51
|
Hynes TR, Tang L, Mervine SM, Sabo JL, Yost EA, Devreotes PN, Berlot CH. Visualization of G protein betagamma dimers using bimolecular fluorescence complementation demonstrates roles for both beta and gamma in subcellular targeting. J Biol Chem 2004; 279:30279-86. [PMID: 15136579 DOI: 10.1074/jbc.m401432200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the role of subcellular localization in regulating the specificity of G protein betagamma signaling, we have applied the strategy of bimolecular fluorescence complementation (BiFC) to visualize betagamma dimers in vivo. We fused an amino-terminal yellow fluorescent protein fragment to beta and a carboxyl-terminal yellow fluorescent protein fragment to gamma. When expressed together, these two proteins produced a fluorescent signal in human embryonic kidney 293 cells that was not obtained with either subunit alone. Fluorescence was dependent on betagamma assembly in that it was not obtained using beta2 and gamma1, which do not form a functional dimer. In addition to assembly, BiFC betagamma complexes were functional as demonstrated by more specific plasma membrane labeling than was obtained with individually tagged fluorescent beta and gamma subunits and by their abilities to potentiate activation of adenylyl cyclase by alpha(s) in COS-7 cells. To investigate isoform-dependent targeting specificity, the localization patterns of dimers formed by pair-wise combinations of three different beta subunits with three different gamma subunits were compared. BiFC betagamma complexes containing either beta1 or beta2 localized to the plasma membrane, whereas those containing beta5 accumulated in the cytosol or on intracellular membranes. These results indicate that the beta subunit can direct trafficking of the gamma subunit. Taken together with previous observations, these results show that the G protein alpha, beta, and gamma subunits all play roles in targeting each other. This method of specifically visualizing betagamma dimers will have many applications in sorting out roles for particular betagamma complexes in a wide variety of cell types.
Collapse
Affiliation(s)
- Thomas R Hynes
- The Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2623, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Rosskopf D, Koch K, Habich C, Geerdes J, Ludwig A, Wilhelms S, Jakobs KH, Siffert W. Interaction of Gbeta3s, a splice variant of the G-protein Gbeta3, with Ggamma- and Galpha-proteins. Cell Signal 2003; 15:479-88. [PMID: 12639711 DOI: 10.1016/s0898-6568(02)00140-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The T-allele of a polymorphism (C825T) in the gene of the G-protein beta3-subunit is associated with a complex phenotype (hypertension, obesity, altered drug responses) and the occurrence of a splice variant termed Gbeta3s which lacks one of the seven WD-domains that compose Gbeta-proteins. Here, we analysed Gbetagamma dimer formation and Galpha activation by Gbeta3s, key functional characteristics of Gbeta-proteins. Cleavage protection assays frequently used to analyse Gbeta1gamma and Gbeta2gamma dimer formation failed for Gbeta3 and Gbeta3s, while in coprecipitation assays, dimerization of Gbeta3 and Gbeta3s with Ggamma5, Ggamma8(c) and Ggamma12 could be demonstrated. Upon expression of Gbeta3s in COS-7 and Sf9 insect cells, binding of GTPgammaS to Galpha-proteins induced by mastoparan-7 and the M(2) muscarinic acetylcholine receptor was facilitated in comparison with cells overexpressing wildtype Gbeta3, as indicated by twofold reduced agonist EC(50) values. Together, these results indicate that Gbeta3s is a biologically active Gbeta-protein that may mediate the enhanced signal transduction observed in cells with the 825T-allele.
Collapse
Affiliation(s)
- Dieter Rosskopf
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 2002; 145:47-179. [PMID: 12224528 DOI: 10.1007/bfb0116431] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter R Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
54
|
Kelly GM, Vanderbeld B, Krawetz R, Mangos S. Differential distribution of the G protein gamma3 subunit in the developing zebrafish nervous system. Int J Dev Neurosci 2001; 19:455-67. [PMID: 11378305 DOI: 10.1016/s0736-5748(01)00002-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G proteins play an essential role in the transduction and propagation of extracellular signals across the plasma membrane. It was once thought that the G protein alpha subunit was the sole regulator of intracellular molecules. The G protein betagamma complex is now recognized as participating in many signaling events. While screening a zebrafish cDNA library to identify members of the protein 4.1 superfamily (Kelly, G.M., Reversade, B., Biochem. Cell Biol. 75 (1997), 623), we fortuitously identified a clone that encodes a zebrafish G protein gamma subunit. The 666 nucleotides of the zebrafish G protein gamma subunit cDNA encodes a polypeptide of 75 amino acids with high degree of homology to human, bovine, rat and mouse gamma subunits. BLAST search analysis of GenBank revealed that the zebrafish gamma subunit is 93% identical and 97% similar to the mammalian gamma3 subunit. The gamma3 gene was mapped to the zebrafish linkage group 21, approximately 10.76 cRays from bf, a gene with sequence homology to the human properdin factor gene. RT-PCR and in situ hybridization analyses first detected gamma3 mRNA during late somitogenesis, where it was expressed preferentially in the Vth cranial nerve, the forebrain and in ventrolateral regions of the mid- and hindbrain including the spinal cord. The ability of the zebrafish gamma3 subunit to form a signaling heterodimeric complex with a beta subunit was tested using a human beta2 subunit. The gamma3 formed a heterodimer with beta2 and the complex was capable of binding calmodulin in a calcium-dependent manner. Overexpression of the beta2gamma3 complex in zebrafish embryos lead to the loss of dorsoanterior structures and heart defects, possibly owing to an up-regulation of mitogen-activated protein kinase activity and/or decline in protein kinase A signaling. Together, these data imply that a betagamma heterodimer plays a role in signal transduction events involving G protein coupled receptors and that these events occur in specific regions in the nervous system of the developing zebrafish.
Collapse
Affiliation(s)
- G M Kelly
- Department of Zoology, Molecular Genetics Unit, University of Western Ontario, ON, N6A 5B7, London, Canada.
| | | | | | | |
Collapse
|
55
|
Evanko DS, Thiyagarajan MM, Siderovski DP, Wedegaertner PB. Gbeta gamma isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Galphas and Galphaq. J Biol Chem 2001; 276:23945-53. [PMID: 11294873 DOI: 10.1074/jbc.m101154200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation of Galpha(q) or Galpha(s) N-terminal contact sites for Gbetagamma resulted in alpha subunits that failed to localize at the plasma membrane or undergo palmitoylation when expressed in HEK293 cells. We now show that overexpression of specific betagamma subunits can recover plasma membrane localization and palmitoylation of the betagamma-binding-deficient mutants of alpha(s) or alpha(q). Thus, the betagamma-binding-defective alpha is completely dependent on co-expression of exogenous betagamma for proper membrane localization. In this report, we examined the ability of beta(1-5) in combination with gamma(2) or gamma(3) to promote proper localization and palmitoylation of mutant alpha(s) or alpha(q). Immunofluorescence localization, cellular fractionation, and palmitate labeling revealed distinct subtype-specific differences in betagamma interactions with alpha subunits. These studies demonstrate that 1) alpha and betagamma reciprocally promote the plasma membrane targeting of the other subunit; 2) beta(5), when co-expressed with gamma(2) or gamma(3), fails to localize to the plasma membrane or promote plasma membrane localization of mutant alpha(s) or alpha(q); 3) beta(3) is deficient in promoting plasma membrane localization of mutant alpha(s) and alpha(q), whereas beta(4) is deficient in promoting plasma membrane localization of mutant alpha(q); 4) both palmitoylation and interactions with betagamma are required for plasma membrane localization of alpha.
Collapse
Affiliation(s)
- D S Evanko
- Department of Microbiology and Immunology and Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
56
|
Chase DL, Patikoglou GA, Koelle MR. Two RGS proteins that inhibit Galpha(o) and Galpha(q) signaling in C. elegans neurons require a Gbeta(5)-like subunit for function. Curr Biol 2001; 11:222-31. [PMID: 11250150 DOI: 10.1016/s0960-9822(01)00071-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Gbeta proteins have traditionally been thought to complex with Ggamma proteins to function as subunits of G protein heterotrimers. The divergent Gbeta(5) protein, however, can bind either Ggamma proteins or regulator of G protein signaling (RGS) proteins that contain a G gamma-like (GGL) domain. RGS proteins inhibit G protein signaling by acting as Galpha GTPase activators. While Gbeta(5) appears to bind RGS proteins in vivo, its association with Ggamma proteins in vivo has not been clearly demonstrated. It is unclear how Gbeta(5) might influence RGS activity. In C. elegans there are exactly two GGL-containing RGS proteins, EGL-10 and EAT-16, and they inhibit Galpha(o) and Galpha(q) signaling, respectively. RESULTS We knocked out the gene encoding the C. elegans Gbeta(5) ortholog, GPB-2, to determine its physiological roles in G protein signaling. The gpb-2 mutation reduces the functions of EGL-10 and EAT-16 to levels comparable to those found in egl-10 and eat-16 null mutants. gpb-2 knockout animals are viable, and exhibit no obvious defects beyond those that can be attributed to a reduction of EGL-10 or EAT-16 function. GPB-2 protein is nearly absent in eat-16; egl-10 double mutants, and EGL-10 protein is severely diminished in gpb-2 mutants. CONCLUSIONS Gbeta(5) functions in vivo complexed with GGL-containing RGS proteins. In the absence of Gbeta(5), these RGS proteins have little or no function. The formation of RGS-Gbeta(5) complexes is required for the expression or stability of both the RGS and Gbeta(5) proteins. Appropriate RGS-Gbeta(5) complexes regulate both Galpha(o) and Galpha(q) proteins in vivo.
