedy Center,
| |
Collapse
|
52
|
O'Brien DE, Conn PJ. Neurobiological Insights from mGlu Receptor Allosteric Modulation. Int J Neuropsychopharmacol 2016; 19:pyv133. [PMID: 26647381 PMCID: PMC4886670 DOI: 10.1093/ijnp/pyv133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/28/2015] [Revised: 11/15/2015] [Accepted: 12/02/2015] [Indexed: 12/25/2022] Open
Abstract
Allosteric modulation of metabotropic glutamate (mGlu) receptors offers a promising pharmacological approach to normalize neural circuit dysfunction associated with various psychiatric and neurological disorders. As mGlu receptor allosteric modulators progress through discovery and clinical development, both technical advances and novel tool compounds are providing opportunities to better understand mGlu receptor pharmacology and neurobiology. Recent advances in structural biology are elucidating the structural determinants of mGlu receptor-negative allosteric modulation and supplying the means to resolve active, allosteric modulator-bound mGlu receptors. The discovery and characterization of allosteric modulators with novel pharmacological profiles is uncovering the biological significance of their intrinsic agonist activity, biased mGlu receptor modulation, and novel mGlu receptor heterodimers. The development and exploitation of optogenetic and optopharmacological tools is permitting a refined spatial and temporal understanding of both mGlu receptor functions and their allosteric modulation in intact brain circuits. Together, these lines of research promise to provide a more refined understanding of mGlu receptors and their allosteric modulation that will inform the development of mGlu receptor allosteric modulators as neurotherapeutics in the years to come.
Collapse
Affiliation(s)
- Daniel E O'Brien
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee (Drs O'Brien and Conn)
| | - P Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee (Drs O'Brien and Conn).
| |
Collapse
|
53
|
Bruno V, Caraci F, Copani A, Matrisciano F, Nicoletti F, Battaglia G. The impact of metabotropic glutamate receptors into active neurodegenerative processes: A "dark side" in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology 2016; 115:180-192. [PMID: 27140693 DOI: 10.1016/j.neuropharm.2016.04.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Metabotropic glutamate (mGlu) receptor ligands are under clinical development for the treatment of CNS disorders with high social and economic burden, such as schizophrenia, major depressive disorder (MDD), and Parkinson's disease (PD), and are promising drug candidates for the treatment of Alzheimer's disease (AD). So far, clinical studies have shown symptomatic effects of mGlu receptor ligands, but it is unknown whether these drugs act as disease modifiers or, at the opposite end, they accelerate disease progression by enhancing neurodegeneration. This is a fundamental issue in the treatment of PD and AD, and is also an emerging theme in the treatment of schizophrenia and MDD, in which neurodegeneration is also present and contribute to disease progression. Moving from in vitro data and preclinical studies, we discuss the potential impact of drugs targeting mGlu2, mGlu3, mGlu4 and mGlu5 receptor ligands on active neurodegeneration associated with AD, PD, schizophrenia, and MDD. We wish to highlight that our final comments on the best drug candidates are not influenced by commercial interests or by previous or ongoing collaborations with drug companies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Valeria Bruno
- Department of Physiology and Pharmacology, University Sapienza, 00185 Rome, Italy; I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; I.R.C.C.S. Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, 94018 Troina, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; National Research Council, Institute of Biostructure and Bioimaging (IBB-CNR), 95126 Catania, Italy
| | - Francesco Matrisciano
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza, 00185 Rome, Italy; I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy
| | | |
Collapse
|
54
|
Sato SM, Woolley CS. Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model. eLife 2016; 5. [PMID: 27083045 PMCID: PMC4862752 DOI: 10.7554/elife.12917] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2015] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Status epilepticus (SE) is a common neurological emergency for which new treatments are needed. In vitro studies suggest a novel approach to controlling seizures in SE: acute inhibition of estrogen synthesis in the brain. Here, we show in rats that systemic administration of an aromatase (estrogen synthase) inhibitor after seizure onset strongly suppresses both electrographic and behavioral seizures induced by kainic acid (KA). We found that KA-induced SE stimulates synthesis of estradiol (E2) in the hippocampus, a brain region commonly involved in seizures and where E2 is known to acutely promote neural activity. Hippocampal E2 levels were higher in rats experiencing more severe seizures. Consistent with a seizure-promoting effect of hippocampal estrogen synthesis, intra-hippocampal aromatase inhibition also suppressed seizures. These results reveal neurosteroid estrogen synthesis as a previously unknown factor in the escalation of seizures and suggest that acute administration of aromatase inhibitors may be an effective treatment for SE. DOI:http://dx.doi.org/10.7554/eLife.12917.001 Seizures occur when connected groups of cells in the brain become over-active and fire together. Current anti-seizure medications work by reducing brain activity generally. Although this is often effective in controlling seizures, it can also lead to negative side effects like drowsiness, dizziness or difficulty concentrating. A better alternative would be to target a factor that promotes activity especially during seizures. Most people think of estrogens as being female sex hormones. However, estrogens are also made in the brain of both sexes, where they could promote activity during seizures. Sato and Woolley therefore set out to test a two-part hypothesis: that seizures stimulate the production of estrogen in the brain, and that inhibiting this production process just as seizures begin would make seizures less severe. Sato and Woolley studied male and female rats and found that in both sexes, seizures stimulate the production of estrogens in the hippocampus – a part of the brain that is often involved in seizures. Because estrogens are known to increase the activity of cells in the hippocampus, this suggested that estrogens that are produced in the brain during seizures could make seizures worse. Sato and Woolley tested this by injecting rats with a drug that inhibits estrogen production, called an aromatase inhibitor, shortly after seizures began. The drug strongly suppressed seizures, whereas control rats that did not receive the injection continued to have seizures. Overall, Sato and Woolley show that the production of estrogen in the brain escalates seizure activity, and suggest that aromatase inhibitors may be useful for controlling seizures. Several questions remain that require further study. How does seizure activity lead to estrogen being made in the brain? How do estrogen levels go back down after a seizure? What circumstances other than seizures stimulate brain estrogen production, and what roles does this production process play in activity that is not related to seizures? DOI:http://dx.doi.org/10.7554/eLife.12917.002
Collapse
Affiliation(s)
- Satoru M Sato
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Catherine S Woolley
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
55
|
Yang F, Snyder LB, Balakrishnan A, Brown JM, Sivarao DV, Easton A, Fernandes A, Gulianello M, Hanumegowda UM, Huang H, Huang Y, Jones KM, Li YW, Matchett M, Mattson G, Miller R, Santone KS, Senapati A, Shields EE, Simutis FJ, Westphal R, Whiterock VJ, Bronson JJ, Macor JE, Degnan AP. Discovery and Preclinical Evaluation of BMS-955829, a Potent Positive Allosteric Modulator of mGluR5. ACS Med Chem Lett 2016; 7:289-93. [PMID: 26985317 DOI: 10.1021/acsmedchemlett.5b00450] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2015] [Accepted: 01/03/2016] [Indexed: 11/28/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the metabotropic glutamate receptor subtype 5 (mGluR5) are of interest due to their potential therapeutic utility in schizophrenia and other cognitive disorders. Herein we describe the discovery and optimization of a novel oxazolidinone-based chemotype to identify BMS-955829 (4), a compound with high functional PAM potency, excellent mGluR5 binding affinity, low glutamate fold shift, and high selectivity for the mGluR5 subtype. The low fold shift and absence of agonist activity proved critical in the identification of a molecule with an acceptable preclinical safety profile. Despite its low fold shift, 4 retained efficacy in set shifting and novel object recognition models in rodents.
