51
|
Abstract
Cryptochromes are blue-light receptors that mediate photoresponses in plants. The genomes of most land plants encode two clades of cryptochromes, CRY1 and CRY2, which mediate distinct and overlapping photoresponses within the same species and between different plant species. Photoresponsive protein-protein interaction is the primary mode of signal transduction of cryptochromes. Cryptochromes exist as physiologically inactive monomers in the dark; the absorption of photons leads to conformational change and cryptochrome homooligomerization, which alters the affinity of cryptochromes interacting with cryptochrome-interacting proteins to form various cryptochrome complexes. These cryptochrome complexes, collectively referred to as the cryptochrome complexome, regulate transcription or stability of photoresponsive proteins to modulate plant growth and development. The activity of cryptochromes is regulated by photooligomerization; dark monomerization; cryptochrome regulatory proteins; and cryptochrome phosphorylation, ubiquitination, and degradation. Most of the more than 30 presently known cryptochrome-interacting proteins are either regulated by other photoreceptors or physically interactingwith the protein complexes of other photoreceptors. Some cryptochrome-interacting proteins are also hormonal signaling or regulatory proteins. These two mechanisms enable cryptochromes to integrate blue-light signals with other internal and external signals to optimize plant growth and development.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
52
|
Kang J, Cui H, Jia S, Liu W, Yu R, Wu Z, Wang Z. Arabidopsis thaliana MLK3, a Plant-specific Casein Kinase 1, Negatively Regulates Flowering and Phosphorylates Histone H3 in Vitro. Genes (Basel) 2020; 11:genes11030345. [PMID: 32214028 PMCID: PMC7141126 DOI: 10.3390/genes11030345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Arabidopsis thalianaMUT9-LIKE KINASES (MLKs), a family of the plant-specific casein kinase 1 (CK1), have been implicated collectively in multiple biological processes including flowering. Three of the four MLKs (MLK1/2/4) have been characterized, however, little is known about MLK3, the most divergent member of MLKs. Here, we demonstrated that disruption of MLK3 transcript in mlk3 caused early flowering with retarded leaf growth under long-day conditions. In vitro kinase assay showed the nuclear protein MLK3 phosphorylated histone 3 at threonine 3 (H3T3) and mutation of a conserved residue (K146R) abolished the catalytic activity. Ectopic expression of MLK3 but not MLK3(K146R) rescued the morphological defects of mlk3, indicating that an intact MLK3 is critical for maintaining proper flowering time. Transcriptomic analysis revealed that the floral repressor FLOWERING LOCUS C (FLC) was down-regulated significantly in mlk3, suggesting that MLK3 negatively regulates flowering. Hence, MLK3 plays a role in repressing the transition from vegetative to reproductive phase in A. thaliana. This study sheds light on the delicate control of flowering time by A. thaliana CK1 specific to the plant kingdom.
Collapse
Affiliation(s)
- Junmei Kang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing 10019, China; (J.K.); (W.L.)
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (H.C.); (S.J.)
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (H.C.); (S.J.)
| | - Wenwen Liu
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing 10019, China; (J.K.); (W.L.)
| | - Renjie Yu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China;
| | - Zhihai Wu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Zhen Wang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing 10019, China; (J.K.); (W.L.)
- Correspondence: ; Tel.: +10-86-6281-6357
| |
Collapse
|
53
|
Common Functions of Disordered Proteins across Evolutionary Distant Organisms. Int J Mol Sci 2020; 21:ijms21062105. [PMID: 32204351 PMCID: PMC7139818 DOI: 10.3390/ijms21062105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins and regions typically lack a well-defined structure and thus fall outside the scope of the classic sequence–structure–function relationship. Hence, classic sequence- or structure-based bioinformatic approaches are often not well suited to identify homology or predict the function of unknown intrinsically disordered proteins. Here, we give selected examples of intrinsic disorder in plant proteins and present how protein function is shared, altered or distinct in evolutionary distant organisms. Furthermore, we explore how examining the specific role of disorder across different phyla can provide a better understanding of the common features that protein disorder contributes to the respective biological mechanism.
Collapse
|
54
|
Yang Y, Liu H. Coordinated Shoot and Root Responses to Light Signaling in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100026. [PMID: 33367230 PMCID: PMC7748005 DOI: 10.1016/j.xplc.2020.100026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 05/05/2023]
Abstract
Light is one of the most important environmental signals and regulates many biological processes in plants. Studies on light-regulated development have mainly focused on aspects of shoot growth, such as de-etiolation, cotyledon opening, inhibition of hypocotyl elongation, flowering, and anthocyanin accumulation. However, recent studies have demonstrated that light is also involved in regulating root growth and development in Arabidopsis. In this review, we summarize the progress in understanding how shoots and roots coordinate their responses to light through different light-signaling components and pathways, including the COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1), HY5 (ELONGATED HYPOCOTYL 5), and MYB73/MYB77 (MYB DOMAIN PROTEIN 73/77) pathways.