Collapse
Affiliation(s)
- D L Chase
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
57
|
Mason MG, Botella JR. Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein gamma-subunit cDNA. Proc Natl Acad Sci U S A 2000; 97:14784-8. [PMID: 11121078 PMCID: PMC18996 DOI: 10.1073/pnas.97.26.14784] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins consist of three subunits (alpha, beta, and gamma). alpha- and beta- subunits have been previously cloned in plants, but the gamma-subunit has remained elusive. To isolate the gamma-subunit of a plant heterotrimeric G protein an Arabidopsis thaliana yeast two-hybrid library was screened by using a tobacco G-beta-subunit as the bait protein. One positive clone (AGG1) was isolated several times; it displays significant homology to the conserved domains of mammalian gamma-subunits. The predicted AGG1 protein sequence contains all of the typical characteristics of mammalian gamma-subunits such as small size (98 amino acids, 10.8 kDa), presence of a C-terminal CAAX box to direct isoprenyl modification, and an N-terminal alpha-helix region capable of forming a coiled-coil interaction with the beta-subunit. Northern and Southern analyses showed that AGG1 is a single-copy gene in Arabidopsis with a similar expression pattern to the Arabidopsis beta-subunit, AGB1 [Weiss, C. A., Garnaat, C. W., Mukai, K., Hu, Y. & Ma, H. (1994) Proc. Natl. Acad. Sci. USA 91, 9554-9558]. By using the yeast two-hybrid system, we show that AGG1 strongly interacts with tobacco and Arabidopsis beta-subunits. The in vivo results have been confirmed by using in vitro methods to prove the interaction between AGG1 and the Arabidopsis beta-subunit. As previously observed in mammalian systems, both the coiled-coil domain and the WD repeat regions of the beta-subunit are essential for AGG1 interaction. Also in agreement with previous observations, the removal of the N-terminal alpha-helix of the AGG1 greatly reduces but does not completely block the interaction.
Collapse
Affiliation(s)
- M G Mason
- Plant Genetic Engineering Laboratory, Department of Botany, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
58
|
Bommakanti RK, Vinayak S, Simonds WF. Dual regulation of Akt/protein kinase B by heterotrimeric G protein subunits. J Biol Chem 2000; 275:38870-6. [PMID: 10986289 DOI: 10.1074/jbc.m007403200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
While positive regulation of c-Akt (also known as protein kinase B) by receptor tyrosine kinases is well documented, compounds acting through G protein-coupled receptors can also activate Akt and its downstream targets. We therefore explored the role of G protein subunits in the regulation of Akt in cultured mammalian cells. In HEK-293 and COS-7 cells transiently transfected with beta(2)-adrenergic or m2 muscarinic receptors, respectively, treatment with agonist-induced phosphorylation of Akt at serine 473 as evidenced by phosphoserine-specific immunoblots. This effect was blocked by the phosphatidylinositol-3-OH kinase inhibitor LY294002 and wild-type Galpha(i1), and was not duplicated by co-transfection of the constitutively active Galpha(s)-Q227L or Galpha(i)-Q204L mutant. Co-transfection of Gbeta(1), Gbeta(2) but not Gbeta(5) together with Ggamma(2) activated the kinase when assayed in vitro following immunoprecipitation of the epitope-tagged enzyme. In contrast, constitutively activated G protein subunits representing the four Galpha subfamilies were found unable to activate Akt in either cell line. The latter results are in disagreement with a report by Murga et al. (Murga, C., Laguinge, L., Wetzker, R., Cuadrado, A., and Gutkind, J. S. (1998) J. Biol. Chem. 273, 19080-19085) that described activation of Akt in response to mutationally activated Galpha(q) and Galpha(i) transfection in COS cells. To the contrary, in our experiments Galpha(q)-Q209L inhibited Akt activation resulting from betagamma or mutationally activated H-Ras co-transfection in these cells. In HEK-293 cells Galpha(q)-Q209L transfection inhibited insulin-like growth factor-1 activation of epitope-tagged Akt. In m1 muscarinic receptor transfected HEK-293 cells, carbachol inhibited insulin-like growth factor-1 stimulated phosphorylation at Ser(473) of endogenous Akt in an atropine-reversible fashion. We conclude that G proteins can regulate Akt by two distinct and potentially opposing mechanisms: activation by Gbetagamma heterodimers in a phosphatidylinositol-3-OH kinase-dependent fashion, and inhibition mediated by Galpha(q). This work identifies Akt as a novel point of convergence between disparate signaling pathways.
Collapse
Affiliation(s)
- R K Bommakanti
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20802-1752, USA
| | | | | |
Collapse
|
59
|
Calvert PD, Krasnoperova NV, Lyubarsky AL, Isayama T, Nicoló M, Kosaras B, Wong G, Gannon KS, Margolskee RF, Sidman RL, Pugh EN, Makino CL, Lem J. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Proc Natl Acad Sci U S A 2000; 97:13913-8. [PMID: 11095744 PMCID: PMC17675 DOI: 10.1073/pnas.250478897] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinal photoreceptors use the heterotrimeric G protein transducin to couple rhodopsin to a biochemical cascade that underlies the electrical photoresponse. Several isoforms of each transducin subunit are present in the retina. Although rods and cones seem to contain distinct transducin subunits, it is not known whether phototransduction in a given cell type depends strictly on a single form of each subunit. To approach this question, we have deleted the gene for the rod transducin alpha-subunit in mice. In hemizygous knockout mice, there was a small reduction in retinal transducin alpha-subunit content but retinal morphology and the physiology of single rods were largely normal. In homozygous knockout mice, a mild retinal degeneration occurred with age. Rod-driven components were absent from the electroretinogram, whereas cone-driven components were retained. Every photoreceptor examined by single-cell recording failed to respond to flashes, with one exception. The solitary responsive cell was insensitive, as expected for a cone, but had a rod-like spectral sensitivity and flash response kinetics that were slow, even for rods. These results indicate that most if not all rods use a single transducin type in phototransduction.
Collapse
Affiliation(s)
- P D Calvert
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Arnot MI, Stotz SC, Jarvis SE, Zamponi GW. Differential modulation of N-type 1B and P/Q-type 1A calcium channels by different G protein subunit isoforms. J Physiol 2000; 527 Pt 2:203-12. [PMID: 10970423 PMCID: PMC2270070 DOI: 10.1111/j.1469-7793.2000.00203.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Using transient calcium phosphate transfection into the human embryonic kidney tsa-201 cell line and subsequent whole-cell patch-clamp protocols, we examined the tonic modulation of cloned N- and P/Q-type calcium channels by five different G protein beta subunits via strong depolarizing voltage prepulses. For N- and P/Q-type channels, the magnitude of inhibition was dependent on the Gbeta subtype co-expressed. Both the absolute and relative magnitudes of Gbeta subunit-induced inhibition of P/Q-type channels differed from those observed with the N-type channel. For each calcium channel subtype, kinetics of both the prepulse-mediated recovery from inhibition and the re-inhibition following the prepulse were examined for each of the Gbeta subunits by varying either the duration between the pre- and the test pulse or the length of the prepulse. For each channel subtype, we observed a differential Gbeta subunit rank order with regard to the rates of re-inhibition and recovery from inhibition. On average, P/Q-type channels exhibited more rapid rates of recovery from inhibition than those observed with N-type channels. Different Gbeta subtypes mediated different degrees of slowing of activation kinetics. The differential modulation of P/Q- and N-type channels by various Gbeta subtypes may provide a mechanism for fine tuning the amount of calcium entering the presynaptic nerve termini.
