51
|
Rehli M, Poltorak A, Schwarzfischer L, Krause SW, Andreesen R, Beutler B. PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J Biol Chem 2000; 275:9773-81. [PMID: 10734131 DOI: 10.1074/jbc.275.13.9773] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein product of the Toll-like receptor (TLR) 4 gene has been implicated in the signal transduction events induced by lipopolysaccharide (LPS). In mice, destructive mutations of Tlr4 impede the normal response to LPS and cause a high susceptibility to Gram-negative infection. Expression of TLR4 mRNA in humans is restricted to a small number of cell types, including LPS-responsive myeloid cells, B-cells, and endothelial cells. To investigate the molecular basis for TLR4 expression in cells of myeloid origin, we cloned the human TLR4 gene and analyzed its putative 5'-proximal promoter. In transient transfections a region of only 75 base pairs upstream of the major transcription initiation site was sufficient to induce maximal luciferase activity in THP-1 cells. The sequence of this region is similar in human and mouse TLR4 genes and lacks a TATA box, typical Sp1-sites or CCAAT box sequences. Instead, it contains consensus-binding sites for Ets family transcription factors, octamer-binding factors, and a composite interferon response factor/Ets motif. The activity of the promoter in macrophages was strictly dependent on the integrity of both half sites of the composite interferon response factor/Ets motif, which was constitutively bound by the myeloid and B-cell-specific transcription factor PU.1 and interferon consensus sequence-binding protein. These results indicate that the two tissue-restricted transcription factors PU.1 and interferon consensus sequence-binding protein participate in the basal regulation of human TLR4 in myeloid cells. Cloning of the human TLR4 gene provides a basis for further investigation of the possible impact of genetic variations on the susceptibility to infection and sepsis.
Collapse
Affiliation(s)
- M Rehli
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
52
|
Ghosh N, Piskurich JF, Wright G, Hassani K, Ting JP, Wright KL. A novel element and a TEF-2-like element activate the major histocompatibility complex class II transactivator in B-lymphocytes. J Biol Chem 1999; 274:32342-50. [PMID: 10542275 DOI: 10.1074/jbc.274.45.32342] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules play a central role in immune responses, and transcription of this family of genes requires the MHC class II transactivator (CIITA). CIITA has four promoters, which are transcribed in a tissue-specific manner. CIITA promoter III is constitutively active in mature B-lymphocytes. This report now describes the minimal 319-base pair promoter region necessary for maximal transcriptional activity in B-lymphocytes. Ultraviolet light and dimethylsulfate in vivo genomic footprinting analyses reveal five occupied DNA sequence elements present in intact B-lymphocytes. Functional analysis of these elements using promoter deletions and site-specific mutations demonstrates that at least two of the sites occupied in vivo are critical for transcriptional activity. In vitro protein/DNA analysis suggests that one of the sites is a TEF-2-like element and the other is occupied by a novel transcription activator. In addition, nuclear factor-1 associates with the promoter both in vivo and in vitro. In myeloma cell lines, loss of CIITA transcription correlates with a completely unoccupied CIITA promoter III. These findings suggest that CIITA transcription in B-lymphocytes is activated through at least two strong promoter elements, while loss of expression in myeloma cells is mediated through changes in promoter assembly.
