51
|
Ndyabawe K, Cipriano M, Zhao W, Haidekker M, Yao K, Mao L, Kisaalita WS. Brain-on-a-Chip Device for Modeling Multiregional Networks. ACS Biomater Sci Eng 2020; 7:350-359. [PMID: 33320530 DOI: 10.1021/acsbiomaterials.0c00895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Animal models are frequently used in drug discovery because they represent a mammalian in vivo model system, they are the closest approximation to the human brain, and experimentation in humans is not ethical. Working with postmortem human brain samples is challenging and developing human in vitro systems, which mimic the in vivo human brain, has been challenging. However, the use of animal models in drug discovery for human neurological diseases is currently under scrutiny because data from animal models has come with variations due to genetic differences. Evidence from the literature suggests that techniques to reconstruct multiple neurotransmission projections, which characterize neurological disease circuits in humans, in vitro, have not been demonstrated. This paper presents a multicompartment microdevice for patterning neurospheres and specification of neural stem cell fate toward networks of multiple neuronal phenotypes. We validated our design by specification of human neural stem cells to dopaminergic and GABAergic neurons in different compartments of the device, simultaneously. The neurospheres formed unrestricted robust neuronal circuits between arrays of neurospheres in all compartments of the device. Such a device design may provide a basis for formation of multineurotransmission circuits to model functional connectivity between specific human brain regions, in vitro, using human-derived neural stem cells. This work finds relevance in neurological disease modeling and drug screening using human cell-based assays and may provide the impetus for shifting from animal-based models.
Collapse
|
52
|
Péczely L, Kékesi G, Kállai V, Ollmann T, László K, Büki A, Lénárd L, Horváth G. Effects of D 2 dopamine receptor activation in the ventral pallidum on sensory gating and food-motivated learning in control and schizophrenia model (Wisket) rats. Behav Brain Res 2020; 400:113047. [PMID: 33279633 DOI: 10.1016/j.bbr.2020.113047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022]
Abstract
Dopamine D2 receptors (D2Rs) of the ventral pallidum (VP) play important role in motivational and learning processes, however, their potential role in triggering schizophrenic symptoms has not been investigated, yet. In the present experiments the effects of locally administered D2R agonist quinpirole were investigated on behavioral parameters related to sensorimotor gating, motor activity and food-motivated labyrinth learning. Two weeks after bilateral implantation of microcannulae into the VP, the acute (30 min) and delayed (3, 21 and 24 h) effects of quinpirole microinjection (1 μg/0.4 μL at both sides) were investigated in Wistar and schizophrenia model (Wisket substrain) rats in prepulse inhibition (PPI) and the reward-based Ambitus tests. Quinpirole administration did not modify the impaired sensorimotor gating in Wisket rats, but it led to significant deficit in Wistar animals. Regarding the locomotor activity in the Ambitus test, no effects of quinpirole were detected in either groups at the investigated time points. In contrast, quinpirole resulted in decreased exploratory and food-collecting activities in Wistar rats with 21 and 24 h delay. Though, impaired food-related motivation could be observed in Wisket rats, but quinpirole treatment did not result in further deterioration. In summary, our results showed that the VP D2R activation in Wistar rats induces symptoms similar to those observed in schizophrenia model Wisket rats. These data suggest that Wisket rats might have significant alterations in the functional activity of VP, which might be due to its enhanced dopaminergic activity.
Collapse
Affiliation(s)
- László Péczely
- Institute of Physiology, Faculty of Medicine, University of Pécs, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary.
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Veronika Kállai
- Institute of Physiology, Faculty of Medicine, University of Pécs, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Faculty of Medicine, University of Pécs, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Faculty of Medicine, University of Pécs, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Alexandra Büki
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Lénárd
- Institute of Physiology, Faculty of Medicine, University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
53
|
Chini M, Hanganu-Opatz IL. Prefrontal Cortex Development in Health and Disease: Lessons from Rodents and Humans. Trends Neurosci 2020; 44:227-240. [PMID: 33246578 DOI: 10.1016/j.tins.2020.10.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
The role of the prefrontal cortex (PFC) takes center stage among unanswered questions in modern neuroscience. The PFC has a Janus-faced nature: it enables sophisticated cognitive and social abilities that reach their maximum expression in humans, yet it underlies some of the devastating symptoms of psychiatric disorders. Accordingly, appropriate prefrontal development is crucial for many high-order cognitive abilities and dysregulation of this process has been linked to various neuropsychiatric diseases. Reviewing recent advances in the field, with a primary focus on rodents and humans, we highlight why, despite differences across species, a cross-species approach is a fruitful strategy for understanding prefrontal development. We briefly review the developmental contribution of molecules and extensively discuss how electrical activity controls the early maturation and wiring of prefrontal areas, as well as the emergence and refinement of input-output circuitry involved in cognitive processing. Finally, we highlight the mechanisms of developmental dysfunction and their relevance for psychiatric disorders.
Collapse
Affiliation(s)
- Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
54
|
Moskowitz S, Russ DW, Clark LA, Wages NP, Grooms DR, Woods AJ, Suhr J, Simon JE, O'Shea A, Criss CR, Fadda P, Clark BC. Is impaired dopaminergic function associated with mobility capacity in older adults? GeroScience 2020; 43:1383-1404. [PMID: 33236263 DOI: 10.1007/s11357-020-00303-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/18/2020] [Indexed: 01/14/2023] Open
Abstract
The capacity to move is essential for independence and declines with age. Slow movement speed, in particular, is strongly associated with negative health outcomes. Prior research on mobility (herein defined as movement slowness) and aging has largely focused on musculoskeletal mechanisms and processes. More recent work has provided growing evidence for a significant role of the nervous system in contributing to reduced mobility in older adults. In this article, we report four pieces of complementary evidence from behavioral, genetic, and neuroimaging experiments that, we believe, provide theoretical support for the assertion that the basal ganglia and its dopaminergic function are responsible, in part, for age-related reductions in mobility. We report four a posteriori findings from an existing dataset: (1) slower central activation of ballistic force development is associated with worse mobility among older adults; (2) older adults with the Val/Met intermediate catecholamine-O-methyl-transferase (COMT) genotype involved in dopamine degradation exhibit greater mobility than their homozygous counterparts; (3) there are moderate relationships between performance times from a series of lower and upper extremity tasks supporting the notion that movement speed in older adults is a trait-like attribute; and (4) there is a relationship of functional connectivity within the medial orbofrontal (mOFC) cortico-striatal network and measures of mobility, suggesting that a potential neural mechanism for impaired mobility with aging is the deterioration of the integrity of key regions within the mOFC cortico-striatal network. These findings align with recent basic and clinical science work suggesting that the basal ganglia and its dopaminergic function are mechanistically linked to age-related reductions in mobility capacity.
Collapse
Affiliation(s)
- Simon Moskowitz
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA
| | - David W Russ
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH, USA.,School of Physical Therapy & Rehabilitation Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Leatha A Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,Department of Biomedical Sciences at Ohio University, Athens, OH, USA.,Department of Family Medicine at Ohio University, Athens, OH, USA
| | - Nathan P Wages
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,Department of Biomedical Sciences at Ohio University, Athens, OH, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,School of Applied Health and Wellness, Ohio University, Athens, OH, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Julie Suhr
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,Department of Psychology, Ohio University, Athens, OH, USA
| | - Janet E Simon
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,School of Applied Health and Wellness, Ohio University, Athens, OH, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Cody R Criss
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA
| | - Paolo Fadda
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Athens, OH, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA. .,Department of Biomedical Sciences at Ohio University, Athens, OH, USA. .,Division of Geriatric Medicine at Ohio University, Athens, OH, USA.
| |
Collapse
|
55
|
Dopamine, Cognitive Impairments and Second-Generation Antipsychotics: From Mechanistic Advances to More Personalized Treatments. Pharmaceuticals (Basel) 2020; 13:ph13110365. [PMID: 33167370 PMCID: PMC7694365 DOI: 10.3390/ph13110365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
The pharmacological treatment of cognitive impairments associated with schizophrenia is still a major unmet clinical need. Indeed, treatments with available antipsychotics generate highly variable cognitive responses among patients with schizophrenia. This has led to the general assumption that antipsychotics are ineffective on cognitive impairment, although personalized medicine and drug repurposing approaches might scale down this clinical issue. In this scenario, evidence suggests that cognitive improvement exerted by old and new atypical antipsychotics depends on dopaminergic mechanisms. Moreover, the newer antipsychotics brexpiprazole and cariprazine, which might have superior clinical efficacy on cognitive deficits over older antipsychotics, mainly target dopamine receptors. It is thus reasonable to assume that despite more than 50 years of elusive efforts to develop novel non-dopaminergic antipsychotics, dopamine receptors remain the most attractive and promising pharmacological targets in this field. In the present review, we discuss preclinical and clinical findings showing dopaminergic mechanisms as key players in the cognitive improvement induced by both atypical antipsychotics and potential antipsychotics. We also emphasize the concept that these mechanistic advances, which help to understand the heterogeneity of cognitive responses to antipsychotics, may properly guide treatment decisions and address the unmet medical need for the management of cognitive impairment associated with schizophrenia.