Collapse
Affiliation(s)
- M I Arnot
- Neuroscience and Smooth Muscle Research Groups, Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Canada
| | | | | | | |
Collapse
|
61
|
Maier U, Babich A, Macrez N, Leopoldt D, Gierschik P, Illenberger D, Nurnberg B. Gbeta 5gamma 2 is a highly selective activator of phospholipid-dependent enzymes. J Biol Chem 2000; 275:13746-54. [PMID: 10788495 DOI: 10.1074/jbc.275.18.13746] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, Gbeta specificity in the regulation of Gbetagamma-sensitive phosphoinositide 3-kinases (PI3Ks) and phospholipase Cbeta (PLCbeta) isozymes was examined. Recombinant mammalian Gbeta(1-3)gamma(2) complexes purified from Sf9 membranes stimulated PI3Kgamma lipid kinase activity with similar potency (10-30 nm) and efficacy, whereas transducin Gbetagamma was less potent. Functionally active Gbeta(5)gamma(2) dimers were purified from Sf9 cell membranes following coexpression of Gbeta(5) and Ggamma(2-His). This preparation as well as Gbeta(1)gamma(2-His) supported pertussis toxin-mediated ADP-ribosylation of Galpha(i1). Gbeta(1)gamma(2-His) stimulated PI3Kgamma lipid and protein kinase activities at nanomolar concentrations, whereas Gbeta(5)gamma(2-His) had no effect. Accordingly, Gbeta(1)gamma(2-His), but not Gbeta(5)gamma(2-His), significantly stimulated the lipid kinase activity of PI3Kbeta in the presence or absence of tyrosine-phosphorylated peptides derived from the p85-binding domain of the platelet derived-growth factor receptor. Conversely, both preparations were able to stimulate PLCbeta(2) and PLCbeta(1). However, Gbeta(1)gamma(2-His), but not Gbeta(5)gamma(2-His), activated PLCbeta(3). Experimental evidence suggests that the mechanism of Gbeta(5)-dependent effector selectivity may differ between PI3K and PLCbeta. In conclusion, these data indicate that Gbeta subunits are able to discriminate among effectors independently of Galpha due to selective protein-protein interaction.
Collapse
Affiliation(s)
- U Maier
- Institut für Pharmakologie, Freie Universität Berlin, Thielallee 69-73, 14195 Berlin (Dahlem), Germany
| | | | | | | | | | | | | |
Collapse
|
62
|
Jeong SW, Ikeda SR. Effect of G protein heterotrimer composition on coupling of neurotransmitter receptors to N-type Ca(2+) channel modulation in sympathetic neurons. Proc Natl Acad Sci U S A 2000; 97:907-12. [PMID: 10639178 PMCID: PMC15429 DOI: 10.1073/pnas.97.2.907] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-dependent (VD) inhibition of N-type Ca(2+) channels is mediated primarily by neurotransmitter receptors that couple to pertussis toxin (PTX)-sensitive G proteins (such as G(o) and G(i)). To date, however, the composition of heterotrimeric complexes, i.e., specific Galphabetagamma combinations, capable of coupling receptors to N-type Ca(2+) channels has not been defined. We addressed this question by heterologously expressing identified Galphabetagamma combinations in PTX-treated rat sympathetic neurons and testing for reconstitution of agonist-mediated VD inhibition. The heterologously expressed Galpha subunits were rendered PTX-insensitive by mutating the codon specifying the ADP ribosylation site. The following results were obtained from this approach. (i) Expression of Galpha(oA), Galpha(oB), and Galpha(i2) (along with Gbeta(1)gamma(2)) reconstituted VD inhibition mediated by alpha(2)-adrenergic, adenosine, somatostatin, and prostaglandin E(2) receptors. Conversely, expression of Galpha(i1) and Galpha(i3) was ineffective at restoring coupling. (ii) Coupling efficiency, as determined from the magnitude of reconstituted Ca(2+) current inhibition, depended on both the receptor and Galpha subtype. The following rank order of coupling efficiency was observed: Galpha(oA) = Galpha(oB) > Galpha(i2) for alpha(2)-adrenergic receptor; Galpha(i2) > Galpha(oA) = Galpha(oB) for adenosine and prostaglandin E(2) receptors; and Galpha(oB) = Galpha(i2) > Galpha(oA) for the somatostatin receptor. (iii) In general, varying the Gbetagamma composition of Galpha(oA)-containing heterotrimers had little effect on the coupling of alpha(2)-adrenergic receptors to the VD pathway. Taken together, these results suggest that multiple, diverse Galphabetagamma combinations are capable of coupling neurotransmitter receptors to VD inhibition of N-type Ca(2+) channels. Thus, if exquisite Galphabetagamma-coupling specificity exists in situ, it cannot arise solely from the inherent inability of other Galphabetagamma combinations to form functional signaling complexes.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Calcium Channels, N-Type/metabolism
- Cattle
- DNA, Recombinant/administration & dosage
- DNA, Recombinant/genetics
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/metabolism
- Heterotrimeric GTP-Binding Proteins/chemistry
- Heterotrimeric GTP-Binding Proteins/genetics
- Heterotrimeric GTP-Binding Proteins/metabolism
- Humans
- Male
- Membrane Potentials/drug effects
- Mice
- Neurons/cytology
- Neurons/metabolism
- Neurons/physiology
- Norepinephrine/pharmacology
- Patch-Clamp Techniques
- Pertussis Toxin
- Protein Binding/drug effects
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Neurotransmitter/metabolism
- Superior Cervical Ganglion/cytology
- Superior Cervical Ganglion/metabolism
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- S W Jeong
- Laboratory of Molecular Physiology, Guthrie Research Institute, One Guthrie Square, Sayre, PA 18840, USA
| | | |
Collapse
|
63
|
Huang L, Shanker YG, Dubauskaite J, Zheng JZ, Yan W, Rosenzweig S, Spielman AI, Max M, Margolskee RF. Ggamma13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosci 1999; 2:1055-62. [PMID: 10570481 DOI: 10.1038/15981] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gustducin is a transducin-like G protein selectively expressed in taste receptor cells. The alpha subunit of gustducin (alpha-gustducin) is critical for transduction of responses to bitter or sweet compounds. We identified a G-protein gamma subunit (Ggamma13) that colocalized with alpha-gustducin in taste receptor cells. Of 19 alpha-gustducin/Ggamma13-positive taste receptor cells profiled, all expressed the G protein beta3 subunit (Gbeta3); approximately 80% also expressed Gbeta1. Gustducin heterotrimers (alpha-gustducin/Gbeta1/Ggamma13) were activated by taste cell membranes plus bitter denatonium. Antibodies against Ggamma13 blocked the denatonium-induced increase of inositol trisphosphate (IP3) in taste tissue. We conclude that gustducin heterotrimers transduce responses to bitter and sweet compounds via alpha-gustducin's regulation of phosphodiesterase (PDE) and Gbetagamma's activation of phospholipase C (PLC).
Collapse
Affiliation(s)
- L Huang
- Howard Hughes Medical Institute, Mount Sinai School of Medicine of New York University, Box 1677, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Levine MA. Clinical implications of genetic defects in G proteins: oncogenic mutations in G alpha s as the molecular basis for the McCune-Albright syndrome. Arch Med Res 1999; 30:522-31. [PMID: 10714367 DOI: 10.1016/s0188-4409(99)00075-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Signal-transducing guanine nucleotide-binding proteins (G proteins) couple extracellular receptor proteins to intracellular effector enzymes and ion channels, and therefore are critical mediators of cellular responses to external stimuli. G proteins are comprised of three subunits (alpha, beta, gamma), each encoded by many different genes. The multiplicity of G protein subunits facilitates great combinatorial variability, which, in part, accounts for the ability of G proteins to interact with many different receptor and effector proteins. Hundreds of G protein-coupled receptors have been identified, and their unique patterns of expression among a restricted number of cell types contributes greatly to the apparent specificity of hormone action. Mutations that either activate or inactivate some of these receptors account for a number of highly specific syndromes, which affect a limited number of target tissues. By contrast, most G proteins are widely expressed in many tissues. Accordingly, mutations in these signaling molecules would be expected to produce a more generalized pattern of hormone dysfunction. Activating mutations in the gene (GNAS1) that encode the alpha subunit of the G protein that stimulates adenylyl cyclase (AC) have been identified in many endocrine neoplasms and diverse tissues of patients with McCune-Albright syndrome. The McCune-Albright syndrome is characterized by autonomous endocrine function, hyperpigmented skin lesions, and fibrous dysplasia of bone--effects which reflect the ability of CAMP to stimulate cell function and proliferation in a wide variety of tissues. The unusual features of the McCune-Albright syndrome are explained by the mosaic distribution of cells bearing the mutant allele, an observation that is most consistent with postzygotic mutation of GNAS1. Experimental analysis of this syndrome has extended our understanding of the clinical and biochemical consequences of dysfunctional G protein action and has provided a bench-to-bedside demonstration of the critical role that G proteins play in transmembrane signal transduction in humans.