Collapse
Affiliation(s)
- Yu Yang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, P. R. China
- University of Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, P. R. China
- Corresponding author
| |
Collapse
|
55
|
Sanchez SE, Rugnone ML, Kay SA. Light Perception: A Matter of Time. MOLECULAR PLANT 2020; 13:363-385. [PMID: 32068156 PMCID: PMC7056494 DOI: 10.1016/j.molp.2020.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/03/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
Optimizing the perception of external cues and regulating physiology accordingly help plants to cope with the constantly changing environmental conditions to which they are exposed. An array of photoreceptors and intricate signaling pathways allow plants to convey the surrounding light information and synchronize an endogenous timekeeping system known as the circadian clock. This biological clock integrates multiple cues to modulate a myriad of downstream responses, timing them to occur at the best moment of the day and the year. Notably, the mechanism underlying entrainment of the light-mediated clock is not clear. This review addresses known interactions between the light-signaling and circadian-clock networks, focusing on the role of light in clock entrainment and known molecular players in this process.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matias L Rugnone
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
56
|
Liu Q, Su T, He W, Ren H, Liu S, Chen Y, Gao L, Hu X, Lu H, Cao S, Huang Y, Wang X, Wang Q, Lin C. Photooligomerization Determines Photosensitivity and Photoreactivity of Plant Cryptochromes. MOLECULAR PLANT 2020; 13:398-413. [PMID: 31953223 PMCID: PMC7056577 DOI: 10.1016/j.molp.2020.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 01/10/2020] [Indexed: 05/18/2023]
Abstract
Plant and non-plant species possess cryptochrome (CRY) photoreceptors to mediate blue light regulation of development or the circadian clock. The blue light-dependent homooligomerization of Arabidopsis CRY2 is a known early photoreaction necessary for its functions, but the photobiochemistry and function of light-dependent homooligomerization and heterooligomerization of cryptochromes, collectively referred to as CRY photooligomerization, have not been well established. Here, we show that photooligomerization is an evolutionarily conserved photoreaction characteristic of CRY photoreceptors in plants and some non-plant species. Our analyses of the kinetics of the forward and reverse reactions of photooligomerization of Arabidopsis CRY1 and CRY2 provide a previously unrecognized mechanism underlying the different photosensitivity and photoreactivity of these two closely related photoreceptors. We found that photooligomerization is necessary but not sufficient for the functions of CRY2, implying that CRY photooligomerization is presumably accompanied by additional function-empowering conformational changes. We further demonstrated that the CRY2-CRY1 heterooligomerization plays roles in regulating functions of Arabidopsis CRYs in vivo. Taken together, these results suggest that photooligomerization is an evolutionarily conserved mechanism determining the photosensitivity and photoreactivity of plant CRYs.
Collapse
Affiliation(s)
- Qing Liu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tiantian Su
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Wenjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Huibo Ren
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyuan Liu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yadi Chen
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Gao
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohua Hu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoyue Lu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Huang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Wang
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
57
|
Vanderstraeten J, Gailly P, Malkemper EP. Light entrainment of retinal biorhythms: cryptochrome 2 as candidate photoreceptor in mammals. Cell Mol Life Sci 2020; 77:875-884. [PMID: 31982933 PMCID: PMC11104904 DOI: 10.1007/s00018-020-03463-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/31/2022]
Abstract
The mechanisms that synchronize the biorhythms of the mammalian retina with the light/dark cycle are independent of those synchronizing the rhythms in the central pacemaker, the suprachiasmatic nucleus. The identity of the photoreceptor(s) responsible for the light entrainment of the retina of mammals is still a matter of debate, and recent studies have reported contradictory results in this respect. Here, we suggest that cryptochromes (CRY), in particular CRY 2, are involved in that light entrainment. CRY are highly conserved proteins that are a key component of the cellular circadian clock machinery. In plants and insects, they are responsible for the light entrainment of these biorhythms, mediated by the light response of their flavin cofactor (FAD). In mammals, however, no light-dependent role is currently assumed for CRY in light-exposed tissues, including the retina. It has been reported that FAD influences the function of mammalian CRY 2 and that human CRY 2 responds to light in Drosophila, suggesting that mammalian CRY 2 keeps the ability to respond to light. Here, we hypothesize that CRY 2 plays a role in the light entrainment of retinal biorhythms, at least in diurnal mammals. Indeed, published data shows that the light intensity dependence and the wavelength sensitivity commonly reported for that light entrainment fits the light sensitivity and absorption spectrum of light-responsive CRY. We propose experiments to test our hypothesis and to further explore the still-pending question of the function of CRY 2 in the mammalian retina.
Collapse
Affiliation(s)
- Jacques Vanderstraeten
- Faculty of Medicine, School of Public Health, Environmental and Work Health Research Center, Université Libre de Bruxelles, CP593, Route de Lennik, 808, 1070, Brussels, Belgium.