Collapse
Affiliation(s)
- N Ghosh
- H. Lee Moffitt Cancer Center, Department of Biochemistry, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|
53
|
Stütz AM, Woisetschläger M. Functional Synergism of STAT6 with Either NF-κB or PU.1 to Mediate IL-4-Induced Activation of IgE Germline Gene Transcription. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Ig heavy chain class switching to IgE is directed by IL-4 and IL-13 by inducing transcription from the IgE germline promoter. A crucial transcription factor in this process is STAT6, which binds to a specific DNA element upon cytokine activation. In this paper it is shown that the B cell- and monocyte-specific factor PU.1 interacts with a closely spaced sequence in the human IgE germline promoter that overlaps with a previously described binding site for NFκB/rel. The authenticity of PU.1 was demonstrated by specific competition and supershifts in EMSA experiments. In addition, in vitro translated PU.1 could interact with an oligonucleotide derived from the IgE germline promoter containing the PU.1 binding site and migrated with the same mobility compared with the complex formed with nuclear extracts. Transient transfection experiments using IgE germline promoter reporter gene constructs demonstrated that mutations affecting DNA binding of PU.1 or NFκB/rel had no or little effect on IL-4 inducibility of these plasmids. However, point mutations that abolished binding of both factors abrogated cytokine inducibility. No strict spacing of the STAT6 and the composite PU.1/NF-κB elements is required for IL-4 induction. IL-4-induced STAT6 DNA binding was retained in PU.1−/NFκB/rel− double mutants. The data demonstrate that cooperation of STAT6 with at least PU.1 or NFκB/rel is necessary for IL-4-induced activation of IgE germline gene transcription.
Collapse
Affiliation(s)
- Adrian M. Stütz
- Department of Immunology, Novartis Research Institute, Vienna, Austria
| | | |
Collapse
|
54
|
Barbeau B, Barat C, Bergeron D, Rassart E. The GATA-1 and Spi-1 transcriptional factors bind to a GATA/EBS dual element in the Fli-1 exon 1. Oncogene 1999; 18:5535-45. [PMID: 10523830 DOI: 10.1038/sj.onc.1202913] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fli-1 is a proto-oncogene which is rearranged in tumors induced by three different retroviruses, Cas-Br-E, F-MuLV, and 10A1. This gene is a member of the Ets gene family, a class of transcription factors that recognize and bind to a DNA motif known as the Ets binding site (EBS). Our laboratory has previously cloned and characterized the promoter region of both human and mouse Fli-1 genes. We had then identified several regulatory elements conserved between the two species. Two of them, an exon 1 GATA/EBS dual element and an EBS element located in the 5' end of intron 1, were analysed in the present study. EMSA analysis performed with nuclear extracts from different cell lines showed that the EBS element in intron 1 (EBSi) was bound by one potential Ets-related ubiquitous factor. The GATA/EBS element was bound by several factors that seemed Ets-related, one of which was found to be specifically expressed in hematopoietic cells. the GATA/EBS dual element was thus chosen for further analysis. A human Fli-1-derived genomic fragment containing the GATA/EBS led to enhanced transcription when positioned upstream of the SV40 promoter in the erythroleukemic HEL cell line. In addition, an increasing number of GATA/EBS oligonucleotides upstream of this same promoter resulted in a copy number-dependent increase in luciferase activity which was greatly reduced when the EBS consensus sequence was mutated. One of the factors binding to the GATA/EBS region was identified to be Spi-1 by supershift analysis and was also shown to bind to the EBS element of the human Ets-2 gene. Supershift analysis also demonstrated the binding of the GATA-1 factor to the GATA/EBS dual element. Our results suggest that Spi-1 and GATA-1 might play a key role in the regulation of Fli-1.