Collapse
Affiliation(s)
- M A Levine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| |
Collapse
|
65
|
Abstract
Heterotrimeric G proteins in vertebrates constitute a family molecular switches that transduce the activation of a populous group of cell-surface receptors to a group of diverse effector units. The receptors include the photopigments such as rhodopsin and prominent families such as the adrenergic, muscarinic acetylcholine, and chemokine receptors involved in regulating a broad spectrum of responses in humans. Signals from receptors are sensed by heterotrimeric G proteins and transduced to effectors such as adenylyl cyclases, phospholipases, and various ion channels. Physiological regulation of G protein-linked receptors allows for integration of signals that directly or indirectly effect the signaling from receptor-->G protein-->effector(s). Steroid hormones can regulate signaling via transcriptional control of the activities of the genes encoding members of G protein-linked pathways. Posttranscriptional mechanisms are under physiological control, altering the stability of preexisting mRNA and affording an additional level for regulation. Protein phosphorylation, protein prenylation, and proteolysis constitute major posttranslational mechanisms employed in the physiological regulation of G protein-linked signaling. Drawing upon mechanisms at all three levels, physiological regulation permits integration of demands placed on G protein-linked signaling.
Collapse
Affiliation(s)
- A J Morris
- Department of Molecular Pharmacology, Diabetes and Metabolic Diseases Research Center, University Medical Center, State University of New York/Stony Brook, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
66
|
Quitterer U, Lohse MJ. Crosstalk between Galpha(i)- and Galpha(q)-coupled receptors is mediated by Gbetagamma exchange. Proc Natl Acad Sci U S A 1999; 96:10626-31. [PMID: 10485876 PMCID: PMC17933 DOI: 10.1073/pnas.96.19.10626] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of Galpha(i)-coupled receptors often causes enhancement of the inositol phosphate signal triggered by Galpha(q)-coupled receptors. To investigate the mechanism of this synergistic receptor crosstalk, we studied the Galpha(i)-coupled adenosine A(1) and alpha(2C) adrenergic receptors and the Galpha(q)-coupled bradykinin B(2) and a UTP-preferring P2Y receptor. Stimulation of either Galpha(i)-coupled receptor expressed in COS cells increased the potency and the efficacy of inositol phosphate production by bradykinin or UTP. Likewise, overexpression of Gbeta(1)gamma(2) resulted in a similar increase in potency and efficacy of bradykinin or UTP. In contrast, these stimuli did not affect the potency of direct activators of Galpha(q); a truncated Gbeta(3) mutant had no effect on the receptor-generated signals whereas signals generated at the G-protein level were still enhanced. This suggests that the Gbetagamma-mediated signal enhancement occurs at the receptor level. Almost all possible combinations of Gbeta(1-3) with Ggamma(2-7) were equally effective in enhancing the signals of the B(2) and a UTP-preferring P2Y receptor, indicating a very broad specificity of this synergism. The enhancement of the bradykinin signal by (i) Galpha(i)-activating receptor ligands or (ii) cotransfection of Gbetagamma was suppressed when the B(2) receptor was replaced by a B(2)Gbeta(2) fusion protein. Gbetagamma enhanced the B(2) receptor-stimulated activation of G-proteins as determined by GTPgammaS-induced decrease in high affinity agonist binding and by B(2) receptor-enhanced [(35)S]GTPgammaS binding. These findings support the concept that Gbetagamma exchange between Galpha(i)- and Galpha(q)-coupled receptors mediates this type of receptor crosstalk.
Collapse
Affiliation(s)
- U Quitterer
- Institut für Pharmakologie und Toxikologie der Universität Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | | |
Collapse
|
67
|
Asano T, Morishita R, Ueda H, Kato K. Selective association of G protein beta(4) with gamma(5) and gamma(12) subunits in bovine tissues. J Biol Chem 1999; 274:21425-9. [PMID: 10409705 DOI: 10.1074/jbc.274.30.21425] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta and gamma subunits of G proteins are tightly bound under physiological conditions, and so far, seven beta and 11 gamma subunit isoforms have been found. The relative abilities of the beta and gamma subunits to associate with each other have been studied using transfected cell assays, in vitro translation and the yeast two-hybrid system, but have not been fully characterized in various tissues. In the present study, we demonstrated the selectivity of association of the beta with gamma isoforms in bovine tissues. Immunoprecipitation of betagamma complexes from tissue extracts with antibodies against various gamma subunits and subsequent analyses revealed that beta(4) associated with the gamma subunits with the following rank order of selectivity: gamma(5) > gamma(12) > gamma(2) > gamma(3), while beta(2) bound to gamma(2), gamma(3), and gamma(12) more selectively than to gamma(5). By contrast, beta(1) associated with all gamma subunits without significant selectivity. Analyses of purified betagamma complexes containing various gamma isoforms revealed beta subunit compositions similar to those found in the immunoprecipitates. Particular combinations of beta and gamma subunit isoforms may contribute to maintaining efficient and specific signal transduction mediated by G proteins.
Collapse
Affiliation(s)
- T Asano
- Department of Biochemistry, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan.
| | | | | | | |
Collapse
|
68
|
Wang Q, Mullah BK, Robishaw JD. Ribozyme approach identifies a functional association between the G protein beta1gamma7 subunits in the beta-adrenergic receptor signaling pathway. J Biol Chem 1999; 274:17365-71. [PMID: 10358098 DOI: 10.1074/jbc.274.24.17365] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex role that the heterotrimeric G proteins play in signaling pathways has become increasingly apparent with the cloning of countless numbers of receptors, G proteins, and effectors. However, in most cases, the specific combinations of alpha and betagamma subunits comprising the G proteins that participate in the most common signaling pathways, such as beta-adrenergic regulation of adenylyl cyclase activity, are not known. The extent of this problem is evident in the fact that the identities of the betagamma subunits that combine with the alpha subunit of Gs are only now being elucidated almost 20 years after its initial purification. In a previous study, we described the first use of a ribozyme strategy to suppress specifically the expression of the gamma7 subunit of the G proteins, thereby identifying a specific role of this protein in coupling the beta-adrenergic receptor to stimulation of adenylyl cyclase activity in HEK 293 cells. In the present study, we explored the potential utility of a ribozyme approach directed against the gamma7 subunit to identify functional associations with a particular beta and alphas subunit of the G protein in this signaling pathway. Accordingly, HEK 293 cells were transfected with a ribozyme directed against the gamma7 subunit, and the effects of this manipulation on levels of the beta and alphas subunits were determined by immunoblot analysis. Among the five beta alphas subunits detected in these cells, only the beta1 subunit was coordinately reduced following treatment with the ribozyme directed against the gamma7 subunit, thereby demonstrating a functional association between the beta1 and gamma7 subunits. The mechanism for coordinate suppression of the beta1 subunit was due to a striking change in the half-life of the beta1 monomer versus the beta1 heterodimer complexed with the gamma7 subunit. Neither the 52- nor 45-kDa subunits were suppressed following treatment with the ribozyme directed against the gamma7 subunit, thereby providing insights into the assembly of the Gs heterotrimer. Taken together, these data show the utility of a ribozyme approach to identify the role of not only the gamma subunits but also the beta subunits of the G proteins in signaling pathways.
Collapse
Affiliation(s)
- Q Wang
- Henry Hood M.D. Research Program, Pennsylvania State University College of Medicine, Danville, Pennsylvania 17822, USA
| | | | | |
Collapse
|
69
|
Richardson M, Robishaw JD. The alpha2A-adrenergic receptor discriminates between Gi heterotrimers of different betagamma subunit composition in Sf9 insect cell membranes. J Biol Chem 1999; 274:13525-33. [PMID: 10224121 DOI: 10.1074/jbc.274.19.13525] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In view of the expanding roles of the betagamma subunits of the G proteins in signaling, the possibility was raised that the rich diversity of betagamma subunit combinations might contribute to the specificity of signaling at the level of the receptor. To test this possibility, Sf9 cell membranes expressing the recombinant alpha2A-adrenergic receptor were used to assess the contribution of the betagamma subunit composition. Reconstituted coupling between the receptor and heterotrimeric Gi protein was assayed by high affinity, guanine nucleotide-sensitive binding of the alpha2-adrenergic agonist, [3H]UK-14,304. Supporting this hypothesis, the present study showed clear differences in the abilities of the various betagamma dimers, including those containing the beta3 subtype and the newly described gamma4, gamma10, and gamma11 subtypes, to promote interaction of the same alphai subunit with the alpha2A-adrenergic receptor.