Collapse
|
56
|
Reynolds LM, Yetnikoff L, Pokinko M, Wodzinski M, Epelbaum JG, Lambert LC, Cossette MP, Arvanitogiannis A, Flores C. Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cereb Cortex 2020; 29:3676-3686. [PMID: 30295713 DOI: 10.1093/cercor/bhy247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022] Open
Abstract
Psychiatric conditions marked by impairments in cognitive control often emerge during adolescence, when the prefrontal cortex (PFC) and its inputs undergo structural and functional maturation and are vulnerable to disruption by external events. It is not known, however, whether there exists a specific temporal window within the broad range of adolescence when the development of PFC circuitry and its related behaviors are sensitive to disruption. Here we show, in male mice, that repeated exposure to amphetamine during early adolescence leads to impaired behavioral inhibition, aberrant PFC dopamine connectivity, and reduced PFC dopamine function in adulthood. Remarkably, these deficits are not observed following exposure to the exact same amphetamine regimen at later times. These findings demonstrate that there is a critical period for the disruption of the adolescent maturation of cognitive control and PFC dopamine function and suggest that early adolescence is particularly relevant to the emergence of psychopathology in humans.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.,Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Leora Yetnikoff
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA.,CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
| | - Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.,Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Michael Wodzinski
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Julia G Epelbaum
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Laura C Lambert
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Marie-Pierre Cossette
- Department of Psychology, Center for Studies in Behavioural Neurobiology, Concordia University, Montréal, QC, Canada
| | - Andreas Arvanitogiannis
- Department of Psychology, Center for Studies in Behavioural Neurobiology, Concordia University, Montréal, QC, Canada
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| |
Collapse
|
57
|
The KBTBD6/7-DRD2 axis regulates pituitary adenoma sensitivity to dopamine agonist treatment. Acta Neuropathol 2020; 140:377-396. [PMID: 32572597 DOI: 10.1007/s00401-020-02180-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Pituitary adenoma (PA) is one of the most common intracranial tumors, and approximately 40% of all PAs are prolactinomas. Dopamine agonists (DAs), such as cabergoline (CAB), have been successfully used in the treatment of prolactinomas. The expression of dopamine type 2 receptor (DRD2) determines the therapeutic effect of DAs, but the molecular mechanisms of DRD2 regulation are not fully understood. In this study, we first demonstrated that DRD2 underwent proteasome-mediated degradation. We further employed the yeast two-hybrid system and identified kelch repeat and BTB (POZ) domain containing 7 (KBTBD7), a substrate adaptor for the CUL3-RING ubiquitin (Ub) ligase complex, as a DRD2-interacting protein. KBTBD6/7 directly interacted with, and ubiquitinated DRD2 at five ubiquitination sites (K221, K226, K241, K251, and K258). CAB, a high-affinity DRD2 agonist, induced DRD2 internalization, and cytoplasmic DRD2 was degraded via ubiquitination under the control of KBTBD6/7, the activity of which attenuated CAB-mediated inhibition of the AKT/mTOR pathway. KBTBD7 knockout (KO) mice were generated using the CRISPR-Cas9 technique, in which the static level of DRD2 protein was elevated in the pituitary gland, thalamus, and heart, compared to that of WT mice. Consistently, the expression of KBTBD6/7 was negatively correlated with that of DRD2 in human pituitary tumors. Moreover, KBTBD7 was highly expressed in dopamine-resistant prolactinomas, but at low levels in dopamine-sensitive prolactinomas. Knockdown of KBTBD6/7 sensitized MMQ cells and primary pituitary tumor cells to CAB treatment. Conversely, KBTBD7 overexpression increased CAB resistance of estrogen-induced in situ rat prolactinoma model. Together, our findings have uncovered the novel mechanism of DRD2 protein degradation and shown that the KBTBD6/7-DRD2 axis regulates PA sensitivity to DA treatment. KBTBD6/7 may thus become a promising therapeutic target for pituitary tumors.
Collapse
|
58
|
Effects of COMT Genotypes on Working Memory Performance in Fibromyalgia Patients. J Clin Med 2020; 9:jcm9082479. [PMID: 32752289 PMCID: PMC7464119 DOI: 10.3390/jcm9082479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Growing research has reported the presence of a clear impairment of working memory functioning in fibromyalgia. Although different genetic factors involving dopamine availability (i.e, the COMT gene) have been associated with the more severe presentation of key symptoms in fibromyalgia, scientific evidence regarding the influence of COMT genotypes on cognitive impairment in these patients is still lacking. To this end, 167 participants took part in the present investigation. Working memory performance was assessed by the application of the SST (Spatial Span Test) and LNST (Letter and Number Sequence Test) belonging to the Weschler Memory Scale III. Significant working memory impairment was shown by the fibromyalgia patients. Remarkably, our results suggest that performance according to different working memory measures might be influenced by different genotypes of the COMT gene. Specifically, fibromyalgia patients carrying the Val/Val genotype exhibited significantly worse outcomes for the span of SST backward, SST backward score, SST total score and the Working Memory Index (WMI) than the Val/Val healthy carriers. Furthermore, the Val/Val patients performed worse on the SST backward and SST score than heterozygotes. Our findings are the first to show a link between the COMT gene and working memory dysfunction in fibromyalgia, supporting the idea that higher COMT enzyme activity would contribute to more severe working memory impairment in fibromyalgia.
Collapse
|
59
|
Leggio GM, Torrisi SA, Papaleo F. The Discrete Paired-trial Variable-delay T-maze Task to Assess Working Memory in Mice. Bio Protoc 2020; 10:e3664. [PMID: 33659334 DOI: 10.21769/bioprotoc.3664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/02/2022] Open
Abstract
Working memory abnormalities involving the prefrontal cortex (PFC) dramatically contribute to poor functional outcomes in patients with schizophrenia and still represent an unmet therapeutic need. Studies in rodents might provide essential tools to understand the mechanisms underlying PFC-dependent working memory dysfunctions, as well as precious tools for genetic and pharmacological testing. However, proper tests assessing working memory and sensitive to PFC-dependent functions must be used. In this regard, the discrete paired-trial variable-delay T-maze task, equivalent to delayed non-match to sample tasks used in humans, has proved to be an effective paradigm to test PFC-dependent working memory dysfunctions with high predictive validity in human studies.
Collapse
Affiliation(s)
- Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
60
|
Chakroun K, Mathar D, Wiehler A, Ganzer F, Peters J. Dopaminergic modulation of the exploration/exploitation trade-off in human decision-making. eLife 2020; 9:e51260. [PMID: 32484779 PMCID: PMC7266623 DOI: 10.7554/elife.51260] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/01/2020] [Indexed: 01/15/2023] Open
Abstract
Involvement of dopamine in regulating exploration during decision-making has long been hypothesized, but direct causal evidence in humans is still lacking. Here, we use a combination of computational modeling, pharmacological intervention and functional magnetic resonance imaging to address this issue. Thirty-one healthy male participants performed a restless four-armed bandit task in a within-subjects design under three drug conditions: 150 mg of the dopamine precursor L-dopa, 2 mg of the D2 receptor antagonist haloperidol, and placebo. Choices were best explained by an extension of an established Bayesian learning model accounting for perseveration, directed exploration and random exploration. Modeling revealed attenuated directed exploration under L-dopa, while neural signatures of exploration, exploitation and prediction error were unaffected. Instead, L-dopa attenuated neural representations of overall uncertainty in insula and dorsal anterior cingulate cortex. Our results highlight the computational role of these regions in exploration and suggest that dopamine modulates how this circuit tracks accumulating uncertainty during decision-making.
Collapse
Affiliation(s)
- Karima Chakroun
- Department of Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| | - David Mathar
- Department of Psychology, Biological Psychology, University of CologneCologneGermany
| | - Antonius Wiehler
- Department of Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
- Institut du Cerveau et de la Moelle épinière - ICM, Centre de NeuroImagerie de Recherche - CENIR, Sorbonne Universités, Groupe Hospitalier Pitié-SalpêtrièreParisFrance
| | - Florian Ganzer
- German Center for Addiction Research in Childhood and Adolescence, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Jan Peters
- Department of Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
- Department of Psychology, Biological Psychology, University of CologneCologneGermany
| |
Collapse
|
61
|
Atsushi T, Tamano H. New insight into Parkinson's disease pathogenesis from reactive oxygen species-mediated extracellular Zn 2+ influx. J Trace Elem Med Biol 2020; 61:126545. [PMID: 32438294 DOI: 10.1016/j.jtemb.2020.126545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the common neurodegenerative disorder in the elderly characterized by motor symptoms such as tremors, which is caused by selective loss of nigral dopaminergic neurons. Oxidative stress induced by the auto-oxidation of dopamine has been implicated as a key cause of the selective loss of dopaminergic neurons. METHODS To understand the selective loss of nigral dopaminergic neurons, the PD pathogenesis is reviewed focused on paraquat (PQ) and 6-hydroxydopamine (6-OHDA)-induced PD in rats. RESULTS Reactive oxygen species (ROS), which are produced by PQ and 6-OHDA, are retrogradely transported to presynaptic glutamatergic neuron terminals. ROS activate presynaptic transient receptor potential melastatin 2 (TRPM2) cation channels and induce extracellular glutamate accumulation in the substantia nigra pars compacta (SNpc), followed by age-related intracellular Zn2+ dysregulation. Loss of nigral dopaminergic neurons is accelerated by age-related intracellular Zn2+ dysregulation in the SNpc of rat PD models. The intracellular Zn2+ dysregulation in nigral dopaminergic neurons is linked with the rapid influx of extracellular Zn2+ via postsynaptic AMPA receptor activation, suggesting that PQ- and 6-OHDA-induced pathogenesis is linked with age-related intracellular Zn2+ dysregulation in the SNpc. Postsynaptic TRPM2 channels may be also involved in intracellular Zn2+ dysregulation in the SNpc. CONCLUSION A novel mechanism of nigral dopaminergic degeneration, in which ROS induce rapid intracellular Zn2+ dysregulation, figures out the PD pathogenesis induced by PQ and 6-OHDA in rats. This review deals with new insight into PD pathogenesis from ROS-mediated extracellular Zn2+ influx and its proposed defense strategy.
Collapse
Affiliation(s)
- Takeda Atsushi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
62
|
Lowe CJ, Morton JB, Reichelt AC. Adolescent obesity and dietary decision making—a brain-health perspective. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:388-396. [DOI: 10.1016/s2352-4642(19)30404-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/22/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
|
63
|
Sullivan CS, Mohan V, Manis PB, Moy SS, Truong Y, Duncan BW, Maness PF. Developmental Regulation of Basket Interneuron Synapses and Behavior through NCAM in Mouse Prefrontal Cortex. Cereb Cortex 2020; 30:4689-4707. [PMID: 32249896 DOI: 10.1093/cercor/bhaa074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Parvalbumin (PV)-expressing basket interneurons in the prefrontal cortex (PFC) regulate pyramidal cell firing, synchrony, and network oscillations. Yet, it is unclear how their perisomatic inputs to pyramidal neurons are integrated into neural circuitry and adjusted postnatally. Neural cell adhesion molecule NCAM is expressed in a variety of cells in the PFC and cooperates with EphrinA/EphAs to regulate inhibitory synapse density. Here, analysis of a novel parvalbumin (PV)-Cre: NCAM F/F mouse mutant revealed that NCAM functions presynaptically in PV+ basket interneurons to regulate postnatal elimination of perisomatic synapses. Mutant mice exhibited an increased density of PV+ perisomatic puncta in PFC layer 2/3, while live imaging in mutant brain slices revealed fewer puncta that were dynamically eliminated. Furthermore, EphrinA5-induced growth cone collapse in PV+ interneurons in culture depended on NCAM expression. Electrophysiological recording from layer 2/3 pyramidal cells in mutant PFC slices showed a slower rise time of inhibitory synaptic currents. PV-Cre: NCAM F/F mice exhibited impairments in working memory and social behavior that may be impacted by altered PFC circuitry. These findings suggest that the density of perisomatic synapses of PV+ basket interneurons is regulated postnatally by NCAM, likely through EphrinA-dependent elimination, which is important for appropriate PFC network function and behavior.