Collapse
Affiliation(s)
- B Barbeau
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
55
|
Lloberas J, Soler C, Celada A. The key role of PU.1/SPI-1 in B cells, myeloid cells and macrophages. IMMUNOLOGY TODAY 1999; 20:184-9. [PMID: 10203717 DOI: 10.1016/s0167-5699(99)01442-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J Lloberas
- Dept de Fisiologia (Biologia del macrofag), Facultat de Biologia, and Fundació August Pi i Sunyer, Campus Bellvitge, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
56
|
Rehli M, Lichanska A, Cassady AI, Ostrowski MC, Hume DA. TFEC Is a Macrophage-Restricted Member of the Microphthalmia-TFE Subfamily of Basic Helix-Loop-Helix Leucine Zipper Transcription Factors. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The murine homologue of the TFEC was cloned as part of an analysis of the expression of the microphthalmia-TFE (MiT) subfamily of transcription factors in macrophages. TFEC, which most likely acts as a transcriptional repressor in heterodimers with other MiT family members, was identified in cells of the mononuclear phagocyte lineage, coexpressed with all other known MiT subfamily members (Mitf, TFE3, TFEB). Northern blot analysis of several different cell lineages indicated that the expression of murine TFEC (mTFEC) was restricted to macrophages. A 600-bp fragment of the TATA-less putative proximal promoter of TFEC shares features with many known macrophage-specific promoters and preferentially directs luciferase expression in the RAW264.7 macrophage cell line in transient transfection assays. Five of six putative Ets motifs identified in the TFEC promoter bind the macrophage-restricted transcription factor PU.1 under in vitro conditions and in transfected 3T3 fibroblasts; the minimal luciferase activity of the TFEC promoter could be induced by coexpression of PU.1 or the related transcription factor Ets-2. The functional importance of the tissue-restricted expression of TFEC and a possible role in macrophage-specific gene regulation require further investigation, but are likely to be linked to the role of the other MiT family members in this lineage.
Collapse
Affiliation(s)
- Michael Rehli
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | - Agnieszka Lichanska
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | - A. Ian Cassady
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | | | - David A. Hume
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| |
Collapse
|
57
|
van Vugt MJ, Reefman E, Zeelenberg I, Boonen G, Leusen JH, van de Winkel JG. The alternatively spliced CD64 transcript FcgammaRIb2 does not specify a surface-expressed isoform. Eur J Immunol 1999; 29:143-9. [PMID: 9933095 DOI: 10.1002/(sici)1521-4141(199901)29:01<143::aid-immu143>3.0.co;2-#] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three highly homologous genes (A, B and C) and six transcripts have been identified for the class I human IgG receptor (CD64). The hFcgammaRIa1 isoform encodes the prototypic high-affinity receptor for IgG. The alternatively spliced hFcgammaRIb2 transcript was postulated to exist as a second surface-expressed CD64 isoform on myeloid cells. In this report we assessed this proposed role for hFcgammaRIb2 in detail. As CD64 monoclonal antibodies might not recognize hFcgammaRIb2, we tagged the receptor with an hemagglutinin tag and transfected hFcgammaRIb2tag in the presence of FcR gamma-chain into IIA1.6 cells. Both transcript and protein of hFcgammaRIb2tag were clearly present in transfectants. However, in contrast to the (control) hFcgammaRIa1tag, no surface expression of hFcgammaRIb2tag was detectable with a tag-specific monoclonal antibody. Confocal scan laser microscopy revealed hFcgammaRIb2tag to be retained in the endoplasmic reticulum, resulting in absent plasma membrane expression. These results show hFcgammaRIb2 neither to be surface expressed, nor to represent a separate CD64 isoform. This finding, furthermore, implicates that other FcR transcripts defined at the mRNA level may not represent true FcR isoforms either.
Collapse
Affiliation(s)
- M J van Vugt
- Department of Immunology, University Hospital Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
58
|
Folkers GE, van der Burg B, van der Saag PT. Promoter architecture, cofactors, and orphan receptors contribute to cell-specific activation of the retinoic acid receptor beta2 promoter. J Biol Chem 1998; 273:32200-12. [PMID: 9822698 DOI: 10.1074/jbc.273.48.32200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of retinoic acid receptor beta (RARbeta) is spatially and temporally restricted during embryonal development. Also during retinoic acid (RA)-dependent embryonal carcinoma (EC) cell differentiation, RARbeta expression is initially up-regulated, while in later phases of differentiation expression is down-regulated, by an unknown mechanism. To gain insight into the regulation of RARbeta, we studied the activity of the RARbeta2 promoter and mutants thereof in various cell lines. While the RARbeta2 promoter is activated by RA in a limited number of cell lines, synthetic RA-responsive reporters are activated in most cell types. We show that the expression levels of proteins that bind to the beta-retinoic acid response element (RAR/retinoid X receptors and orphan receptors) and also the differential expression of a number of coactivators modulate the RA response on both natural and synthetic reporters. We further show that cell type-specific activation of the RARbeta2 promoter is dependent on the promoter architecture including the spacing between retinoic acid response element and TATA-box and initiator sequence (betaINR). Mutation within these regions caused a decrease in the activity of this promoter in responsive EC cells, while an increase in activity in non-EC cell lines was observed. Cell-specific complexes were formed on the betaINR, suggesting that the betaINR contributes to cell-specific activation of the promoter. On this basis we propose that promoter context-dependent and more general RA response-determining mechanisms contribute to cell-specific RA-dependent activation of transcription.