- , Avenue Constant Montald, 11, 1200, Brussels, Belgium.
| | - Philippe Gailly
- Faculty of Medicine, Institute of Neuroscience (IONS), Cellular and Molecular Pole (CEMO), Catholic University of Louvain, Avenue Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - E Pascal Malkemper
- Center of Advanced European Studies and Research (CAESAR), Ludwig-Erhard-Allee 2, Bonn, 53175, Germany
| |
Collapse
|
58
|
Kang J, Wang Z. Mut9p-LIKE KINASE Family Members: New Roles of the Plant-Specific Casein Kinase I in Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21051562. [PMID: 32106561 PMCID: PMC7084540 DOI: 10.3390/ijms21051562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
: Casein kinase I (CK1), a ubiquitous serine/threonine (Ser/Thr) protein kinase in eukaryotes, plays pivotal roles in a wide spectrum of cellular functions including metabolism, cell cycle progression, developmental control and stress responses. Plant CK1 evolves a lineage expansion, resulting in a unique branch of members exclusive to the kingdom. Among them, Arabidopsis Mut9p-LIKE KINASEs (MLKs) target diverse substrates including histones and the key regulatory proteins involving in physiological processes of light signaling, circadian rhythms, phytohormone and plant defense. Deregulation of the kinase activity by mutating the enzyme or the phosphorylation sites of substrates causes developmental disorders and susceptibility to adverse environmental conditions. MLKs have evolved as a general kinase that modifies transcription factors or primary regulatory proteins in a dynamic way. Here, we summarize the current knowledge of the roles of MLKs and MLK orthologs in several commercially important crops.
Collapse
Affiliation(s)
| | - Zhen Wang
- Correspondence: ; Tel.: +10-86-62816357
| |
Collapse
|
59
|
Deconvoluting Wavelengths Leading to Fluorescent Light Induced Inflammation and Cellular Stress in Zebrafish (Danio rerio). Sci Rep 2020; 10:3321. [PMID: 32094353 PMCID: PMC7039929 DOI: 10.1038/s41598-020-59502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 11/16/2022] Open
Abstract
Fluorescent light (FL) has been shown to induce a cellular immune and inflammatory response that is conserved over 450 MY of evolutionary divergence and among vertebrates having drastically different lifestyles such as Mus musculus, Danio rerio, Oryzias latipes and Xiphophorus maculatus. This surprising finding of an inflammation and immune response to FL not only holds for direct light receiving organs (skin) but is also observed within internal organs (brain and liver). Light responsive genetic circuitry initiated by the IL1B regulator induces a highly conserved acute phase response in each organ assessed for all of biological models surveyed to date; however, the specific light wavelengths triggering this response have yet to be determined so investigation of mechanisms and/or light specific molecule(s) leading to this response are difficult to assess. To understand how specific light wavelengths are received in both external and internal organs, zebrafish were exposed to specific 50 nm light wavebands spanning the visible spectrum from 300–600 nm and the genetic responses to each waveband exposure were assessed. Surprisingly, the induced cellular stress response previously observed following FL exposure is not triggered by the lower “damaging” wavelengths of light (UVB and UVA from 300–400 nm) but instead is maximally induced by higher wavelengths ranging from 450–500 nm in skin to 500–600 nm in both brain and liver).
Collapse
|
60
|
Kim KH, Kim JY, Lim WJ, Jeong S, Lee HY, Cho Y, Moon JK, Kim N. Genome-wide association and epistatic interactions of flowering time in soybean cultivar. PLoS One 2020; 15:e0228114. [PMID: 31968016 PMCID: PMC6975553 DOI: 10.1371/journal.pone.0228114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2019] [Accepted: 01/07/2020] [Indexed: 12/02/2022] Open
Abstract
Genome-wide association studies (GWAS) have enabled the discovery of candidate markers that play significant roles in various complex traits in plants. Recently, with increased interest in the search for candidate markers, studies on epistatic interactions between single nucleotide polymorphism (SNP) markers have also increased, thus enabling the identification of more candidate markers along with GWAS on single-variant-additive-effect. Here, we focused on the identification of candidate markers associated with flowering time in soybean (Glycine max). A large population of 2,662 cultivated soybean accessions was genotyped using the 180k Axiom® SoyaSNP array, and the genomic architecture of these accessions was investigated to confirm the population structure. Then, GWAS was conducted to evaluate the association between SNP markers and flowering time. A total of 93 significant SNP markers were detected within 59 significant genes, including E1 and E3, which are the main determinants of flowering time. Based on the GWAS results, multilocus epistatic interactions were examined between the significant and non-significant SNP markers. Two significant and 16 non-significant SNP markers were discovered as candidate markers affecting flowering time via interactions with each other. These 18 candidate SNP markers mapped to 18 candidate genes including E1 and E3, and the 18 candidate genes were involved in six major flowering pathways. Although further biological validation is needed, our results provide additional information on the existing flowering time markers and present another option to marker-assisted breeding programs for regulating flowering time of soybean.
Collapse
Affiliation(s)
- Kyoung Hyoun Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jae-Yoon Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won-Jun Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seongmun Jeong
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ho-Yeon Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Youngbum Cho
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung-Kyung Moon
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
61
|
Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun 2019; 10:5219. [PMID: 31745087 PMCID: PMC6864062 DOI: 10.1038/s41467-019-13045-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2018] [Accepted: 10/17/2019] [Indexed: 11/08/2022] Open
Abstract
Phytochromes are bilin-binding photosensory receptors which control development over a broad range of environmental conditions and throughout the whole plant life cycle. Light-induced conformational changes enable phytochromes to interact with signaling partners, in particular transcription factors or proteins that regulate them, resulting in large-scale transcriptional reprograming. Phytochromes also regulate promoter usage, mRNA splicing and translation through less defined routes. In this review we summarize our current understanding of plant phytochrome signaling, emphasizing recent work performed in Arabidopsis. We compare and contrast phytochrome responses and signaling mechanisms among land plants and highlight open questions in phytochrome research.