Collapse
Affiliation(s)
- Fukang Yang
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lawrence B. Snyder
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Anand Balakrishnan
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jeffrey M. Brown
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Digavalli V. Sivarao
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Amy Easton
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Alda Fernandes
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michael Gulianello
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Umesh M. Hanumegowda
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Hong Huang
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yanling Huang
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kelli M. Jones
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yu-Wen Li
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michele Matchett
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Gail Mattson
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Regina Miller
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kenneth S. Santone
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Arun Senapati
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Eric E. Shields
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Frank J. Simutis
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ryan Westphal
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Valerie J. Whiterock
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Joanne J. Bronson
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E. Macor
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Andrew P. Degnan
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
56
|
Conde-Ceide S, Alcázar J, Alonso de Diego SA, López S, Martín-Martín ML, Martínez-Viturro CM, Pena MA, Tong HM, Lavreysen H, Mackie C, Bridges TM, Daniels JS, Niswender CM, Jones CK, Macdonald GJ, Steckler T, Conn PJ, Stauffer SR, Lindsley CW, Bartolomé-Nebreda JM. Preliminary investigation of 6,7-dihydropyrazolo[1,5-a]pyrazin-4-one derivatives as a novel series of mGlu5 receptor positive allosteric modulators with efficacy in preclinical models of schizophrenia. Bioorg Med Chem Lett 2016; 26:429-434. [PMID: 26684851 PMCID: PMC4835042 DOI: 10.1016/j.bmcl.2015.11.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/28/2022]
Abstract
As part of our efforts to identify a suitable back-up compound to our recently disclosed mGlu5 positive allosteric modulator (PAM) clinical candidate VU0490551/JNJ-46778212, this letter details the investigation and challenges of a novel series of 6,7-dihydropyrazolo[1,5-a]pyrazin-4-one derivatives. From these efforts, compound 4k emerged as a potent and selective mGlu5 PAM displaying overall attractive in vitro (pharmacological and ADMET) and PK profiles combined with in vivo efficacy in preclinical models of schizophrenia. However, further advancement of the compound was precluded due to severely limiting CNS-related side-effects confirming the previously reported association between excessive mGlu5 activation and target-related toxicities.
Collapse
Affiliation(s)
- Susana Conde-Ceide
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Jesús Alcázar
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Sergio A Alonso de Diego
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Silvia López
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - María Luz Martín-Martín
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | | | - Miguel-Angel Pena
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Han Min Tong
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Hilde Lavreysen
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Claire Mackie
- Discovery Sciences ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas M Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gregor J Macdonald
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas Steckler
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shaun R Stauffer
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
57
|
Alt A, Pendri A, Bertekap RL, Li G, Benitex Y, Nophsker M, Rockwell KL, Burford NT, Sum CS, Chen J, Herbst JJ, Ferrante M, Hendricson A, Cvijic ME, Westphal RS, OConnell J, Banks M, Zhang L, Gentles RG, Jenkins S, Loy J, Macor JE. Evidence for Classical Cholinergic Toxicity Associated with Selective Activation of M1 Muscarinic Receptors. ACTA ACUST UNITED AC 2015; 356:293-304. [DOI: 10.1124/jpet.115.226910] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
|
58
|
Sengmany K, Gregory KJ. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 2015; 173:3001-17. [PMID: 26276909 DOI: 10.1111/bph.13281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2015] [Revised: 06/30/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGlu5 ) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR-based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine-tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus-bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- K Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - K J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
59
|
Wierońska JM, Zorn SH, Doller D, Pilc A. Metabotropic glutamate receptors as targets for new antipsychotic drugs: Historical perspective and critical comparative assessment. Pharmacol Ther 2015; 157:10-27. [PMID: 26549541 DOI: 10.1016/j.pharmthera.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
In this review, we aim to present, discuss and clarify our current understanding regarding the prediction of possible antipsychotic effects of metabotropic glutamate (mGlu) receptor ligands. The number of preclinical trials clearly indicates, that this group of compounds constitutes an excellent alternative to presently used antipsychotic therapy, being effective not only to positive, but also negative and cognitive symptoms of schizophrenia. Although the results of clinical trials that were performed for the group of mGlu2/3 agonists were not so enthusiastic as in animal studies, they still showed that mGlu ligands do not induced variety of side effects typical for presently used antipsychotics, and were generally well tolerated. The lack of satisfactory effectiveness towards schizophrenia symptoms of mGlu2/3 activators in humans could be a result of variety of uncontrolled factors and unidentified biomarkers different for each schizophrenia patient, that should be taken into consideration in the future set of clinical trials. The subject is still open for further research, and the novel classes of mGlu5 or mGlu2/3 agonists/PAMs were recently introduced, including the large group of compounds from the third group of mGlu receptors, especially of mGlu4 subtype. Finally, more precise treatment based on simultaneous administration of minimal doses of the ligands for two or more receptors, seems to be promising in the context of symptoms-specific schizophrenia treatment.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | | | | | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland.
