51
|
Mathieu M, Friedrich C, Ducrot N, Zannoni J, Sylvie T, Jerraya N, Rousseaux S, Chuffart F, Kosmider O, Karim Z, Park S. Luspatercept (RAP-536) modulates oxidative stress without affecting mutation burden in myelodysplastic syndromes. Ann Hematol 2022; 101:2633-2643. [PMID: 36195681 DOI: 10.1007/s00277-022-04993-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
In low-risk myelodysplastic syndrome (LR-MDS), erythropoietin (EPO) is widely used for the treatment of chronic anemia. However, initial response to EPO has time-limited effects. Luspatercept reduces red blood cell transfusion dependence in LR-MDS patients. Here, we investigated the molecular action of luspatercept (RAP-536) in an in vitro model of erythroid differentiation of MDS, and also in a in vivo PDX murine model with primary samples of MDS patients carrying or not SF3B1 mutation. In our in vitro model, RAP-536 promotes erythroid proliferation by increasing the number of cycling cells without any impact on apoptosis rates. RAP-536 promoted late erythroid precursor maturation while decreasing intracellular reactive oxygen species level. RNA sequencing of erythroid progenitors obtained under RAP-536 treatment showed an enrichment of genes implicated in positive regulation of response to oxidative stress and erythroid differentiation. In our PDX model, RAP-536 induces a higher hemoglobin level. RAP-536 did not modify variant allele frequencies in vitro and did not have any effect against leukemic burden in our PDX model. These results suggest that RAP-536 promotes in vivo and in vitro erythroid cell differentiation by decreasing ROS level without any remarkable impact on iron homeostasis and on mutated allele burden.
Collapse
Affiliation(s)
- Meunier Mathieu
- Department of Hematology, CHU Grenoble Alpes, CS10217, 38043, Grenoble cedex 09, France.
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France.
| | - Chloé Friedrich
- Institut Cochin, Department Development, Reproduction and Cancer, 75014, Paris, France
| | - Nicolas Ducrot
- Université de Paris, INSERM, CNRS, Centre de Recherche Sur L'Inflammation (CRI), 75018, Paris, France
| | - Johanna Zannoni
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France
| | - Tondeur Sylvie
- Laboratoire de Génétique Des Hémopathies, CHU Grenoble Alpes, Grenoble, France
| | - Nelly Jerraya
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France
| | - Sophie Rousseaux
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France
| | - Florent Chuffart
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France
| | - Olivier Kosmider
- Institut Cochin, Department Development, Reproduction and Cancer, 75014, Paris, France
- Hematology Department, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université de Paris (APHP-CUP), 75014, Paris, France
| | - Zoubida Karim
- Université de Toulouse, INSERM, CNRS, Institut Toulousain Des Maladies Infectieuses Et Inflammatoires (Infinity), Université Paul Sabatier (UPS), Toulouse, France
| | - Sophie Park
- Department of Hematology, CHU Grenoble Alpes, CS10217, 38043, Grenoble cedex 09, France.
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France.
| |
Collapse
|
52
|
Barney DE, Ippolito JR, Berryman CE, Hennigar SR. A Prolonged Bout of Running Increases Hepcidin and Decreases Dietary Iron Absorption in Trained Female and Male Runners. J Nutr 2022; 152:2039-2047. [PMID: 35661896 DOI: 10.1093/jn/nxac129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Declines in iron status are frequently reported in those who regularly engage in strenuous physical activity. A possible reason is increases in the iron regulatory hormone hepcidin, which functions to inhibit dietary iron absorption and can be induced by the inflammatory cytokine interleukin-6 (IL-6). OBJECTIVES The current study aimed to determine the impact of a prolonged bout of running on hepcidin and dietary iron absorption in trained female and male runners. METHODS Trained female and male collegiate cross country runners (n = 28, age: 19.7 ± 1.2 y, maximal oxygen uptake: 66.1 ± 6.1 mL $\cdot$ kg -1$\cdot$ min-2, serum ferritin: 21.9 ± 13.3 ng/mL) performed a prolonged run (98.8 ± 14.7 min, 21.2 ± 3.8 km, 4.7 ± 0.3 min/km) during a team practice. Participants consumed a stable iron isotope with a standardized meal 2 h postrun and blood was collected 1 h later. The protocol was repeated 2 wk later except participants abstained from exercise (rest). RBCs were collected 15 d after exercise and rest to determine isotope enrichment. Differences between exercise and rest were assessed by paired t tests and Wilcoxon matched-pairs signed rank tests. Data are means ± SDs. RESULTS Plasma hepcidin increased 51% after exercise (45.8 ± 34.4 ng/mL) compared with rest (30.3 ± 27.2 ng/mL, P = 0.0010). Fractional iron absorption was reduced by 36% after exercise (11.8 ± 14.6 %) compared with rest (18.5 ± 14.4 %, P = 0.025). Plasma IL-6 was greater after exercise (0.660 ± 0.354 pg/mL) than after rest (0.457 ± 0.212 pg/mL, P < 0.0001). Exploratory analyses revealed that the increase in hepcidin with exercise may be driven by a response in males but not females. CONCLUSIONS A prolonged bout of running increases hepcidin and decreases dietary iron absorption compared with rest in trained runners with low iron stores. The current study supports that IL-6 contributes to the increase in hepcidin with prolonged physical activity, although future studies should explore potential sex differences in the hepcidin response.This trial was registered at Clinicaltrials.gov as NCT04079322.
Collapse
Affiliation(s)
- David E Barney
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - James R Ippolito
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Claire E Berryman
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Stephen R Hennigar
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
53
|
Zhou S, Li H, Li S. The Associations of Iron Related Biomarkers with Risk, Clinical Severity and Mortality in SARS-CoV-2 Patients: A Meta-Analysis. Nutrients 2022; 14:3406. [PMID: 36014912 PMCID: PMC9416650 DOI: 10.3390/nu14163406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly around the world and has led to millions of infections and deaths. Growing evidence indicates that iron metabolism is associated with COVID-19 progression, and iron-related biomarkers have great potential for detecting these diseases. However, the results of previous studies are conflicting, and there is not consistent numerical magnitude relationship between those biomarkers and COVID-19. Thereby, we aimed to integrate the results of current studies and to further explore their relationships through a meta-analysis. We searched peer-reviewed literature in PubMed, Scopus and Web of Science up to 31 May 2022. A random effects model was used for pooling standard mean difference (SMD) and the calculation of the corresponding 95% confidence interval (CI). I2 was used to evaluate heterogeneity among studies. A total of 72 eligible articles were included in the meta-analysis. It was found that the ferritin levels of patients increased with the severity of the disease, whereas their serum iron levels and hemoglobin levels showed opposite trends. In addition, non-survivors had higher ferritin levels (SMD (95%CI): 1.121 (0.854, 1.388); Z = 8.22 p for Z < 0.001; I2 = 95.7%, p for I2 < 0.001), lower serum iron levels (SMD (95%CI): −0.483 (−0.597, −0.368), Z = 8.27, p for Z < 0.001; I2 = 0.9%, p for I2 =0.423) and significantly lower TIBC levels (SMD (95%CI): −0.612 (−0.900, −0.324), Z = 4.16, p for Z < 0.001; I2 = 71%, p for I2 = 0.016) than survivors. This meta-analysis demonstrates that ferritin, serum iron, hemoglobin and total iron banding capacity (TIBC) levels are strongly associated with the risk, severity and mortality of COVID-19, providing strong evidence for their potential in predicting disease occurrence and progression.
Collapse
Affiliation(s)
| | | | - Shiru Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
54
|
Zaman BA, Ibrahim SA. Hepcidin-to-Ferritin Ratio as an Early Diagnostic Index of Iron Overload in β-Thalassemia Major Patients. Hemoglobin 2022; 46:106-113. [PMID: 35930276 DOI: 10.1080/03630269.2022.2083969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hepcidin (HEPC) hormone production is expected to be elevated in cases accompanying iron overload, but the opposite impact of ineffective erythropoiesis in β-thalassemia major (β-TM) patients overrides this effect. The role of the HEPC-to-ferritin (FER) ratio and its components in iron metabolism along with their diagnostic cutoff values, sensitivity, specificity, and accuracy in β-TM patients with iron overload, were examined in this study. This was a 1:1 case-control study with 120 participants, ages ranging from 2 to 30 years of both sexes, who were assigned into two groups: 60 β-TM patients with iron overload, and a control group, comprising 60 healthy individuals matched by gender and age. In the present study, we found slightly elevated serum HEPC concentration (21.9 ng/mL) compared to the controls (9.9 ng/mL), which was not statistically significant (p =0.1), and the median HEPC-to-FER ratio of the cases was significantly lower than the controls, with the median case-control difference of (-0.366; p < 0.001). Our results revealed a statistically significant impact (p < 0.001) of mean age on the serum HEPC level with the inverse linear correlation of (-0.487, p < 0.001). The area under the curve of the HEPC-to-FER ratio was 0.999 and the optimum cutoff value was 0.046 ng/mL (p < 0.001) with 100.0% sensitivity and 98.3% specificity. In conclusion, we found that serum HEPC-to-FER ratio, with an accuracy of 99.2%, may serve as an excellent index for the diagnosis of iron overload in β-TM patients differentiating them from nonthalassemic controls.
Collapse
Affiliation(s)
- Burhan A Zaman
- Department of Basic Sciences, College of Pharmacy, University of Duhok, Duhok City, Iraq
| | - Shereen A Ibrahim
- Department of Physiology and Pharmacology, College of Medicine, University of Duhok, Duhok City, Iraq
| |
Collapse
|
55
|
Al-Azazi AA, Abdul-Ghani R, El-Sayad MH, Sadek NA, El-Taweel HA. Levels of Serum Ferritin and Hepcidin in Patients with Uncomplicated Falciparum Malaria in Hodeidah, Yemen: Considerations for Assessing Iron Status. Hemoglobin 2022; 46:100-105. [PMID: 35924733 DOI: 10.1080/03630269.2022.2083970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Understanding the key regulator of iron homeostasis is critical to the improvement of iron supplementation practices in malaria-endemic areas. This study aimed to determine iron indices and hepcidin (HEPC) level in patients infected with Plasmodium falciparum compared to apparently healthy, malaria-negative subjects in Hodeidah, Yemen. The study included 70 Plasmodium falciparum-infected and 20 malaria-negative adults. Blood films were examined for detection and estimation of parasitemia. Hemoglobin (Hb) level was measured using an automated hematology analyzer. Serum iron and total iron binding capacity (TIBC) were determined by spectrophotometric methods. Levels of serum ferritin (FER) and HEPC were measured by enzyme-linked immunosorbent assays. Data were stratified by sex and age. Comparable Hb levels were found in P. falciparum-infected patients and malaria-negative subjects in each sex and age group (p > 0.05). Compared to their malaria-negative counterparts, disturbed iron homeostasis in patients was evidenced by the significantly lower serum iron levels in females (p = 0.007) and those aged <25 years (p = 0.02) and the significantly higher TIBC in males (p = 0.008). Levels of serum FER and HEPC were significantly elevated in P. falciparum-infected patients compared to the corresponding malaria-negative participants (p < 0.001). Serum FER correlated positively with parasite density (p = 0.004). In conclusion, patients with uncomplicated P. falciparum in Hodeidah display elevated levels of serum HEPC and FER. Hemoglobin level may not reflect the disturbed iron homeostasis in these patients. The combined measurement of iron indices and HEPC provides comprehensive information on the iron status so that the right intervention can be chosen.