Collapse
Affiliation(s)
- Chelsea S Sullivan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vishwa Mohan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul B Manis
- Department of Otolaryngology/Head and Neck Surgery, and Cell Biology and Physiology, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sheryl S Moy
- Department of Psychiatry, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Young Truong
- Department of Biostatistics, School of Global Public Health, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryce W Duncan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
64
|
Avram M, Brandl F, Cabello J, Leucht C, Scherr M, Mustafa M, Leucht S, Ziegler S, Sorg C. Reduced striatal dopamine synthesis capacity in patients with schizophrenia during remission of positive symptoms. Brain 2020; 142:1813-1826. [PMID: 31135051 DOI: 10.1093/brain/awz093] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
While there is consistent evidence for increased presynaptic dopamine synthesis capacity in the striatum of patients with schizophrenia during psychosis, it is unclear whether this also holds for patients during psychotic remission. This study investigates whether striatal dopamine synthesis capacity is altered in patients with schizophrenia during symptomatic remission of positive symptoms, and whether potential alterations relate to symptoms other than positive, such as cognitive difficulties. Twenty-three patients with schizophrenia in symptomatic remission of positive symptoms according to Andreasen, and 24 healthy controls underwent 18F-DOPA-PET and behavioural-cognitive assessment. Imaging data were analysed with voxel-wise Patlak modelling with cerebellum as reference region, resulting in the influx constant kicer reflecting dopamine synthesis capacity. For the whole striatum and its subdivisions (i.e. limbic, associative, and sensorimotor), averaged regional kicer values were calculated, compared across groups, and correlated with behavioural-cognitive scores, including a mediation analysis. Patients had negative symptoms (Positive and Negative Syndrome Scale-negative 14.13 ± 5.91) and cognitive difficulties, i.e. they performed worse than controls in Trail-Making-Test-B (TMT-B; P = 0.01). Furthermore, kicer was reduced in patients for whole striatum (P = 0.004) and associative (P = 0.002) and sensorimotor subdivisions (P = 0.007). In patients, whole striatum kicer was negatively correlated with TMT-B (rho = -0.42, P = 0.04; i.e. the lower striatal kicer, the worse the cognitive performance). Mediation analysis showed that striatal kicer mediated the group difference in TMT-B. Results demonstrate that patients with schizophrenia in symptomatic remission of positive symptoms have decreased striatal dopamine synthesis capacity, which mediates the disorder's impact on cognitive difficulties. Data suggest that striatal dopamine dysfunction contributes to cognitive difficulties in schizophrenia.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jorge Cabello
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claudia Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Scherr
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mona Mustafa
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychosis Studies, King's College London, UK
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
65
|
Benoit LJ, Holt ES, Teboul E, Taliaferro JP, Kellendonk C, Canetta S. Medial prefrontal lesions impair performance in an operant delayed nonmatch to sample working memory task. Behav Neurosci 2020; 134:187-197. [PMID: 32134300 DOI: 10.1037/bne0000357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cognitive functions, such as working memory, are disrupted in most psychiatric disorders. Many of these processes are believed to depend on the medial prefrontal cortex (mPFC). Traditionally, maze-based behavioral tasks, which have a strong exploratory component, have been used to study the role of the mPFC in working memory in mice. In maze tasks, mice navigate through the environment and require a significant amount of time to complete each trial, thereby limiting the number of trials that can be run per day. Here, we show that an operant-based delayed nonmatch to sample (DNMS) working memory task, with shorter trial lengths and a smaller exploratory component, is also mPFC-dependent. We created excitotoxic lesions in the mPFC of mice and found impairments in both the acquisition of the task, with no delay, and in the performance with delays introduced. Importantly, we saw no differences in trial length, reward collection, or lever-press latencies, indicating that the difference in performance was not due to a change in motivation or mobility. Using this operant DNMS task will facilitate the analysis of working memory and improve our understanding of the physiology and circuit mechanisms underlying this cognitive process. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Laura J Benoit
- Department of Neurobiology and Behavior, Graduate School of Arts and Sciences, Columbia University
| | - Emma S Holt
- Division of Molecular Therapeutics, New York State Psychiatric Institute
| | - Eric Teboul
- Division of Molecular Therapeutics, New York State Psychiatric Institute
| | - Joshua P Taliaferro
- Department of Neurobiology and Behavior, Graduate School of Arts and Sciences, Columbia University
| | | | | |
Collapse
|
66
|
Morè L, Lauterborn JC, Papaleo F, Brambilla R. Enhancing cognition through pharmacological and environmental interventions: Examples from preclinical models of neurodevelopmental disorders. Neurosci Biobehav Rev 2020; 110:28-45. [PMID: 30981451 DOI: 10.1016/j.neubiorev.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022]
Abstract
In this review we discuss the role of environmental and pharmacological treatments to enhance cognition with special regards to neurodevelopmental related disorders and aging. How the environment influences brain structure and function, and the interactions between rearing conditions and gene expression, are fundamental questions that are still poorly understood. We propose a model that can explain some of the discrepancies in findings for effects of environmental enrichment on outcome measures. Evidence of a direct causal correlation of nootropics and treatments that enhanced cognition also will be presented, and possible molecular mechanisms that include neurotrophin signaling and downstream pathways underlying these processes are discussed. Finally we review recent findings achieved with a wide set of behavioral and cognitive tasks that have translational validity to humans, and should be useful for future work on devising appropriate therapies. As will be discussed, the collective findings suggest that a combinational therapeutic approach of environmental enrichment and nootropics could be particularly successful for improving learning and memory in both developmental disorders and normal aging.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2XT, Preston, UK.
| | - Julie C Lauterborn
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92617, USA.
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163, Genova, Italy.
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute (NMHRI), Division of Neuroscience, School of Biosciences, Cardiff University, CF24 4HQ, Cardiff, UK.
| |
Collapse
|
67
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
68
|
Lieberman OJ, Frier MD, McGuirt AF, Griffey CJ, Rafikian E, Yang M, Yamamoto A, Borgkvist A, Santini E, Sulzer D. Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. eLife 2020; 9:e50843. [PMID: 31913125 PMCID: PMC6984822 DOI: 10.7554/elife.50843] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
The basal ganglia are a group of subcortical nuclei that contribute to action selection and reinforcement learning. The principal neurons of the striatum, spiny projection neurons of the direct (dSPN) and indirect (iSPN) pathways, maintain low intrinsic excitability, requiring convergent excitatory inputs to fire. Here, we examined the role of autophagy in mouse SPN physiology and animal behavior by generating conditional knockouts of Atg7 in either dSPNs or iSPNs. Loss of autophagy in either SPN population led to changes in motor learning but distinct effects on cellular physiology. dSPNs, but not iSPNs, required autophagy for normal dendritic structure and synaptic input. In contrast, iSPNs, but not dSPNs, were intrinsically hyperexcitable due to reduced function of the inwardly rectifying potassium channel, Kir2. These findings define a novel mechanism by which autophagy regulates neuronal activity: control of intrinsic excitability via the regulation of potassium channel function.
Collapse
Affiliation(s)
- Ori J Lieberman
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Micah D Frier
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Avery F McGuirt
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Christopher J Griffey
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Elizabeth Rafikian
- Mouse NeuroBehavior Core, Institute for Genomic MedicineColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Mu Yang
- Mouse NeuroBehavior Core, Institute for Genomic MedicineColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Ai Yamamoto
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | | | | | - David Sulzer
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Department of PharmacologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkUnited States
| |
Collapse
|
69
|
Furman DJ, White RL, Naskolnakorn J, Ye J, Kayser A, D'Esposito M. Effects of Dopaminergic Drugs on Cognitive Control Processes Vary by Genotype. J Cogn Neurosci 2020; 32:804-821. [PMID: 31905090 DOI: 10.1162/jocn_a_01518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dopamine (DA) has been implicated in modulating multiple cognitive control processes, including the robust maintenance of task sets and memoranda in the face of distractors (cognitive stability) and, conversely, the ability to switch task sets or update the contents of working memory when it is advantageous to do so (cognitive flexibility). In humans, the limited specificity of available pharmacological probes has posed a challenge for understanding the mechanisms by which DA, acting on multiple receptor families across the PFC and striatum, differentially influences these cognitive processes. Using a within-subject, placebo-controlled design, we contrasted the impact of two mechanistically distinct DA drugs, tolcapone (an inhibitor of catechol-O-methyltransferase [COMT], a catecholamine inactivator) and bromocriptine (a DA agonist with preferential affinity for the D2 receptor), on the maintenance and switching of task rules. Given previous work demonstrating that drug effects on behavior are dependent on baseline DA tone, participants were stratified according to genetic polymorphisms associated with cortical (COMT Val158Met) and striatal (Taq1A) DA system function. Our results were partially consistent with an inverted-U-shaped relationship between tolcapone and robust rule maintenance (interaction with COMT genotype) and between bromocriptine and cued rule switching (interaction with Taq1A genotype). However, when task instructions were ambiguous, a third relationship emerged to explain drug effects on spontaneous task switching (interaction of COMT genotype and bromocriptine). Together, this pattern of results suggests that the effects of DA drugs vary not only as a function of the DA system component upon which they act but also on subtle differences in task demands and context.