Collapse
Affiliation(s)
- M Richardson
- Henry Hood Research Program, Pennsylvania State University College of Medicine, Weis Center for Research, Danville, Pennsylvania 17822-2614, USA
| | | |
Collapse
|
70
|
Levay K, Cabrera JL, Satpaev DK, Slepak VZ. Gbeta5 prevents the RGS7-Galphao interaction through binding to a distinct Ggamma-like domain found in RGS7 and other RGS proteins. Proc Natl Acad Sci U S A 1999; 96:2503-7. [PMID: 10051672 PMCID: PMC26814 DOI: 10.1073/pnas.96.5.2503] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The G protein beta subunit Gbeta5 deviates significantly from the other four members of Gbeta-subunit family in amino acid sequence and subcellular localization. To detect the protein targets of Gbeta5 in vivo, we have isolated a native Gbeta5 protein complex from the retinal cytosolic fraction and identified the protein tightly associated with Gbeta5 as the regulator of G protein signaling (RGS) protein, RGS7. Here we show that complexes of Gbeta5 with RGS proteins can be formed in vitro from the recombinant proteins. The reconstituted Gbeta5-RGS dimers are similar to the native retinal complex in their behavior on gel-filtration and cation-exchange chromatographies and can be immunoprecipitated with either anti-Gbeta5 or anti-RGS7 antibodies. The specific Gbeta5-RGS7 interaction is determined by a distinct domain in RGS that has a striking homology to Ggamma subunits. Deletion of this domain prevents the RGS7-Gbeta5 binding, although the interaction with Galpha is retained. Substitution of the Ggamma-like domain of RGS7 with a portion of Ggamma1 changes its binding specificity from Gbeta5 to Gbeta1. The interaction of Gbeta5 with RGS7 blocked the binding of RGS7 to the Galpha subunit Galphao, indicating that Gbeta5 is a specific RGS inhibitor.
Collapse
Affiliation(s)
- K Levay
- Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
71
|
Abstract
Heterotrimeric guanine nucleotide-binding proteins are important mediators in signal transduction and function by transmitting information from membrane-bound receptors to effectors. Because these proteins are membrane bound and contain covalent lipid modifications, detergents are required for solubilization and purification. It was discovered that the interaction between the beta5 subunit and the gamma2 subunit was disrupted in two detergents, cholate and Chaps (3-[(3-cholamidopropyl) dimethylammonio]-1-propansulfonate). A beta5gamma2 column was constructed in which recombinant betagamma dimers were immobilized on a FLAG antibody column via a hexahistidine-FLAG-tagged gamma2 subunit, gamma2HF. Greater than 95% of the beta5 subunit was specifically eluted from the immobilized gamma2HF subunit using a cholate gradient from 0.05 to 1.0% and greater than 40% of the beta5 subunit was eluted using a Chaps gradient from 0.05 to 1.0%. In contrast, the beta1, beta2, and beta3 subunits remained bound to the gamma2HF subunit in all concentrations of Chaps and cholate. Genapol C-100, Triton X-100, and polyoxyethylene-10-lauryl ether did not interfere with any of the four beta subunits' ability to interact with the gamma2 subunit. These data suggest that the beta5 subunit is not stable in bile acid or Chaps-type detergents (i.e., Chapso, glycocholate, deoxycholate). Therefore, alternative detergents should be used to extract dimers containing the beta5 subunit.
Collapse
Affiliation(s)
- M B Jones
- Department of Pharmacology, Health Sciences Center, Charlottesville, Virginia, 22908, USA
| | | |
Collapse
|
72
|
Coria R, Ongay-Larios L, Birnbaumer L. Separate roles for N- and C-termini of the STE4 (β) subunit of the Saccharomyces cerevisiae G protein in the mediation of the growth arrest. Lack of growth-arresting activity of mammalian βγ complexes. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(199601)12:1<41::aid-yea883>3.0.co;2-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
73
|
Snow BE, Krumins AM, Brothers GM, Lee SF, Wall MA, Chung S, Mangion J, Arya S, Gilman AG, Siderovski DP. A G protein gamma subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gbeta5 subunits. Proc Natl Acad Sci U S A 1998; 95:13307-12. [PMID: 9789084 PMCID: PMC23793 DOI: 10.1073/pnas.95.22.13307] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/1998] [Indexed: 11/18/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins act as GTPase-activating proteins (GAPs) toward the alpha subunits of heterotrimeric, signal-transducing G proteins. RGS11 contains a G protein gamma subunit-like (GGL) domain between its Dishevelled/Egl-10/Pleckstrin and RGS domains. GGL domains are also found in RGS6, RGS7, RGS9, and the Caenorhabditis elegans protein EGL-10. Coexpression of RGS11 with different Gbeta subunits reveals specific interaction between RGS11 and Gbeta5. The expression of mRNA for RGS11 and Gbeta5 in human tissues overlaps. The Gbeta5/RGS11 heterodimer acts as a GAP on Galphao, apparently selectively. RGS proteins that contain GGL domains appear to act as GAPs for Galpha proteins and form complexes with specific Gbeta subunits, adding to the combinatorial complexity of G protein-mediated signaling pathways.
Collapse
Affiliation(s)
- B E Snow
- Quantitative Biology Laboratory, Amgen Institute, Toronto, ON, Canada M5G 2C1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Wall MA, Posner BA, Sprang SR. Structural basis of activity and subunit recognition in G protein heterotrimers. Structure 1998; 6:1169-83. [PMID: 9753695 DOI: 10.1016/s0969-2126(98)00117-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Inactive heterotrimeric G proteins are composed of a GDP-bound alpha subunit (Galpha) and a stable heterodimer of Gbeta and Ggamma subunits. Upon stimulation by a receptor, Galpha subunits exchange GDP for GTP and dissociate from Gbetagamma, both Galpha and Gbetagamma then interact with downstream effectors. Isoforms of Galpha, Gbeta and Ggamma potentially give rise to many heterotrimeric combinations, limited in part by amino acid sequence differences that lead to selective interactions. The mechanism by which GTP promotes Gbetagamma dissociation is incompletely understood. The Gly203-->Ala mutant of Gialpha1 binds and hydrolyzes GTP normally but does not dissociate from Gbetagamma, demonstrating that GTP binding and activation can be uncoupled. Structural data are therefore important for understanding activation and subunit recognition in G protein heterotrimers. RESULTS The structures of the native (Gialpha1beta1gamma2) heterotrimer and that formed with Gly203-->AlaGialpha1 have been determined to resolutions of 2.3 A and 2.4 A, respectively, and reveal previously unobserved segments at the Ggamma2 C terminus. The Gly203-->Ala mutation alters the conformation of the N terminus of the switch II region (Val201-Ala203), but not the global structure of the heterotrimer. The N termini of Gbeta and Ggamma form a rigid coiled coil that packs at varying angles against the beta propeller of Gbeta. Conformational differences in the CD loop of beta blade 2 of Gbeta mediate isoform-specific contacts with Galpha. CONCLUSIONS The Gly203-->Ala mutation in Gialpha1 blocks the conformational changes in switch II that are required to release Gbetagamma upon binding GTP. The interface between the ras-like domain of Galpha and the beta propeller of Gbeta appears to be conserved in all G protein heterotrimers. Sequence variation at the Gbeta-Galpha interface between the N-terminal helix of Galpha and the CD loop of beta blade 2 of Gbeta1 (residues 127-135) could mediate isoform-specific contacts. The specificity of Gbeta and Ggamma interactions is largely determined by sequence variation in the contact region between helix 2 of Ggamma and the surface of Gbeta.
Collapse
Affiliation(s)
- M A Wall
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA
| | | | | |
Collapse
|
75
|
Bayewitch ML, Avidor-Reiss T, Levy R, Pfeuffer T, Nevo I, Simonds WF, Vogel Z. Inhibition of adenylyl cyclase isoforms V and VI by various Gbetagamma subunits. FASEB J 1998; 12:1019-25. [PMID: 9707174 DOI: 10.1096/fasebj.12.11.1019] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An intriguing development in the G-protein signaling field has been the finding that not only the Galpha subunit, but also Gbetagamma subunits, affect a number of downstream target molecules. One of the downstream targets of Gbetagamma is adenylyl cyclase, and it has been demonstrated that a number of isoforms of adenylyl cyclase can be either inhibited or stimulated by Gbetagamma subunits. Until now, adenylyl cyclase type I has been the only isoform reported to be inhibited by free Gbetagamma. Here we show by transient cotransfection into COS-7 cells of either adenylyl cyclase V or VI, together with Ggamma2 and various Gbeta subunits, that these two adenylyl cyclase isozymes are markedly inhibited by Gbetagamma. In addition, we show that Gbeta1 and Gbeta5 subunits differ in their activity. Gbeta1 transfected alone markedly inhibited adenylyl cylcase V and VI (probably by recruiting endogenous Ggamma subunits). On the other hand, Gbeta5 produced less inhibition of these isozymes, and its activity was enhanced by the addition of Ggamma2. These results demonstrate that adenylyl cyclase types V and VI are inhibited by Gbetagamma dimers and that Gbeta1 and Gbeta5 subunits differ in their capacity to regulate these adenylyl cyclase isozymes.