Collapse
Affiliation(s)
| | - Rashad Abdul-Ghani
- Department of Medical Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| | - Mona H El-Sayad
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia A Sadek
- Department of Hematology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Hend A El-Taweel
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
56
|
McDonald EA, Gundogan F, Olveda R, Bartnikas T, Kurtis J, Friedman J. Iron transport across the human placenta is regulated by hepcidin. Pediatr Res 2022; 92:396-402. [PMID: 33069164 PMCID: PMC8052381 DOI: 10.1038/s41390-020-01201-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Transport of iron across the placenta is critical for appropriate development of the fetus. Iron deficiency during pregnancy remains a major public health concern, particularly in low- and middle-income countries, often exacerbated by infectious diseases leading to altered iron trafficking via inflammatory responses. Herein, we investigate the role of hepcidin, a master regulator of iron homeostasis, on regulation of iron transport across trophoblast cells. METHODS We utilized the Jeg-3 choriocarcinoma cell line for analysis of the expression of transferrin receptor, ferritin, and ferroportin as well as the export of 59Fe in the presence of hepcidin. Placental tissue from human term pregnancies was utilized for immunohistochemistry. RESULTS Hepcidin treatment of Jeg-3 cells decreased the expression of ferroportin and transferrin receptor (TfR) and reduced the cellular export of iron. Lower expression of TfR on the syncytiotrophoblast was associated with the highest levels of hepcidin in maternal circulation, and ferroportin expression was positively associated with placental TfR. Placentas from small-for-gestational-age newborns had significantly lower levels of ferroportin and ferritin gene expression at delivery. CONCLUSIONS Our data suggest that hepcidin plays an important role in the regulation of iron transport across the placenta, making it a critical link in movement of iron into fetal circulation. IMPACT Hepcidin has a direct impact on iron transport across the human placenta. This study provides the first evidence of direct regulation of iron efflux from human trophoblast cells by hepcidin. These data extend our understanding of iron transport across the maternal-fetal interface, a process critical for fetal health and development.
Collapse
Affiliation(s)
- E. A. McDonald
- Center for International Health Research, Rhode Island Hospital, Providence, RI, USA,Department of Pediatrics Alpert Medical School of Brown University, Providence, RI, USA
| | - F. Gundogan
- Department of Pathology, Women & Infants Hospital, Providence, RI, USA
| | - R.M. Olveda
- Department of Immunology, Research Institute for Tropical Medicine, Manila, Philippines
| | - T.B. Bartnikas
- Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - J.D. Kurtis
- Center for International Health Research, Rhode Island Hospital, Providence, RI, USA,Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - J.F. Friedman
- Center for International Health Research, Rhode Island Hospital, Providence, RI, USA,Department of Pediatrics Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
57
|
Targeting Molecular Mediators of Ferroptosis and Oxidative Stress for Neurological Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3999083. [PMID: 35910843 PMCID: PMC9337979 DOI: 10.1155/2022/3999083] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
With the acceleration of population aging, nervous system diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), anxiety, depression, stroke, and traumatic brain injury (TBI) have become a huge burden on families and society. The mechanism of neurological disorders is complex, which also lacks effective treatment, so relevant research is required to solve these problems urgently. Given that oxidative stress-induced lipid peroxidation eventually leads to ferroptosis, both oxidative stress and ferroptosis are important mechanisms causing neurological disorders, targeting mediators of oxidative stress and ferroptosis have become a hot research direction at present. Our review provides a current view of the mechanisms underlying ferroptosis and oxidative stress participate in neurological disorders, the potential application of molecular mediators targeting ferroptosis and oxidative stress in neurological disorders. The target of molecular mediators or agents of oxidative stress and ferroptosis associated with neurological disorders, such as reactive oxygen species (ROS), nuclear factor erythroid 2–related factor-antioxidant response element (Nrf2-ARE), n-acetylcysteine (NAC), Fe2+, NADPH, and its oxidases NOX, has been described in this article. Given that oxidative stress-induced ferroptosis plays a pivotal role in neurological disorders, further research on the mechanisms of ferroptosis caused by oxidative stress will help provide new targets for the treatment of neurological disorders.
Collapse
|
58
|
O'Brien KO. Maternal, fetal and placental regulation of placental iron trafficking. Placenta 2022; 125:47-53. [PMID: 34974896 PMCID: PMC9226198 DOI: 10.1016/j.placenta.2021.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022]
Abstract
The human placenta is a highly specialized organ that is responsible for housing, protecting, and nourishing the fetus across gestation. The placenta is essential as it functions among other things as the liver, lungs, and gut while also playing key immunological and endocrine roles. The structure and transport capacity of this temporary organ must evolve as gestation progresses while also adapting to possible alterations in maternal nutrient availability. All nutrients needed by the developing fetus must cross the human placenta. Iron (Fe) is one such nutrient that is both integral to placental function and to successful pregnancy outcomes. Iron deficiency is among the most common nutrient deficiencies globally and pregnant women are particularly vulnerable. Data on the partitioning of Fe between the mother, placenta and fetus are evolving yet many unanswered questions remain. Hepcidin, erythroferrone and erythropoietin are regulatory hormones that are integral to iron homeostasis. The mother, fetus and placenta independently produce these hormones, but the relative function of these hormones varies in each of the maternal, placental, and fetal compartments. This review will summarize basic aspects of Fe physiology in pregnant women and the maternal, fetal, and placental adaptations that occur to maintain Fe homeostasis at this key life stage.
Collapse
Affiliation(s)
- Kimberly O O'Brien
- Division of Nutritional Sciences, Cornell University, 230 Savage Hall, Ithaca, NY, 14850, USA.
| |
Collapse
|
59
|
Bloomer SA. Hepatic Macrophage Abundance and Phenotype in Aging and Liver Iron Accumulation. Int J Mol Sci 2022; 23:ijms23126502. [PMID: 35742946 PMCID: PMC9223835 DOI: 10.3390/ijms23126502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Liver macrophages serve important roles in iron homeostasis through phagocytosis of effete erythrocytes and the export of iron into the circulation. Conversely, intracellular iron can alter macrophage phenotype. Aging increases hepatic macrophage number and nonparenchymal iron, yet it is unknown whether age-related iron accumulation alters macrophage number or phenotype. To evaluate macrophages in a physiological model of iron loading that mimicked biological aging, young (6 mo) Fischer 344 rats were given one injection of iron dextran (15 mg/kg), and macrophage number and phenotype were evaluated via immunohistochemistry. A separate group of old (24 mo) rats was treated with 200 mg/kg deferoxamine every 12 h for 4 days. Iron administration to young rats resulted in iron concentrations that matched the values and pattern of tissue iron deposition observed in aged animals; however, iron did not alter macrophage number or phenotype. Aging resulted in significantly greater numbers of M1 (CD68+) and M2 (CD163+) macrophages in the liver, but neither macrophage number nor phenotype were affected by deferoxamine. Double-staining experiments demonstrated that both M1 (iNOS+) and M2 (CD163+) macrophages contained hemosiderin, suggesting that macrophages of both phenotypes stored iron. These results also suggest that age-related conditions other than iron excess are responsible for the accumulation of hepatic macrophages with aging.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington, 1600 Woodland Rd, Abington, PA 19001, USA
| |
Collapse
|
60
|
Xu S, Zheng H, Tang Z, Gu Z, Wang M, Tang C, Xie Y, Kong M, Jing J, Su Y, Zhu Y. Antenatal Iron-Rich Food Intervention Prevents Iron-Deficiency Anemia but Does Not Affect Serum Hepcidin in Pregnant Women. J Nutr 2022; 152:1450-1458. [PMID: 35285912 DOI: 10.1093/jn/nxac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/29/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Limited evidence supports the efficacy of iron-rich foods (IRFs) in improving iron status during pregnancy. OBJECTIVES The study aims to evaluate the effect of IRFs on iron status and biomarkers of iron metabolism in the third trimester of pregnancy. METHODS A total of 240 pregnant women at 11-13 wk of gestation without iron-deficiency anemia (IDA) in South China were recruited to this single-blind clinical trial [non-IDA referred to both hemoglobin (Hb) ≥110g/L and serum ferritin (SF) ≥15ng/mL], randomly assigned to 1) control, 2) IRFs containing 20 mg iron/d (IRF-20), or 3) IRFs containing 40 mg iron/d (IRF-40). The IRFs were consumed 3 days a week, including pork liver, chicken/duck blood, soybean, and agaric. The IRFs started at recruitment and ended in the predelivery room. Primary outcome included anemia (Hb <110 g/L), iron deficiency (ID, definition 1: SF <15 ng/mL; definition 2: SF <12 ng/mL), and IDA (ID and Hb <110 g/L). Secondary outcome was plasma Hb and iron indices, including SF, serum hepcidin, and iron. RESULTS All participants who completed the trial with full data (n = 170) were included in the analysis. At the endline, both intervention groups showed lower ID and IDA rates than control. Specifically, IRF-40 showed a lower ID (SF <12 ng/mL) rate than control (9.0% compared with 22.8%, P = 0.022). For IDA by definition 1, the incidence in IRF-40 was lower than that in control (1.9% compared with 8.9%, P = 0.045). For IDA by definition 2, the incidence in IRF-20 was lower than that in control (3.9% compared with 17.9%, P = 0.049). Moreover, IRF-20 showed higher SF concentrations than control (P = 0.039). No effects of IRFs on anemia (P = 0.856), plasma Hb (P = 0.697), serum hepcidin (P = 0.311), and iron (P = 0.253) concentrations were observed. The assessed iron intakes were 22.2 mg/d in IRF-20 and 25.0 mg/d in IRF-40, respectively. CONCLUSIONS Antenatal IRFs reduce the risk of ID and IDA in late pregnancy, although the present results are inadequate to confirm an ideal dosage (No. ChiCTR1800017574).