Collapse
|
62
|
Ronald J, Davis SJ. Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. PLANT, CELL & ENVIRONMENT 2019; 42:2871-2884. [PMID: 31369151 DOI: 10.1111/pce.13634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/19/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
Circadian clocks provide organisms the ability to synchronize their internal physiological responses with the external environment. This process, termed entrainment, occurs through the perception of internal and external stimuli. As with other organisms, in plants, the perception of light is a critical for the entrainment and sustainment of circadian rhythms. Red, blue, far-red, and UV-B light are perceived by the oscillator through the activity of photoreceptors. Four classes of photoreceptors signal to the oscillator: phytochromes, cryptochromes, UVR8, and LOV-KELCH domain proteins. In most cases, these photoreceptors localize to the nucleus in response to light and can associate to subnuclear structures to initiate downstream signalling. In this review, we will highlight the recent advances made in understanding the mechanisms facilitating the nuclear and subnuclear localization of photoreceptors and the role these subnuclear bodies have in photoreceptor signalling, including to the oscillator. We will also highlight recent progress that has been made in understanding the regulation of the nuclear and subnuclear localization of components of the plant circadian clock.
Collapse
Affiliation(s)
- James Ronald
- Department of Biology, University of York, YO10 5DD, York, UK
| | - Seth J Davis
- Department of Biology, University of York, YO10 5DD, York, UK
| |
Collapse
|
63
|
Bhaskara GB, Wong MM, Verslues PE. The flip side of phospho-signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. PLANT, CELL & ENVIRONMENT 2019; 42:2913-2930. [PMID: 31314921 DOI: 10.1111/pce.13616] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/15/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 05/12/2023]
Abstract
Protein phosphorylation is a key signalling mechanism and has myriad effects on protein function. Phosphorylation by protein kinases can be reversed by protein phosphatases, thus allowing dynamic control of protein phosphorylation. Although this may suggest a straightforward kinase-phosphatase relationship, plant genomes contain five times more kinases than phosphatases. Here, we examine phospho-signalling from a protein phosphatase centred perspective and ask how relatively few phosphatases regulate many phosphorylation sites. The most abundant class of plant phosphatases, the protein phosphatase 2Cs (PP2Cs), is surrounded by a web of regulation including inhibitor and activator proteins as well as posttranslational modifications that regulate phosphatase activity, control phosphatase stability, or determine the subcellular locations where the phosphatase is present and active. These mechanisms are best established for the Clade A PP2Cs, which are key components of stress and abscisic acid signalling. We also describe other PP2C clades and illustrate how these phosphatases are highly regulated and involved in a wide range of physiological functions. Together, these examples of multiple layers of phosphatase regulation help explain the unbalanced kinase-phosphatase ratio. Continued use of phosphoproteomics to examine phosphatase targets and phosphatase-kinase relationships will be important for deeper understanding of phosphoproteome regulation.
Collapse
Affiliation(s)
| | - Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
64
|
Saito AN, Matsuo H, Kuwata K, Ono A, Kinoshita T, Yamaguchi J, Nakamichi N. Structure-function study of a novel inhibitor of the casein kinase 1 family in Arabidopsis thaliana. PLANT DIRECT 2019; 3:e00172. [PMID: 31549020 PMCID: PMC6747015 DOI: 10.1002/pld3.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/22/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 05/16/2023]
Abstract
Casein kinase 1 (CK1) is an evolutionarily conserved protein kinase family among eukaryotes. Studies in non-plants have shown CK1-dependent divergent biological processes, but the collective knowledge regarding the biological roles of plant CK1 lags far behind other members of the Eukarya. One reason for this is that plants have many more genes encoding CK1 than do animals. To accelerate our understanding of the plant CK1 family, a strong CK1 inhibitor that efficiently inhibits multiple members of the CK1 protein family in vivo (i.e., in planta) is required. Here, we report a novel, specific, and effective CK1 inhibitor in Arabidopsis. Using circadian period-lengthening activity as an estimation of the CK1 inhibitor effect in vivo, we performed a structure-activity relationship study of analogues of the CK1 inhibitor PHA767491 (1,5,6,7-tetrahydro-2-(4-pyridinyl)-4H-pyrrolo[3,2-c]pyridin-4-one hydrochloride). A propargyl group at the pyrrole nitrogen atom (AMI-212) or a bromine atom at the pyrrole C3 position (AMI-23) had stronger CK1 inhibitory activity than PHA767491. A hybrid molecule of AMI-212 and AMI-23 (AMI-331) was about 100-fold more inhibitory than the parent molecule PHA767491. Affinity proteomics using an AMI-331 probe showed that the targets of AMI-331 inhibition are mostly CK1 kinases. As such, AMI-331 is a potent and selective CK1 inhibitor that shows promise in the research of CK1 in plants.