Collapse
Affiliation(s)
- M L Bayewitch
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
76
|
Betty M, Harnish SW, Rhodes KJ, Cockett MI. Distribution of heterotrimeric G-protein beta and gamma subunits in the rat brain. Neuroscience 1998; 85:475-86. [PMID: 9622245 DOI: 10.1016/s0306-4522(97)00623-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heterotrimeric G-proteins, comprising alpha, beta and gamma subunits, have been shown to play a central role in coupling multiple receptors to a variety of enzymes and ion channels. In vitro studies have demonstrated the existence of selective interactions between various alpha, beta and gamma subunits, as well as between specific heterotrimers and target receptor and effector proteins. However, little is known of the physiological relevance of such associations, and the determinants of specificity in G-protein signaling within the brain remain largely unidentified. To investigate the possibility that specific heterotrimeric interactions result from discrete localizations of the G-protein subunits within the brain, we have used the technique of in situ hybridization to map the distribution of G-protein beta and gamma subunits in the rat brain. Beta1, beta2, beta3 and beta5 subunits were found to be widely expressed throughout the rat brain, whilst beta4 and the G-protein gamma subunit messenger RNAs generally showed more discrete expression patterns. The expression patterns for these subunits suggest that individual beta and gamma subunits may be co-expressed in certain cell types and brain regions; a particularly intriguing and striking co-localization was observed in the case of beta4 and gamma2 subunit messenger RNAs in layer VI of the occipital cortex. The localizations of the G-protein beta and gamma subunits, and their potential coupling to various receptor/effector systems, are discussed.
Collapse
Affiliation(s)
- M Betty
- CNS Disorders, Wyeth-Ayerst Research, Princeton, NJ 08543-8000, USA
| | | | | | | |
Collapse
|
77
|
Abstract
The vast majority of signalling pathways in mammalian cells are mediated by heterotrimeric (alpha betagamma) G proteins. Reviewed here is regulation of signal transduction by the betagamma complex at different protein interfaces: subunit-subunit, receptor-G protein and G protein-effector. The role of diverse beta and gamma subunit types in achieving specificity in signalling and potentially unidentified functions for these subunits also are discussed.
Collapse
Affiliation(s)
- N Gautam
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
78
|
Wickman K, Hedin KE, Perez‐Terzic CM, Krapivinsky GB, Stehno‐Bittel L, Velimirovic B, Clapham DE. Mechanisms of Transmembrane Signaling. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
79
|
Wang Q, Mullah B, Hansen C, Asundi J, Robishaw JD. Ribozyme-mediated suppression of the G protein gamma7 subunit suggests a role in hormone regulation of adenylylcyclase activity. J Biol Chem 1997; 272:26040-8. [PMID: 9325341 DOI: 10.1074/jbc.272.41.26040] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human HEK 293 cells present a simple and tractable system to directly test the hypothesis that the G protein gamma subunits contribute to the specificity of receptor signaling pathways in vivo. To begin to elucidate the functions of the individual gamma subunits in these cells, a ribozyme strategy was used to specifically inactivate the mRNA encoding the gamma7 subunit. A phosphorothioated DNA-RNA chimeric hammerhead ribozyme was constructed and analyzed for specificity toward the targeted gamma7 subunit. In vitro cleavage analysis of this ribozyme revealed a highly efficient cleavage activity directed exclusively toward the gamma7 RNA transcript. In particular, this ribozyme did not result in cleavage of the gamma12 RNA transcript, which is 75% identical to the gamma7 RNA transcript. Using a transient transfection assay, in vivo analysis of this ribozyme showed a specific reduction in both the mRNA and protein expression of the gamma7 subunit in HEK 293 cells. Coincident with this loss in gamma7 subunit, there was a specific reduction in the protein expression of the beta1 subunit, suggesting that the beta1 and gamma7 subunits may functionally interact to form a betagamma dimer in vivo. Functional analysis of the consequences of ribozyme-mediated suppression of the gamma7 subunit expression indicated that it was associated with significant attenuation of isoproterenol-, but not prostaglandin E1-, stimulated adenylylcyclase activity. Suppression of the gamma7 subunit expression had no effect on carbachol- and ATP-mediated stimulation of phosphatidylinositol turnover. Taken together, these results not only indicate the feasibility of using the ribozyme technology to determine the roles of individual gamma subunits in receptor-G protein-effector pathways in vivo, but they point to a specific role of the gamma7 subunit in the regulation of adenylylcyclase activity in response to isoproterenol.
Collapse
Affiliation(s)
- Q Wang
- Henry Hood MD Research Program, Pennsylvania State University, College of Medicine, Danville, Pennsylvania 17822, USA
| | | | | | | | | |
Collapse
|
80
|
Löster K, Josić D. Analysis of protein aggregates by combination of cross-linking reactions and chromatographic separations. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 699:439-61. [PMID: 9392387 DOI: 10.1016/s0378-4347(97)00215-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemical cross-linking provides a method that covalently bridges near-neighbour associations within proteins and protein aggregates. Combined with chromatographic separations and protein-chemical methods, it may be used to localize and to investigate three-dimensional relations as present under natural conditions. This paper reviews the chemistry and application of cross-linking reagents and the development of combination experimental approaches in view of chromatographic separations and cross-linking reactions. Investigations of homooligomeric and heterooligomeric protein associations as well as conformational analysis are presented.
Collapse
Affiliation(s)
- K Löster
- Institut für Molekularbiologie und Biochemie, Freie Universität Berlin, Berlin-Dahlem, Germany
| | | |
Collapse
|
81
|
Pellegrino S, Zhang S, Garritsen A, Simonds WF. The coiled-coil region of the G protein beta subunit. Mutational analysis of Ggamma and effector interactions. J Biol Chem 1997; 272:25360-6. [PMID: 9312156 DOI: 10.1074/jbc.272.40.25360] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The beta and gamma subunits of the heterotrimeric G proteins remain tightly associated throughout the signaling cycle as the betagamma dimer interacts with Galpha, receptors, and effectors. A coiled-coil structure involving alpha-helical segments at the N termini of the beta and gamma subunits contributes to the dimerization interface and has been implicated in effector signaling in yeast. Scanning mutagenesis of the coiled-coil region of the mammalian beta1 subunit was performed to examine the effect of point mutations on betagamma assembly and effector signaling in COS cell cotransfection assays. In addition to the E10K mutation described previously, mutations A11E, L14E, and I18E in beta1 were found to block betagamma association, as evidenced by the failure of the Gbeta mutants to undergo cytosolic translocation with cotransfected nonisoprenylated Ggamma. Although none of 14 beta1 point mutations prevented the betagamma-dependent activation of the c-Jun N-terminal kinase (JNK) effector pathway, the D20K point mutation enhanced JNK but not phospholipase C-beta2 activation. These findings implicate the coiled-coil region of Gbeta in JNK signaling, provide further evidence that the structural features of the betagamma complex mediating effector regulation may differ among effectors, and identify single codons in the mammalian beta subunit where mutation might yield a phenotype of defective signal transduction.
Collapse
Affiliation(s)
- S Pellegrino
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
82
|
Abstract
The heterotrimeric G proteins are extensively involved in the regulation of cells by extracellular signals. The receptors that control them are often the targets of drugs. There are many isoforms of each of the three subunits that make up these proteins. Thus far, genes for at least sixteen alpha subunits, five beta subunits, and eleven gamma subunits have been identified. In addition, some of these proteins have splice variants or are differentially modified. Based upon what is already known, there are well over a thousand possible G protein heterotrimer combinations. The role of subunit diversity in heterotrimer formation and its effect on signaling by G proteins are still not well understood. However, many current lines of research are leading toward an understanding of these roles. The functional significance of subunit heterogeneity is related to the mechanisms used by G proteins to transmit and integrate the many signals coming into cells through this system. Described here are the basic mechanisms by which G proteins integrate cellular responses, the possible role of subunit heterogeneity in these mechanisms, and the evidence for and against their physiological significance. Recent studies suggest the likely possibility that subunit heterogeneity plays an important role in signaling by G proteins. This role has the potential to extend substantially the flexibility of G proteins in mediating cellular responses to extracellular signals. However, the details of this are yet to be worked out, and they are the subject of many different avenues of research.
Collapse
Affiliation(s)
- J D Hildebrandt
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston 29425-2251, U.S.A.
| |
Collapse
|
83
|
Abstract
Most opioid receptor-mediated functions appear to be mediated through G protein interactions, therefore an understanding of opioid signalling requires knowledge of those interactions. This review chronicles the studies examining these interactions for all the opioid receptor subtypes, both in vivo and in vitro.