| |
Collapse
|
60
|
Acyl dihydropyrazolo[1,5-a]pyrimidinones as metabotropic glutamate receptor 5 positive allosteric modulators. Bioorg Med Chem Lett 2015; 25:5115-20. [PMID: 26475522 DOI: 10.1016/j.bmcl.2015.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022]
Abstract
We report the optimization of a series of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) from an acyl dihydropyrazolo[1,5-a]pyrimidinone class. Investigation of exocyclic amide transpositions with this unique 5,6-bicyclic core were conducted in attempt to modulate physicochemical properties and identify a suitable backup candidate with a reduced half-life. A potent and selective PAM, 1-(2-(phenoxymethyl)-6,7-dihydropyrazolo[1,5-a]pyrimidin-4(5H)-yl)ethanone (9a, VU0462807), was identified with superior solubility and efficacy in the acute amphetamine-induced hyperlocomotion (AHL) rat model with a minimum effective dose of 3mg/kg. Attempts to mitigate oxidative metabolism of the western phenoxy of 9a through extensive modification and profiling are described.
Collapse
|
61
|
Garcia-Barrantes PM, Cho HP, Niswender CM, Byers FW, Locuson CW, Blobaum AL, Xiang Z, Rook JM, Conn PJ, Lindsley CW. Development of Novel, CNS Penetrant Positive Allosteric Modulators for the Metabotropic Glutamate Receptor Subtype 1 (mGlu1), Based on an N-(3-Chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide Scaffold, That Potentiate Wild Type and Mutant mGlu1 Receptors Found in Schizophrenics. J Med Chem 2015; 58:7959-71. [PMID: 26426481 DOI: 10.1021/acs.jmedchem.5b00727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The therapeutic potential of selective mGlu1 activation is vastly unexplored relative to the other group I mGlu receptor, mGlu5; therefore, our lab has focused considerable effort toward developing mGlu1 positive allosteric modulators (PAMs) suitable as in vivo proof of concept tool compounds. Optimization of a series of mGlu1 PAMs based on an N-(3-chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide scaffold provided 17e, a potent (mGlu1 EC50 = 31.8 nM) and highly CNS penetrant (brain to plasma ratio (Kp) of 1.02) mGlu1 PAM tool compound, that potentiated not only wild-type human mGlu1 but also mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenic patients. Moreover, both electrophysiological and in vivo studies indicate the mGlu1 ago-PAMs/PAMs do not possess the same epileptiform adverse effect liability as mGlu5 ago-PAMs/PAMs and maintain temporal activity suggesting a broader therapeutic window.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Craig W Lindsley
- Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
62
|
mGlu5-GABAB interplay in animal models of positive, negative and cognitive symptoms of schizophrenia. Neurochem Int 2015; 88:97-109. [DOI: 10.1016/j.neuint.2015.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2014] [Revised: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
|
63
|
Ellaithy A, Younkin J, González-Maeso J, Logothetis DE. Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends Neurosci 2015; 38:506-16. [PMID: 26148747 PMCID: PMC4530036 DOI: 10.1016/j.tins.2015.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
The past two decades have witnessed a rise in the 'NMDA receptor hypofunction' hypothesis for schizophrenia, a devastating disorder that affects around 1% of the population worldwide. A variety of presynaptic, postsynaptic, and regulatory proteins involved in glutamatergic signaling have thus been proposed as potential therapeutic targets. This review focuses on positive allosteric modulation of metabotropic glutamate 2 receptors (mGlu2Rs) and discusses how recent preclinical epigenetic data may provide a molecular explanation for the discrepant results of clinical studies, further stimulating the field to exploit the promise of mGlu2R as a target for schizophrenia treatment.
Collapse
Affiliation(s)
- Amr Ellaithy
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jason Younkin
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Departments of Psychiatry and Neurology, and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
64
|
Gregory KJ, Conn PJ. Molecular Insights into Metabotropic Glutamate Receptor Allosteric Modulation. Mol Pharmacol 2015; 88:188-202. [PMID: 25808929 PMCID: PMC4468636 DOI: 10.1124/mol.114.097220] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2014] [Accepted: 03/24/2015] [Indexed: 12/21/2022] Open
Abstract
The metabotropic glutamate (mGlu) receptors are a group of eight family C G protein-coupled receptors that are expressed throughout the central nervous system (CNS) and periphery. Within the CNS the different subtypes are found in neurons, both pre- and/or postsynaptically, where they mediate modulatory roles and in glial cells. The mGlu receptor family provides attractive targets for numerous psychiatric and neurologic disorders, with the majority of discovery programs focused on targeting allosteric sites, with allosteric ligands now available for all mGlu receptor subtypes. However, the development of allosteric ligands remains challenging. Biased modulation, probe dependence, and molecular switches all contribute to the complex molecular pharmacology exhibited by mGlu receptor allosteric ligands. In recent years we have made significant progress in our understanding of this molecular complexity coupled with an increased understanding of the structural basis of mGlu allosteric modulation.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Vanderbilt Center for Neuroscience Drug Discovery & Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C)
| | - P Jeffrey Conn
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Vanderbilt Center for Neuroscience Drug Discovery & Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C)
| |
Collapse
|
65
|
Conde-Ceide S, Martínez-Viturro C, Alcázar J, Garcia-Barrantes PM, Lavreysen H, Mackie C, Vinson PN, Rook J, Bridges TM, Daniels JS, Megens A, Langlois X, Drinkenburg WH, Ahnaou A, Niswender CM, Jones C, Macdonald GJ, Steckler T, Conn PJ, Stauffer S, Bartolomé-Nebreda JM, Lindsley CW. Discovery of VU0409551/JNJ-46778212: An mGlu5 Positive Allosteric Modulator Clinical Candidate Targeting Schizophrenia. ACS Med Chem Lett 2015; 6:716-20. [PMID: 26157544 PMCID: PMC4492464 DOI: 10.1021/acsmedchemlett.5b00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022] Open
Abstract
Herein, we report the structure-activity relationship of a novel series of (2(phenoxymethyl)-6,7-dihydrooxazolo[5,4-c]pyridine-5(4H)-yl(aryl)methanones as potent, selective, and orally bioavailable metabotropic glutamate receptor subtype 5 (mGlu5) positive allosteric modulators (PAMs). On the basis of its robust in vitro potency and in vivo efficacy in multiple preclinical models of multiple domains of schizophrenia, coupled with a good DMPK profile and an acceptable therapeutic window, 17a (VU0409551/JNJ-46778212) was selected as a candidate for further development.