Collapse
Affiliation(s)
- Suhua Xu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hao Zheng
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhaoxie Tang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhuohe Gu
- Maoming Maternal and Child Health Care Hospital, Maoming, China
| | - Min Wang
- Maoming Maternal and Child Health Care Hospital, Maoming, China
| | - Cuilan Tang
- Maoming Maternal and Child Health Care Hospital, Maoming, China
| | - Yanqi Xie
- Maoming Maternal and Child Health Care Hospital, Maoming, China
| | - Minli Kong
- Maoming Maternal and Child Health Care Hospital, Maoming, China
| | - Jiajia Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yanbin Su
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Department of Maternal and Child Health, and Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
61
|
Wang X, Shi Q, Gong P, Zhou C, Cao Y. An Integrated Systematic Analysis and the Clinical Significance of Hepcidin in Common Malignancies of the Male Genitourinary System. Front Genet 2022; 13:771344. [PMID: 35646093 PMCID: PMC9133565 DOI: 10.3389/fgene.2022.771344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Tumors of the male genitourinary system are of great concern to the health of men worldwide. Although emerging experiment-based evidence indicates an association between hepcidin and such cancers, an integrated analysis is still lacking. For this reason, in this study, we determined the underlying oncogenic functions of hepcidin in common male genitourinary system tumors, including bladder urothelial carcinoma (BLCA), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), prostate adenocarcinoma (PRAD), and testicular germ cell tumors (TGCT) according to the data from The Cancer Genome Atlas. We found that hepcidin was highly expressed in kidney and testicular cancers. Meanwhile, the expression level of hepcidin was distinctly associated with the prognosis and immune cell infiltration in male patients with certain genitourinary system cancers, especially in KIRC. Elevated hepcidin levels also present as a risk factor in male genitourinary system tumors. Moreover, enrichment analyses revealed that some of the principal associated signaling pathways involving hepcidin and its related genes are identified as tumorigenesis-related. Immunofluorescence staining confirmed the conclusion of our immune infiltration analysis in KIRC tissue. In this study, for the first time, we provided evidence for the oncogenic function of hepcidin in different types of male genitourinary system tumors.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianqian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Pengfeng Gong
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cuixing Zhou
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yunjie Cao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
62
|
Girelli D, Busti F, Brissot P, Cabantchik I, Muckenthaler MU, Porto G. Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood 2022; 139:3018-3029. [PMID: 34601591 PMCID: PMC11022970 DOI: 10.1182/blood.2021011338] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Hemochromatosis (HC) is a genetically heterogeneous disorder in which uncontrolled intestinal iron absorption may lead to progressive iron overload (IO) responsible for disabling and life-threatening complications such as arthritis, diabetes, heart failure, hepatic cirrhosis, and hepatocellular carcinoma. The recent advances in the knowledge of pathophysiology and molecular basis of iron metabolism have highlighted that HC is caused by mutations in at least 5 genes, resulting in insufficient hepcidin production or, rarely, resistance to hepcidin action. This has led to an HC classification based on different molecular subtypes, mainly reflecting successive gene discovery. This scheme was difficult to adopt in clinical practice and therefore needs revision. Here we present recommendations for unambiguous HC classification developed by a working group of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society), including both clinicians and basic scientists during a meeting in Heidelberg, Germany. We propose to deemphasize the use of the molecular subtype criteria in favor of a classification addressing both clinical issues and molecular complexity. Ferroportin disease (former type 4a) has been excluded because of its distinct phenotype. The novel classification aims to be of practical help whenever a detailed molecular characterization of HC is not readily available.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Pierre Brissot
- INSERM, Univ-Rennes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1241, Institut NuMeCan, Rennes, France
| | - Ioav Cabantchik
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Martina U. Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology and Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Mannheim, Germany
| | - Graça Porto
- Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital, Porto University, Porto, Portugal
| | - on behalf of the Nomenclature Committee of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society)
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
- INSERM, Univ-Rennes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1241, Institut NuMeCan, Rennes, France
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
- Department of Pediatric Oncology, Hematology, and Immunology and Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Mannheim, Germany
- Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital, Porto University, Porto, Portugal
| |
Collapse
|
63
|
Martin D, Nay K, Robin F, Rebillard A, Orfila L, Martin B, Leroyer P, Guggenbuhl P, Dufresne S, Noirez P, Ropert M, Loréal O, Derbré F. Oxidative and glycolytic skeletal muscles deploy protective mechanisms to avoid atrophy under pathophysiological iron overload. J Cachexia Sarcopenia Muscle 2022; 13:1250-1261. [PMID: 35118832 PMCID: PMC8978014 DOI: 10.1002/jcsm.12897] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Iron excess has been proposed as an essential factor in skeletal muscle wasting. Studies have reported correlations between muscle iron accumulation and atrophy, either through ageing or by using experimental models of secondary iron overload. However, iron treatments performed in most of these studies induced an extra-pathophysiological iron overload, more representative of intoxication or poisoning. The main objective of this study was to determine the impact of iron excess closer to pathophysiological conditions on structural and metabolic adaptations (i) in differentiated myotubes and (ii) in skeletal muscle exhibiting oxidative (i.e. the soleus) or glycolytic (i.e. the gastrocnemius) metabolic phenotypes. METHODS The impact of iron excess was assessed in both in vitro and in vivo models. Murine differentiated myotubes were exposed to ferric ammonium citrate (FAC) (i.e. 10 and 50 μM) for the in vitro component. The in vivo model was achieved by a single iron dextran subcutaneous injection (1 g/kg) in mice. Four months after the injection, soleus and gastrocnemius muscles were harvested for analysis. RESULTS In vitro, iron exposure caused dose-dependent increases of iron storage protein ferritin (P < 0.01) and dose-dependent decreases of mRNA TfR1 levels (P < 0.001), which support cellular adaptations to iron excess. Extra-physiological iron treatment (50 μM FAC) promoted myotube atrophy (P = 0.018), whereas myotube size remained unchanged under pathophysiological treatment (10 μM FAC). FAC treatments, whatever the doses tested, did not affect the expression of proteolytic markers (i.e. NF-κB, MurF1, and ubiquitinated proteins). In vivo, basal iron content and mRNA TfR1 levels were significantly higher in the soleus compared with the gastrocnemius (+130% and +127%; P < 0.001, respectively), supporting higher iron needs in oxidative skeletal muscle. Iron supplementation induced muscle iron accumulation in the soleus and gastrocnemius muscles (+79%, P < 0.001 and +34%, P = 0.002, respectively), but ferritin protein expression only increased in the gastrocnemius (+36%, P = 0.06). Despite iron accumulation, muscle weight, fibre diameter, and myosin heavy chain distribution remained unchanged in either skeletal muscle. CONCLUSIONS Together, these data support that under pathophysiological conditions, skeletal muscle can protect itself from the related deleterious effects of excess iron.
Collapse
Affiliation(s)
- David Martin
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Kévin Nay
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France.,Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic., Australia
| | - François Robin
- INSERM, INRAe, University of Rennes, Nutrition Metabolisms and Cancer Institute (NuMeCan), Platform AEM2, CHU Rennes, Rennes, France
| | - Amélie Rebillard
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Luz Orfila
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Brice Martin
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Patricia Leroyer
- INSERM, INRAe, University of Rennes, Nutrition Metabolisms and Cancer Institute (NuMeCan), Platform AEM2, CHU Rennes, Rennes, France
| | - Pascal Guggenbuhl
- INSERM, INRAe, University of Rennes, Nutrition Metabolisms and Cancer Institute (NuMeCan), Platform AEM2, CHU Rennes, Rennes, France
| | - Suzanne Dufresne
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Philippe Noirez
- IRMES-Institute for Research in Medicine and Epidemiology of Sport, INSEP, Paris, France.,INSERM S1124, Université de Paris, Paris, France.,EA7507, Performance Health Metrology Society, Université de Reims Champagne Ardenne, Reims, France
| | | | - Olivier Loréal
- INSERM, INRAe, University of Rennes, Nutrition Metabolisms and Cancer Institute (NuMeCan), Platform AEM2, CHU Rennes, Rennes, France
| | - Frédéric Derbré
- Laboratory 'Movement, Sport and Health Sciences'-EA7470, University of Rennes/ENS Rennes, Bruz, France
| |
Collapse
|
64
|
Bonilla DA, Moreno Y, Petro JL, Forero DA, Vargas-Molina S, Odriozola-Martínez A, Orozco CA, Stout JR, Rawson ES, Kreider RB. A Bioinformatics-Assisted Review on Iron Metabolism and Immune System to Identify Potential Biomarkers of Exercise Stress-Induced Immunosuppression. Biomedicines 2022; 10:724. [PMID: 35327526 PMCID: PMC8945881 DOI: 10.3390/biomedicines10030724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The immune function is closely related to iron (Fe) homeostasis and allostasis. The aim of this bioinformatics-assisted review was twofold; (i) to update the current knowledge of Fe metabolism and its relationship to the immune system, and (ii) to perform a prediction analysis of regulatory network hubs that might serve as potential biomarkers during stress-induced immunosuppression. Several literature and bioinformatics databases/repositories were utilized to review Fe metabolism and complement the molecular description of prioritized proteins. The Search Tool for the Retrieval of Interacting Genes (STRING) was used to build a protein-protein interactions network for subsequent network topology analysis. Importantly, Fe is a sensitive double-edged sword where two extremes of its nutritional status may have harmful effects on innate and adaptive immunity. We identified clearly connected important hubs that belong to two clusters: (i) presentation of peptide antigens to the immune system with the involvement of redox reactions of Fe, heme, and Fe trafficking/transport; and (ii) ubiquitination, endocytosis, and degradation processes of proteins related to Fe metabolism in immune cells (e.g., macrophages). The identified potential biomarkers were in agreement with the current experimental evidence, are included in several immunological/biomarkers databases, and/or are emerging genetic markers for different stressful conditions. Although further validation is warranted, this hybrid method (human-machine collaboration) to extract meaningful biological applications using available data in literature and bioinformatics tools should be highlighted.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Salvador Vargas-Molina
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia, Spain
| | - Carlos A. Orozco
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
65
|
Aboagye ET, Adadey SM, Esoh K, Jonas M, de Kock C, Amenga-Etego L, Awandare GA, Wonkam A. Age Estimate of GJB2-p.(Arg143Trp) Founder Variant in Hearing Impairment in Ghana, Suggests Multiple Independent Origins across Populations. BIOLOGY 2022; 11:476. [PMID: 35336849 PMCID: PMC8945073 DOI: 10.3390/biology11030476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022]
Abstract
Gap junction protein beta 2 (GJB2) (connexin 26) variants are commonly implicated in non-syndromic hearing impairment (NSHI). In Ghana, the GJB2 variant p.(Arg143Trp) is the largest contributor to NSHI and has a reported prevalence of 25.9% in affected multiplex families. To date, in the African continent, GJB2-p.(Arg143Trp) has only been reported in Ghana. Using whole-exome sequencing data from 32 individuals from 16 families segregating NSHI, and 38 unrelated hearing controls with the same ethnolinguistic background, we investigated the date and origin of p.(Arg143Trp) in Ghana using linked markers. With a Bayesian linkage disequilibrium gene mapping method, we estimated GJB2-p.(Arg143Trp) to have originated about 9625 years (385 generations) ago in Ghana. A haplotype analysis comparing data extracted from Ghanaians and those from the 1000 Genomes project revealed that GJB2-p.(Arg143Trp) is carried on different haplotype backgrounds in Ghanaian and Japanese populations, as well as among populations of European ancestry, lending further support to the multiple independent origins of the variant. In addition, we found substantial haplotype conservation in the genetic background of Ghanaian individuals with biallelic GJB2-p.(Arg143Trp) compared to the GJB2-p.(Arg143Trp)-negative group with normal hearing from Ghana, suggesting a strong evolutionary constraint in this genomic region in Ghanaian populations that are homozygous for GJB2-p.(Arg143Trp). The present study evaluates the age of GJB2-p.(Arg143Trp) at 9625 years and supports the multiple independent origins of this variant in the global population.
Collapse
Affiliation(s)
- Elvis Twumasi Aboagye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (E.T.A.); (S.M.A.); (L.A.-E.); (G.A.A.)
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (K.E.); (M.J.); (C.d.K.)
| | - Samuel Mawuli Adadey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (E.T.A.); (S.M.A.); (L.A.-E.); (G.A.A.)
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (K.E.); (M.J.); (C.d.K.)
| | - Kevin Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (K.E.); (M.J.); (C.d.K.)
| | - Mario Jonas
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (K.E.); (M.J.); (C.d.K.)
| | - Carmen de Kock
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (K.E.); (M.J.); (C.d.K.)
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (E.T.A.); (S.M.A.); (L.A.-E.); (G.A.A.)
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (E.T.A.); (S.M.A.); (L.A.-E.); (G.A.A.)
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (K.E.); (M.J.); (C.d.K.)
- McKusick-Nathans Institute and Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
66
|
Ganz T. Hepcidin: looking back at two decades of progress. NATURE CARDIOVASCULAR RESEARCH 2022; 1:191-193. [PMID: 39195985 DOI: 10.1038/s44161-022-00034-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
67
|
Shahandeh A, Bui BV, Finkelstein DI, Nguyen CTO. Effects of Excess Iron on the Retina: Insights From Clinical Cases and Animal Models of Iron Disorders. Front Neurosci 2022; 15:794809. [PMID: 35185447 PMCID: PMC8851357 DOI: 10.3389/fnins.2021.794809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Iron plays an important role in a wide range of metabolic pathways that are important for neuronal health. Excessive levels of iron, however, can promote toxicity and cell death. An example of an iron overload disorder is hemochromatosis (HH) which is a genetic disorder of iron metabolism in which the body’s ability to regulate iron absorption is altered, resulting in iron build-up and injury in several organs. The retina was traditionally assumed to be protected from high levels of systemic iron overload by the blood-retina barrier. However, recent data shows that expression of genes that are associated with HH can disrupt retinal iron metabolism. Thus, the effects of iron overload on the retina have become an area of research interest, as excessively high levels of iron are implicated in several retinal disorders, most notably age–related macular degeneration. This review is an effort to highlight risk factors for excessive levels of systemic iron build-up in the retina and its potential impact on the eye health. Information is integrated across clinical and preclinical animal studies to provide insights into the effects of systemic iron loading on the retina.