Collapse
Affiliation(s)
- Ami N. Saito
- Department of Applied ChemistryWaseda UniversityShinjuku, TokyoJapan
| | - Hiromi Matsuo
- Institute of Transformative Bio‐molecules (WPI‐ITbM)Nagoya UniversityChikusa, NagoyaJapan
| | - Keiko Kuwata
- Institute of Transformative Bio‐molecules (WPI‐ITbM)Nagoya UniversityChikusa, NagoyaJapan
| | - Azusa Ono
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityChikusa, NagoyaJapan
| | - Toshinori Kinoshita
- Institute of Transformative Bio‐molecules (WPI‐ITbM)Nagoya UniversityChikusa, NagoyaJapan
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityChikusa, NagoyaJapan
| | | | - Norihito Nakamichi
- Institute of Transformative Bio‐molecules (WPI‐ITbM)Nagoya UniversityChikusa, NagoyaJapan
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityChikusa, NagoyaJapan
| |
Collapse
|
65
|
Jin H, Zhu Z. Dark, Light, and Temperature: Key Players in Plant Morphogenesis. PLANT PHYSIOLOGY 2019; 180:1793-1802. [PMID: 31113832 PMCID: PMC6670080 DOI: 10.1104/pp.19.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/19/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
Recent advances in plant thermomorphogenesis under different light conditions reveal the roles of plant photoreceptors in the control of thermomorphogenesis
Collapse
Affiliation(s)
- Huanhuan Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
66
|
Abstract
The mechanisms of eukaryotic circadian clocks rely on transcriptional-translational feedback loops (TTFLs), but components of TTFLs from different phylogenetic lineages are thought to be evolutionarily diverse. Posttranslational modification is also required for clock function, but those within the plant clock are less studied, likely due to genetic redundancy. Here, we identified a small synthetic molecule that lengthened the Arabidopsis circadian period. Using an affinity probe, we found that the molecule inhibited multiple members of the casein kinase I (CK1) family, which is also essential in animal, fungal, and algal clocks. The CK1 family modulated plant-specific clock-associated transcriptional repressors. With other studies, our results established the prominent role of CK1 family to control circadian clocks among vastly divergent phylogenetic lineages. The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.
Collapse
|
67
|
Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Semin Cell Dev Biol 2019; 92:114-121. [PMID: 30946988 DOI: 10.1016/j.semcdb.2019.03.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2018] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
Light is a crucial environmental cue not only for photosynthetic energy production but also for plant growth and development. Plants employ sophisticated methods to detect and interpret information from incoming light. Five classes of photoreceptors have been discovered in the model plant Arabidopsis thaliana. These photoreceptors act either distinctly and/or redundantly in fine-tuning many aspects of plant life cycle. Unlike mobile animals, sessile plants have developed an enormous plasticity to adapt and survive in changing environment. By monitoring different information arising from ambient light, plants precisely regulate downstream signaling pathways to adapt accordingly. Given that changes in the light environment is typically synchronized with other environmental cues such as temperature, abiotic stresses, and seasonal changes, it is not surprising that light signaling pathways are interconnected with multiple pathways to regulate plant physiology and development. Indeed, recent advances in plant photobiology revealed a large network of co-regulation among different photoreceptor signaling pathways as well as other internal signaling pathways (e.g., hormone signaling). In addition, some photoreceptors are directly involved in perception of non-light stimuli (e.g., temperature). Therefore, understanding highly inter-connected signaling networks is essential to explore the photoreceptor functions in plants. Here, we summarize how plants co-ordinate multiple photoreceptors and their internal signaling pathways to regulate a myriad of downstream responses at molecular and physiological levels.
Collapse
|
68
|
Abstract
Posttranslational modification (PTM) of proteins occurs during or after translation and in most cases means covalent binding of a functional group to certain amino acid side chains. Among PTMs, phosphorylation is extensively studied for decades. During phosphorylation, a phosphate group is added to the target residue that is dominantly serine, threonine, and tyrosine in eukaryotes. The phosphate group attachment is catalyzed by kinases, whereas the removal of phosphate (dephosphorylation) is performed by phosphatases. Phosphorylation of phytochrome photoreceptors alters light signaling in multiple ways, thus the examination of this PTM is an expanding aspect of light signaling research. Although this chapter presents methods for detecting phosphorylated phytochrome B molecules, it can be applied on other phytochrome species. The first presented protocol of this chapter shows how the phosphorylation state of phytochrome photoreceptors can be monitored in a modified polyacrylamide gel electrophoresis system. The second protocol describes in detail how phosphorylated amino acids of a target molecule can be identified using mass spectrometry analysis.
Collapse
Affiliation(s)
- Eva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Szeged, Hungary
| | - Péter Gyula
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - András Viczián
- Plant Biology Institute, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
69
|
Han X, Kahmann R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:822. [PMID: 31297126 PMCID: PMC6606975 DOI: 10.3389/fpls.2019.00822] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 05/19/2023]
Abstract
Phytohormones regulate a large variety of physiological processes in plants. In addition, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense responses against abiotic and biotic stresses, while plant growth regulators, such as auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins (GAs), also contribute to plant immunity. To successfully colonize plants, filamentous pathogens like fungi and oomycetes have evolved diverse strategies to interfere with phytohormone pathways with the help of secreted effectors. These include proteins, toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such pathogen effectors manipulate phytohormone pathways by directly altering hormone levels, by interfering with phytohormone biosynthesis, or by altering or blocking important components of phytohormone signaling pathways. In this review, we outline the various strategies used by filamentous phytopathogens to manipulate phytohormone pathways to cause disease.