Collapse
Affiliation(s)
- Susana Conde-Ceide
- Neuroscience
Medicinal Chemistry and Discovery Sciences Lead Discovery, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Carlos
M. Martínez-Viturro
- Neuroscience
Medicinal Chemistry and Discovery Sciences Lead Discovery, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Jesús Alcázar
- Neuroscience
Medicinal Chemistry and Discovery Sciences Lead Discovery, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Pedro M. Garcia-Barrantes
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Hilde Lavreysen
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Claire Mackie
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Paige N. Vinson
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jerri
M. Rook
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - J. Scott Daniels
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Anton Megens
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Xavier Langlois
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Wilhelmus H. Drinkenburg
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Abdellah Ahnaou
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Colleen M. Niswender
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Carrie
K. Jones
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Gregor J. Macdonald
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas Steckler
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - P. Jeffrey Conn
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Shaun
R. Stauffer
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - José Manuel Bartolomé-Nebreda
- Neuroscience
Medicinal Chemistry and Discovery Sciences Lead Discovery, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Craig W. Lindsley
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
66
|
Biased mGlu5-Positive Allosteric Modulators Provide In Vivo Efficacy without Potentiating mGlu5 Modulation of NMDAR Currents. Neuron 2015; 86:1029-1040. [PMID: 25937172 DOI: 10.1016/j.neuron.2015.03.063] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2014] [Revised: 02/22/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022]
Abstract
Schizophrenia is associated with disruptions in N-methyl-D-aspartate glutamate receptor subtype (NMDAR)-mediated excitatory synaptic signaling. The metabotropic glutamate receptor subtype 5 (mGlu5) is a closely associated signaling partner with NMDARs and regulates NMDAR function in forebrain regions implicated in the pathology of schizophrenia. Efficacy of mGlu5 positive allosteric modulators (PAMs) in animal models of psychosis and cognition was previously attributed to potentiation of NMDAR function. To directly test this hypothesis, we identified VU0409551 as a novel mGlu5 PAM that exhibits distinct stimulus bias and selectively potentiates mGlu5 coupling to Gαq-mediated signaling but not mGlu5 modulation of NMDAR currents or NMDAR-dependent synaptic plasticity in the rat hippocampus. Interestingly, VU0409551 produced robust antipsychotic-like and cognition-enhancing activity in animal models. These data provide surprising new mechanistic insights into the actions of mGlu5 PAMs and suggest that modulation of NMDAR currents is not critical for in vivo efficacy. VIDEO ABSTRACT.
Collapse
|
67
|
Rook JM, Tantawy MN, Ansari MS, Felts AS, Stauffer SR, Emmitte KA, Kessler RM, Niswender CM, Daniels JS, Jones CK, Lindsley CW, Conn PJ. Relationship between in vivo receptor occupancy and efficacy of metabotropic glutamate receptor subtype 5 allosteric modulators with different in vitro binding profiles. Neuropsychopharmacology 2015; 40:755-65. [PMID: 25241804 PMCID: PMC4289965 DOI: 10.1038/npp.2014.245] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/14/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 11/09/2022]
Abstract
Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have exciting potential as therapeutic agents for multiple brain disorders. Translational studies with mGlu5 modulators have relied on mGlu5 allosteric site positron emission tomography (PET) radioligands to assess receptor occupancy in the brain. However, recent structural and modeling studies suggest that closely related mGlu5 allosteric modulators can bind to overlapping but not identical sites, which could complicate interpretation of in vivo occupancy data, even when PET ligands and drug leads are developed from the same chemical scaffold. We now report that systemic administration of the novel mGlu5 positive allosteric modulator VU0092273 displaced the structurally related mGlu5 PET ligand, [(18)F]FPEB, with measures of in vivo occupancy that closely aligned with its in vivo efficacy. In contrast, a close analog of VU0092273 and [(18)F]FPEB, VU0360172, provided robust efficacy in rodent models in the absence of detectable occupancy. Furthermore, a structurally unrelated mGlu5 negative allosteric modulator, VU0409106, displayed measures of in vivo occupancy that correlated well with behavioral effects, despite the fact that VU0409106 is structurally unrelated to [(18)F]FPEB. Interestingly, all three compounds inhibit radioligand binding to the prototypical MPEP/FPEB allosteric site in vitro. However, VU0092273 and VU0409106 bind to this site in a fully competitive manner, whereas the interaction of VU0360172 is noncompetitive. Thus, while close structural similarity between PET ligands and drug leads does not circumvent issues associated with differential binding to a given target, detailed molecular pharmacology analysis accurately predicts utility of ligand pairs for in vivo occupancy studies.