Collapse
Affiliation(s)
- G E Folkers
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
59
|
Smith MF, Carl VS, Lodie T, Fenton MJ. Secretory interleukin-1 receptor antagonist gene expression requires both a PU.1 and a novel composite NF-kappaB/PU.1/ GA-binding protein binding site. J Biol Chem 1998; 273:24272-9. [PMID: 9727052 DOI: 10.1074/jbc.273.37.24272] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human secretory interleukin-1 receptor antagonist (secretory IL-1Ra) gene is controlled through three lipopolysaccharide (LPS)-responsive promoter elements, one of which was identified as an NF-kappaB binding site. Sequence analysis of the secretory IL-1Ra promoter identified a potential PU.1 binding site located between positions -80 and -90 on the complementary strand overlapping the NF-kappaB site. Gel shift analysis using this potential binding site with nuclear extracts from RAW 264.7 macrophages demonstrated the formation of three complexes, one LPS-inducible and two constitutive. The inducible factor was identified as NF-kappaB, and the constitutive factors were identified as PU.1 and GA-binding protein. Site-directed mutagenesis of the -93 to -79 promoter region demonstrated that mutation of either the NF-kappaB 5'-half site or the PU.1/GA-binding protein half-site alone did not significantly decrease LPS responsiveness. However, a mutation that disrupted the binding of all three factors resulted in a 50% decrease in LPS responsiveness. A second PU.1 binding site centered at -230 was identified by gel shift and supershift assays. Mutation of the core GGAA region resulted in a 50% decrease in LPS-responsive promoter activity. Mutation of both the distal and proximal LPS response elements led to an almost complete loss of responsiveness. These data therefore suggest that the regulation of IL-1Ra gene expression is a complex event involving the interactions of three different transcription factors with a single cis-acting element and that the two PU.1 binding sites are the major response elements for LPS-induced IL-1Ra gene expression.
Collapse
Affiliation(s)
- M F Smith
- Department of Medicine, Division of Gastroenterology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
60
|
DeKoter RP, Walsh JC, Singh H. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J 1998; 17:4456-68. [PMID: 9687512 PMCID: PMC1170777 DOI: 10.1093/emboj/17.15.4456] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PU.1 is a unique regulatory protein required for the generation of both the innate and the adaptive immune system. It functions exclusively in a cell-intrinsic manner to control the development of granulocytes, macrophages, and B and T lymphocytes. We demonstrate that mutation of the PU.1 gene causes a severe reduction in myeloid (granulocyte/macrophage) progenitors. PU.1 -/- myeloid progenitors can proliferate in vitro in response to the multilineage cytokines interleukin-3 (IL-3), IL-6 and stem cell factor but are unresponsive to the myeloid-specific cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF and M-CSF. The failure of PU.1 -/- progenitors to respond to G-CSF is bypassed by transient signaling with IL-3. In the presence of IL-3 and G-CSF, PU.1 -/- progenitors can differentiate into granulocytic precursors containing myeloperoxidase-positive granules. Thus PU.1 is not essential for specification of granulocytic precursors, but is required for their further differentiation. The failure of PU.1 -/- progenitors to respond to M-CSF is due to lack of c-fms gene transcription. Transduction of c-fms into PU.1 -/- myeloid progenitors bypasses the block to M-CSF-dependent proliferation but does not induce detectable macrophage differentiation. Therefore, PU. 1 appears to be essential for specification of monocytic precursors. Importantly, retroviral transduction of PU.1 into mutant progenitors restores responsiveness to myeloid-specific cytokines and development of mature granulocytes and macrophages. Thus PU.1 controls myelopoiesis by regulating both proliferation and differentiation pathways.