Collapse
Affiliation(s)
- Ali Shahandeh
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Christine T. O. Nguyen,
| |
Collapse
|
68
|
Zhao X, Zhang X, Xu T, Luo J, Luo Y, An P. Comparative Effects between Oral Lactoferrin and Ferrous Sulfate Supplementation on Iron-Deficiency Anemia: A Comprehensive Review and Meta-Analysis of Clinical Trials. Nutrients 2022; 14:nu14030543. [PMID: 35276902 PMCID: PMC8838920 DOI: 10.3390/nu14030543] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Ferrous sulfate is a commonly used iron supplement for the correction of iron-deficiency anemia but with frequent gastrointestinal side effects. Milk-derived iron-binding glycoprotein lactoferrin possesses well gastrointestinal tolerance and fewer side effects caused by the intake of high-dose iron. However, the underlying mechanism of the iron-enhancing effect of lactoferrin remains unclear. In addition, the comparative efficacies between lactoferrin and ferrous sulfate are also remained to be determined. We conducted a systematic review and meta-analysis on published intervention studies to investigate how lactoferrin modulate iron metabolism and evaluate the comparative effects between lactoferrin and ferrous sulfate supplementation on iron absorption, iron storage, erythropoiesis and inflammation. Lactoferrin supplementation had better effects on serum iron (WMD: 41.44 ug/dL; p < 0.00001), ferritin (WMD: 13.60 ng/mL; p = 0.003) and hemoglobin concentration (11.80 g/dL; p < 0.00001), but a reducing effect on fractional iron absorption (WMD: −2.08%; p = 0.02) and IL-6 levels (WMD: −45.59 pg/mL; p < 0.00001) compared with ferrous sulfate. In conclusion, this study supports lactoferrin as a superior supplement to ferrous sulfate regarding the improvement in serum iron parameters and hemoglobin levels. Considering the weak influence of lactoferrin on iron absorption, the anti-inflammation effect of lactoferrin may be the potential mechanism to explain its efficacy on iron status and erythropoiesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng An
- Correspondence: (J.L.); (Y.L.); (P.A.)
| |
Collapse
|
69
|
Hamada Y, Hirano E, Sugimoto K, Hanada K, Kaku T, Manda N, Tsuchida K. A farewell to phlebotomy-use of placenta-derived drugs Laennec and Porcine for improving hereditary hemochromatosis without phlebotomy: a case report. J Med Case Rep 2022; 16:26. [PMID: 35065677 PMCID: PMC8784004 DOI: 10.1186/s13256-021-03230-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/14/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human hepcidin, produced by hepatocytes, regulates intestinal iron absorption, iron recycling by macrophages, and iron release from hepatic storage. Recent studies indicate that hepcidin deficiency is the underlying cause of the most known form of hereditary hemochromatosis. CASE PRESENTATION A 44-year-old Asian man who developed type 2 diabetes mellitus had elevated serum ferritin levels (10,191 ng/mL). Liver biopsy revealed remarkable iron deposition in the hepatocytes and relatively advanced fibrosis (F3). Chromosomal analysis confirmed the presence of transferrin receptor type 2 mutations (c.1100T>G, c.2008_9delAC, hereditary hemochromatosis type 3 analyzed by Kawabata). The patient received intravenous infusions of Laennec (672 mg/day, three times/week) or oral administration with Porcine (3.87 g/day) for 84 months as an alternative to repeated phlebotomy. At the end of the treatment period, serum ferritin level decreased to 428.4 ng/mL (below the baseline level of 536.8 ng/mL). Hemoglobin A1c levels also improved after treatment with the same or lower dose of insulin (8.8% before versus 6.8% after). Plural liver biopsies revealed remarkable improvements in the grade of iron deposition and fibrosis (F3 before versus F1 after) of the liver tissue. CONCLUSION The discovery of hepcidin and its role in iron metabolism could lead to novel therapies for hereditary hemochromatosis. Laennec (parenteral) and Porcine (oral), which act as hepcidin inducers, actually improved iron overload in this hereditary hemochromatosis patient, without utilizing sequential phlebotomy. This suggests the possibility of not only improving the prognosis of hereditary hemochromatosis (types 1, 2, and 3) but also ameliorating complications, such as type 2 diabetes, liver fibrosis, and hypogonadism. Laennec and Porcine can completely replace continuous venesection in patients with venesection and may improve other iron-overloading disorders caused by hepcidin deficiency.
Collapse
Affiliation(s)
- Yuki Hamada
- Hamada Clinic for Gastroenterology and Hepatology, Sapporo, Japan
| | - Eiichi Hirano
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, Fukuoka 839-0864 Japan
| | - Koji Sugimoto
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, Fukuoka 839-0864 Japan
| | | | | | | | | |
Collapse
|
70
|
Bossi AM, Maniglio D. BioMIPs: molecularly imprinted silk fibroin nanoparticles to recognize the iron regulating hormone hepcidin. Mikrochim Acta 2022; 189:66. [PMID: 35064352 PMCID: PMC8782820 DOI: 10.1007/s00604-022-05165-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023]
Abstract
The possibility to prepare molecularly imprinted nanoparticles from silk fibroin was recently demonstrated starting from methacrylated silk fibroin and choosing a protein as template. Here, we attempted the imprinting of fibroin-based molecularly imprinted polymers (MIPs), called bioMIPs, using as a template hepcidin that is a iron-metabolism regulator-peptide, possessing a hairpin structure. A homogeneous population (PDI < 0.2) of bioMIPs with size ~50 nm was produced. The bioMIPs were selective for the template; the estimated dissociation constant for hepcidin was KD = 3.6 ± 0.5 10-7 M and the average number of binding sites per bioMIP was equal to 2. The bioMIPs used in a competitive assay for hepcidin in serum showed a detection range of 1.01 10-7- 6.82 10-7 M and a limit of detection of 3.29 10-8 M.
Collapse
Affiliation(s)
- Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Devid Maniglio
- Department of Industrial Engineering, BIOtech Research Center, University of Trento, Via delle Regole 101, 38123, Trento, Italy
| |
Collapse
|
71
|
Daher R, Ducrot N, Lefebvre T, Zineeddine S, Ausseil J, Puy H, Karim Z. Crosstalk between Acidosis and Iron Metabolism: Data from In Vivo Studies. Metabolites 2022; 12:metabo12020089. [PMID: 35208164 PMCID: PMC8874512 DOI: 10.3390/metabo12020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Iron absorption requires an acidic environment that is generated by the activity of the proton pump gastric H(+)/K(+)ATPase (ATP4), expressed in gastric parietal cells. However, hepcidin, the iron regulatory peptide that inhibits iron absorption, unexpectedly upregulates ATP4 and increases gastric acidity. Thus, a concept of link between acidosis and alterations in iron metabolism, needs to be explored. We investigated this aspect in-vivo using experimental models of NH4Cl-induced acidosis and of an iron-rich diet. Under acidosis, gastric ATP4 was augmented. Serum hepcidin was induced and its mRNA level was increased in the liver but not in the stomach, a tissue where hepcidin is also expressed. mRNA and protein levels of intestinal DMT1(Divalent Metal Transporter 1) and ferroportin were downregulated. Serum iron level and transferrin saturation remained unchanged, but serum ferritin was significantly increased. Under iron-rich diet, the protein expression of ATP4A was increased and serum, hepatic and gastric hepcidin were all induced. Taken together, these results provide evidence of in-vivo relationship between iron metabolism and acidosis. For clinical importance, we speculate that metabolic acidosis may contribute in part to the pathologic elevation of serum hepcidin levels seen in patients with chronic kidney disease. The regulation of ATP4 by iron metabolism may also be of interest for patients with hemochromatosis.
Collapse
Affiliation(s)
- Raêd Daher
- Centre de Recherche sur l’Inflammation (CRI), Université de Paris, INSERM, CNRS, F-75018 Paris, France; (R.D.); (N.D.); (T.L.); (S.Z.); (H.P.)
| | - Nicolas Ducrot
- Centre de Recherche sur l’Inflammation (CRI), Université de Paris, INSERM, CNRS, F-75018 Paris, France; (R.D.); (N.D.); (T.L.); (S.Z.); (H.P.)
| | - Thibaud Lefebvre
- Centre de Recherche sur l’Inflammation (CRI), Université de Paris, INSERM, CNRS, F-75018 Paris, France; (R.D.); (N.D.); (T.L.); (S.Z.); (H.P.)
- Centre Français des Porphyries, Hôpital Louis Mourier, APHP, Nord-Université de Paris, F-75014 Colombes, France
| | - Sofia Zineeddine
- Centre de Recherche sur l’Inflammation (CRI), Université de Paris, INSERM, CNRS, F-75018 Paris, France; (R.D.); (N.D.); (T.L.); (S.Z.); (H.P.)
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, F-31024 Toulouse, France;
| | - Jérome Ausseil
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, F-31024 Toulouse, France;
| | - Hervé Puy
- Centre de Recherche sur l’Inflammation (CRI), Université de Paris, INSERM, CNRS, F-75018 Paris, France; (R.D.); (N.D.); (T.L.); (S.Z.); (H.P.)
- Centre Français des Porphyries, Hôpital Louis Mourier, APHP, Nord-Université de Paris, F-75014 Colombes, France
| | - Zoubida Karim
- Centre de Recherche sur l’Inflammation (CRI), Université de Paris, INSERM, CNRS, F-75018 Paris, France; (R.D.); (N.D.); (T.L.); (S.Z.); (H.P.)
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, F-31024 Toulouse, France;
- Correspondence:
| |
Collapse
|
72
|
Fisher AL, Babitt JL. Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions. Dev Dyn 2022; 251:26-46. [PMID: 33993583 PMCID: PMC8594283 DOI: 10.1002/dvdy.372] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Iron homeostasis is tightly regulated to balance the iron requirement for erythropoiesis and other vital cellular functions, while preventing cellular injury from iron excess. The liver hormone hepcidin is the master regulator of systemic iron balance by controlling the degradation and function of the sole known mammalian iron exporter ferroportin. Liver hepcidin expression is coordinately regulated by several signals that indicate the need for more or less iron, including plasma and tissue iron levels, inflammation, and erythropoietic drive. Most of these signals regulate hepcidin expression by modulating the activity of the bone morphogenetic protein (BMP)-SMAD pathway, which controls hepcidin transcription. Genetic disorders of iron overload and iron deficiency have identified several hepatocyte membrane proteins that play a critical role in mediating the BMP-SMAD and hepcidin regulatory response to iron. However, the precise molecular mechanisms by which serum and tissue iron levels are sensed to regulate BMP ligand production and promote the physical and/or functional interaction of these proteins to modulate SMAD signaling and hepcidin expression remain uncertain. This critical commentary will focus on the current understanding and key unanswered questions regarding how the liver senses iron levels to regulate BMP-SMAD signaling and thereby hepcidin expression to control systemic iron homeostasis.
Collapse
Affiliation(s)
| | - Jodie L Babitt
- Corresponding author: Jodie L Babitt, Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA. Mailing address: 185 Cambridge St., CPZN-8208, Boston, MA 02114. Telephone: +1 (617) 643-3181.
| |
Collapse
|
73
|
Jin H, Chen P, Zhang S, Wu P, Yu X. Iron Metabolism Markers and Lower Extremity Arterial Disease in People with Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:3103-3110. [PMID: 36237965 PMCID: PMC9553230 DOI: 10.2147/dmso.s380803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To determine the levels of serum iron, ferritin, total iron-binding capacity, and hepcidin in patients with type 2 diabetes mellitus (T2DM), and to elucidate the relationship of these biomarkers with lower extremity arterial disease (LEAD). METHODS Three hundred fifteen patients with T2DM were selected for the study and divided into non-LEAD (n = 119) and LEAD groups (n=196) based on the ankle-brachial index (ABI) results. Demographic data and clinical test results were collected from all patients. Serum iron, ferritin, total iron-binding capacity, and hepcidin levels were measured, and the transferrin saturation was calculated. RESULTS Hepcidin levels were substantially higher in the LEAD group (19.17 ± 8.66 ng/mL) than the non-LEAD group (15.44±7.55 ng/mL, P < 0.001), and there was a negative correlation between the ABI and serum lecithin level (r = -0.349, P < 0.001). There were no other correlations with the other iron metabolism indicators. The results of dichotomous logistic regression with LEAD as the dependent variable revealed that smoking history (OR = 4.442, P = 0.008), hypertension history (OR = 3.721, P = 0.006), cardiovascular disease history (OR = 11.126, P < 0.001), diabetes duration (OR = 1.305, P < 0.001), age (OR = 1.056, P = 0.021), hs-CRP level (OR = 1.376, P = 0.002), HbA1c concentration (OR = 1.394, P = 0.001), and hepcidin level (OR = 1.097, P = 0.003) were independent risk factors for LEAD in T2DM patients. CONCLUSION Serum hepcidin levels were elevated in the LEAD group compared with the non-LEAD group, and elevated hepcidin levels were associated with the development of LEAD in T2DM patients, suggesting that hepcidin may be involved in the occurrence and development of LEAD in T2DM patients.