Collapse
Affiliation(s)
- Jerri M Rook
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammed N Tantawy
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad S Ansari
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S Felts
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaun R Stauffer
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A Emmitte
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert M Kessler
- Department of Radiology, University of Alabama, Birmingham, AL, USA
| | - Colleen M Niswender
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Scott Daniels
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, 1215D Light Hall, 2215-B Garland Avenue, Nashville, TN 37232-0697, USA, Tel: +1 615 936 2478, Fax: +1 615 343 3088, E-mail:
| |
Collapse
|
68
|
Martín-Martín ML, Bartolomé-Nebreda JM, Conde-Ceide S, Alonso de Diego SA, López S, Martínez-Viturro CM, Tong HM, Lavreysen H, Macdonald GJ, Steckler T, Mackie C, Bridges TM, Daniels JS, Niswender CM, Noetzel MJ, Jones CK, Conn PJ, Lindsley CW, Stauffer SR. Discovery and SAR of novel series of imidazopyrimidinones and dihydroimidazopyrimidinones as positive allosteric modulators of the metabotropic glutamate receptor 5 (mGlu5). Bioorg Med Chem Lett 2015; 25:1310-7. [PMID: 25683622 DOI: 10.1016/j.bmcl.2015.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
We report the discovery and SAR of two novel series of imidazopyrimidinones and dihydroimidazopyrimidinones as metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs). Exploration of several structural features in the western and eastern part of the imidazopyrimidinone core and combinations thereof, revealed compound 4a as a mGlu5 PAM with good in vitro potency and efficacy, acceptable drug metabolism and pharmacokinetic (DMPK) properties and in vivo efficacy in an amphetamine-based model of psychosis. However, the presence of CNS-mediated adverse effects in preclinical species precluded any further in vivo evaluation.
Collapse
Affiliation(s)
- María Luz Martín-Martín
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain.
| | | | - Susana Conde-Ceide
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Sergio A Alonso de Diego
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Silvia López
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | | | - Han Min Tong
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Hilde Lavreysen
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Gregor J Macdonald
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas Steckler
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Claire Mackie
- Discovery Sciences ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas M Bridges
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - J Scott Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Meredith J Noetzel
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Shaun R Stauffer
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
69
|
Group I and group II metabotropic glutamate receptor allosteric modulators as novel potential antipsychotics. Curr Opin Pharmacol 2014; 20:40-5. [PMID: 25462291 DOI: 10.1016/j.coph.2014.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 01/01/2023]
Abstract
Recently, there has been a shift in the schizophrenia field focusing on restoring glutamate signaling. Extensive preclinical data suggests that mGlu5 PAMs could have efficacy in all three symptom domains but there is concern of potential adverse effects. New insights into mechanisms underlying this toxicity may provide a path for discovery of safe mGlu5 PAMs. Genetic mutations in mGlu1 have been described in schizophrenics creating interest in this receptor as a therapeutic target. Preclinical data demonstrated the antipsychotic potential of mGlu2/3 agonists but clinical trials were not successful. However, studies have suggested that mGlu2 is the subtype mediating antipsychotic effects and selective mGlu2 PAMs are now in clinical development. Finally, recent genetic studies suggest mGlu3 modulators may be pro-cognitive.
Collapse
|
70
|
Rovira X, Malhaire F, Scholler P, Rodrigo J, Gonzalez-Bulnes P, Llebaria A, Pin JP, Giraldo J, Goudet C. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors. FASEB J 2014; 29:116-30. [PMID: 25342125 DOI: 10.1096/fj.14-257287] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Type 4 metabotropic glutamate (mGlu4) receptors are emerging targets for the treatment of various disorders. Accordingly, numerous mGlu4-positive allosteric modulators (PAMs) have been identified, some of which also display agonist activity. To identify the structural bases for their allosteric action, we explored the relationship between the binding pockets of mGlu4 PAMs with different chemical scaffolds and their functional properties. By use of innovative mGlu4 biosensors and second-messenger assays, we show that all PAMs enhance agonist action on the receptor through different degrees of allosteric agonism and positive cooperativity. For example, whereas VU0155041 and VU0415374 display equivalent efficacies [log(τ(B)) = 1.15 ± 0.38 and 1.25 ± 0.44, respectively], they increase the ability of L-AP4 to stabilize the active conformation of the receptor by 4 and 39 times, respectively. Modeling and docking studies identify 2 overlapping binding pockets as follows: a first site homologous to the pocket of natural agonists of class A GPCRs linked to allosteric agonism and a second one pointing toward a site topographically homologous to the Na(+) binding pocket of class A GPCRs, occupied by PAMs exhibiting the strongest cooperativity. These results reveal that intrinsic efficacy and cooperativity of mGlu4 PAMs are correlated with their binding mode, and vice versa, integrating structural and functional knowledge from different GPCR classes.
Collapse
Affiliation(s)
- Xavier Rovira
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Fanny Malhaire
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Jordi Rodrigo
- Laboratoire de Chimie Thérapeutique, BioCIS UMR-CNRS 8076, LabEx LERMIT, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, Paris, France
| | - Patricia Gonzalez-Bulnes
- Laboratory of Medicinal Chemistry, Departament of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia IQAC-CSIC, Barcelona, Spain; and
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry, Departament of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia IQAC-CSIC, Barcelona, Spain; and
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cyril Goudet
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France;
| |
Collapse
|
71
|
Lindsley CW. 2013 Philip S. Portoghese Medicinal Chemistry Lectureship: drug discovery targeting allosteric sites. J Med Chem 2014; 57:7485-98. [PMID: 25180768 PMCID: PMC4174999 DOI: 10.1021/jm5011786] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2014] [Indexed: 02/06/2023]
Abstract
The identification of sites on receptors topographically distinct from the orthosteric sites, so-called allosteric sites, has heralded novel approaches and modes of pharmacology for target modulation. Over the past 20 years, our understanding of allosteric modulation has grown significantly, and numerous advantages, as well as caveats (e.g., flat structure-activity relationships, species differences, "molecular switches"), have been identified. For multiple receptors and proteins, numerous examples have been described where unprecedented levels of selectivity are achieved along with improved physiochemical properties. While not a panacea, these novel approaches represent exciting opportunities for tool compound development to probe the pharmacology and therapeutic potential of discrete molecular targets, as well as new medicines. In this Perspective, in commemoration of the 2013 Philip S. Portoghese Medicinal Chemistry Lectureship ( Lindsley , C. W. Adventures in allosteric drug discovery . Presented at the 246th National Meeting of the American Chemical Society, Indianapolis, IN, September 10, 2013 ; The 2013 Portoghese Lectureship ), several vignettes of drug discovery campaigns targeting novel allosteric mechanisms will be recounted, along with lessons learned and guidelines that have emerged for successful lead optimization.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Departments of Pharmacology
and Chemistry, Vanderbilt Center for Neuroscience Drug Discovery,
Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
72
|
Conn PJ, Lindsley CW, Meiler J, Niswender CM. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 2014; 13:692-708. [PMID: 25176435 PMCID: PMC4208620 DOI: 10.1038/nrd4308] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Novel allosteric modulators of G protein-coupled receptors (GPCRs) are providing fundamental advances in the development of GPCR ligands with high subtype selectivity and novel modes of efficacy that have not been possible with traditional approaches. As new allosteric modulators are advancing as drug candidates, we are developing an increased understanding of the major advantages and broad range of activities that can be achieved with these agents through selective modulation of specific signalling pathways, differential effects on GPCR homodimers versus heterodimers, and other properties. This understanding creates exciting opportunities, as well as unique challenges, in the optimization of novel therapeutic agents for disorders of the central nervous system.