Collapse
Affiliation(s)
- R P DeKoter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
61
|
Cheriyath V, Novina CD, Roy AL. TFII-I regulates Vbeta promoter activity through an initiator element. Mol Cell Biol 1998; 18:4444-54. [PMID: 9671454 PMCID: PMC109030 DOI: 10.1128/mcb.18.8.4444] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In our effort to understand the transcriptional regulation of naturally occurring TATA-less but initiator (Inr)-containing genes, we have employed the murine T-cell receptor Vbeta 5.2 promoter as a model. Here we show by transient-transfection assays that the Inr binding transcription factor TFII-I is required for efficient expression of the Vbeta promoter in vivo. Mutations in the Inr element that reduced binding of TFII-I also abolished the Vbeta promoter activity by ectopic TFII-I. We further biochemically identified a protease-resistant N-terminal DNA binding fragment of TFII-I, p70. When ectopically expressed, recombinant p70 bound to the Vbeta Inr element with a specificity similar to that of wild-type TFII-I. More importantly, p70, which lacks independent activation functions, behaved as a dominant negative mutant that inhibited Inr-specific function of wild-type TFII-I. However, the activation functions of p70 were restored when fused to the heterologous activation domain of the yeast activator protein GAL4. Taken together, these data suggest that TFII-I functions in vivo require an intact Inr element and that the Inr-specific transcriptional functions of TFII-I are solely dictated by its N-terminal DNA binding domain and do not require its own C-terminal activation domain.
Collapse
Affiliation(s)
- V Cheriyath
- Department of Pathology and Program in Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
62
|
Abstract
Human IgG receptors constitute a family of glycoprotein complexes consisting of ligand-binding, and associated signaling chains. Three leukocyte classes (Fc gamma RI, II, and III) and one separate endothelial Fc gamma R class (FcRB) are defined which are expressed on hematopoietic and endothelial cells. Upon interaction with IgG, Fc gamma R initiate a plethora of signaling cascades involving receptor signaling motifs, and protein tyrosine kinases and phosphatases. These cascades ultimately culminate in activation or deactivation of effector cells, resulting in initiation or down-modulation of cellular processes. Recent evidence points to a crucial in vivo role of Fc gamma R in both initiation and regulation of inflammatory and cytotoxic responses. These Fc gamma R-mediated immune responses can be exploited to develop novel immunotherapies.