Collapse
Affiliation(s)
| | - Robert L White
- University of California, Berkeley.,Washington University School of Medicine
| | | | - Jean Ye
- University of California, Berkeley
| | | | | |
Collapse
|
70
|
Hagerty SL, YorkWilliams SL, Bidwell LC, Weiland BJ, Sabbineni A, Blaine SK, Bryan AD, Hutchison KE. DRD2 methylation is associated with executive control network connectivity and severity of alcohol problems among a sample of polysubstance users. Addict Biol 2020; 25:e12684. [PMID: 30370960 PMCID: PMC7326368 DOI: 10.1111/adb.12684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 12/21/2022]
Abstract
Chronic exposure to alcohol and other drugs of abuse has been associated with deleterious consequences, including functional connectivity deficits within neural networks associated with executive control. Altered functional connectivity within the executive control network (ECN) might underlie the progressive inability to control consumption of alcohol and other drugs as substance use disorders progress. Genetic and epigenetic factors have been associated with substance use disorders (SUDs). For example, dopamine receptor 2 (DRD2) functioning has been associated with alcohol use disorder (AUD) and related phenotypes, including correlates of executive functioning. The present study aims to explore the relationship between a continuous measure of alcohol-related problems, epigenetic markers (methylation) within the DRD2 gene, and functional connectivity within the ECN among a sample of polysubstance users. A community sample of 658 subjects, whose consumption of alcohol, nicotine, and cannabis span across a spectrum of quantity and frequency of use, were obtained across previous studies in polysubstance using populations. Resting state functional magnetic resonance imaging was analyzed to identify intrinsic connectivity networks using a priori regions of interest. Methylation measurement of functionally relevant sites within the DRD2 gene was achieved via pyrosequencing. Regression-based models, including mediation and moderation models, tested the association between DRD2 methylation, functional connectivity within intrinsic neural networks (including the ECN), and severity of alcohol problems. Results suggest that average DRD2 methylation was negatively associated with right ECN (RECN) and left ECN (LECN) connectivity, but not associated with other networks tested, and DRD2 methylation was significantly associated with alcohol problems severity. Mediation models were not supported, although moderation models suggested that connectivity between edges within the RECN moderated the relationship between DRD2 methylation and AUD severity. Results support a theoretical model in which epigenetic factors are associated with neurobiological correlates of alcohol consumption among a sample of polysubstance users.
Collapse
Affiliation(s)
- Sarah L. Hagerty
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Sophie L. YorkWilliams
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - L. Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado
| | - Barbara J. Weiland
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado
| | - Amithrupa Sabbineni
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Sara K. Blaine
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Angela D. Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Kent E. Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
71
|
Petrelli F, Dallérac G, Pucci L, Calì C, Zehnder T, Sultan S, Lecca S, Chicca A, Ivanov A, Asensio CS, Gundersen V, Toni N, Knott GW, Magara F, Gertsch J, Kirchhoff F, Déglon N, Giros B, Edwards RH, Mothet JP, Bezzi P. Dysfunction of homeostatic control of dopamine by astrocytes in the developing prefrontal cortex leads to cognitive impairments. Mol Psychiatry 2020; 25:732-749. [PMID: 30127471 PMCID: PMC7156348 DOI: 10.1038/s41380-018-0226-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023]
Abstract
Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Francesco Petrelli
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Glenn Dallérac
- 0000 0001 2176 4817grid.5399.6Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université UMR7286 CNRS, 13344 Marseille, Cedex 15 France
| | - Luca Pucci
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Corrado Calì
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland ,0000 0001 1926 5090grid.45672.32BESE division, King Abdullah University of Science and Technology, 23955-69000 Thuwal, Saudi Arabia
| | - Tamara Zehnder
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Sébastien Sultan
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Salvatore Lecca
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Andrea Chicca
- 0000 0001 0726 5157grid.5734.5Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Buehlstrasse, 28 3012 Bern, Switzerland
| | - Andrei Ivanov
- “Biophotonics and Synapse Physiopathology” Team, UMR9188 CNRS – ENS Paris Saclay, 91405 Orsay, France
| | - Cédric S. Asensio
- 0000 0001 2297 6811grid.266102.1Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Vidar Gundersen
- 0000 0004 1936 8921grid.5510.1CMBN, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Nicolas Toni
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Graham William Knott
- 0000000121839049grid.5333.6BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fulvio Magara
- 0000 0001 2165 4204grid.9851.5Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jürg Gertsch
- 0000 0001 0726 5157grid.5734.5Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Buehlstrasse, 28 3012 Bern, Switzerland
| | - Frank Kirchhoff
- 0000 0001 2167 7588grid.11749.3aDepartment of Molecular Physiology, University of Saarland, D-66421 Homburg, Germany
| | - Nicole Déglon
- 0000 0001 0423 4662grid.8515.9Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland ,0000 0001 0423 4662grid.8515.9Neuroscience Research Center, Lausanne University Hospital, CH-1011 Lausanne, Switzerland
| | - Bruno Giros
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H1R3 Canada ,0000 0001 2112 9282grid.4444.0INSERM, UMRS 1130; CNRS, UMR 8246; Sorbonne University UPMC, Neuroscience Paris-Seine, F-75005 Paris, France
| | - Robert H. Edwards
- 0000 0001 2297 6811grid.266102.1Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Jean-Pierre Mothet
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université UMR7286 CNRS, 13344, Marseille, Cedex 15, France. .,"Biophotonics and Synapse Physiopathology" Team, UMR9188 CNRS - ENS Paris Saclay, 91405, Orsay, France.
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
72
|
Ji JL, Diehl C, Schleifer C, Tamminga CA, Keshavan MS, Sweeney JA, Clementz BA, Hill SK, Pearlson G, Yang G, Creatura G, Krystal JH, Repovs G, Murray J, Winkler A, Anticevic A. Schizophrenia Exhibits Bi-directional Brain-Wide Alterations in Cortico-Striato-Cerebellar Circuits. Cereb Cortex 2019; 29:4463-4487. [PMID: 31157363 PMCID: PMC6917525 DOI: 10.1093/cercor/bhy306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Indexed: 01/05/2023] Open
Abstract
Distributed neural dysconnectivity is considered a hallmark feature of schizophrenia (SCZ), yet a tension exists between studies pinpointing focal disruptions versus those implicating brain-wide disturbances. The cerebellum and the striatum communicate reciprocally with the thalamus and cortex through monosynaptic and polysynaptic connections, forming cortico-striatal-thalamic-cerebellar (CSTC) functional pathways that may be sensitive to brain-wide dysconnectivity in SCZ. It remains unknown if the same pattern of alterations persists across CSTC systems, or if specific alterations exist along key functional elements of these networks. We characterized connectivity along major functional CSTC subdivisions using resting-state functional magnetic resonance imaging in 159 chronic patients and 162 matched controls. Associative CSTC subdivisions revealed consistent brain-wide bi-directional alterations in patients, marked by hyper-connectivity with sensory-motor cortices and hypo-connectivity with association cortex. Focusing on the cerebellar and striatal components, we validate the effects using data-driven k-means clustering of voxel-wise dysconnectivity and support vector machine classifiers. We replicate these results in an independent sample of 202 controls and 145 patients, additionally demonstrating that these neural effects relate to cognitive performance across subjects. Taken together, these results from complementary approaches implicate a consistent motif of brain-wide alterations in CSTC systems in SCZ, calling into question accounts of exclusively focal functional disturbances.
Collapse
Affiliation(s)
- Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Caroline Diehl
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Charles Schleifer
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Carol A Tamminga
- Department of Psychiatry and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Brett A Clementz
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Godfrey Pearlson
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Genevieve Yang
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Gina Creatura
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Grega Repovs
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
| | - John Murray
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Anderson Winkler
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, Oxford University, Headington, Oxford, UK
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| |
Collapse
|
73
|
Tian X, Richard A, El-Saadi MW, Bhandari A, Latimer B, Van Savage I, Holmes K, Klein RL, Dwyer D, Goeders NE, Yang XW, Lu XH. Dosage sensitivity intolerance of VIPR2 microduplication is disease causative to manifest schizophrenia-like phenotypes in a novel BAC transgenic mouse model. Mol Psychiatry 2019; 24:1884-1901. [PMID: 31444475 DOI: 10.1038/s41380-019-0492-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 06/08/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
Abstract
Recent genome-wide association studies (GWAS) have identified copy number variations (CNVs) at chromosomal locus 7q36.3 that significantly contribute to the risk of schizophrenia, with all of the microduplications occurring within a single gene: vasoactive intestinal peptide receptor 2 (VIPR2). To confirm disease causality and translate such a genetic vulnerability into mechanistic and pathophysiological insights, we have developed a series of conditional VIPR2 bacterial artificial chromosome (BAC) transgenic mouse models of VIPR2 CNV. VIPR2 CNV mouse model recapitulates gene expression and signaling deficits seen in human CNV carriers. VIPR2 microduplication in mice elicits prominent dorsal striatal dopamine dysfunction, cognitive, sensorimotor gating, and social behavioral deficits preceded by an increase of striatal cAMP/PKA signaling and the disrupted early postnatal striatal development. Genetic removal of VIPR2 transgene expression via crossing with Drd1a-Cre BAC transgenic mice rescued the dopamine D2 receptor abnormality and multiple behavioral deficits, implicating a pathogenic role of VIPR2 overexpression in dopaminoceptive neurons. Thus, our results provide further evidence to support the GWAS studies that the dosage sensitivity intolerance of VIPR2 is disease causative to manifest schizophrenia-like dopamine, cognitive, and social behavioral deficits in mice. The conditional BAC transgenesis offers a novel strategy to model CNVs with a gain-of -copies and facilitate the genetic dissection of when/where/how the genetic vulnerabilities affect development, structure, and function of neural circuits. Our findings have important implications for therapeutic development, and the etiology-relevant mouse model provides a useful preclinical platform for drug discovery.
Collapse
Affiliation(s)
- Xinli Tian
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Adam Richard
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Madison Wynne El-Saadi
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Aakriti Bhandari
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Isabella Van Savage
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Kevlyn Holmes
- California Lutheran University, Thousand Oaks, CA, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Donard Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Human Behaviors, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA.
| |
Collapse
|
74
|
Baskaran R, Lai C, Li W, Tuan L, Wang C, Lee LJ, Liu C, Hwu H, Lee L. Characterization of striatal phenotypes in heterozygous
Disc1
mutant mice, a model of haploinsufficiency. J Comp Neurol 2019; 528:1157-1172. [DOI: 10.1002/cne.24813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/26/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Rathinasamy Baskaran
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Chuan‐Ching Lai
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Wai‐Yu Li
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Li‐Heng Tuan
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Chia‐Chuan Wang
- School of MedicineFu Jen Catholic University New Taipei Taiwan ROC
| | - Lukas J.‐H. Lee
- Division of Environmental Health and Occupational MedicineNational Health Research Institutes Miaoli Taiwan ROC
| | - Chih‐Min Liu
- Department of PsychiatryNational Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan ROC
- Neurobiology and Cognitive Science CenterNational Taiwan University Taipei Taiwan ROC
| | - Hai‐Gwo Hwu
- Department of PsychiatryNational Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan ROC
- Neurobiology and Cognitive Science CenterNational Taiwan University Taipei Taiwan ROC
- Institute of Brain and Mind SciencesNational Taiwan University Taipei Taiwan ROC
| | - Li‐Jen Lee
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
- Department of PsychiatryNational Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan ROC
- Neurobiology and Cognitive Science CenterNational Taiwan University Taipei Taiwan ROC
- Institute of Brain and Mind SciencesNational Taiwan University Taipei Taiwan ROC
| |
Collapse
|
75
|
Cognitive functions associated with developing prefrontal cortex during adolescence and developmental neuropsychiatric disorders. Neurobiol Dis 2019; 131:104322. [DOI: 10.1016/j.nbd.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
|
76
|
Li X, Bäckman L, Persson J. The relationship of age and DRD2 polymorphisms to frontostriatal brain activity and working memory performance. Neurobiol Aging 2019; 84:189-199. [PMID: 31629117 DOI: 10.1016/j.neurobiolaging.2019.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) in both prefrontal cortex (PFC) and caudate nucleus is critical for working memory (WM) function. The C957T and Taq1A polymorphisms of the DRD2 gene are related to DA D2 receptor densities in PFC and striatum. Using functional MRI, we investigated the relationship of age and these 2 DRD2 gene polymorphisms to WM function and examined possible age by gene interactions. Results demonstrated less caudate activity for older adults (70-80 years; n = 112) compared with the younger age group (25-65 years; n = 191), suggesting age-related functional differences in this region. Importantly, there was a gene-related difference regarding WM performance and frontostriatal brain activity. Specifically, better WM performance and greater activity in PFC were found among C957T C allele carriers. Combined genetic markers for increased DA D2 receptor density were associated with greater caudate activity and higher WM updating performance. The genetic effects on blood oxygen level-dependent activity were only observed in older participants, suggesting magnified genetic effects in aging. Our findings emphasize the importance of DA-related genes in regulating WM functioning in aging and demonstrate a positive link between DA and brain activation in the frontostriatal circuitry.