Collapse
Affiliation(s)
- P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| |
Collapse
|
73
|
Turlington M, Noetzel MJ, Bridges TM, Vinson PN, Steckler T, Lavreysen H, Mackie C, Bartolomé-Nebreda JM, Conde-Ceide S, Tong HM, Macdonald GJ, Daniels JS, Jones CK, Niswender CM, Conn PJ, Lindsley CW, Stauffer SR. Discovery and SAR of a novel series of metabotropic glutamate receptor 5 positive allosteric modulators with high ligand efficiency. Bioorg Med Chem Lett 2014; 24:3641-6. [PMID: 24961642 PMCID: PMC4234308 DOI: 10.1016/j.bmcl.2014.04.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2014] [Accepted: 04/23/2014] [Indexed: 12/26/2022]
Abstract
We report the optimization of a series of novel metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) from a 5,6-bicyclic class of dihydropyrazolo[1,5-a]pyridin-4(5H)-ones containing a phenoxymethyl linker. Studies focused on a survey of non-amide containing hydrogen bond accepting (HBA) pharmacophore replacements. A highly potent and selective PAM, 2-(phenoxymethyl)-6,7-dihydropyrazolo[1,5-a]pyridin-4(5H)-one (11, VU0462054), bearing a simple ketone moiety, was identified (LE=0.52, LELP=3.2). In addition, hydroxyl, difluoro, ether, and amino variations were examined. Despite promising lead properties and exploration of alternative core heterocycles, linkers, and ketone replacements, oxidative metabolism and in vivo clearance remained problematic for the series.
Collapse
Affiliation(s)
- Mark Turlington
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Meredith J Noetzel
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Thomas M Bridges
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Paige N Vinson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Thomas Steckler
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Hilde Lavreysen
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Claire Mackie
- Discovery Sciences ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - José M Bartolomé-Nebreda
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75, 45007 Toledo, Spain
| | - Susana Conde-Ceide
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75, 45007 Toledo, Spain
| | - Han Min Tong
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75, 45007 Toledo, Spain
| | - Gregor J Macdonald
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - J Scott Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Shaun R Stauffer
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
74
|
Turlington M, Malosh C, Jacobs J, Manka JT, Noetzel MJ, Vinson PN, Jadhav S, Herman EJ, Lavreysen H, Mackie C, Bartolomé-Nebreda JM, Conde-Ceide S, Martín-Martín ML, Tong HM, López S, MacDonald GJ, Steckler T, Daniels JS, Weaver CD, Niswender CM, Jones CK, Conn PJ, Lindsley CW, Stauffer SR. Tetrahydronaphthyridine and dihydronaphthyridinone ethers as positive allosteric modulators of the metabotropic glutamate receptor 5 (mGlu₅). J Med Chem 2014; 57:5620-37. [PMID: 24914612 PMCID: PMC4096224 DOI: 10.1021/jm500259z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Starting from an acetylene-based lead from high throughput screening, an evolved bicyclic dihydronaphthyridinone was identified. We describe further refinements leading to both dihydronaphthyridinone and tetrahydronaphthyridine mGlu5 PAMs containing an alkoxy-based linkage as an acetylene replacement. Exploration of several structural features including western pyridine ring isomers, positional amides, linker connectivity/position, and combinations thereof, reveal that these bicyclic modulators generally exhibit steep SAR and within specific subseries display a propensity for pharmacological mode switching at mGlu5 as well as antagonist activity at mGlu3. Structure-activity relationships within a dihydronaphthyridinone subseries uncovered 12c (VU0405372), a selective mGlu5 PAM with good in vitro potency, low glutamate fold-shift, acceptable DMPK properties, and in vivo efficacy in an amphetamine-based model of psychosis.
Collapse
Affiliation(s)
- Mark Turlington
- Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Yin S, Niswender CM. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications. Cell Signal 2014; 26:2284-97. [PMID: 24793301 DOI: 10.1016/j.cellsig.2014.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2014] [Accepted: 04/27/2014] [Indexed: 12/24/2022]
Abstract
The metabotropic glutamate (mGlu) receptors are a group of Class C seven-transmembrane spanning/G protein-coupled receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non-G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission both in the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, and especially during the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members.
Collapse
Affiliation(s)
- Shen Yin
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| |
Collapse
|
76
|
Mølck C, Harpsøe K, Gloriam DE, Mathiesen JM, Nielsen SM, Bräuner-Osborne H. mGluR5: Exploration of Orthosteric and Allosteric Ligand Binding Pockets and Their Applications to Drug Discovery. Neurochem Res 2014; 39:1862-75. [DOI: 10.1007/s11064-014-1248-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
|
77
|
Nickols HH, Conn PJ. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 2014; 61:55-71. [PMID: 24076101 PMCID: PMC3875303 DOI: 10.1016/j.nbd.2013.09.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 12/14/2022] Open
Abstract
The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction.