Collapse
|
70
|
Martínez C, Nieto C, Prat S. Convergent regulation of PIFs and the E3 ligase COP1/SPA1 mediates thermosensory hypocotyl elongation by plant phytochromes. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:188-203. [PMID: 30273926 DOI: 10.1016/j.pbi.2018.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 05/17/2023]
Abstract
The ability of plants to sense and integrate daily and seasonal changes in light and temperature and to adjust their growth and development accordingly, is critical to withstand severe weather oscillations in a year. While molecular mechanisms controlling light responses are relatively well established, those involved in the perception and response to temperature are just beginning to be understood. Phytochromes emerged as major temperature sensors; due to warmer temperatures accelerate the dark reversal reaction to the Pr inactive state. Downstream of phytochromes, the bHLH Phytochrome Interacting Factors, and in particular PIF4, act as central signaling hubs to growth coordination in response to light and temperature cues, and to the gibberellin and brassinosteroid pathways. Here we discuss recent findings showing that phytochromes control PIFs activity not only by signaling their destruction in the light, but by modulating transcriptional repression of these factors by the circadian clock. Together with this repression, phytochromes inactivate the COP1/SPA ubiquitin ligase, which negatively regulates light signaling through degradation of a large set of nuclear photomorphogenesis-promoting factors that suppress PIFs activity.
Collapse
Affiliation(s)
- Cristina Martínez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| | - Cristina Nieto
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| | - Salomé Prat
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
71
|
Wang Q, Zuo Z, Wang X, Liu Q, Gu L, Oka Y, Lin C. Beyond the photocycle-how cryptochromes regulate photoresponses in plants? CURRENT OPINION IN PLANT BIOLOGY 2018; 45:120-126. [PMID: 29913346 PMCID: PMC6240499 DOI: 10.1016/j.pbi.2018.05.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/01/2018] [Revised: 05/01/2018] [Accepted: 05/22/2018] [Indexed: 05/17/2023]
Abstract
Cryptochromes (CRYs) are blue light receptors that mediate light regulation of plant growth and development. Land plants possess various numbers of cryptochromes, CRY1 and CRY2, which serve overlapping and partially redundant functions in different plant species. Cryptochromes exist as physiologically inactive monomers in darkness; photoexcited cryptochromes undergo homodimerization to increase their affinity to the CRY-signaling proteins, such as CIBs (CRY2-interacting bHLH), PIFs (Phytochrome-Interacting Factors), AUX/IAA (Auxin/INDOLE-3-ACETIC ACID), and the COP1-SPAs (Constitutive Photomorphogenesis 1-Suppressors of Phytochrome A) complexes. These light-dependent protein-protein interactions alter the activity of the CRY-signaling proteins to change gene expression and developmental programs in response to light. In the meantime, photoexcitation also changes the affinity of cryptochromes to the CRY-regulatory proteins, such as BICs (Blue-light Inhibitors of CRYs) and PPKs (Photoregulatory Protein Kinases), to modulate the activity, modification, or abundance of cryptochromes and photosensitivity of plants in response to the changing light environment.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Wang
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qing Liu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
72
|
Wirthmueller L, Asai S, Rallapalli G, Sklenar J, Fabro G, Kim DS, Lintermann R, Jaspers P, Wrzaczek M, Kangasjärvi J, MacLean D, Menke FLH, Banfield MJ, Jones JDG. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. THE NEW PHYTOLOGIST 2018; 220:232-248. [PMID: 30156022 PMCID: PMC6175486 DOI: 10.1111/nph.15277] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/16/2018] [Accepted: 05/09/2018] [Indexed: 05/02/2023]
Abstract
The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1). We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)-induced defense genes and alters plant growth responses to light. HaRxL106-mediated suppression of immunity is abolished in RCD1 loss-of-function mutants. We report that RCD1-type proteins are phosphorylated, and we identified Mut9-like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1-interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA-induced defense marker gene expression compared with wild-type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues and pathogen sensors, and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant immunity.
Collapse
Affiliation(s)
- Lennart Wirthmueller
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
- Dahlem Centre of Plant SciencesDepartment of Plant Physiology and BiochemistryFreie Universität BerlinKönigin‐Luise‐Straße 12–1614195BerlinGermany
| | - Shuta Asai
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | - Jan Sklenar
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Georgina Fabro
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Dae Sung Kim
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Ruth Lintermann
- Dahlem Centre of Plant SciencesDepartment of Plant Physiology and BiochemistryFreie Universität BerlinKönigin‐Luise‐Straße 12–1614195BerlinGermany
| | - Pinja Jaspers
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Michael Wrzaczek
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Jaakko Kangasjärvi
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Daniel MacLean
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | - Mark J. Banfield
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | |
Collapse
|
73
|
Eckel M, Steinchen W, Batschauer A. ATP boosts lit state formation and activity of Arabidopsis cryptochrome 2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:389-403. [PMID: 30044014 DOI: 10.1111/tpj.14039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/11/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 05/21/2023]
Abstract
Cryptochrome (cry) blue light photoreceptors have important roles in the regulation of plant development. Their photocycle includes redox changes of their flavin adenine dinucleotide (FAD) chromophore, which is fully oxidised in the dark state and semi-reduced in the signalling-active lit state. The two Arabidopsis thaliana cryptochromes, cry1 and cry2, and the plant-type cryptochrome CPH1 from Chlamydomonas rheinhardtii bind ATP and other nucleotides. Binding of ATP affects the photocycle of these photoreceptors and causes structural alterations. However, the exact regions that undergo structural changes have not been defined, and most importantly it is not known whether ATP binding affects the biological activity of these photoreceptors in planta. Here we present studies on the effect of ATP on Arabidopsis cry2. Recombinant cry2 protein showed a high affinity for ATP (KD of 1.09 ± 0.48 μm). Binding of ATP and other adenines promoted photoreduction of the FAD chromophore in vitro and caused structural changes, particularly in α-helix 21 which links the photosensory domain with the C-terminal extension. The constructed cry2Y399A mutant was unable to bind ATP and did not show enhancement of photoreduction by ATP. When this mutant gene was expressed in Arabidopsis null cry2 mutant plants it retained some biological activity, which was, however, lower than that of the wild type. Our results indicate that binding of ATP to cry2, and most likely to other plant-type cryptochromes, is not essential but boosts the formation of the signalling state and biological activity.