Collapse
Affiliation(s)
- Xin Li
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
77
|
Nour MM, Dahoun T, McCutcheon RA, Adams RA, Wall MB, Howes OD. Task-induced functional brain connectivity mediates the relationship between striatal D2/3 receptors and working memory. eLife 2019; 8:e45045. [PMID: 31290741 PMCID: PMC6620042 DOI: 10.7554/elife.45045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022] Open
Abstract
Working memory performance is thought to depend on both striatal dopamine 2/3 receptors (D2/3Rs) and task-induced functional organisation in key cortical brain networks. Here, we combine functional magnetic resonance imaging and D2/3R positron emission tomography in 51 healthy volunteers, to investigate the relationship between working memory performance, task-induced default mode network (DMN) functional connectivity changes, and striatal D2/3R availability. Increasing working memory load was associated with reduced DMN functional connectivity, which was itself associated with poorer task performance. Crucially, the magnitude of the DMN connectivity reduction correlated with striatal D2/3R availability, particularly in the caudate, and this relationship mediated the relationship between striatal D2/3R availability and task performance. These results inform our understanding of natural variation in working memory performance, and have implications for understanding age-related cognitive decline and cognitive impairments in neuropsychiatric disorders where dopamine signalling is altered.
Collapse
Affiliation(s)
- Matthew M Nour
- Institute of Psychiatry, Psychology and Neuroscience (IOPPN)King’s College LondonLondonUnited Kingdom
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
- Institute of Clinical SciencesImperial College LondonLondonUnited Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchUniversity College LondonLondonUnited Kingdom
- Wellcome Centre for Human Neuroimaging (WCHN)University College LondonLondonUnited Kingdom
| | - Tarik Dahoun
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
- Institute of Clinical SciencesImperial College LondonLondonUnited Kingdom
- Department of PsychiatryUniversity of OxfordOxfordUnited Kingdom
| | - Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience (IOPPN)King’s College LondonLondonUnited Kingdom
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
| | - Rick A Adams
- Institute of Cognitive Neuroscience (ICN)University College LondonLondonUnited Kingdom
- Division of PsychiatryUniversity College LondonLondonUnited Kingdom
| | - Matthew B Wall
- Imanova Centre for Imaging Sciences (Invicro Ltd)Hammersmith HospitalLondonUnited Kingdom
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience (IOPPN)King’s College LondonLondonUnited Kingdom
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
- Institute of Clinical SciencesImperial College LondonLondonUnited Kingdom
| |
Collapse
|
78
|
Olivetti PR, Balsam PD, Simpson EH, Kellendonk C. Emerging roles of striatal dopamine D2 receptors in motivated behaviour: Implications for psychiatric disorders. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:47-55. [PMID: 31188541 DOI: 10.1111/bcpt.13271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
Impaired motivation has been a long recognized negative symptom of schizophrenia, as well as a common feature of non-psychotic psychiatric disorders, responsible for a significant share of functional burden, and with limited treatment options. The striatum and dopamine signalling system play a central role in extracting motivationally relevant information from the environment, selecting which behavioural direction the animal should follow, and the vigour with which to engage it. Much of this function relies on striatal projection neurons, known as medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2Rs), or D2-MSNs. However, determining the precise nature of D2-MSNs in regulating motivated behaviour in both healthy individuals and experimental manipulations of D2-MSN function has at times yielded a somewhat confusing picture since their activity has been linked to either enhancement or dampening of motivation in animal models. In this MiniReview, we describe the latest data from rodent studies that investigated how D2Rs exert their modulatory effect on motivated behaviour by regulating striatal indirect pathway neuronal activity. We will include a discussion about how functional selectivity of D2Rs towards G protein-dependent or β-arrestin-dependent signalling differentially affects motivated behaviour. Lastly, we will describe a recent preclinical attempt to improve motivation by exploiting serotonin receptor-mediated modulation of dopamine transmission in the striatum.
Collapse
Affiliation(s)
- Pedro R Olivetti
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA
| | - Peter D Balsam
- New York State Psychiatric Institute, New York City, New York, USA.,Barnard College, Columbia University, New York City, New York, USA
| | - Eleanor H Simpson
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA
| | - Christoph Kellendonk
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA.,Department of Pharmacology, Columbia University, New York City, New York, USA
| |
Collapse
|
79
|
Paraquat as an Environmental Risk Factor in Parkinson's Disease Accelerates Age-Related Degeneration Via Rapid Influx of Extracellular Zn 2+ into Nigral Dopaminergic Neurons. Mol Neurobiol 2019; 56:7789-7799. [PMID: 31119555 DOI: 10.1007/s12035-019-01642-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
On the basis of the evidence that paraquat (PQ)-induced extracellular Zn2+ influx causes PQ-induced pathogenesis in the substantia nigra pars compacta (SNpc) of rats, we postulated that the transient receptor potential melastatin 2 (TRPM2) cation channels activated with PQ-induced reactive oxygen species (ROS) are linked with extracellular glutamate accumulation in the SNpc, followed by age-related intracellular Zn2+ dysregulation. Presynaptic activity (glutamate exocytosis), which was determined with FM4-64, was enhanced in the SNpc after exposure to PQ, and the enhancement was inhibited in the presence of N-(p-amylcinnamoyl)anthranilic acid (ACA), a blocker of TRPM2 cation channels, suggesting that PQ-induced ROS enhances presynaptic activity in the SNpc, probably via TRPM2 channel activation. Extracellular glutamate concentration in the SNpc was increased almost to the same extent under the SNpc perfusion with PQ of young and aged rats, and was suppressed by co-perfusion with ACA, suggesting that PQ-induced TRPM2 cation channel activation enhances glutamate exocytosis in the SNpc. Interestingly, PQ more markedly increased intracellular Zn2+ in the aged SNpc, which was also blocked by co-injection of ACA and CaEDTA, an extracellular Zn2+ chelator. Loss of nigrostriatal dopaminergic neurons was more severely increased in aged rats and completely blocked by co-injection of PQ and CaEDTA into the SNpc. The present study indicates that rapid influx of extracellular Zn2+ into dopaminergic neurons via PQ-induced TRPM2 cation channel activation accelerates nigrostriatal dopaminergic degeneration in aged rats. It is likely that vulnerability to PQ-induced pathogenesis in the aged SNpc is due to accelerated intracellular Zn2+ dysregulation.
Collapse
|
80
|
Ye J, Ji F, Jiang D, Lin X, Chen G, Zhang W, Shan P, Zhang L, Zhuo C. Polymorphisms in Dopaminergic Genes in Schizophrenia and Their Implications in Motor Deficits and Antipsychotic Treatment. Front Neurosci 2019; 13:355. [PMID: 31057354 PMCID: PMC6479209 DOI: 10.3389/fnins.2019.00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dopaminergic system dysfunction is involved in schizophrenia (SCZ) pathogenesis and can mediate SCZ-related motor disorders. Recent studies have gradually revealed that SCZ susceptibility and the associated motor symptoms can be mediated by genetic factors, including dopaminergic genes. More importantly, polymorphisms in these genes are associated with both antipsychotic drug sensitivity and adverse effects. The study of genetic polymorphisms in the dopaminergic system may help to optimize individualized drug strategies for SCZ patients. This review summarizes the current progress about the involvement of the dopamine system in SCZ-associated motor disorders and the motor-related adverse effects after antipsychotic treatment, with a special focus on polymorphisms in dopaminergic genes. We hypothesize that the genetic profile of the dopaminergic system mediates both SCZ-associated motor deficits associated and antipsychotic drug-related adverse effects. The study of dopaminergic gene polymorphisms may help to predict drug efficacy and decrease adverse effects, thereby optimizing treatment strategies.
Collapse
Affiliation(s)
- Jiaen Ye
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Feng Ji
- Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China
| | - Deguo Jiang
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Wei Zhang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Peiwei Shan
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China.,Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
81
|
Chaby LE, Karavidha K, Lisieski MJ, Perrine SA, Liberzon I. Cognitive Flexibility Training Improves Extinction Retention Memory and Enhances Cortical Dopamine With and Without Traumatic Stress Exposure. Front Behav Neurosci 2019; 13:24. [PMID: 30881293 PMCID: PMC6406056 DOI: 10.3389/fnbeh.2019.00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Stress exposure can cause lasting changes in cognition, but certain individual traits, such as cognitive flexibility, have been shown to reduce the degree, duration, or severity of cognitive changes following stress. Both stress and cognitive flexibility training affect decision making by modulating monoamine signaling. Here, we test the role cognitive flexibility training, and high vs. low cognitive flexibility at the individual level, in attenuating stress-induced changes in memory and monoamine levels using the single prolonged stress (SPS) rodent model of traumatic stress in male Sprague-Dawley rats. Exposure to SPS can heighten fear responses to conditioned cues (i.e., freezing) after a fear association has been extinguished, referred to as a deficit in extinction retention. This deficit is thought to reflect an impairment in context processing that is characteristic of posttraumatic stress disorder (PTSD). During a cognitive flexibility training we assessed individual variability in cognitive skills and conditioned rats to discriminately use cues in their environment. We found that cognitive flexibility training, alone or followed by SPS exposure, accelerated extinction learning and decreased fear responses over time during extinction retention testing, compared with rats not given cognitive flexibility training. These findings suggest that cognitive flexibility training may improve context processing in individuals with and without traumatic stress exposure. Individual performance during the reversal phase of the cognitive flexibility training predicted subsequent context processing; individuals with high reversal performance exhibited a faster decrease in freezing responses during extinction retention testing. Thus, high reversal performance predicted enhanced retention of extinction learning over time and suggests that cognitive flexibility training may be a strategy to promote context processing. In a brain region vital for maintaining cognitive flexibility and fear suppression, the prelimbic cortex (PLC), cognitive flexibility training also lastingly enhanced dopamine (DA) and norepinephrine (NE) levels, in animals with and without traumatic stress exposure. In contrast, cognitive flexibility training prior to traumatic stress exposure decreased levels of DA and its metabolites in the striatum, a region mediating reflexive decision making. Overall, our results suggest that cognitive flexibility training can provide lasting benefits by enhancing extinction retention, a hallmark cognitive effect of trauma, and prelimbic DA, which can maintain flexibility across changing contexts.