Collapse
Key Words
- (+)-6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one
- (1-(4-cyano-4-(pyridine-2-yl)piperidine-1-yl)methyl-4-oxo-4H-quinolizine-3-carboxylic acid)
- (1S,2S)-N(1)-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide
- (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid
- (3,4-dihydro-2H-pyrano[2,3]b quinolin-7-yl)(cis-4-methoxycyclohexyl) methanone
- (3aS,5S,7aR)-methyl 5-hydroxy-5-(m-tolylethynyl)octahydro-1H-indole-1-carboxylate
- 1-(1′-(2-methylbenzyl)-1,4′-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one
- 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone
- 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine
- 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1Himidazol-4-yl)ethynyl)pyridine
- 2-methyl-6-(2-phenylethenyl)pyridine
- 2-methyl-6-(phenylethynyl)-pyridine
- 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide
- 3-cyclohexyl-5-fluoro-6-methyl-7-(2-morpholin-4-ylethoxy)-4H-chromen-4-one
- 3[(2-methyl-1,3-thiazol-4-yl)ethylnyl]pyridine
- 4-((E)-styryl)-pyrimidin-2-ylamine
- 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide
- 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine
- 5-methyl-6-(phenylethynyl)-pyridine
- 5MPEP
- 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one
- 6-OHDA
- 6-hydroxydopamine
- 6-methyl-2-(phenylazo)-3-pyridinol
- 77-LH-28-1
- 7TMR
- AC-42
- ACPT-1
- AChE
- AD
- ADX71743
- AFQ056
- APP
- Allosteric modulator
- Alzheimer's disease
- BINA
- BQCA
- CDPPB
- CFMMC
- CNS
- CPPHA
- CTEP
- DA
- DFB
- DHPG
- Drug discovery
- ERK1/2
- FMRP
- FTIDC
- FXS
- Fragile X syndrome
- GABA
- GPCR
- JNJ16259685
- L-AP4
- L-DOPA
- Lu AF21934
- Lu AF32615
- M-5MPEP
- MMPIP
- MPEP
- MPTP
- MTEP
- Metabotropic glutamate receptor
- Muscarinic acetylcholine receptor
- N-[4-chloro-2[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl]-2-hydrobenzamide
- N-methyl-d-aspartate
- N-phenyl-7-(hydroxylimino)cyclopropa[b]chromen-1a-carboxamide
- NAM
- NMDA
- PAM
- PCP
- PD
- PD-LID
- PET
- PHCCC
- PQCA
- Parkinson's disease
- Parkinson's disease levodopa-induced dyskinesia
- SAM
- SIB-1757
- SIB-1893
- TBPB
- [(3-fluorophenyl)methylene]hydrazone-3-fluorobenzaldehyde
- acetylcholinesterase
- amyloid precursor protein
- benzylquinolone carboxylic acid
- central nervous system
- dihydroxyphenylglycine
- dopamine
- extracellular signal-regulated kinase 1/2
- fragile X mental retardation protein
- l-(+)-2-amino-4-phosphonobutyric acid
- l-3,4-dihydroxyphenylalanine
- mGlu
- metabotropic glutamate receptor
- negative allosteric modulator
- phencyclidine
- positive allosteric modulator
- positron emission tomography
- potassium 30-([(2-cyclopentyl-6-7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5yl)oxy]methyl)biphenyl l-4-carboxylate
- seven transmembrane receptor
- silent allosteric modulator
- γ-aminobutyric acid
Collapse
Affiliation(s)
- Hilary Highfield Nickols
- Division of Neuropathology, Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
78
|
Turlington M, Noetzel MJ, Chun A, Zhou Y, Gogliotti RD, Nguyen ED, Gregory KJ, Vinson PN, Rook JM, Gogi KK, Xiang Z, Bridges TM, Daniels JS, Jones C, Niswender CM, Meiler J, Conn PJ, Lindsley CW, Stauffer SR. Exploration of allosteric agonism structure-activity relationships within an acetylene series of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs): discovery of 5-((3-fluorophenyl)ethynyl)-N-(3-methyloxetan-3-yl)picolinamide (ML254). J Med Chem 2013; 56:7976-96. [PMID: 24050755 PMCID: PMC3908770 DOI: 10.1021/jm401028t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
Abstract
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Both allosteric agonism and high glutamate fold-shift have been implicated in the neurotoxic profile of some mGlu5 PAMs; however, these hypotheses remain to be adequately addressed. To develop tool compounds to probe these hypotheses, the structure-activity relationship of allosteric agonism was examined within an acetylenic series of mGlu5 PAMs exhibiting allosteric agonism in addition to positive allosteric modulation (ago-PAMs). PAM 38t, a low glutamate fold-shift allosteric ligand (maximum fold-shift ~ 3.0), was selected as a potent PAM with no agonism in the in vitro system used for compound characterization and in two native electrophysiological systems using rat hippocampal slices. PAM 38t (ML254) will be useful to probe the relative contribution of cooperativity and allosteric agonism to the adverse effect liability and neurotoxicity associated with this class of mGlu5 PAMs.