Collapse
Affiliation(s)
- Hua Jin
- Department of Endocrinology and Metabolism, Fengxian Central Hospital, Shanghai, 201404, People’s Republic of China
| | - Peihong Chen
- Department of Endocrinology and Metabolism, Fengxian Central Hospital, Shanghai, 201404, People’s Republic of China
| | - Shan Zhang
- Department of Endocrinology and Metabolism, Fengxian Central Hospital, Shanghai, 201404, People’s Republic of China
| | - Ping Wu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital, Shanghai, 201404, People’s Republic of China
| | - Xuemei Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital, Shanghai, 201404, People’s Republic of China
- Correspondence: Xuemei Yu, Department of Endocrinology and Metabolism, Fengxian Central Hospital, No. 6600, Nanfeng Road, Nanqiaoxincheng, Fengxian District, Shanghai, 201404, People’s Republic of China, Tel +86 21-57413468, Email
| |
Collapse
|
74
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
75
|
Ferrao K, Ali N, Mehta KJ. Iron and iron-related proteins in alcohol consumers: cellular and clinical aspects. J Mol Med (Berl) 2022; 100:1673-1689. [PMID: 36214835 PMCID: PMC9691479 DOI: 10.1007/s00109-022-02254-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
Alcohol-associated liver disease (ALD) is one of the most common chronic liver diseases. Its pathological spectrum includes the overlapping stages of hepatic steatosis/steatohepatitis that can progress to liver fibrosis and cirrhosis; both are risk factors for hepatocellular carcinoma. Moreover, ALD diagnosis and management pose several challenges. The early pathological stages are reversible by alcohol abstinence, but these early stages are often asymptomatic, and currently, there is no specific laboratory biomarker or diagnostic test that can confirm ALD etiology. Alcohol consumers frequently show dysregulation of iron and iron-related proteins. Examination of iron-related parameters in this group may aid in early disease diagnosis and better prognosis and management. For this, a coherent overview of the status of iron and iron-related proteins in alcohol consumers is essential. Therefore, here, we collated and reviewed the alcohol-induced alterations in iron and iron-related proteins. Reported observations include unaltered, increased, or decreased levels of hemoglobin and serum iron, increments in intestinal iron absorption (facilitated via upregulations of duodenal divalent metal transporter-1 and ferroportin), serum ferritin and carbohydrate-deficient transferrin, decrements in serum hepcidin, decreased or unaltered levels of transferrin, increased or unaltered levels of transferrin saturation, and unaltered levels of soluble transferrin receptor. Laboratory values of iron and iron-related proteins in alcohol consumers are provided for reference. The causes and mechanisms underlying these alcohol-induced alterations in iron parameters and anemia in ALD are explained. Notably, alcohol consumption by hemochromatosis (iron overload) patients worsens disease severity due to the synergistic effects of excess iron and alcohol.
Collapse
Affiliation(s)
- Kevin Ferrao
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Najma Ali
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
76
|
Monteith AJ, Skaar EP. The impact of metal availability on immune function during infection. Trends Endocrinol Metab 2021; 32:916-928. [PMID: 34483037 PMCID: PMC8516721 DOI: 10.1016/j.tem.2021.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Nutrient transition metals are required cofactors for many proteins to perform functions necessary for life. As such, the concentration of nutrient metals is carefully maintained to retain critical biological processes while limiting toxicity. During infection, invading bacterial pathogens must acquire essential metals, such as zinc, manganese, iron, and copper, from the host to colonize and cause disease. To combat this, the host exploits the essentiality and toxicity of nutrient metals by producing factors that limit metal availability, thereby starving pathogens or accumulating metals in excess to intoxicate the pathogen in a process termed 'nutritional immunity'. As a result of inflammation, a heterogeneous environment containing both metal-replete and -deplete niches is created, in which nutrient metal availability may have an underappreciated role in regulating immune cell function during infection. How the host manipulates nutrient metal availability during infection, and the downstream effects that nutrient metals and metal-sequestering proteins have on immune cell function, are discussed in this review.
Collapse
Affiliation(s)
- Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
77
|
Veedu AM, Prahaladhan AP, Vadakkeveettil AV, Krishnakumar A, Surendran N, Philip R. An Antimicrobial peptide hepcidin, St-hep from tuberculated flathead, Sorsogona tuberculata (Cuvier, 1829): Molecular and functional characterization. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
78
|
Cheng K, Huang Y, Wang C. 1,25(OH) 2D 3 Inhibited Ferroptosis in Zebrafish Liver Cells (ZFL) by Regulating Keap1-Nrf2-GPx4 and NF-κB-hepcidin Axis. Int J Mol Sci 2021; 22:11334. [PMID: 34768761 PMCID: PMC8583391 DOI: 10.3390/ijms222111334] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Ferroptosis is a kind of iron-dependent programed cell death. Vitamin D has been shown to be an antioxidant and a regulator of iron metabolism, but the relationship between vitamin D and ferroptosis is poorly studied in fish. This study used zebrafish liver cells (ZFL) to establish a ferroptosis model to explore the effect of 1,25(OH)2D3 on cell ferroptosis and its mechanism of action. The results showed that different incubation patterns of 1,25(OH)2D3 improved the survival rate of ZFL, mitigated mitochondrial damage, enhanced total glutathione peroxidase (GPx) activity, and reduced intracellular reactive oxygen species (ROS), lipid peroxidation (LPO), and malondialdehyde (MDA), as well as iron ion levels, with the best effect at 200 pM 1,25(OH)2D3 preincubation for 72 h. Preincubation of ZFL at 200 pM 1,25(OH)2D3 for 72 h downgraded keap1 and ptgs2 gene expression, increased nrf2, ho-1, fth1, gpx4a,b expression, and lowered the expression of the nf-κb p65,il-6,il-1β gene, thus reducing the expression of hamp1. The above results indicate that different incubation patterns of 1,25(OH)2D3 have protective effects on ferroptosis of ZFL induced by ferroptosis activator RSL3 and 1,25(OH)2D3 can inhibit ferroptosis of ZFL by regulating Keap1-Nrf2-GPx4 and NF-κB-hepcidin axis.
Collapse
Affiliation(s)
- Ke Cheng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, The College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
| | - Chunfang Wang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, The College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
79
|
Mirzaei H, Sharafati Chaleshtori R. Role of fermented goat milk as a nutritional product to improve anemia. J Food Biochem 2021; 46:e13969. [PMID: 34658048 DOI: 10.1111/jfbc.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Goat milk, like cow milk, needs some modifications to be used as the sole source of nutrition during early infancy. For goat milk to be more like human milk and more nutritionally complete, sugar, vitamins and minerals need to be added to it and for reduction of renal solute load, it needs to be diluted. To prevent megaloblastic anemia in infants fed exclusively on goat milk, folic acid should be supplied either by adding it to goat milk or by an oral folic acid supplement. In fortification of milk products, thermal processing, fermentation, and species differences in milk folate bioavailability are three additional factors that should be considered besides absolute difference in folate concentration between goat and human milk. Whether different feeding regimes (e.g., iron and folate content of diets) influence milk folate content needs to be elucidated by more research. Our findings showed that fermented goat milk during anemia recovery can be improve antioxidant status, protection from oxidative damage to biomolecules, protective effects on testis, improve Fe and skeletal muscle homeostasis as well as improve cardiovascular health. PRACTICAL APPLICATIONS: To be used as part of a postweaning nutritionally well-balanced diet, fermented goat milk is most likely an excellent source of nutrition for the human.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
80
|
Barroso C, Carvalho P, Nunes M, Gonçalves JFM, Rodrigues PNS, Neves JV. The Era of Antimicrobial Peptides: Use of Hepcidins to Prevent or Treat Bacterial Infections and Iron Disorders. Front Immunol 2021; 12:754437. [PMID: 34646277 PMCID: PMC8502971 DOI: 10.3389/fimmu.2021.754437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
The current treatments applied in aquaculture to limit disease dissemination are mostly based on the use of antibiotics, either as prophylactic or therapeutic agents, with vaccines being available for a limited number of fish species and pathogens. Antimicrobial peptides are considered as promising novel substances to be used in aquaculture, due to their antimicrobial and immunomodulatory activities. Hepcidin, the major iron metabolism regulator, is found as a single gene in most mammals, but in certain fish species, including the European sea bass (Dicentrarchus labrax), two different hepcidin types are found, with specialized roles: the single type 1 hepcidin is involved in iron homeostasis trough the regulation of ferroportin, the only known iron exporter; and the various type 2 hepcidins present antimicrobial activity against a number of different pathogens. In this study, we tested the administration of sea bass derived hepcidins in models of infection and iron overload. Administration with hamp2 substantially reduced fish mortalities and bacterial loads, presenting itself as a viable alternative to the use of antibiotics. On the other hand, hamp1 seems to attenuate the effects of iron overload. Further studies are necessary to test the potential protective effects of hamp2 against other pathogens, as well as to understand how hamp2 stimulate the inflammatory responses, leading to an increased fish survival upon infection.
Collapse
Affiliation(s)
- Carolina Barroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro Carvalho
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Magda Nunes
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José F M Gonçalves
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro N S Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João V Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
81
|
Kimita W, Bharmal SH, Ko J, Cho J, Petrov MS. Relationship between Energy Balance and Circulating Levels of Hepcidin and Ferritin in the Fasted and Postprandial States. Nutrients 2021; 13:3557. [PMID: 34684558 PMCID: PMC8539037 DOI: 10.3390/nu13103557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023] Open
Abstract
Markers of iron metabolism are altered in new-onset diabetes, but their relationship with metabolic signals involved in the maintenance of energy balance is poorly understood. The primary aim was to explore the associations between markers of iron metabolism (hepcidin and ferritin) and markers of energy balance (leptin, ghrelin, and the leptin/ghrelin ratio) in both the fasted and postprandial states. These associations were also studied in the sub-groups stratified by diabetes status. This was a cross-sectional study of individuals without disorders of iron metabolism who were investigated after an overnight fast and, in addition, some of these individuals underwent a mixed meal test to determine postprandial responses of metabolic signals. The associations between hepcidin, ferritin, and leptin, ghrelin, leptin/ghrelin ratio were studied using several multiple linear regression models. A total of 76 individuals in the fasted state and 34 individuals in the postprandial state were included. In the overall cohort, hepcidin was significantly inversely associated with leptin (in the most adjusted model, the β coefficient ± SE was -883.45 ± 400.94; p = 0.031) and the leptin/ghrelin ratio (in the most adjusted model, the β coefficient ± SE was -148.26 ± 61.20; p = 0.018) in the fasted state. The same associations were not statistically significant in the postprandial state. In individuals with new-onset prediabetes or diabetes (but not in those with normoglycaemia or longstanding prediabetes or diabetes), hepcidin was significantly inversely associated with leptin (in the most adjusted model, the β coefficient ± SE was -806.09 ± 395.44; p = 0.050) and the leptin/ghrelin ratio (in the most adjusted model, the β coefficient ± SE was -129.40 ± 59.14; p = 0.037). Leptin appears to be a mediator in the link between iron metabolism and new-onset diabetes mellitus. These findings add to the growing understanding of mechanisms underlying the derangements of glucose metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Maxim S. Petrov
- School of Medicine, University of Auckland, Auckland 1023, New Zealand; (W.K.); (S.H.B.); (J.K.); (J.C.)
| |
Collapse
|
82
|
Kim HY, Lee JM, Lee YS, Li S, Lee SJ, Bae SC, Jung HS. Runx3 regulates iron metabolism via modulation of BMP signalling. Cell Prolif 2021; 54:e13138. [PMID: 34611951 PMCID: PMC8666273 DOI: 10.1111/cpr.13138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives Runx3, a member of the Runx family of transcription factors, has been studied as a tumour suppressor and key player of organ development. In a previous study, we reported differentiation failure and excessive angiogenesis in the liver of Runx3 knock‐out (KO) mice. Here, we examined a function of the Runx3 in liver, especially in iron metabolism. Methods We performed histological and immunohistological analyses of the Runx3 KO mouse liver. RNA‐sequencing analyses were performed on primary hepatocytes isolated from Runx3 conditional KO (cKO) mice. The effect of Runx3 knock‐down (KD) was also investigated using siRNA‐mediated KD in functional human hepatocytes and human hepatocellular carcinoma cells. Result We observed an iron‐overloaded liver with decreased expression of hepcidin in Runx3 KO mice. Expression of BMP6, a regulator of hepcidin transcription, and activity of the BMP pathway were decreased in the liver tissue of Runx3 KO mice. Transcriptome analysis on primary hepatocytes isolated from Runx3 cKO mice also revealed that iron‐induced increase in BMP6 was mediated by Runx3. Similar results were observed in Runx3 knock‐down experiments using HepaRG cells and HepG2 cells. Finally, we showed that Runx3 enhanced the activity of the BMP6 promoter by responding to iron stimuli in the hepatocytes. Conclusion In conclusion, we suggest that Runx3 plays important roles in iron metabolism of the liver through regulation of BMP signalling.