Collapse
Affiliation(s)
- Lauren E Chaby
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Research Service, John D. Dingell VA Medical Center, Detroit, MI, United States
| | - Klevis Karavidha
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Michael J Lisieski
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Research Service, John D. Dingell VA Medical Center, Detroit, MI, United States
| | - Israel Liberzon
- Department of Psychiatry, VA Medical Center, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
82
|
Gallo EF. Disentangling the diverse roles of dopamine D2 receptors in striatal function and behavior. Neurochem Int 2019; 125:35-46. [PMID: 30716356 DOI: 10.1016/j.neuint.2019.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Dopamine D2 receptors (D2Rs) mediate many of the actions of dopamine in the striatum, ranging from movement to the effortful pursuit of reward. Yet despite significant advances in linking D2Rs to striatal functions with pharmacological and genetic strategies in animals, how dopamine orchestrates its myriad actions on different cell populations -each expressing D2Rs- remains unclear. Furthermore, brain imaging and genetic studies in humans have consistently associated striatal D2R alterations with various neurological and neuropsychiatric disorders, but how and which D2Rs are involved in each case is poorly understood. Therefore, a critical first step is to engage in a refined and systematic investigation of the impact of D2R function on specific striatal cells, circuits, and behaviors. Here, I will review recent efforts, primarily in animal models, aimed at unlocking the complex and heterogeneous roles of D2Rs in striatum.
Collapse
Affiliation(s)
- Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
83
|
cAMP-producing chemogenetic and adenosine A2a receptor activation inhibits the inwardly rectifying potassium current in striatal projection neurons. Neuropharmacology 2019; 148:229-243. [PMID: 30659840 DOI: 10.1016/j.neuropharm.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Adenosine A2a receptors (A2aRs) are highly and selectively expressed in D2-medium spiny neurons (D2-MSNs) that also express a high level of dopamine D2 receptors (D2Rs). However, it was not established how A2aR activity affects D2-MSN excitability, let alone the ion channels involved. We have performed two sets of experiments to determine the potential A2aR agonistic effects on D2-MSN intrinsic excitability and the underlying ion channel mechanism. First, we have used the cAMP-producing, Gαs/olf coupled designer receptors exclusively activated by designer drug (Gs-DREADDs) to phenocopy cAMP-stimulating A2aR activation. We found that activation of Gs-DREADD inhibited the inwardly rectifying potassium current (Kir)-a key regulator of MSN excitability, caused a depolarization, increased input resistance, and substantially increased the intrinsic excitability of MSNs such that depolarizing inputs evoked many more action potentials. Second, we have determined that A2aR agonism produced these same excitatory effects on D2-MSN intrinsic excitability and spike firing, although at lower magnitudes than those induced by Gs-DREADD activation; furthermore, these A2aR-triggered excitatory effects were intact in the presence of a D2R antagonist. Taken together, these results clearly establish that in striatal D2-MSNs, A2aR activation can independently inhibit Kir and increase intrinsic excitability and spike and neurotransmitter output; our results also indicate that Gs-DREADD can serve as a broadly useful positive control for neurotransmitter receptors that increase intracellular cAMP levels and hence facilitate the determination of the cellular effects of these neurotransmitter receptors.
Collapse
|
84
|
McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci 2019; 42:205-220. [PMID: 30621912 PMCID: PMC6401206 DOI: 10.1016/j.tins.2018.12.004] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 12/15/2022]
Abstract
The mesolimbic hypothesis has been a central dogma of schizophrenia for decades, positing that aberrant functioning of midbrain dopamine projections to limbic regions causes psychotic symptoms. Recently, however, advances in neuroimaging techniques have led to the unanticipated finding that dopaminergic dysfunction in schizophrenia is greatest within nigrostriatal pathways, implicating the dorsal striatum in the pathophysiology and calling into question the mesolimbic theory. At the same time our knowledge of striatal anatomy and function has progressed, suggesting new mechanisms via which striatal dysfunction may contribute to the symptoms of schizophrenia. This Review draws together these developments, to explore what they mean for our understanding of the pathophysiology, clinical manifestations, and treatment of the disorder. Techniques for characterising the mesostriatal dopamine system, both in humans and animal models, have advanced significantly over the past decade. In vivo imaging studies in schizophrenia patients demonstrate that dopaminergic dysfunction in schizophrenia is greatest in nigrostriatal as opposed to mesolimbic pathways. Better understanding of striatal structure and function has enhanced our insight into the neurobiological basis of psychotic symptoms. The role of other neurotransmitters in modulating striatal dopamine function merits further exploration, and modulating these neurotransmitter systems has potential to offer new therapeutic strategies.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK; South London and Maudsley NHS Foundation Trust, London, SE5 8AF, UK
| | - Anissa Abi-Dargham
- Department of Psychiatry, School of Medicine, Stony Brook University, New York, USA
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK; South London and Maudsley NHS Foundation Trust, London, SE5 8AF, UK.
| |
Collapse
|
85
|
Canetta S, Kellendonk C. Can we use mice to study schizophrenia? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0032. [PMID: 29352031 DOI: 10.1098/rstb.2017.0032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 02/03/2023] Open
Abstract
The validity of rodent models for the study of psychiatric disorders is controversial. Despite great efforts from academic institutions and pharmaceutical companies, as of today, no major therapeutic intervention has been developed for the treatment of psychiatric disorders based on mechanistic insights from rodent models. Here, we argue that despite these historical shortcomings, rodent studies are nevertheless instrumental for identifying neuronal circuit mechanisms underlying behaviours that are affected in psychiatric disorders. Focusing on schizophrenia, we will give four examples of rodent models that were generated based on genetic and environmental risk factors or pathophysiological evidence as entry points. We will then discuss how circuit analysis in these specific examples can be used for testing hypotheses about neuronal mechanisms underlying symptoms of schizophrenia, which will then guide the development of new therapies.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Sarah Canetta
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA .,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA .,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
86
|
Klaus K, Pennington K. Dopamine and Working Memory: Genetic Variation, Stress and Implications for Mental Health. Curr Top Behav Neurosci 2019; 41:369-391. [PMID: 31502081 DOI: 10.1007/7854_2019_113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
At the molecular level, the neurotransmitter dopamine (DA) is a key regulatory component of executive function in the prefrontal cortex (PFC) and dysfunction in dopaminergic (DAergic) circuitry has been shown to result in impaired working memory (WM). Research has identified multiple common genetic variants suggested to impact on the DA system functionally and also behaviourally to alter WM task performance. In addition, environmental stressors impact on DAergic tone, and this may be one mechanism by which stressors confer vulnerability to the development of neuropsychiatric conditions. This chapter aims to evaluate the impact of key DAergic gene variants suggested to impact on both synaptic DA levels (COMT, DAT1, DBH, MAOA) and DA receptor function (ANKK1, DRD2, DRD4) in terms of their influence on visuospatial WM. The role of stressors and interaction with the genetic background is discussed in addition to discussion around some of the implications for precision psychiatry. This and future work in this area aim to disentangle the neural mechanisms underlying susceptibility to stress and their impact and relationship with cognitive processes known to influence mental health vulnerability.
Collapse
Affiliation(s)
- Kristel Klaus
- MRC Brain and Cognition Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
87
|
Abi-Dargham A. From "bedside" to "bench" and back: A translational approach to studying dopamine dysfunction in schizophrenia. Neurosci Biobehav Rev 2018; 110:174-179. [PMID: 30528375 DOI: 10.1016/j.neubiorev.2018.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/25/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023]
Abstract
Despite multiple lines of research, a mechanistic understanding of schizophrenia remains elusive. Neuroimaging studies have yielded observations that can be used in translational studies in animals to attempt to uncover their cellular and circuit basis and their significance for the diseased human brain. Enhanced D2 stimulation in the striatum is a well replicated and established observation in patients with schizophrenia. This "bedside" observation was reproduced "at the bench" level by creating a transgenic mouse overexpressing D2 receptors in dorsal striatum (D2R-OE mouse). The D2R-OE mouse showed multiple behavioral, molecular, electrophysiological and anatomical alterations. Some of these are consistent with findings in patients with schizophrenia, providing construct validity to the model and mechanistic insights for the observations made in humans. Other findings were novel, and provide an opportunity for a reverse translational effort back into the clinic. In this review we will summarize the process of translation and back translation from the D2R-OE mouse and describe the insights into the pathophysiology of the disease gained through this type of translational work.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Departments of Psychiatry and Radiology, Stony Brook School of Medicine, HSC-T10-087H, 101 Nicolls Road, Stony Brook, NY, 11794-8101, United States.
| |
Collapse
|
88
|
LeSauter J, Balsam PD, Simpson EH, Silver R. Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity. Eur J Neurosci 2018; 51:71-81. [PMID: 30362616 DOI: 10.1111/ejn.14219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Dopamine has been implicated in circadian timing underlying the food entrainable oscillator (FEO) circuitry and overexpression of the dopamine D2 receptor (D2R) in the striatum has been reported to reduce motivation to obtain food rewards in operant tasks. In the present study, we explored both of these mechanisms by examining food anticipatory activity (FAA) in dopamine D2 receptor-overexpressing (D2R-OE) mice under various durations of food availability. First, we noted that at baseline, there were no differences between D2R-OE mice and their littermates in activity level, food intake, and body weight or in circadian activity. Under conditions of very restricted food availability (4 or 6 hr), both genotypes displayed FAA. In contrast, under 8-hr food availability, control mice showed FAA, but D2R-OE mice did not. Normalization of D2R by administration of doxycycline, a tetracycline analogue, rescued FAA under 8-hr restricted food. We next tested for circadian regulation of FAA. When given ad libitum access to food, neither D2R-OE nor controls were active during the daytime. However, after an interval of food restriction, all mice showed elevated locomotor activity at the time of previous food availability in the day, indicating circadian timing of anticipatory activity. In summary, motivation is reduced in D2R-OE mice but circadian timing behavior is not affected. We conclude that an increase in striatal D2R reduces FAA by modulating motivation and not by acting on a clock mechanism.