Collapse
Affiliation(s)
- Maike Eckel
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Wieland Steinchen
- Faculty of Chemistry and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Alfred Batschauer
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität Marburg, 35032, Marburg, Germany
| |
Collapse
|
74
|
Yang L, Mo W, Yu X, Yao N, Zhou Z, Fan X, Zhang L, Piao M, Li S, Yang D, Lin C, Zuo Z. Reconstituting Arabidopsis CRY2 Signaling Pathway in Mammalian Cells Reveals Regulation of Transcription by Direct Binding of CRY2 to DNA. Cell Rep 2018; 24:585-593.e4. [DOI: 10.1016/j.celrep.2018.06.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022] Open
|
75
|
Zheng W, Lin Y, Fang W, Zhao X, Lou Y, Wang G, Zheng H, Liang Q, Abubakar YS, Olsson S, Zhou J, Wang Z. The endosomal recycling of FgSnc1 by FgSnx41-FgSnx4 heterodimer is essential for polarized growth and pathogenicity in Fusarium graminearum. THE NEW PHYTOLOGIST 2018; 219:654-671. [PMID: 29676464 DOI: 10.1111/nph.15178] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/13/2018] [Accepted: 03/19/2018] [Indexed: 05/15/2023]
Abstract
Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Wenhui Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yahong Lin
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenqin Fang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Lou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guanghui Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huawei Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qifu Liang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yakubu Saddeeq Abubakar
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Stefan Olsson
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
76
|
Pham VN, Kathare PK, Huq E. Phytochromes and Phytochrome Interacting Factors. PLANT PHYSIOLOGY 2018; 176:1025-1038. [PMID: 29138351 PMCID: PMC5813575 DOI: 10.1104/pp.17.01384] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/22/2017] [Accepted: 11/09/2017] [Indexed: 05/18/2023]
Abstract
The basic helix-loop-helix domain-containing transcription factors that interact physically with the red and far-red light photoreceptors, phytochromes, are called PHYTOCHROME INTERACTING FACTORS (PIFs). In the last two decades, the phytochrome-PIF signaling module has been shown to be conserved from Physcomitrella patens to higher plants. Exciting recent studies highlight the discovery of at least four distinct kinases (PPKs, CK2, BIN2, and phytochrome itself) and four families of ubiquitin ligases (SCFEBF1/2, CUL3LRB, CUL3BOP, and CUL4COP1-SPA) that regulate PIF abundance both in dark and light conditions. This review discusses these recent discoveries with a focus on the central phytochrome signaling mechanisms that have a profound impact on plant growth and development in response to light.
Collapse
Affiliation(s)
- Vinh Ngoc Pham
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Praveen Kumar Kathare
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Enamul Huq
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| |
Collapse
|
77
|
Yang Y, Liang T, Zhang L, Shao K, Gu X, Shang R, Shi N, Li X, Zhang P, Liu H. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. NATURE PLANTS 2018; 4:98-107. [PMID: 29379156 DOI: 10.1038/s41477-017-0099-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/01/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) is an ultraviolet-B (UVB) radiation photoreceptor that mediates light responses in plants. How plant UVR8 acts in response to UVB light is not well understood. Here, we report the identification and characterization of the Arabidopsis WRKY DNA-BINDING PROTEIN 36 (WRKY36) protein. WRKY36 interacts with UVR8 in yeast and Arabidopsis cells and it promotes hypocotyl elongation by inhibiting HY5 transcription. Inhibition of hypocotyl elongation under UVB requires the inhibition of WRKY36. WRKY36 binds to the W-box motif of the HY5 promoter to inhibit its transcription, while nuclear localized UVR8 directly interacts with WRKY36 to inhibit WRKY36-DNA binding both in vitro and in vivo, leading to the release of inhibition of HY5 transcription. These results indicate that WRKY36 is a negative regulator of HY5 and that UVB represses WRKY36 via UVR8 to promote the transcription of HY5 and photomorphogenesis. The UVR8-WRKY36 interaction in the nucleus represents a novel mechanism of early UVR8 signal transduction in Arabidopsis.