Collapse
Affiliation(s)
- Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - You-Soub Lee
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, Korea
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
83
|
Mazgaj R, Lipiński P, Szudzik M, Jończy A, Kopeć Z, Stankiewicz AM, Kamyczek M, Swinkels D, Żelazowska B, Starzyński RR. Comparative Evaluation of Sucrosomial Iron and Iron Oxide Nanoparticles as Oral Supplements in Iron Deficiency Anemia in Piglets. Int J Mol Sci 2021; 22:9930. [PMID: 34576090 PMCID: PMC8466487 DOI: 10.3390/ijms22189930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Iron deficiency is the most common mammalian nutritional disorder. However, among mammalian species iron deficiency anemia (IDA), occurs regularly only in pigs. To cure IDA, piglets are routinely injected with high amounts of iron dextran (FeDex), which can lead to perturbations in iron homeostasis. Here, we evaluate the therapeutic efficacy of non-invasive supplementation with Sucrosomial iron (SI), a highly bioavailable iron supplement preventing IDA in humans and mice and various iron oxide nanoparticles (IONPs). Analysis of red blood cell indices and plasma iron parameters shows that not all iron preparations used in the study efficiently counteracted IDA comparable to FeDex-based supplementation. We found no signs of iron toxicity of any tested iron compounds, as evaluated based on the measurement of several toxicological markers that could indicate the occurrence of oxidative stress or inflammation. Neither SI nor IONPs increased hepcidin expression with alterations in ferroportin (FPN) protein level. Finally, the analysis of the piglet gut microbiota indicates the individual pattern of bacterial diversity across taxonomic levels, independent of the type of supplementation. In light of our results, SI but not IONPs used in the experiment emerges as a promising nutritional iron supplement, with a high potential to correct IDA in piglets.
Collapse
Affiliation(s)
- Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Mateusz Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Zuzanna Kopeć
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Adrian M. Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Marian Kamyczek
- Pig Hybridization Centre, National Research Institute of Animal Production, 43-246 Pawłowice, Poland;
| | - Dorine Swinkels
- Department of Laboratory Medicine (TLM 830), Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands;
- Hepcidin Analysis, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Beata Żelazowska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| |
Collapse
|
84
|
Jericó D, Córdoba KM, Jiang L, Schmitt C, Morán M, Sampedro A, Alegre M, Collantes M, Santamaría E, Alegre E, Culerier C, de Mendoza AEH, Oyarzabal J, Martín MA, Peñuelas I, Ávila MA, Gouya L, Martini PGV, Fontanellas A. mRNA-based therapy in a rabbit model of variegate porphyria offers new insights into the pathogenesis of acute attacks. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:207-219. [PMID: 34458006 PMCID: PMC8368795 DOI: 10.1016/j.omtn.2021.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/13/2021] [Indexed: 11/28/2022]
Abstract
Variegate porphyria (VP) results from haploinsufficiency of protoporphyrinogen oxidase (PPOX), the seventh enzyme in the heme synthesis pathway. There is no VP model that recapitulates the clinical manifestations of acute attacks. Combined administrations of 2-allyl-2-isopropylacetamide and rifampicin in rabbits halved hepatic PPOX activity, resulting in increased accumulation of a potentially neurotoxic heme precursor, lipid peroxidation, inflammation, and hepatocyte cytoplasmic stress. Rabbits also showed hypertension, motor impairment, reduced activity of critical mitochondrial hemoprotein functions, and altered glucose homeostasis. Hemin treatment only resulted in a slight drop in heme precursor accumulation but further increased hepatic heme catabolism, inflammation, and cytoplasmic stress. Hemin replenishment did protect against hypertension, but it failed to restore action potentials in the sciatic nerve or glucose homeostasis. Systemic porphobilinogen deaminase (PBGD) mRNA administration increased hepatic PBGD activity, the third enzyme of the pathway, and rapidly normalized serum and urine porphyrin precursor levels. All features studied were improved, including those related to critical hemoprotein functions. In conclusion, the VP model recapitulates the biochemical characteristics and some clinical manifestations associated with severe acute attacks in humans. Systemic PBGD mRNA provided successful protection against the acute attack, indicating that PBGD, and not PPOX, was the critical enzyme for hepatic heme synthesis in VP rabbits.
Collapse
Affiliation(s)
- Daniel Jericó
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Karol M Córdoba
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Lei Jiang
- Moderna Inc., Cambridge, MA 02139, USA
| | - Caroline Schmitt
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale U1149, 75018 Paris, France.,Centre Français des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes et Université de Paris, 92701 Colombes, France
| | - María Morán
- Mitochondrial Diseases Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Sampedro
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Manuel Alegre
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Department of Clinical Neurophysiology, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| | - María Collantes
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,MicroPET Research Unit, CIMA-CUN, 31008 Pamplona, Spain.,Nuclear Medicine Department, CUN, 31008 Pamplona, Spain
| | - Eva Santamaría
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Estíbaliz Alegre
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Department of Biochemistry, Service of Biochemistry, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| | - Corinne Culerier
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale U1149, 75018 Paris, France.,Centre Français des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes et Université de Paris, 92701 Colombes, France
| | | | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, CIMA-University of Navarra, 31008 Pamplona, Spain
| | - Miguel A Martín
- Mitochondrial Diseases Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Iván Peñuelas
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,MicroPET Research Unit, CIMA-CUN, 31008 Pamplona, Spain.,Nuclear Medicine Department, CUN, 31008 Pamplona, Spain
| | - Matías A Ávila
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laurent Gouya
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale U1149, 75018 Paris, France.,Centre Français des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes et Université de Paris, 92701 Colombes, France
| | | | - Antonio Fontanellas
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
85
|
Lee J, Garcia V, Nambiar SM, Jiang H, Dai G. Activation of Proneuronal Transcription Factor Ascl1 in Maternal Liver Ensures a Healthy Pregnancy. Cell Mol Gastroenterol Hepatol 2021; 13:35-55. [PMID: 34438112 PMCID: PMC8600092 DOI: 10.1016/j.jcmgh.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Maternal liver shows robust adaptations to pregnancy to accommodate the metabolic needs of the developing and growing placenta and fetus by largely unknown mechanisms. We found that Ascl1, a gene encoding a basic helix-loop-helix transcription factor essential for neuronal development, is highly activated in maternal hepatocytes during the second half of gestation in mice. METHODS To investigate whether and how Ascl1 plays a pregnancy-dependent role, we deleted the Ascl1 gene specifically in maternal hepatocytes from midgestation until term. RESULTS As a result, we identified multiple Ascl1-dependent phenotypes. Maternal livers lacking Ascl1 showed aberrant hepatocyte structure, increased hepatocyte proliferation, enlarged hepatocyte size, reduced albumin production, and increased release of liver enzymes, indicating maternal liver dysfunction. Simultaneously, maternal pancreas and spleen and the placenta showed marked overgrowth; and the maternal ceca microbiome showed alterations in relative abundance of several bacterial subpopulations. Moreover, litters born from maternal hepatic Ascl1-deficient dams experienced abnormal postnatal growth after weaning, implying an adverse pregnancy outcome. Mechanistically, we found that maternal hepatocytes deficient for Ascl1 showed robust activation of insulin-like growth factor 2 expression, which may contribute to the Ascl1-dependent phenotypes widespread in maternal and uteroplacental compartments. CONCLUSIONS In summary, we show that maternal liver, via activating Ascl1 expression, modulates the adaptations of maternal organs and the growth of the placenta to maintain a healthy pregnancy. Our studies show that Ascl1 is a novel and critical regulator of the physiology of pregnancy.
Collapse
Affiliation(s)
- Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Shashank M Nambiar
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
86
|
Petrillo S, Manco M, Altruda F, Fagoonee S, Tolosano E. Liver Sinusoidal Endothelial Cells at the Crossroad of Iron Overload and Liver Fibrosis. Antioxid Redox Signal 2021; 35:474-486. [PMID: 32689808 DOI: 10.1089/ars.2020.8168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Liver fibrosis results from different etiologies and represents one of the most serious health issues worldwide. Fibrosis is the outcome of chronic insults on the liver and is associated with several factors, including abnormal iron metabolism. Recent Advances: Multiple mechanisms underlying the profibrogenic role of iron have been proposed. The pivotal role of liver sinusoidal endothelial cells (LSECs) in iron-level regulation, as well as their morphological and molecular dedifferentiation occurring in liver fibrosis, has encouraged research on LSECs as prime regulators of very early fibrotic events. Importantly, normal differentiated LSECs may act as gatekeepers of fibrogenesis by maintaining the quiescence of hepatic stellate cells, while LSECs capillarization precedes the onset of liver fibrosis. Critical Issues: In the present review, the morphological and molecular alterations occurring in LSECs after liver injury are addressed in an attempt to highlight how vascular dysfunction promotes fibrogenesis. In particular, we discuss in depth how a vicious loop can be established in which iron dysregulation and LSEC dedifferentiation synergize to exacerbate and promote the progression of liver fibrosis. Future Directions: LSECs, due to their pivotal role in early liver fibrosis and iron homeostasis, show great promises as a therapeutic target. In particular, new strategies can be devised for restoring LSECs differentiation and thus their role as regulators of iron homeostasis, hence preventing the progression of liver fibrosis or, even better, promoting its regression. Antioxid. Redox Signal. 35, 474-486.
Collapse
Affiliation(s)
- Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Manco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
87
|
Brissot E, Troadec M, Loréal O, Brissot P. Iron and platelets: A subtle, under-recognized relationship. Am J Hematol 2021; 96:1008-1016. [PMID: 33844865 DOI: 10.1002/ajh.26189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
The role of iron in the formation and functioning of erythrocytes, and to a lesser degree of white blood cells, is well established, but the relationship between iron and platelets is less documented. Physiologically, iron plays an important role in hematopoiesis, including thrombopoiesis; iron levels direct, together with genetic factors, the lineage commitment of megakaryocytic/erythroid progenitors toward either megakaryocyte or erythroid progenitors. Megakaryocytic iron contributes to cellular machinery, especially energy production in platelet mitochondria. Thrombocytosis, possibly favoring vascular thrombosis, is a classical feature observed with abnormally low total body iron stores (mainly due to blood losses or decreased duodenal iron intake), but thrombocytopenia can also occur in severe iron deficiency anemia. Iron sequestration, as seen in inflammatory conditions, can be associated with early thrombocytopenia due to platelet consumption and followed by reactive replenishment of the platelet pool with possibility of thrombocytosis. Iron overload of genetic origin (hemochromatosis), despite expected mitochondrial damage related to ferroptosis, has not been reported to cause thrombocytopenia (except in case of high degree of hepatic fibrosis), and iron-related alteration of platelet function is still a matter of debate. In acquired iron overload (of transfusional and/or dyserythropoiesis origin), quantitative or qualitative platelet changes are difficult to attribute to iron alone due to the interference of the underlying hematological conditions; likewise, hematological improvement, including increased blood platelet counts, observed under iron oral chelation is likely to reflect mechanisms other than the sole beneficial impact of iron depletion.