Collapse
Affiliation(s)
- Mark Turlington
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Meredith J. Noetzel
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aspen Chun
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Ya Zhou
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Rocco D. Gogliotti
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Elizabeth D. Nguyen
- Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Karen J. Gregory
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052
| | - Paige N. Vinson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jerri M. Rook
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kiran K. Gogi
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas M. Bridges
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - J. Scott Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Carrie Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Colleen M. Niswender
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Shaun R. Stauffer
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
79
|
Abstract
The presence of druggable, topographically distinct allosteric sites on a wide range of receptor families has offered new paradigms for small molecules to modulate receptor function. Moreover, ligands that target allosteric sites offer significant advantages over the corresponding orthosteric ligands in terms of selectivity, including subtype selectivity within receptor families, and can also impart improved physicochemical properties. However, allosteric ligands are not a panacea. Many chemical issues (e.g., flat structure-activity relationships) and pharmacological issues (e.g., ligand-biased signaling) that are allosteric centric have emerged. Notably, the fact that allosteric sites are less evolutionarily conserved leads to improved selectivity; however, this can also lead to species differences that can hinder safety assessment. Many allosteric ligands possess molecular switches, wherein a small structural change (chemical or metabolic) can modulate the mode of pharmacology or receptor subtype selectivity. As the field has matured, as described here, key principles and strategies have emerged for the design of ligands/drugs for allosteric sites.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600;
| | | | | | | |
Collapse
|
80
|
Bridges TM, Rook JM, Noetzel MJ, Morrison RD, Zhou Y, Gogliotti RD, Vinson PN, Xiang Z, Jones CK, Niswender CM, Lindsley CW, Stauffer SR, Conn PJ, Daniels JS. Biotransformation of a novel positive allosteric modulator of metabotropic glutamate receptor subtype 5 contributes to seizure-like adverse events in rats involving a receptor agonism-dependent mechanism. Drug Metab Dispos 2013; 41:1703-14. [PMID: 23821185 PMCID: PMC3876804 DOI: 10.1124/dmd.113.052084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2013] [Accepted: 07/02/2013] [Indexed: 11/22/2022] Open
Abstract
Activation of metabotropic glutamate receptor subtype 5 (mGlu5) represents a novel strategy for therapeutic intervention into multiple central nervous system disorders, including schizophrenia. Recently, a number of positive allosteric modulators (PAMs) of mGlu5 were discovered to exhibit in vivo efficacy in rodent models of psychosis, including PAMs possessing varying degrees of agonist activity (ago-PAMs), as well as PAMs devoid of agonist activity. However, previous studies revealed that ago-PAMs can induce seizure activity and behavioral convulsions, whereas pure mGlu5 PAMs do not induce these adverse effects. We recently identified a potent and selective mGlu5 PAM, VU0403602, that was efficacious in reversing amphetamine-induced hyperlocomotion in rats. The compound also induced time-dependent seizure activity that was blocked by coadministration of the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine. Consistent with potential adverse effects induced by ago-PAMs, we found that VU0403602 had significant allosteric agonist activity. Interestingly, inhibition of VU0403602 metabolism in vivo by a pan cytochrome P450 (P450) inactivator completely protected rats from induction of seizures. P450-mediated biotransformation of VU0403602 was discovered to produce another potent ago-PAM metabolite-ligand (M1) of mGlu5. Electrophysiological studies in rat hippocampal slices confirmed agonist activity of both M1 and VU0403602 and revealed that M1 can induce epileptiform activity in a manner consistent with its proconvulsant behavioral effects. Furthermore, unbound brain exposure of M1 was similar to that of the parent compound, VU0403602. These findings indicate that biotransformation of mGlu5 PAMs to active metabolite-ligands may contribute to the epileptogenesis observed after in vivo administration of this class of allosteric receptor modulators.
Collapse
Affiliation(s)
- Thomas M Bridges
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Gregory KJ, Herman EJ, Ramsey AJ, Hammond AS, Byun NE, Stauffer SR, Manka JT, Jadhav S, Bridges TM, Weaver CD, Niswender CM, Steckler T, Drinkenburg WH, Ahnaou A, Lavreysen H, Macdonald GJ, Bartolomé JM, Mackie C, Hrupka BJ, Caron MG, Daigle TL, Lindsley CW, Conn PJ, Jones CK. N-aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement. J Pharmacol Exp Ther 2013; 347:438-57. [PMID: 23965381 DOI: 10.1124/jpet.113.206623] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
Impaired transmission through glutamatergic circuits has been postulated to play a role in the underlying pathophysiology of schizophrenia. Furthermore, inhibition of the N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptors (NMDAR) induces a syndrome that recapitulates many of the symptoms observed in patients with schizophrenia. Selective activation of metabotropic glutamate receptor subtype 5 (mGlu5) may provide a novel therapeutic approach for treatment of symptoms associated with schizophrenia through facilitation of transmission through central glutamatergic circuits. Here, we describe the characterization of two novel N-aryl piperazine mGlu5 positive allosteric modulators (PAMs): 2-(4-(2-(benzyloxy)acetyl)piperazin-1-yl)benzonitrile (VU0364289) and 1-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethanone (DPFE). VU0364289 and DPFE induced robust leftward shifts in the glutamate concentration-response curves for Ca(2+) mobilization and extracellular signal-regulated kinases 1 and 2 phosphorylation. Both PAMs displayed micromolar affinity for the common mGlu5 allosteric binding site and high selectivity for mGlu5. VU0364289 and DPFE possessed suitable pharmacokinetic properties for dosing in vivo and produced robust dose-related effects in reversing amphetamine-induced hyperlocomotion, a preclinical model predictive of antipsychotic-like activity. In addition, DPFE enhanced acquisition of contextual fear conditioning in rats and reversed behavioral deficits in a mouse model of NMDAR hypofunction. In contrast, DPFE had no effect on reversing apomorphine-induced disruptions of prepulse inhibition of the acoustic startle reflex. These mGlu5 PAMs also increased monoamine levels in the prefrontal cortex, enhanced performance in a hippocampal-mediated memory task, and elicited changes in electroencephalogram dynamics commensurate with procognitive effects. Collectively, these data support and extend the role for the development of novel mGlu5 PAMs for the treatment of psychosis and cognitive deficits observed in individuals with schizophrenia.
Collapse
Affiliation(s)
- K J Gregory
- Department of Pharmacology and Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee (K.J.G., E.J.H., A.S.H., N.E.B., S.R.S., J.T.M., S.J., T.M.B., C.D.W., C.M.N., C.W.L., P.J.C., C.K.J.); Drug Discovery Biology, MIPS, Monash University, Parkville, Victoria, Australia (K.J.G.); Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada (A.J.R.); Institute of Imaging and Science, Vanderbilt University (N.E.B.); Janssen Research & Development, Beerse, Belgium (T.S., W.H.D., A.A., H.L., G.J.M., C.M., B.J.H.); Janssen Research & Development, Toledo, Spain (J.M.B.); Department of Cell Biology, Duke University, Durham, North Carolina (M.G.C., T.L.D.); Department of Chemistry, Vanderbilt University Medical Center, Nashville, Tennessee (C.W.L.); and U.S. Department of Veterans Affairs, Nashville, Tennessee (C.K.J.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|