Collapse
Affiliation(s)
- I A Heijnen
- Department of Immunology and Medarex Europe BV, G04.614, University Hospital Utrecht, The Netherlands
| | | |
Collapse
|
63
|
Dode L, De Greef C, Mountian I, Attard M, Town MM, Casteels R, Wuytack F. Structure of the human sarco/endoplasmic reticulum Ca2+-ATPase 3 gene. Promoter analysis and alternative splicing of the SERCA3 pre-mRNA. J Biol Chem 1998; 273:13982-94. [PMID: 9593748 DOI: 10.1074/jbc.273.22.13982] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human chromosome 17-specific genomic clones extending over 90 kilobases (kb) of DNA and coding for sarco/endoplasmic reticulum Ca2+-ATPase 3 (SERCA3) were isolated. The presence of the D17S1828 genetic marker in the cosmid contig enabled us to map the SERCA3 gene (ATP2A3) 11 centimorgans from the top of the short arm p of chromosome 17, in the vicinity of the cystinosis gene locus. The SERCA3 gene contains 22 exons spread over 50 kb of genomic DNA. The exon/intron boundaries are well conserved between human SERCA3 and SERCA1 genes, except for the junction between exons 8 and 9 which is found in the SERCA1 gene but not in SERCA3 and SERCA2 genes. The transcription start site (+1) is located 152 nucleotides (nt) upstream of the AUG codon. The 5'-flanking region, including exon 1, is embedded in a 1.5-kb CpG island and is characterized by the absence of a TATA box and by the presence of 14 putative Sp1 sites, 11 CACCC boxes, 5 AP-2-binding motifs, 3 GGCTGGGG motifs, 3 CANNTG boxes, a GATA motif, as well as single sites for Ets-1, c-Myc, and TFIIIc. Functional promoter analysis indicated that the GC-rich region (87% G + C) from -135 to -31 is of critical importance in initiating SERCA3 gene transcription in Jurkat cells. Exon 21 (human, 101 base pairs; mouse, 86 base pairs) can be alternatively excluded, partially included, or totally included, thus generating, respectively, SERCA3a (human and mouse, 999 amino acids (aa)), SERCA3b (human, 1043 aa; mouse, 1038 aa), or SERCA3c (human, 1024 aa; mouse, 1021 aa) isoforms with different C termini. Expression of the mouse SERCA3 isoforms in COS-1 cells demonstrated their ability to function as active pumps, although with different apparent affinities for Ca2+.
Collapse
Affiliation(s)
- L Dode
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
64
|
Ma Y, Su Q, Tempst P. Differentiation-stimulated activity binds an ETS-like, essential regulatory element in the human promyelocytic defensin-1 promoter. J Biol Chem 1998; 273:8727-40. [PMID: 9535850 DOI: 10.1074/jbc.273.15.8727] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human HNP-defensin-1 gene encodes a peptide antibiotic found exclusively in neutrophils and is key to elimination of microbes. Expression is a marker for the granulocytic lineage and for certain stages of differentiation and is not known to be inducible in mature cells under physiological conditions. Low level of transcription also occurs in HL-60 promyelocytic leukemia cells and is greatly activated upon drug-induced granulocytic maturation and by low doses of retinoic acid, in a strictly cell-specific manner (Herwig, S., Su, Q., Ma, Y., and Tempst, P. (1996) Blood 87, 350-364). We have analyzed a 10-kilobase pair region, upstream of the defensin-1 cap site, for the presence of control elements, and we describe a minimal promoter (position -83 to +82) required to drive transcription in HL-60 cells in a quasi cell-specific manner. Our data also suggest the presence of negative regulatory elements in the -416/-191 region that may further contribute to cell specificity in a chromosomal context. The basal promoter contains two functionally essential, ETS-like (GGAA core sequence) elements. The proximal site (-22/-19) constitutively binds the PU.1 transcription factor in vitro and could function, together perhaps with an adjacent TA-rich sequence (-32/-25), in assembly of a myeloid-restricted, basal transcription factor complex. The distal site (-62/-59) interacts in vitro with an unidentified activity, distinct from PU.1, ETS-1, PEA3, and ELK-1 (factors with definite binding site similarities), and is greatly stimulated by phosphorylation during granulocytic differentiation of HL-60 cells. Identification of this protein will be important to resolve the molecular mechanisms controlling temporal, granulocytic restricted gene expression.