Collapse
Affiliation(s)
- K M Standifer
- Dept. of Pharmacological and Pharmaceutical Sciences, University of Houston, TX 77204-5515, USA
| | | |
Collapse
|
84
|
Ivanova-Nikolova TT, Breitwieser GE. Effector contributions to G beta gamma-mediated signaling as revealed by muscarinic potassium channel gating. J Gen Physiol 1997; 109:245-53. [PMID: 9041452 PMCID: PMC2220061 DOI: 10.1085/jgp.109.2.245] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Receptor-mediated activation of heterotrimeric G proteins leading to dissociation of the G alpha subunit from G beta gamma is a highly conserved signaling strategy used by numerous extracellular stimuli. Although G beta gamma subunits regulate a variety of effectors, including kinases, cyclases, phospholipases, and ion channels (Clapham, D.E., and E.J. Neer. 1993. Nature (Lond.). 365:403-406), few tools exist for probing instantaneous G beta gamma-effector interactions and little is known about the kinetic contributions of effectors to the signaling process. In this study, we used the atrial muscarinic K + channel, which is activated by direct interactions with G beta gamma subunits (Logothetis, D.E., Y. Kurachi J. Galper, E.J. Neer, and D.E. Clap. 1987. Nature (Lond.). 325:321-326; Wickman, K., J. A. Iniguez-Liuhi, P.A. Davenport, R. Taussig, G.B. Krapivinsky, M.E. Linder, A.G. Gilman, and D.E. Clapham. 1994. Nature (Lond.). 366: 654-663; Huang, C.-L., P.A. Slesinger, P.J. Casey, Y.N. Jan, and L.Y. Jan. 1995. Neuron. 15:1133-1143), as a sensitive reporter of the dynamics of G beta gamma-effector interactions. Muscarinic K+ channels exhibit bursting behavior upon G protein activation, shifting between three distinct functional modes, characterized by the frequency of channel openings during individual bursts. Acetylcholine concentration (and by inference, the concentration of activated G beta gamma) controls the fraction of time spent in each mode without changing either the burst duration or channel gating within individual modes. The picture which emerges is of a G beta gamma effector with allosteric regulation and an intrinsic "off" switch which serves to limit its own activation. These two features combine to establish exquisite channel sensitivity to changes in G beta gamma concentration, and may be indicative of the factors regulating other G beta gamma-modulated effectors.
Collapse
Affiliation(s)
- T T Ivanova-Nikolova
- Johns Hopkins University School of Medicine, Department of Physiology, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
85
|
Abstract
Guanine nucleotide binding (G) proteins relay extracellular signals encoded in light, small molecules, peptides, and proteins to activate or inhibit intracellular enzymes and ion channels. The larger G proteins, made up of G alpha beta gamma heterotrimers, dissociate into G alpha and G beta gamma subunits that separately activate intracellular effector molecules. Only recently has the G beta gamma subunit been recognized as a signal transduction molecule in its own right; G beta gamma is now known to directly regulate as many different protein targets as the G alpha subunit. Recent X-ray crystallography of G alpha, G beta gamma, and G alpha beta gamma subunits will guide the investigation of structure-function relationships.
Collapse
Affiliation(s)
- D E Clapham
- Department of Neurobiology and Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
86
|
Abstract
This review is concerned with the structures and mechanisms of a superfamily of regulatory GTP hydrolases (G proteins). G proteins include Ras and its close homologs, translation elongation factors, and heterotrimeric G proteins. These proteins share a common structural core, exemplified by that of p21ras (Ras), and significant sequence identity, suggesting a common evolutionary origin. Three-dimensional structures of members of the G protein superfamily are considered in light of other biochemical findings about the function of these proteins. Relationships among G protein structures are discussed, and factors contributing to their low intrinsic rate of GTP hydrolysis are considered. Comparison of GTP- and GDP-bound conformations of G proteins reveals how specific contacts between the gamma-phosphate of GTP and the switch II region stabilize potential effector-binding sites and how GTP hydrolysis results in collapse (or reordering) of these surfaces. A GTPase-activating protein probably binds to and stabilizes the conformation of its cognate G protein that recognizes the transition state for hydrolysis, and may insert a catalytic residue into the G protein active site. Inhibitors of nucleotide release, such as the beta gamma subunit of a heterotrimeric G protein, bind selectively to and stabilize the GDP-bound state. Release factors, such as the translation elongation factor, Ts, also recognize the switch regions and destabilize the Mg(2+)-binding site, thereby promoting GDP release. G protein-coupled receptors are expected to operate by a somewhat different mechanism, given that the GDP-bound form of many G protein alpha subunits does not contain bound Mg2+.
Collapse
Affiliation(s)
- S R Sprang
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050, USA.
| |
Collapse
|
87
|
Gudermann T, Schöneberg T, Schultz G. Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci 1997; 20:399-427. [PMID: 9056720 DOI: 10.1146/annurev.neuro.20.1.399] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A prerequisite for the maintenance of homeostasis in a living organism is fine-tuned communication between different cells. The majority of extracellular signaling molecules, such as hormones and neurotransmitters, interact with a three-protein transmembrane signaling system consisting of a receptor, a G protein, and an effector. These single components interact sequentially and reversibly. Considering that hundreds of G-protein-coupled receptors interact with a limited repertoire of G proteins, the question of coupling specificity is worth considering. G-protein-mediated signal transduction is a complex signaling network with diverging and converging transduction steps at each coupling interface. The recent realization that classical signaling pathways are intimately intertwined with growth-factor-signaling cascades adds another level of complexity. Elaborate studies have significantly enhanced our knowledge of the functional anatomy of G-protein-coupled receptors, and the concept has emerged that receptor function can be modulated with high specificity by coexpressed receptor fragments. These results may have significant clinical impact in the future.
Collapse
Affiliation(s)
- T Gudermann
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
88
|
Zhang S, Coso OA, Lee C, Gutkind JS, Simonds WF. Selective activation of effector pathways by brain-specific G protein beta5. J Biol Chem 1996; 271:33575-9. [PMID: 8969224 DOI: 10.1074/jbc.271.52.33575] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
While multiple G protein beta and gamma subunit isoforms have been identified, the implications of this potential diversity of betagamma heterodimers for signaling through betagamma-regulated effector pathways remains unclear. Furthermore the molecular mechanism(s) by which the betagamma complex modulates diverse mammalian effector molecules is unknown. Effector signaling by the structurally distinct brain-specific beta5 subunit was assessed by transient cotransfection with gamma2 in COS cells and compared with beta1. Transfection of either beta1 or beta5 with gamma2 stimulated the activity of cotransfected phospholipase C-beta2 (PLC-beta2), as previously reported. In contrast, cotransfection of beta1 but not beta5 with gamma2 stimulated the mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) pathways even though the expression of beta5 in COS cells was evident by immunoblotting. The G protein beta5 expressed in transfected COS cells was properly folded as its pattern of stable C-terminal proteolytic fragments was identical to that of native brain beta5. The inability of beta5 to activate the MAPK and JNK pathways was not overcome by cotransfection with three additional Ggamma isoforms. These results suggest it is the Gbeta subunit which determines the pattern of downstream signaling by the betagamma complex and imply that the structural features of the betagamma complex mediating effector regulation may differ among effectors.
Collapse
Affiliation(s)
- S Zhang
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
89
|
Hashimoto E, Frolich L, Ozawa H, Saito T, Shichinohe S, Takahata N, Riederer P. Alteration of Glutamyltranspeptidase Binding Proteins in Postmortem Brains of Heroin Addicts. Alcohol Clin Exp Res 1996. [DOI: 10.1111/j.1530-0277.1996.tb01797.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
90
|
Hashimoto E, Frolich L, Ozawa H, Saito T, Shichinohe S, Takahata N, Riederer P. Alteration of Glutamyltranspeptidase Binding Proteins in Postmortem Brains of Heroin Addicts. Alcohol Clin Exp Res 1996. [DOI: 10.1111/j.1530-0277.1996.tb01162.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
91
|
Kim DU, Park SK, Chung KS, Choi MU, Yoo HS. The G protein beta subunit Gpb1 of Schizosaccharomyces pombe is a negative regulator of sexual development. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:20-32. [PMID: 8804400 DOI: 10.1007/bf02173201] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A Schizosaccharomyces pombe homolog of mammalian genes encoding G protein beta subunits, gpb1+, was cloned by the polymerase chain reaction using primer pairs that correspond to sequences conserved in several G beta genes of other species followed by screening of genomic and cDNA libraries. The gpb1 gene encodes 317 amino acids that show 47% homology with human G beta 1 and G beta 2 and 40% homology with Saccharomyces cerevisiae G beta protein. Disruption of the gpb1 gene indicated that this gene is not required for vegetative cell growth. However, gpb1-disrupted haploid cells mated and sporulated faster than wild-type cells, both in sporulation (MEA) and in complex medium (YE): when examined 23 h after transfer to sporulation medium, 35% of gpb1-disrupted haploid pairs had undergone conjugation and sporulation, whereas only 3-5% of wild-type haploid pairs had done so. Overexpression of the gpb1 gene suppressed this facilitated conjugation and sporulation phenotype of gpb1-disrupted cells but did not cause any obvious effect in wild-type cells. Co-disruption of one of the two S. pombe G alpha-subunit genes, gpa2, in the gpb1-disrupted cells did not change the accelerated conjugation and sporulation phenotype of the gpb1- cells. However, co-disruption of the ras1 gene abolished the gpb1- phenotype. These results suggest that Gpb1 is a negative regulator of conjugation and sporulation that apparently works upstream of Ras1 function in S. pombe. The possible relationship of Gpb1 to two previously identified, putative G alpha proteins of S. pombe is discussed.