Collapse
Affiliation(s)
- Eolia Brissot
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine APHP Paris France
- Sorbonne Universités, UPMC Univ. Paris 06, Centre de recherche Saint‐Antoine, UMR‐S938 Paris France
| | - Marie‐Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB Brest France
- Service de génétique, laboratoire de génétique chromosomique CHRU Brest Brest France
| | - Olivier Loréal
- Inserm, University of Rennes1, UMR 1241, Inrae, NuMeCan Institute Rennes France
| | - Pierre Brissot
- Inserm, University of Rennes1, UMR 1241, Inrae, NuMeCan Institute Rennes France
| |
Collapse
|
88
|
Traeger L, Wiegand SB, Sauer AJ, Corman BHP, Peneyra KM, Wunderer F, Fischbach A, Bagchi A, Malhotra R, Zapol WM, Bloch DB. UBA6 and NDFIP1 regulate the degradation of ferroportin. Haematologica 2021; 107:478-488. [PMID: 34320783 PMCID: PMC8804582 DOI: 10.3324/haematol.2021.278530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Indexed: 11/17/2022] Open
Abstract
Hepcidin regulates iron homeostasis by controlling the level of ferroportin, the only membrane channel that facilitates export of iron from within cells. Binding of hepcidin to ferroportin induces the ubiquitination of ferroportin at multiple lysine residues and subsequently causes the internalization and degradation of the ligand-channel complex within lysosomes. The objective of this study was to identify components of the ubiquitin system that are involved in ferroportin degradation. A HepG2 cell line, which inducibly expresses ferroportingreen fluorescent protein (FPN-GFP), was established to test the ability of small interfering (siRNA) directed against components of the ubiquitin system to prevent BMP6- and exogenous hepcidin-induced ferroportin degradation. Of the 88 siRNA directed against components of the ubiquitin pathway that were tested, siRNA-mediated depletion of the alternative E1 enzyme UBA6 as well as the adaptor protein NDFIP1 prevented BMP6- and hepcidin-induced degradation of ferroportin in vitro. A third component of the ubiquitin pathway, ARIH1, indirectly inhibited ferroportin degradation by impairing BMP6-mediated induction of hepcidin. In mice, the AAV-mediated silencing of Ndfip1 in the murine liver increased the level of hepatic ferroportin and increased circulating iron. The results suggest that the E1 enzyme UBA6 and the adaptor protein NDFIP1 are involved in iron homeostasis by regulating the degradation of ferroportin. These specific components of the ubiquitin system may be promising targets for the treatment of iron-related diseases, including iron overload and anemia of inflammation.
Collapse
Affiliation(s)
- Lisa Traeger
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston.
| | - Steffen B Wiegand
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Andrew J Sauer
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Benjamin H P Corman
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kathryn M Peneyra
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Florian Wunderer
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States; Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt
| | - Anna Fischbach
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Aranya Bagchi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Rajeev Malhotra
- Cardiovascular Research Center and the Cardiology Division of the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States; Division of Rheumatology, Allergy and Immunology of the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston.
| |
Collapse
|
89
|
Hepcidin and Iron Deficiency in Women One Year after Sleeve Gastrectomy: A Prospective Cohort Study. Nutrients 2021; 13:nu13082516. [PMID: 34444676 PMCID: PMC8398210 DOI: 10.3390/nu13082516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Iron deficiency with or without anemia, needing continuous iron supplementation, is very common in obese patients, particularly those requiring bariatric surgery. The aim of this study was to address the impact of weight loss on the rescue of iron balance in patients who underwent sleeve gastrectomy (SG), a procedure that preserves the duodenum, the main site of iron absorption. The cohort included 88 obese women; sampling of blood and duodenal biopsies of 35 patients were performed before and one year after SG. An analysis of the 35 patients consisted in evaluating iron homeostasis including hepcidin, markers of erythroid iron deficiency (soluble transferrin receptor (sTfR) and erythrocyte protoporphyrin (PPIX)), expression of duodenal iron transporters (DMT1 and ferroportin) and inflammatory markers. After surgery, sTfR and PPIX were decreased. Serum hepcidin levels were increased despite the significant reduction in inflammation. DMT1 abundance was negatively correlated with higher level of serum hepcidin. Ferroportin abundance was not modified. This study shed a new light in effective iron recovery pathways after SG involving suppression of inflammation, improvement of iron absorption, iron supply and efficiency of erythropoiesis, and finally beneficial control of iron homeostasis by hepcidin. Thus, recommendations for iron supplementation of patients after SG should take into account these new parameters of iron status assessment.
Collapse
|
90
|
Daniłowicz-Szymanowicz L, Świątczak M, Sikorska K, Starzyński RR, Raczak A, Lipiński P. Pathogenesis, Diagnosis, and Clinical Implications of Hereditary Hemochromatosis-The Cardiological Point of View. Diagnostics (Basel) 2021; 11:diagnostics11071279. [PMID: 34359361 PMCID: PMC8304945 DOI: 10.3390/diagnostics11071279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/25/2023] Open
Abstract
Hereditary hemochromatosis (HH) is a genetic disease leading to excessive iron absorption, its accumulation, and oxidative stress induction causing different organ damage, including the heart. The process of cardiac involvement is slow and lasts for years. Cardiac pathology manifests as an impaired diastolic function and cardiac hypertrophy at first and as dilatative cardiomyopathy and heart failure with time. From the moment of heart failure appearance, the prognosis is poor. Therefore, it is crucial to prevent those lesions by upfront therapy at the preclinical phase of the disease. The most useful diagnostic tool for detecting cardiac involvement is echocardiography. However, during an early phase of the disease, when patients do not present severe abnormalities in serum iron parameters and severe symptoms of other organ involvement, heart damage may be overlooked due to the lack of evident signs of cardiac dysfunction. Considerable advancement in echocardiography, with particular attention to speckle tracking echocardiography, allows detecting discrete myocardial abnormalities and planning strategy for further clinical management before the occurrence of substantial heart damage. The review aims to present the current state of knowledge concerning cardiac involvement in HH. In addition, it could help cardiologists and other physicians in their everyday practice with HH patients.
Collapse
Affiliation(s)
- Ludmiła Daniłowicz-Szymanowicz
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Dębinki 7 St., 80-211 Gdańsk, Poland;
- Correspondence: ; Tel.: +48-349-39-10
| | - Michał Świątczak
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Dębinki 7 St., 80-211 Gdańsk, Poland;
| | - Katarzyna Sikorska
- Department of Tropical Medicine and Epidemiology, Medical University of Gdańsk, Dębinki 7 St., 80-211 Gdańsk, Poland;
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Wólka Kosowska, 05-552 Jastrzębiec, Poland; (R.R.S.); (P.L.)
| | - Alicja Raczak
- Clinical Psychology Department, Faculty of Health Sciences, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Wólka Kosowska, 05-552 Jastrzębiec, Poland; (R.R.S.); (P.L.)
| |
Collapse
|
91
|
Hepcidin Protects Yellow Catfish ( Pelteobagrus fulvidraco) against Aeromonas veronii-Induced Ascites Disease by Regulating Iron Metabolism. Antibiotics (Basel) 2021; 10:antibiotics10070848. [PMID: 34356769 PMCID: PMC8300743 DOI: 10.3390/antibiotics10070848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Aeromonas veronii (A. veronii) is one of the main pathogens causing bacterial diseases in aquaculture. Although previous studies have shown that hepcidin as an antimicrobial peptide can promote fish resistance to pathogenic bacterial infections, but the mechanisms remain unclear. Here, we expressed and purified recombinant yellow catfish (Pelteobagrus fulvidraco) hepcidin protein (rPfHep). rPfHep can up-regulate the expression of ferritin and enhance the antibacterial activity in primary hepatocytes of yellow catfish. We employed berberine hydrochloride (BBR) and Fursultiamine (FSL) as agonists and antagonists for hepcidin, respectively. The results indicated that agonist BBR can inhibit the proliferation of pathogenic bacteria, and the antagonist FSL shows the opposite effect. After gavage administration, rPfHep and the agonist BBR can enhance the accumulation of iron in liver, which may hinder the iron transport and limit the amount of iron available to pathogenic bacteria. Moreover, rPfHep and the agonist BBR can also reduce the mortality rate, bacterial load and histological lesions in yellow catfish infected with A. veronii. Therefore, hepcidin is an important mediator of iron metabolism, and it can be used as a candidate target for prevent bacterial infections in yellow catfish. Hepcidin and BBR have potential application value in preventing anti-bacterial infection.
Collapse
|
92
|
Jiang H, Qian Y, Shen Z, Liu Y, He Y, Gao R, Shen M, Chen S, Fu Q, Yang T. Circulating microRNA‑135a‑3p in serum extracellular vesicles as a potential biological marker of non‑alcoholic fatty liver disease. Mol Med Rep 2021; 24:498. [PMID: 33955511 PMCID: PMC8127071 DOI: 10.3892/mmr.2021.12137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD) is a widespread threat to human health. However, the present screening methods for NAFLD are time‑consuming or invasive. The present study aimed to assess the potential of microRNAs (miRNAs/miRs) in serum extracellular vesicles (EVs) as a biomarker of NAFLD. C57BL/6J mice were fed either a 12‑week high‑fat diet (HFD) or standard chow to establish NAFLD and control groups, respectively. Serum samples were obtained from the mouse model of NAFLD, as well as 50 patients with NAFLD and 50 healthy individuals, and EVs were extracted and verified. Using reverse transcription‑quantitative PCR, the mRNA expression level of selected miRNAs in the serum and EVs was analyzed. In order to determine the diagnostic value, receiver operating characteristic (ROC) curves were used. The mice treated with HFD showed notable hepatic steatosis and higher concentrations of serum alanine aminotransferase (ALT). There was also a significant decrease in the expression levels of miR‑135a‑3p, miR‑129b‑5p and miR‑504‑3p, and an increase in miR‑122‑5p expression levels in circulating EVs in mice treated with HFD and patients with NAFLD. There were also similar miR‑135a‑3p and miR‑122‑5p expression patterns in the serum. ROC analysis demonstrated that miR‑135a‑3p in circulating EVs was highly accurate in diagnosing NAFLD, with the area under the curve value being 0.849 (95% CI, 0.777‑0.921; P<0.0001). Bioinformatics analysis indicated that dysregulated miR‑135a‑3p was associated with 'platelet‑derived growth factor receptor signaling pathway' and 'AMP‑activated protein kinase signaling pathway'. In summary, circulating miR‑135a‑3p in EVs may serve as a potential non‑invasive biomarker to diagnose NAFLD. This miRNA was a more sensitive and specific biological marker for NAFLD compared with ALT.
Collapse
Affiliation(s)
- Hemin Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu Qian
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyang Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuwei Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yunqiang He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Rui Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shu Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qi Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
93
|
Wang J, Liu W, Li JC, Li M, Li B, Zhu R. Hepcidin Downregulation Correlates With Disease Aggressiveness And Immune Infiltration in Liver Cancers. Front Oncol 2021; 11:714756. [PMID: 34277457 PMCID: PMC8278784 DOI: 10.3389/fonc.2021.714756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Background Hepcidin is a polypeptide hormone mainly produced by hepatocytes to modulate systemic iron balance. A drastic downregulation of the hepcidin gene was found in liver cancers. However, there is a paucity of information about the clinical significance of hepcidin gene downregulation in liver cancers. Methods Hepcidin expression profiles were assessed using multiple public datasets via several bioinformatics platforms. Clinical and pathological information was utilized to stratify patients for comparison. Patient survival outcomes were evaluated using the Kaplan-Meier plotter, a meta-analysis tool. Tumor immune infiltration was analyzed using the single sample gene set enrichment analysis (ssGSEA) approach on the Cancer Genome Atlas (TCGA) dataset. Hepcidin antagonist Fursultiamine was used to treat liver cancer HepG2 and Huh7 cells together with Sorafenib. Results Hepcidin gene was predominantly expressed in benign liver tissues but drastically decreased in liver cancer tissues. Hepcidin reduction in liver cancers correlated with risk factors like non-alcoholic fatty liver disease (NAFLD) and liver fibrosis, as well as cancer grade and tumor stage. Hepcidin downregulation was associated with a rapid cancer progression and worse disease-specific survival, especially in patients of the White race without alcohol consumption history. Hepcidin expression in liver cancer tissues positively correlated with the bone morphogenetic protein-6 (BPM6)/interleukin-6 (IL6) cytokines and cytotoxic immune infiltration. Blocking hepcidin action with its antagonist Fursultiamine moderately reduced Sorafenib-induced apoptotic cell death in HepG2 and Huh7 cells. Conclusion Hepcidin downregulation in liver cancers correlated with liver cancer risk factors, cancer aggressiveness, cytotoxic immune cell infiltration, and patient survival outcomes. BMP6/IL6 pathway insufficiency is a potential cause of hepcidin downregulation in liver cancers.