Collapse
Affiliation(s)
- Joseph LeSauter
- Department of Psychology, Barnard College, New York City, New York
| | - Peter D Balsam
- Department of Psychology, Barnard College, New York City, New York.,Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Rae Silver
- Department of Psychology, Barnard College, New York City, New York.,Departments of Psychology and of Pathology and Cell Biology, Columbia University, New York City, New York
| |
Collapse
|
89
|
Naderi M, Ferrari MCO, Chivers DP, Niyogi S. Maternal Exposure to Dietary Selenium Causes Dopaminergic Hyperfunction and Cognitive Impairment in Zebrafish Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13574-13583. [PMID: 30335985 DOI: 10.1021/acs.est.8b04768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Maternal exposure to environmental contaminants is a predisposing factor for neurodevelopmental disorders with associated cognitive and social deficits in offspring. In this study, we investigated the effects of maternal exposure to selenium (Se), a contaminant of potential environmental concern in aquatic ecosystems, on cognitive performance and the underlying mechanisms in F1-generation adult zebrafish. Adult female zebrafish were exposed to different concentrations of dietary Se (3.5, 11.1, or 27.4 μg Se/g dry weight) for a period of 60 days. Fish were subsequently bred, and their offspring were collected and raised for 6 months on a normal diet. Maternal exposure to all concentrations of dietary Se induced learning impairment in F1-zebrafish tested in a latent learning task. The results also showed a hyperfunctioning dopaminergic system in fish exhibiting the learning deficit. The hyperfunction of the dopaminergic system was associated with enhanced oxidative stress and alterations in the mRNA abundance of several immediate early and late response genes in the zebrafish brain. Taken together, these results suggest that maternal exposure to dietary Se via alterations in the dopaminergic system leads to persistent neurobehavioral deficits in F1-generation adult zebrafish.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology , University of Saskatchewan , 112 Science Place , Saskatoon , SK S7N 5E2 , Canada
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences , University of Saskatchewan , 52 Campus Drive , Saskatoon , SK S7N 5B4 , Canada
| | - Douglas P Chivers
- Department of Biology , University of Saskatchewan , 112 Science Place , Saskatoon , SK S7N 5E2 , Canada
| | - Som Niyogi
- Department of Biology , University of Saskatchewan , 112 Science Place , Saskatoon , SK S7N 5E2 , Canada
- Toxicology Centre , University of Saskatchewan , 44 Campus Drive , Saskatoon , SK S7N 5B3 , Canada
| |
Collapse
|
90
|
Persistent "Sag" in Prefrontal Cortex Function following Adolescent Binge Drinking. J Neurosci 2018; 38:9615-9617. [PMID: 30404940 DOI: 10.1523/jneurosci.1755-18.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
|
91
|
Stolf AR, Cupertino RB, Müller D, Sanvicente-Vieira B, Roman T, Vitola ES, Grevet EH, von Diemen L, Kessler FHP, Grassi-Oliveira R, Bau CHD, Rovaris DL, Pechansky F, Schuch JB. Effects of DRD2 splicing-regulatory polymorphism and DRD4 48 bp VNTR on crack cocaine addiction. J Neural Transm (Vienna) 2018; 126:193-199. [PMID: 30367264 DOI: 10.1007/s00702-018-1946-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/17/2018] [Indexed: 11/24/2022]
Abstract
There is evidence that dopamine receptors D2 (DRD2) and D4 (DRD4) polymorphisms may influence substance use disorders (SUD) susceptibility both individually and through their influence in the formation of DRD2-DRD4 heteromers. The dopaminergic role on the vulnerability to addiction appears to be influenced by sex. A cross-sectional study with 307 crack cocaine addicts and 770 controls was conducted. The influence of DRD2 rs2283265 and DRD4 48 bp VNTR in exon 3 variants, as well as their interaction on crack cocaine addiction susceptibility and severity were evaluated in women and men separately. An association between the DRD2 T allele and crack cocaine addiction was found in women. In this same group, interaction analysis demonstrated that the presence of DRD2-T allele and concomitant absence of DRD4-7R allele were associated with risk for crack cocaine addiction. No influence of DRD2 and DRD4 variants was observed in men regarding addiction severity. This study reinforces the role of dopaminergic genes in externalizing behaviors, especially the influence of DRD2-DRD4 interaction on SUD. This is the fourth sample that independently associated the DRD2-DRD4 interaction with SUD itself or related disorders. In addition, our findings point out to a potential difference of dopaminergic neurotransmission across sex influencing addiction susceptibility.
Collapse
Affiliation(s)
- Anderson R Stolf
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Renata B Cupertino
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Breno Sanvicente-Vieira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tatiana Roman
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo S Vitola
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lisia von Diemen
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felix H P Kessler
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flavio Pechansky
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Laboratory of Immunosenescence, Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, prédio 81, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.
| |
Collapse
|
92
|
Tamano H, Morioka H, Nishio R, Takeuchi A, Takeda A. Blockade of Rapid Influx of Extracellular Zn 2+ into Nigral Dopaminergic Neurons Overcomes Paraquat-Induced Parkinson's Disease in Rats. Mol Neurobiol 2018; 56:4539-4548. [PMID: 30341553 DOI: 10.1007/s12035-018-1398-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/14/2018] [Indexed: 02/02/2023]
Abstract
The herbicide paraquat (PQ) has been reported to enhance the risk of developing Parkinson's disease (PD) from epidemiological studies. PQ-induced reactive oxygen species (ROS) are linked with a selective loss of nigrostriatal dopaminergic neurons. Here, we first report a unique mechanism of nigrostriatal dopaminergic degeneration, in which rapid intracellular Zn2+ dysregulation via PQ-induced ROS production causes PD in rats. When the substantia nigra pars compacta (SNpc) of rats was perfused with PQ, extracellular concentrations of glutamate and Zn2+ were increased and decreased, respectively, in the SNpc. These changes were ameliorated by co-perfusion with Trolox, an antioxidative agent. In in vitro slice experiments, PQ rapidly increased extracellular Zn2+ influx via AMPA receptor activation. Both loss of nigrostriatal dopaminergic neurons and increase in turning behavior in response to apomorphine were markedly reduced by coinjection of PQ and intracellular Zn2+ chelator, i.e., ZnAF-2DA into the SNpc. Furthermore, loss of nigrostriatal dopaminergic neurons induced with a low dose of PQ, which did not induce any behavioral abnormality, was completely blocked by coinjection of ZnAF-2DA. The present study indicates that rapid influx of extracellular Zn2+ into dopaminergic neurons via AMPA receptor activation, which is initially induced by PQ-mediated ROS production in the SNpc, induces nigrostriatal dopaminergic degeneration, resulting in PQ-induced PD in rats. Intracellular Zn2+ dysregulation in dopaminergic neurons is the cause of PQ-induced pathogenesis in the SNpc, and the block of intracellular Zn2+ toxicity leads to defending PQ-induced pathogenesis.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroki Morioka
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryusuke Nishio
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Azusa Takeuchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
93
|
Filla I, Bailey MR, Schipani E, Winiger V, Mezias C, Balsam PD, Simpson EH. Striatal dopamine D2 receptors regulate effort but not value-based decision making and alter the dopaminergic encoding of cost. Neuropsychopharmacology 2018; 43:2180-2189. [PMID: 30082890 PMCID: PMC6135745 DOI: 10.1038/s41386-018-0159-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Abstract
Deficits in goal-directed motivation represent a debilitating symptom for many patients with schizophrenia. Impairments in motivation can arise from deficits in processing information about effort and or value, disrupting effective cost-benefit decision making. We have previously shown that upregulated dopamine D2 receptor expression within the striatum (D2R-OE mice) decreases goal-directed motivation. Here, we determine the behavioral and neurochemical mechanisms behind this deficit. Female D2R-OE mice were tested in several behavioral paradigms including recently developed tasks that independently assess the impact of Value or Effort manipulations on cost-benefit decision making. In vivo microdialysis was used to measure extracellular dopamine in the striatum during behavior. In a value-based choice task, D2R-OE mice show normal sensitivity to changes in reward value and used reward value to guide their actions. In an effort-based choice task, D2R-OE mice evaluate the cost of increasing the number of responses greater relative to the effort cost of longer duration responses compared to controls. This shift away from choosing to repeatedly execute a response is accompanied by a dampening of extracellular dopamine in the striatum during goal-directed behavior. In the ventral striatum, extracellular dopamine level negatively correlates with response cost in controls, but this relationship is lost in D2R-OE mice. These results show that D2R signaling in the striatum, as observed in some patients with schizophrenia, alters the relationship between effort expenditure and extracellular dopamine. This dysregulation produces motivation deficits that are specific to effort but not value-based decision making, paralleling the effort-based motivational deficits observed in schizophrenia.
