51
|
Ludvig N, Tang HM, Baptiste SL, Medveczky G, Vaynberg JK, Vazquez-DeRose J, Stefanov DG, Devinsky O, French JA, Carlson C, Kuzniecky RI. Long-term behavioral, electrophysiological, and neurochemical monitoring of the safety of an experimental antiepileptic implant, the muscimol-delivering Subdural Pharmacotherapy Device in monkeys. J Neurosurg 2012; 117:162-75. [DOI: 10.3171/2012.4.jns111488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The authors evaluated the extent to which the Subdural Pharmacotherapy Device (SPD), chronically implanted over the frontal cortex to perform periodic, localized muscimol-delivery/CSF removal cycles, affects overall behavior, motor performance, electroencephalography (EEG) activity, and blood and CSF neurochemistry in macaque monkeys.
Methods
Two monkeys were used to adjust methodology and 4 monkeys were subjected to comprehensive testing. Prior to surgery, the animals' behavior in a large test chamber was monitored, and the motor skills required to remove food pellets from food ports located on the walls of the chamber were determined. The monkeys underwent implantation of the subdural and extracranial SPD units. The subdural unit, a silicone strip integrating EEG electrodes and fluid-exchange ports, was positioned over the right frontal cortex. The control unit included a battery-powered, microprocessor-regulated dual minipump and radiofrequency module secured to the cranium. After implantation, the SPD automatically performed periodic saline or muscimol (1.0 mM) deliveries at 12-hour intervals, alternating with local CSF removals at 6-hour intervals. The antiepileptic efficacy of this muscimol concentration was verified by demonstrating its ability to prevent focal acetylcholine-induced seizures. During SPD treatment, the monkeys' behavior and motor performance were again monitored, and the power spectrum of their radiofrequency-transmitted EEG recordings was analyzed. Serum and CSF muscimol levels were measured with high-performance liquid chromatography electrochemical detection, and CSF protein levels were measured with turbidimetry.
Results
The SPD was well tolerated in all monkeys for up to 11 months. The behavioral study revealed that during both saline and muscimol SPD treatment, the monkeys could achieve the maximum motor performance of 40 food-pellet removals per session, as before surgery. The EEG study showed that local EEG power spectra were not affected by muscimol treatment with SPD. The neurochemical study demonstrated that the administration of 1.0 mM muscimol into the neocortical subarachnoid space led to no detectable levels of this compound in the blood and cisternal CSF, as measured 1–125 minutes after delivery. Total protein levels were within the normal range in the cisternal CSF, but protein levels in the cortical-site CSF were significantly higher than normal: 361 ± 81.6 mg/dl. Abrupt discontinuation of 3-month, periodic, subdural muscimol treatments induced withdrawal seizures, which could be completely prevented by gradually tapering off the subdural muscimol concentration from 1.0 mM to 0.12–0.03 mM over a period of 2 weeks. The monkeys' general health and weight were maintained. Infection occurred only in one monkey 9 months after surgery.
Conclusions
Long-term, periodic, transmeningeal muscimol delivery with the SPD is essentially a safe procedure. If further improved and successfully adapted for use in humans, the SPD can be used for the treatment of intractable focal neocortical epilepsy affecting approximately 150,000 patients in the US.
Collapse
Affiliation(s)
- Nandor Ludvig
- 1Department of Neurology, Comprehensive Epilepsy Center, NYU Langone Medical Center/School of Medicine, New York, New York
| | - Hai M. Tang
- 1Department of Neurology, Comprehensive Epilepsy Center, NYU Langone Medical Center/School of Medicine, New York, New York
| | - Shirn L. Baptiste
- 1Department of Neurology, Comprehensive Epilepsy Center, NYU Langone Medical Center/School of Medicine, New York, New York
| | - Geza Medveczky
- 1Department of Neurology, Comprehensive Epilepsy Center, NYU Langone Medical Center/School of Medicine, New York, New York
| | - Jonathan K. Vaynberg
- 1Department of Neurology, Comprehensive Epilepsy Center, NYU Langone Medical Center/School of Medicine, New York, New York
| | | | - Dimitre G. Stefanov
- 3Scientific Computing Center, SUNY Downstate Medical Center, Brooklyn, New York
| | - Orrin Devinsky
- 1Department of Neurology, Comprehensive Epilepsy Center, NYU Langone Medical Center/School of Medicine, New York, New York
| | - Jacqueline A. French
- 1Department of Neurology, Comprehensive Epilepsy Center, NYU Langone Medical Center/School of Medicine, New York, New York
| | - Chad Carlson
- 1Department of Neurology, Comprehensive Epilepsy Center, NYU Langone Medical Center/School of Medicine, New York, New York
| | - Ruben I. Kuzniecky
- 1Department of Neurology, Comprehensive Epilepsy Center, NYU Langone Medical Center/School of Medicine, New York, New York
| |
Collapse
|
52
|
Li J, von Pföstl V, Zaldivar D, Zhang X, Logothetis N, Rauch A. Measuring multiple neurochemicals and related metabolites in blood and brain of the rhesus monkey by using dual microdialysis sampling and capillary hydrophilic interaction chromatography-mass spectrometry. Anal Bioanal Chem 2011; 402:2545-54. [PMID: 21956265 DOI: 10.1007/s00216-011-5427-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/25/2011] [Accepted: 09/17/2011] [Indexed: 01/15/2023]
Abstract
In vivo measurement of multiple functionally related neurochemicals and metabolites (NMs) is highly interesting but remains challenging in the field of basic neuroscience and clinical research. We present here an analytical method for determining five functionally and metabolically related polar substances, including acetylcholine (quaternary ammonium), lactate and pyruvate (organic acids), as well as glutamine and glutamate (amino acids). These NMs are acquired from samples of the brain and the blood of non-human primates in parallel by dual microdialysis, and subsequently analyzed by a direct capillary hydrophilic interaction chromatography (HILIC)-mass spectrometry (MS) based method. To obtain high sensitivity in electrospray ionization (ESI)-MS, lactate and pyruvate were detected in negative ionization mode whereas the other NMs were detected in positive ionization mode during each HILIC-MS run. The method was validated for linearity, the limits of detection and quantification, precision, accuracy, stability and matrix effect. The detection limit of acetylcholine, lactate, pyruvate, glutamine, and glutamate was 150 pM, 3 μM, 2 μM, 5 nM, and 50 nM, respectively. This allowed us to quantitatively and simultaneously measure the concentrations of all the substances from the acquired dialysates. The concentration ratios of both lactate/pyruvate and glutamine/glutamate were found to be higher in the brain compared to blood (p < 0.05). The reliable and simultaneous quantification of these five NMs from brain and blood samples allows us to investigate their relative distribution in the brain and blood, and most importantly paves the way for future non-invasive studies of the functional and metabolic relation of these substances to each other.
Collapse
Affiliation(s)
- Juan Li
- Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|