Collapse
Affiliation(s)
- Jinhu Wang
- Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Pediatric Oncology Program, Cancer Center, Zhejiang University, Hangzhou, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jean C Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Mingyi Li
- Department of General Surgery, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Runzhi Zhu
- Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Pediatric Oncology Program, Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
94
|
Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chem Biol 2021; 16:945-972. [PMID: 34102834 DOI: 10.1021/acschembio.1c00122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently. A disturbance in this state can result in excess iron burden in which an ensuing iron-mediated generation of reactive oxygen species imparts widespread oxidative damage to proteins, lipids, and DNA. On the contrary, problems in iron deficiency either due to genetic or nutritional causes can lead to a number of iron deficiency disorders. Iron chelation strategies have been in the works since the early 1900s, and they still remain the most viable therapeutic approach to mitigate the toxic side effects of excess iron. Intense investigations on improving the efficacy of chelation strategies while being well tolerated and accepted by patients have been a particular focus for many researchers over the past 30 years. Moreover, recent advances in our understanding on the role of iron in the pathogenesis of different diseases (both in iron overload and iron deficiency conditions) motivate the need to develop new therapeutics. We summarized recent investigations into the role of iron in health and disease conditions, iron chelation, and iron delivery strategies. Information regarding small molecule as well as macromolecular approaches and how they are employed within different disease pathogenesis such as primary and secondary iron overload diseases, cancer, diabetes, neurodegenerative diseases, infections, and in iron deficiency is provided.
Collapse
Affiliation(s)
- Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lily E. Takuechi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- The School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
95
|
Sarkar T, Chetia M, Chatterjee S. Antimicrobial Peptides and Proteins: From Nature's Reservoir to the Laboratory and Beyond. Front Chem 2021; 9:691532. [PMID: 34222199 PMCID: PMC8249576 DOI: 10.3389/fchem.2021.691532] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid rise of antimicrobial resistance against conventional antimicrobials, resurgence of multidrug resistant microbes and the slowdown in the development of new classes of antimicrobials, necessitates the urgent development of alternate classes of therapeutic molecules. Antimicrobial peptides (AMPs) are small proteins present in different lifeforms in nature that provide defense against microbial infections. They have been effective components of the host defense system for a very long time. The fact that the development of resistance by the microbes against the AMPs is relatively slower or delayed compared to that against the conventional antibiotics, makes them prospective alternative therapeutics of the future. Several thousands of AMPs have been isolated from various natural sources like microorganisms, plants, insects, crustaceans, animals, humans, etc. to date. However, only a few of them have been translated commercially to the market so far. This is because of some inherent drawbacks of the naturally obtained AMPs like 1) short half-life owing to the susceptibility to protease degradation, 2) inactivity at physiological salt concentrations, 3) cytotoxicity to host cells, 4) lack of appropriate strategies for sustained and targeted delivery of the AMPs. This has led to a surge of interest in the development of synthetic AMPs which would retain or improve the antimicrobial potency along with circumventing the disadvantages of the natural analogs. The development of synthetic AMPs is inspired by natural designs and sequences and strengthened by the fusion with various synthetic elements. Generation of the synthetic designs are based on various strategies like sequence truncation, mutation, cyclization and introduction of unnatural amino acids and synthons. In this review, we have described some of the AMPs isolated from the vast repertoire of natural sources, and subsequently described the various synthetic designs that have been developed based on the templates of natural AMPs or from de novo design to make commercially viable therapeutics of the future. This review entails the journey of the AMPs from their natural sources to the laboratory.
Collapse
Affiliation(s)
| | | | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
96
|
Colucci S, Marques O, Altamura S. 20 years of Hepcidin: How far we have come. Semin Hematol 2021; 58:132-144. [PMID: 34389105 DOI: 10.1053/j.seminhematol.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
Twenty years ago the discovery of hepcidin deeply changed our understanding of the regulation of systemic iron homeostasis. It is now clear that hepcidin orchestrates systemic iron levels by controlling the amount of iron exported into the bloodstream through ferroportin. Hepcidin expression is increased in situations where systemic iron levels should be reduced, such as in iron overload and infection. Conversely, hepcidin is repressed during iron deficiency, hypoxia or expanded erythropoiesis, to increase systemic iron availability and sustain erythropoiesis. In this review, we will focus on molecular mechanisms of hepcidin regulation and on the pathological consequences of their disruption.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany..
| |
Collapse
|
97
|
Kawai Y, Toya Y, Wakui H, Fujikawa T, Ueda E, Azushima K, Kinguchi S, Mitsuhashi H, Kawano T, Kuji T, Yamaguchi S, Ohnishi T, Tamura K. Potential effective treatment of shortening continuous erythropoietin receptor activator treatment interval combined with iron supplementation in hemodialysis patients. J Pharmacol Sci 2021; 147:118-125. [PMID: 34294362 DOI: 10.1016/j.jphs.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
Our previous randomized controlled trial comparing the total dose of weekly versus biweekly continuous erythropoietin receptor activator (CERA) therapy to maintain optimal hemoglobin (Hb) levels showed no significant differences between the two therapies. This post-hoc analysis assessed whether the total dose of weekly versus biweekly CERA therapy to maintain Hb levels among HD patients differed among groups with or without iron supplementation. Of 107 patients, 40 received intravenous iron supplementation due to iron deficiency (iron group) and 67 did not (non-iron group). In the iron group, the weekly therapy tended to require a lower total CERA dose compared with the biweekly therapy (274 ± 274 vs 381 ± 223 μg/12 weeks, P = 0.051). Changes in circulating hepcidin levels, a negative regulator of intestinal iron uptake, after 2 weeks of CERA treatment were significantly lower in the weekly therapy compared with the biweekly therapy (-4.2 ± 6.3 vs 11.1 ± 7.3 ng/mL, P = 0.015). In the non-iron group, there were no significant differences in total CERA dose or changes in hepcidin levels between the two therapies. Shortening the CERA treatment interval combined with iron supplementation may lead to the more efficient treatment of HD patients with iron deficiency.
Collapse
Affiliation(s)
- Yuki Kawai
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Tetsuya Fujikawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan; Center for Health Service Sciences, Yokohama National University, 79-8 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Eiko Ueda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiroshi Mitsuhashi
- Kohsaikai Kamioooka Jinsei Clinic, 1-10-1 Kamioookanishi, Konan-ku, Yokohama, 233-0002, Japan
| | - Tomoyuki Kawano
- Kohsaikai Bunkojin Clinic, 356-3 Yatsucho, Kanazawa-ku, Yokohama, 236-0016, Japan
| | - Tadashi Kuji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan; Yokodai Central Clinic, 3-9-31 Yokodai, Isogo-ku, Yokohama, 235-0045, Japan
| | - Satoshi Yamaguchi
- Kohsaikai Yokohama Jinsei Hospital, 3-1-28 Konan, Konan-ku, Yokohama, 233-0003, Japan
| | - Toshimasa Ohnishi
- Kohsaikai Kamioooka Jinsei Clinic, 1-10-1 Kamioookanishi, Konan-ku, Yokohama, 233-0002, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
98
|
Guo HH, Xiong L, Pan JX, Lee D, Liu K, Ren X, Wang B, Yang X, Cui S, Mei L, Xiong WC. Hepcidin contributes to Swedish mutant APP-induced osteoclastogenesis and trabecular bone loss. Bone Res 2021; 9:31. [PMID: 34108442 PMCID: PMC8190093 DOI: 10.1038/s41413-021-00146-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Patients with Alzheimer's disease (AD) often have lower bone mass than healthy individuals. However, the mechanisms underlying this change remain elusive. Previously, we found that Tg2576 mice, an AD animal model that ubiquitously expresses Swedish mutant amyloid precursor protein (APPswe), shows osteoporotic changes, reduced bone formation, and increased bone resorption. To understand how bone deficits develop in Tg2576 mice, we used a multiplex antibody array to screen for serum proteins that are altered in Tg2576 mice and identified hepcidin, a master regulator of iron homeostasis. We further investigated hepcidin's function in bone homeostasis and found that hepcidin levels were increased not only in the serum but also in the liver, muscle, and osteoblast (OB) lineage cells in Tg2576 mice at both the mRNA and protein levels. We then generated mice selectively expressing hepcidin in hepatocytes or OB lineage cells, which showed trabecular bone loss and increased osteoclast (OC)-mediated bone resorption. Further cell studies suggested that hepcidin increased OC precursor proliferation and differentiation by downregulating ferroportin (FPN) expression and increasing intracellular iron levels. In OB lineage cells, APPswe enhanced hepcidin expression by inducing ER stress and increasing OC formation, in part through hepcidin. Together, these results suggest that increased hepcidin expression in hepatocytes and OB lineage cells in Tg2576 mice contributes to enhanced osteoclastogenesis and trabecular bone loss, identifying the hepcidin-FPN-iron axis as a potential therapeutic target to prevent AD-associated bone loss.
Collapse
Affiliation(s)
- Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kevin Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bo Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xiao Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shun Cui
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
99
|
Xu Y, Alfaro-Magallanes VM, Babitt JL. Physiological and pathophysiological mechanisms of hepcidin regulation: clinical implications for iron disorders. Br J Haematol 2021; 193:882-893. [PMID: 33316086 PMCID: PMC8164969 DOI: 10.1111/bjh.17252] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
The discovery of hepcidin has provided a solid foundation for understanding the mechanisms of systemic iron homeostasis and the aetiologies of iron disorders. Hepcidin assures the balance of circulating and stored iron levels for multiple physiological processes including oxygen transport and erythropoiesis, while limiting the toxicity of excess iron. The liver is the major site where regulatory signals from iron, erythropoietic drive and inflammation are integrated to control hepcidin production. Pathologically, hepcidin dysregulation by genetic inactivation, ineffective erythropoiesis, or inflammation leads to diseases of iron deficiency or overload such as iron-refractory iron-deficiency anaemia, anaemia of inflammation, iron-loading anaemias and hereditary haemochromatosis. In the present review, we discuss recent insights into the molecular mechanisms governing hepcidin regulation, how these pathways are disrupted in iron disorders, and how this knowledge is being used to develop novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yang Xu
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Víctor M. Alfaro-Magallanes
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jodie L. Babitt
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
100
|
Innovative oral sucrosomial ferric pyrophosphate-based supplementation rescues suckling piglets from iron deficiency anemia similarly to commonly used parenteral therapy with iron dextran. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Iron deficiency is the most common mammalian nutritional deficiency during the neonatal period. However, among mammalian species neonatal iron deficiency anemia (IDA), the most severe consequence of iron scarcity, occurs regularly in pigs. Although intramuscular supplementation of piglets with high amounts of iron dextran (FeDex) is largely considered an appropriate preventive therapy for IDA prophylaxis, an increasing evidence shows that it negatively affects pig physiology. The aim of our study was to evaluate the efficacy of non-invasive supplementation of piglets with sucrosomial ferric pyrophosphate (SFP), a highly bioavailable dietary iron supplement in preventing IDA, in humans and mice. Results of our study show that SFP given to piglets per os in the amount of 6 mg Fe daily efficiently counteracts IDA at a rate comparable with the traditional FeDex-based supplementation (100 mgFe/kG b.w.; i.m. injection). This was indicated by physiological values of red blood cell indices and plasma iron parameters measured in 28-day old piglets. Moreover, SFP-supplemented piglets showed significantly lower (P ≤0.05) plasma level of 8-isoprostane, a biomarker for oxidative stress compared to FeDex-treated animals, implying lesser toxicity of this order of iron replenishment. Finally, supplementation with SFP does not increase considerably the blood plasma hepcidin, a peptide that acts to inhibit iron absorption from the diet. SFP emerges as a promising nutritional iron supplement, with a high potential to be adopted in the postnatal period.
Collapse
|