Collapse
Affiliation(s)
- Y Ma
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | |
Collapse
|
65
|
Ross IL, Yue X, Ostrowski MC, Hume DA. Interaction between PU.1 and another Ets family transcription factor promotes macrophage-specific Basal transcription initiation. J Biol Chem 1998; 273:6662-9. [PMID: 9506963 DOI: 10.1074/jbc.273.12.6662] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous macrophage-restricted promoters lack TATA boxes or other conventional initiation motifs but contain high affinity binding sites (PU boxes) for the macrophage-restricted Ets family transcription factor PU.1. In RAW264 murine macrophages, multimerized PU boxes were not active as enhancers when placed upstream of a minimal promoter. To model their role in basal promoters, we inserted PU boxes into a promoterless luciferase reporter plasmid. Two sites, regardless of orientation, were necessary and sufficient to direct reporter gene expression in transient transfections of the RAW264 macrophage-like cell line. This activity was absent in transfected 3T3 fibroblasts but could be induced by PU.1 coexpression. Both the model promoter and the macrophage-specific mouse and human c-fms promoters were activated in RAW264 cells by other Ets family transcription factors, Ets-2 and Elf-1. In fibroblasts, the effects of PU.1 and Ets-2 were multiplicative, whereas overexpression of PU.1 in RAW264 cells reduced activation of c-fms or model promoters by the other Ets factors. The PU.1 and Ets-2 binding sites of the mouse c-fms promoter have been located by DNase footprinting. A conserved Ets-like motif at the transcription site, CAGGAAC, that bound only weakly to PU.1, was identified as an additional critical basal c-fms promoter element. Comparison of studies on the model promoter, c-fms and other myeloid promoters provides evidence for a conserved mechanism that involves three separate and functionally distinct Ets-like motifs.
Collapse
Affiliation(s)
- I L Ross
- Department of Microbiology, University of Queensland, Brisbane 4072, Australia
| | | | | | | |
Collapse
|
66
|
Li AC, Guidez FR, Collier JG, Glass CK. The macrosialin promoter directs high levels of transcriptional activity in macrophages dependent on combinatorial interactions between PU.1 and c-Jun. J Biol Chem 1998; 273:5389-99. [PMID: 9479000 DOI: 10.1074/jbc.273.9.5389] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrosialin is a transmembrane glycoprotein that is highly expressed in macrophages. In the present studies, macrosialin mRNA levels are shown to be markedly up-regulated during macrophage differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. To investigate the mechanisms responsible for regulation of macrosialin expression, we have isolated the macrosialin gene and performed an initial analysis of its transcriptional regulatory elements. The macrosialin promoter and 7.0 kilobase pairs of 5'-flanking information direct high levels of reporter gene activity in monocyte/macrophage-like cells, but little or no expression in nonmyeloid cells. This pattern of expression is dependent on regulatory elements located between -7.0 and -2.5 kilobase pairs from the transcriptional start site that exhibit strong enhancer activity in macrophages and repressor activity in nonmyeloid cells. Analysis of the proximal macrosialin promoter indicates that combinatorial interactions between at least four classes of transcriptional activators, including PU.1/Spi-1 and members of the AP-1 family are required for basal promoter function. PU.1/Spi-1 and c-Jun act synergistically to activate the macrosialin promoter in a nonmyeloid cell line, suggesting that combinatorial interactions between these proteins are involved in regulating macrosialin expression during macrophage differentiation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD
- Antigens, Differentiation, Myelomonocytic
- Base Sequence
- Cell Differentiation
- Cloning, Molecular
- Enhancer Elements, Genetic
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Macrophage Colony-Stimulating Factor/pharmacology
- Macrophages/drug effects
- Macrophages/metabolism
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-jun/metabolism
- RNA, Messenger/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Trans-Activators/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- A C Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA
| | | | | | | |
Collapse
|
67
|
Abstract
The ETS-family transcription factor PU.1 is expressed in hematopoietic tissues, with significant levels of expression in the monocytic and B lymphocytic lineages. PU.1 is identical to the Spi-1 proto-oncogene which is associated with the generation of spleen focus-forming virus-induced erythroleukemias. An extensive body of in vitro gene regulatory studies has implicated PU.1 as an important, versatile regulator of B lymphoid- and myeloid-specific genes. The first half of the review is designed to coalesce data generated from studies examining the two PU.1 "knockout" animals, which have prompted a reevaluation of the proposed function of PU.1 during hematopoiesis. During hematopoiesis, PU.1 is required for development along the lymphoid and myeloid lineages but needs to be downregulated during erythropoiesis. These unique functional characteristics of PU.1 will be exemplified by contrasting the function of PU.1 with other transcription factors required during fetal hematopoiesis. The second half of this review will reexamine the functional characteristics of PU.1 deduced from traditional biochemical and transactivation assays in light of recent experiments examining the functional behavior of PU.1 in an embryonic stem cell in vitro differentiation system. Working models of how PU.1 regulates promoter and enhancer regions in the B cell and myeloid lineage will be presented and discussed.