Collapse
Affiliation(s)
- D U Kim
- Cell Cycle & Signal Research Unit, Korea Research Institute of Bioscience and Biotechnology, KIST, Taejon, Korea
| | | | | | | | | |
Collapse
|
92
|
Yan K, Gautam N. A domain on the G protein beta subunit interacts with both adenylyl cyclase 2 and the muscarinic atrial potassium channel. J Biol Chem 1996; 271:17597-600. [PMID: 8663592 DOI: 10.1074/jbc.271.30.17597] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The G protein betagamma complex modulates the function of a variety of effectors in biological signaling. However, the individual roles of the beta and gamma subunits in this interaction are unknown. Unlike in the case of the alpha subunit, domains on the betagamma complex that contact effectors have not yet been identified. We show here using the yeast two-hybrid system that the beta subunit and not the gamma subunit interacts with domains specific to adenylyl cyclase type 2 (AC2) and the muscarinic receptor-gated atrial inwardly rectifying potassium channel, GIRK1. Different beta subunit types interact with these effector domains with different efficacies. Furthermore, an N-terminal fragment of 100 residues interacts with both these effector domains as effectively as the whole beta subunit. This domain includes the region where the beta subunit contacts with the alpha subunit in the crystal structure and may therefore explain the ability of the alpha subunit to shut off the activity of the betagamma complex.
Collapse
Affiliation(s)
- K Yan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
93
|
Ringel MD, Schwindinger WF, Levine MA. Clinical implications of genetic defects in G proteins. The molecular basis of McCune-Albright syndrome and Albright hereditary osteodystrophy. Medicine (Baltimore) 1996; 75:171-84. [PMID: 8699958 DOI: 10.1097/00005792-199607000-00001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Inactivating and activating mutations in the gene encoding G alpha s (GNAS1) are known to be the basis for 2 well-described contrasting clinical disorders, Albright hereditary osteodystrophy (AHO) and McCune-Albright syndrome (MAS). AHO is an autosomal dominant disorder due to germline mutations in GNAS1 that decrease expression or function of G alpha s protein. Loss of G alpha s function leads to tissue resistance to multiple hormones whose receptors couple to G alpha s. By contrast, MAS results from postzygotic somatic mutations in GNAS1 that lead to enhanced function of G alpha s protein. Acquisition of the activating mutation early in life leads to a more generalized distribution of the mosaicism and is associated with the classic clinical triad of polyostotic fibrous dysplasia, endocrine hyperfunction, and café au lait skin lesions described in MAS. Acquisition of a similar activating mutation in GNAS1 later in life presumably accounts for the restricted distribution of the gsp oncogene, and is associated with the development of isolated lesions (for example, fibrous dysplasia, pituitary or thyroid tumors) without other manifestations of MAS. Tissues that are affected by loss of G alpha s function in AHO are also affected by gain of G alpha s function in MAS, thus identifying specific tissues in which the second messenger cAMP plays a dominant role in cell growth, proliferation, or function. Further investigations of the functions of G alpha s and other members of the GTPase binding protein family will provide more insight into the pathogenesis and clinical manifestations of human disease.
Collapse
Affiliation(s)
- M D Ringel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
94
|
Ray K, Hansen CA, Robishaw JD. Gβγ-Mediated signaling in the heart: Implications of β and γ subunit heterogeneity. Trends Cardiovasc Med 1996; 6:115-21. [DOI: 10.1016/1050-1738(96)00021-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
95
|
Yan K, Kalyanaraman V, Gautam N. Differential ability to form the G protein betagamma complex among members of the beta and gamma subunit families. J Biol Chem 1996; 271:7141-6. [PMID: 8636150 DOI: 10.1074/jbc.271.12.7141] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have determined the relative abilities of several members of the G protein beta and gamma subunit families to associate with each other using the yeast two-hybrid system. We show first that the mammalian beta1 and gamma3 fusion proteins form a complex in yeast and that formation of the complex activates the reporter gene for beta-galactosidase. Second, the magnitude of reporter activity stimulated by various combinations of beta and gamma subunit types varies widely. Third, the reporter activity evoked by a particular combination of beta and gamma subunit types is not correlated with the expression levels of these subunit types in the yeast cells. Finally, the reporter activity shows a direct relationship with the amount of hybrid betagamma complex formed in the cell as determined by immunoprecipitation. These results suggest that different beta and gamma subunit types interact with each other with widely varying abilities, and this in combination with the level of expression of a subunit type in a mammalian cell determines which G protein will be active in that cell. The strong preference of all gamma subunit types for the beta1 subunit type explains the preponderence of this subunit type in most G proteins.
Collapse
Affiliation(s)
- K Yan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
96
|
[15] Expression and purification of G protein βγ subunits using baculovirus expression system. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1043-9471(96)80051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
97
|
Coria R, Ongay-Larios L, Birnbaumer L. Separate roles for N- and C-termini of the STE4 (beta) subunit of the Saccharomyces cerevisiae G protein in the mediation of the growth arrest. Lack of growth-arresting activity of mammalian beta gamma complexes. Yeast 1996; 12:41-51. [PMID: 8789259 DOI: 10.1002/(sici)1097-0061(199601)12:1%3c41::aid-yea883%3e3.0.co;2-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mating pheromone signal transduction in Saccharomyces cerevisiae involves a G protein composed to Scg1p (Gpa1p), Ste4p and Ste18p subunits, homologous to the alpha, beta and gamma subunits of mammalian G protein. Growth arrest in G1 phase is activated by the Ste4p/Ste18p complex via a downstream pathway and it is negatively controlled by the Scg1p subunit. Here we explored whether mammalian beta or gamma subunits could functionally substitute for their yeast homologues. While no evidence was obtained for functional replacement of Ste4p and Ste18p, we found that overexpression of Ste18p potentiated the effect of hybrid proteins in which the N terminus of the Ste4p subunit was replaced by that of the mammalian beta. ste4 mutants having deletions in the N terminus showed a decreased activity in signalling to the downstream effector of the pheromone response. This defect was totally cured by overexpression of Ste18p, indicating that the truncated forms of Ste4p have retained their ability to form an active complex with Ste18p. Removal of six amino acids from the C terminus of Ste4p rendered a completely inactive subunit and this defect persisted in hybrids where the C terminus was placed by that of the beta subunit, indicating that the C terminus of Ste4p is essential to trigger the effector of the yeast pheromone response pathway.
Collapse
Affiliation(s)
- R Coria
- Departamento de Microbiología, Universidad Nacional Autónoma de México
| | | | | |
Collapse
|
98
|
[22] G protein dependence of α1-adrenergic receptor subtype action in cardiac myocytes. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1043-9471(96)80058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
99
|
[16] Analysis of G protein γ subunits using baculovirus expression system: Requirement for posttranslational processing. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1043-9471(96)80052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
100
|
Nüsse O, Neer EJ. Localization of G alpha 0 to growth cones in PC12 cells: role of G alpha 0 association with receptors and G beta gamma. J Cell Sci 1996; 109 ( Pt 1):221-8. [PMID: 8834806 DOI: 10.1242/jcs.109.1.221] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric G protein G0 is highly enriched in the growth cones of neuronal cells and makes up 10% of the membrane protein of growth cones from neonatal rat brain. We have used PC12 cells, a cell line that differentiates to a neuron-like phenotype, as a model with which to study the mechanism of G protein localization. First, the role of the beta gamma-subunit was investigated. The attachment of the beta gamma-subunit to the membrane depends on the isoprenylation of the gamma-subunit. The drug lovastatin blocks isoprenylation by inhibiting a key enzyme in the biosynthetic pathway. After treatment of PC12 cells with 10 microM lovastatin for 48 hours 50% of the beta gamma-subunits were cytosolic compared with 100% membrane bound beta gamma in control cells, as determined by cell fractionation, gel electrophoresis and western blot. Addition of 200 microM mevalonic acid reverses this effect. However, lovastatin affects neither the membrane attachment of alpha 0 nor its localization to the growth cones as determined by immunohistochemistry. This suggests that the localization and retention of alpha 0 are independent of the membrane attachment of the full complement of beta gamma-subunits. Second, pertussis toxin was used to block the interaction between alpha 0 and receptors. PC12 cells were treated with 0.1 microgram/ml pertussis toxin prior to and during nerve growth factor-induced differentiation. In vitro [32P]ADP-ribosylation confirmed that alpha 0 and alpha i were completely ADP-ribosylated by this treatment. The ADP-ribosylation by pertussis toxin did not interfere with neurite outgrowth. The localization of alpha 0 to the growth cones was indistinguishable from that in untreated cells. We conclude that G protein-receptor interaction is not necessary for the distribution of alpha 0 to growth cones.
Collapse
Affiliation(s)
- O Nüsse
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|