Collapse
Affiliation(s)
- Yu Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Tong Liang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Libo Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kai Shao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Xingxing Gu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruixin Shang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Nan Shi
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
78
|
Wang Q, Liu Q, Wang X, Zuo Z, Oka Y, Lin C. New insights into the mechanisms of phytochrome-cryptochrome coaction. THE NEW PHYTOLOGIST 2018; 217:547-551. [PMID: 29139123 PMCID: PMC6677561 DOI: 10.1111/nph.14886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 547 I. Introduction 547 II. Phytochromes mediate light-induced transcription of BICs to inactivate cryptochromes 548 III. PPKs phosphorylate light-signaling proteins and histones to affect plant development 548 IV. Prospect 550 Acknowledgements 550 References 550 SUMMARY: Plants perceive and respond to light signals by multiple sensory photoreceptors, including phytochromes and cryptochromes, which absorb different wavelengths of light to regulate genome expression and plant development. Photophysiological analyses have long revealed the coordinated actions of different photoreceptors, a phenomenon referred to as the photoreceptor coaction. The mechanistic explanations of photoreceptor coactions are not fully understood. The function of direct protein-protein interaction of phytochromes and cryptochromes and common signaling molecules of these photoreceptors, such as SPA1/COP1 E3 ubiquitin ligase complex and bHLH transcription factors PIFs, would partially explain phytochrome-cryptochrome coactions. In addition, newly discovered proteins that block cryptochrome photodimerization or catalyze cryptochrome phosphorylation may also participate in the phytochrome and cryptochrome coaction. This Tansley insight, which is not intended to make a comprehensive review of the studies of photoreceptor coactions, attempts to highlight those recent findings and their possible roles in the photoreceptor coaction.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qing Liu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Wang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
79
|
Wang X, Wang Q, Han YJ, Liu Q, Gu L, Yang Z, Su J, Liu B, Zuo Z, He W, Wang J, Liu B, Matsui M, Kim JII, Oka Y, Lin C. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:426-436. [PMID: 28833729 PMCID: PMC6717659 DOI: 10.1111/tpj.13664] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/22/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 05/15/2023]
Abstract
Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature.
Collapse
Affiliation(s)
- Xu Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Qing Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaohe Yang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bobin Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjin He
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
- College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Jian Wang
- Institute of Crop Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Ningxia 750105, China
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minami Matsui
- Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Jeong-II Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
- For correspondence (, or )
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- For correspondence (, or )
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
- For correspondence (, or )
| |
Collapse
|
80
|
Holtkotte X, Ponnu J, Ahmad M, Hoecker U. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling. PLoS Genet 2017; 13:e1007044. [PMID: 28991901 PMCID: PMC5648270 DOI: 10.1371/journal.pgen.1007044] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022] Open
Abstract
Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.
Collapse
Affiliation(s)
- Xu Holtkotte
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Jathish Ponnu
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Margaret Ahmad
- UMR 8256 (B2A) CNRA—UPMC, IBPS, Université Pierre et Marie Curie, 9 quai Saint Bernard, Paris, France
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
81
|
Holtkotte X, Ponnu J, Ahmad M, Hoecker U. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling. PLoS Genet 2017. [PMID: 28991901 DOI: 10.1371/journal.pone.1007044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/01/2023] Open
Abstract
Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.
Collapse
Affiliation(s)
- Xu Holtkotte
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Jathish Ponnu
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Margaret Ahmad
- UMR 8256 (B2A) CNRA-UPMC, IBPS, Université Pierre et Marie Curie, 9 quai Saint Bernard, Paris, France
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
82
|
Ni W, Xu SL, González-Grandío E, Chalkley RJ, Huhmer AFR, Burlingame AL, Wang ZY, Quail PH. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nat Commun 2017; 8:15236. [PMID: 28492231 PMCID: PMC5437280 DOI: 10.1038/ncomms15236] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2016] [Accepted: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
Upon light-induced nuclear translocation, phytochrome (phy) sensory photoreceptors interact with, and induce rapid phosphorylation and consequent ubiquitin-mediated degradation of, transcription factors, called PIFs, thereby regulating target gene expression and plant development. Nevertheless, the biochemical mechanism of phy-induced PIF phosphorylation has remained ill-defined. Here we identify a family of nuclear protein kinases, designated Photoregulatory Protein Kinases (PPK1-4; formerly called MUT9-Like Kinases (MLKs)), that interact with PIF3 and phyB in a light-induced manner in vivo. Genetic analyses demonstrate that the PPKs are collectively necessary for the normal light-induced phosphorylation and degradation of PIF3. PPK1 directly phosphorylates PIF3 in vitro, with a phosphosite pattern that strongly mimics the light-induced pattern in vivo. These data establish that the PPKs are directly involved in catalysing the photoactivated-phy-induced phosphorylation of PIF3 in vivo, and thereby are critical components of a transcriptionally centred signalling hub that pleiotropically regulates plant growth and development in response to multiple signalling pathways.
Collapse
Affiliation(s)
- Weimin Ni
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- U.S. Department of Agriculture/Agriculture Research Service, Plant Gene Expression Center, Albany, California 94710, USA
| | - Shou-Ling Xu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Thermo Fisher Scientific, San Jose, California 95134, USA
| | - Eduardo González-Grandío
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- U.S. Department of Agriculture/Agriculture Research Service, Plant Gene Expression Center, Albany, California 94710, USA
| | - Robert J. Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | | | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Peter H. Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- U.S. Department of Agriculture/Agriculture Research Service, Plant Gene Expression Center, Albany, California 94710, USA
| |
Collapse
|