Collapse
Affiliation(s)
- Ina Filla
- 0000000419368729grid.21729.3fDepartment of Neuroscience, Columbia University, New York, NY USA
| | - Matthew R. Bailey
- 0000000419368729grid.21729.3fDepartment of Psychology, Columbia University, New York, NY USA
| | - Elke Schipani
- 0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University, New York, NY USA ,0000 0000 8499 1112grid.413734.6New York State Psychiatric Institute, New York, NY USA
| | - Vanessa Winiger
- 0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University, New York, NY USA
| | - Chris Mezias
- 0000000419368729grid.21729.3fBarnard college, Columbia University, New York, NY USA
| | - Peter D. Balsam
- 0000000419368729grid.21729.3fDepartment of Psychology, Columbia University, New York, NY USA ,0000 0000 8499 1112grid.413734.6New York State Psychiatric Institute, New York, NY USA ,0000000419368729grid.21729.3fBarnard college, Columbia University, New York, NY USA
| | - Eleanor H. Simpson
- 0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University, New York, NY USA ,0000 0000 8499 1112grid.413734.6New York State Psychiatric Institute, New York, NY USA
| |
Collapse
|
94
|
Andoh C, Nishitani N, Hashimoto E, Nagai Y, Takao K, Miyakawa T, Nakagawa T, Mori Y, Nagayasu K, Shirakawa H, Kaneko S. TRPM2 confers susceptibility to social stress but is essential for behavioral flexibility. Brain Res 2018; 1704:68-77. [PMID: 30273551 DOI: 10.1016/j.brainres.2018.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable, nonselective cation channel and a member of the TRP channel superfamily that acts as a sensor of intracellular redox states. TRPM2 is widely distributed in many tissues and highly expressed in the brain, but the physiological roles of TRPM2 in the central nervous system remain unclear. In this study, TRPM2-deficient mice were examined in a series of behavioral tests. TRPM2-deficient mice did not significantly differ from wild-type littermates in muscle strength, light/dark transition test, rotarod, elevated plus maze, social interaction, prepulse inhibition, Y-maze, forced swim test, cued and contextual fear conditioning, and tail suspension test. In the Barnes circular maze, TRPM2-deficient mice learned the fixed escape box position at similar extent to wild-type littermates, suggesting normal reference memory. However, performance of the first reversal trial and probe test were significantly impaired in TRPM2-deficient mice. In the T-maze delayed alternation task, TRPM2 deficiency significantly reduced choice accuracy. These results indicate that TRPM2-deficient mice shows behavioral inflexibility. Meanwhile, social avoidance induced by repeated social defeat stress was significantly attenuated in TRPM2-deficient mice, suggesting that TRPM2 deficiency confers stress resiliency. Our findings indicate that TRPM2 plays an essential role in maintaining behavioral flexibility but it increases susceptibility to stress.
Collapse
Affiliation(s)
- Chihiro Andoh
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Naoya Nishitani
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Emina Hashimoto
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuma Nagai
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Keizo Takao
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan; Life Science Research Center, University of Toyama, Toyama, Japan
| | - Tsuyoshi Miyakawa
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan; Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
95
|
Striatal dopamine 2 receptor upregulation during development predisposes to diet-induced obesity by reducing energy output in mice. Proc Natl Acad Sci U S A 2018; 115:10493-10498. [PMID: 30254156 DOI: 10.1073/pnas.1800171115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dopaminergic signaling in the striatum, particularly at dopamine 2 receptors (D2R), has been a topic of active investigation in obesity research in the past decades. However, it still remains unclear whether variations in striatal D2Rs modulate the risk for obesity and if so in which direction. Human studies have yielded contradictory findings that likely reflect a complex nonlinear relationship, possibly involving a combination of causal effects and compensatory changes. Animal work indicates that although chronic obesogenic diets reduce striatal D2R function, striatal D2R down-regulation does not lead to obesity. In this study, we evaluated the consequences of striatal D2R up-regulation on body-weight gain susceptibility and energy balance in mice. We used a mouse model of D2R overexpression (D2R-OE) in which D2Rs were selectively up-regulated in striatal medium spiny neurons. We uncover a pathological mechanism by which striatal D2R-OE leads to reduced brown adipose tissue thermogenesis, reduced energy expenditure, and accelerated obesity despite reduced eating. We also show that D2R-OE restricted to development is sufficient to promote obesity and to induce energy-balance deficits. Together, our findings indicate that striatal D2R-OE during development persistently increases the propensity for obesity by reducing energy output in mice. This suggests that early alterations in the striatal dopamine system could represent a key predisposition factor toward obesity.
Collapse
|
96
|
Nikiforuk A. Assessment of cognitive functions in animal models of schizophrenia. Pharmacol Rep 2018; 70:639-649. [DOI: 10.1016/j.pharep.2018.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
|
97
|
Ho AL, Salib AMN, Pendharkar AV, Sussman ES, Giardino WJ, Halpern CH. The nucleus accumbens and alcoholism: a target for deep brain stimulation. Neurosurg Focus 2018; 45:E12. [DOI: 10.3171/2018.5.focus18157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alcohol use disorder (AUD) is a difficult to treat condition with a significant global public health and cost burden. The nucleus accumbens (NAc) has been implicated in AUD and identified as an ideal target for deep brain stimulation (DBS). There are promising preclinical animal studies of DBS for alcohol consumption as well as some initial human clinical studies that have shown some promise at reducing alcohol-related cravings and, in some instances, achieving long-term abstinence. In this review, the authors discuss the evidence and concepts supporting the role of the NAc in AUD, summarize the findings from published NAc DBS studies in animal models and humans, and consider the challenges and propose future directions for neuromodulation of the NAc for the treatment of AUD.
Collapse
Affiliation(s)
| | - Anne-Mary N. Salib
- Departments of 1Neurosurgery and
- 2Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | | | | | - William J. Giardino
- 2Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Casey H. Halpern
- Departments of 1Neurosurgery and
- 2Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
98
|
Impaired recruitment of dopamine neurons during working memory in mice with striatal D2 receptor overexpression. Nat Commun 2018; 9:2822. [PMID: 30026489 PMCID: PMC6053467 DOI: 10.1038/s41467-018-05214-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The dopamine (DA) system plays a major role in cognitive functions through its interactions with several brain regions including the prefrontal cortex (PFC). Conversely, disturbances in the DA system contribute to cognitive deficits in psychiatric diseases, yet exactly how they do so remains poorly understood. Here we show, using mice with disease-relevant alterations in DA signaling (D2R-OE mice), that deficits in working memory (WM) are associated with impairments in the WM-dependent firing patterns of DA neurons in the ventral tegmental area (VTA). The WM-dependent phase-locking of DA neurons to 4 Hz VTA-PFC oscillations is absent in D2R-OE mice and VTA-PFC synchrony deficits scale with their WM impairments. We also find reduced 4 Hz synchrony between VTA DA neurons and selective impairments in their representation of WM demand. These results identify how altered DA neuron activity—at the level of long-range network activity and task-related firing patterns—may underlie cognitive impairments. Disrupted dopamine neuron firing is thought to contribute to cognitive dysfunction in psychiatric disorders. Here the authors show that mice overexpressing D2R in the striatum, commonly seen in schizophrenia, are also impaired in recruitment of dopamine neurons during working memory performance.
Collapse
|
99
|
Kostrzewa RM, Wydra K, Filip M, Crawford CA, McDougall SA, Brown RW, Borroto-Escuela DO, Fuxe K, Gainetdinov RR. Dopamine D 2 Receptor Supersensitivity as a Spectrum of Neurotoxicity and Status in Psychiatric Disorders. J Pharmacol Exp Ther 2018; 366:519-526. [PMID: 29921706 DOI: 10.1124/jpet.118.247981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
Abnormality of dopamine D2 receptor (D2R) function, often observed as D2R supersensitivity (D2RSS), is a commonality of schizophrenia and related psychiatric disorders in humans. Moreover, virtually all psychotherapeutic agents for schizophrenia target D2R in brain. Permanent D2RSS as a feature of a new animal model of schizophrenia was first reported in 1991, and then behaviorally and biochemically characterized over the next 15-20 years. In this model of schizophrenia characterized by production of D2RSS in ontogeny, there are demonstrated alterations of signaling processes, as well as functional links between the biologic template of the animal model and ability of pharmacotherapeutics to modulate or reverse biologic and behavioral modalities toward normality. Another such animal model, featuring knockout of trace amine-associated receptor 1 (TAAR1), demonstrates D2RSS with an increase in the proportion of D2R in the high-affinity state. Currently, TAAR1 agonists are being explored as a therapeutic option for schizophrenia. There is likewise an overlay of D2RSS with substance use disorder. The aspect of adenosine A2A-D2 heteroreceptor complexes in substance use disorder is highlighted, and the association of adenosine A2A receptor antagonists in discriminative and rewarding effects of psychostimulants is outlined. In summary, these new animal models of schizophrenia have face, construct, and predictive validity, and distinct advantages over earlier models. While the review summarizes elements of D2RSS in schizophrenia per se, and its interplay with substance use disorder, a major focus is on presumed new molecular targets attending D2RSS in schizophrenia and related clinical entities.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Karolina Wydra
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Malgorzata Filip
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Cynthia A Crawford
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Sanders A McDougall
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Dasiel O Borroto-Escuela
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Kjell Fuxe
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Raul R Gainetdinov
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| |
Collapse
|
100
|
Alcohol Consumption during Adolescence in a Mouse Model of Binge Drinking Alters the Intrinsic Excitability and Function of the Prefrontal Cortex through a Reduction in the Hyperpolarization-Activated Cation Current. J Neurosci 2018; 38:6207-6222. [PMID: 29915134 DOI: 10.1523/jneurosci.0550-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 12/20/2022] Open
Abstract
Periodic episodes of excessive alcohol consumption ("binge drinking") occur frequently among adolescents, and early binge drinking is associated with an increased risk of alcohol use disorders later in life. The PFC undergoes significant development during adolescence and hence may be especially susceptible to the effects of binge drinking. In humans and in animal models, adolescent alcohol exposure is known to alter PFC neuronal activity and produce deficits in PFC-dependent behaviors, such as decision making, response inhibition, and working memory. Using a voluntary intermittent access to alcohol (IA EtOH) procedure in male mice, we demonstrate that binge-level alcohol consumption during adolescence leads to altered drinking patterns and working memory deficits in young adulthood, two outcomes that suggest medial PFC dysfunction. We recorded from pyramidal neurons (PNs) in the prelimbic subregion of the medial PFC in slices obtained from mice that had IA EtOH and found that they display altered excitability, including a hyperpolarization of the resting membrane potential and reductions in the hyperpolarization-activated cation current (Ih) and in intrinsic persistent activity (a mode of neuronal firing that is dependent on Ih). Many of these effects on intrinsic excitability were sustained following abstinence and observed in mice that showed working memory deficits. In addition, we found that resting membrane potential and the Ih-dependent voltage "sag" in prelimbic PFC PNs are developmentally regulated during adolescence, suggesting that adolescent alcohol exposure may compromise PFC function by arresting the normal developmental trajectory of PN intrinsic excitability.SIGNIFICANCE STATEMENT Binge alcohol drinking during adolescence has negative consequences for the function of the developing PFC. Using a mouse model of voluntary binge drinking during adolescence, we found that this behavior leads to working memory deficits and altered drinking behavior in adulthood. In addition, we found that adolescent drinking is associated with specific changes to the intrinsic excitability of pyramidal neurons in the PFC, reducing the ability of these neurons to generate intrinsic persistent activity, a phenomenon thought to be important for working memory. These findings may help explain why human adolescent binge drinkers show performance deficits on tasks mediated by the PFC.
Collapse
|