Collapse
Affiliation(s)
- R C Fisher
- Institute for Human Therapy, University of Pennsylvania, Philadelphia 19104-6100, USA
| | | |
Collapse
|
68
|
Chen HM, Gonzalez DA, Radomska HS, Voso MT, Sun Z, Zhang P, Zhang DE, Tenen DG. Two promoters direct expression of the murine Spi-B gene, an Ets family transcription factor. Gene X 1998; 207:209-18. [PMID: 9511763 DOI: 10.1016/s0378-1119(97)00629-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spi-B and PU.1 (Spi-1) comprise the most divergent subfamily of the Ets transcription factor family. Spi-B and PU.1 bind to similar DNA sequences, and can activate the same B-cell and myeloid promoters in vitro. However, PU.1 knockout mice demonstrate defective hematopoietic development of multiple hematopoietic lineages, indicating that Spi-B was not able to compensate for loss of PU.1. One explanation for these results is that, in contrast to PU.1, which is expressed in myeloid and B-cell lines, Spi-B expression is restricted to B-cells. In order to begin to understand the control of regulation of the Spi-B gene, murine Spi-B cDNA and genomic clones were isolated. The exon/intron organization and transcriptional start sites were determined; two major transcriptional start sites were detected. The two Spi-B promoters were isolated and characterized, and displayed differential activity in B-cell lines matching that of the endogenous gene. Further study of the two Spi-B promoters will provide insight into the molecular events regulating the tissue-specific and developmental stage-specific expression of Spi-B in B-cells.
Collapse
Affiliation(s)
- H M Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Forced GATA-1 Expression in the Murine Myeloid Cell Line M1: Induction of c-Mpl Expression and Megakaryocytic/Erythroid Differentiation. Blood 1998. [DOI: 10.1182/blood.v91.2.450.450_450_457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The “zinc-finger” transcription factor GATA-1 was first shown in cells of erythroid lineage. It is also expressed in cells of other hematopoietic lineages including megakaryocytes, mast cells, and eosinophils. GATA-1 is now considered to be one of the central regulators in hematopoietic cell differentiation. To further analyze the role of GATA-1 in controlling differentiation from hematopoietic stem cells, we investigated the phenotypic changes induced by the overexpression of murine GATA-1 in the murine myeloid leukemic cell line, M1. Forced expression of GATA-1 induced the appearance of erythroid cells and megakaryocytes as assessed by cellular morphology, acetylcholinesterase activity, and expression of platelet factor 4 and β-globin mRNA synthesis. Because the c-mpl ligand, thrombopoietin, plays an important role in megakaryopoiesis, the expression of c-mpl and c-mpl ligand (thrombopoietin) mRNA was analyzed by Northern blot and reverse transcription-polymerase chain reaction (RT-PCR) in M1 cells overexpressing GATA-1. The c-mpl ligand mRNA was equally expressed both in parental M1 cells and in those transfected with the GATA-1 expression vector. In contrast, the mRNA expression of c-mpl was increased only in GATA-1 expressing M1 cells differentiated towards erythroid and megakaryocyte lineages. The increased expression of c-mpl mRNA induced by GATA-1 raised the question as to whether or not GATA-1 transactivated the c-mpl promoter. The activity of the c-mpl promoter in the presence of cotransfected GATA-1 was significantly increased compared with that of the control. A plasmid with the mutated GATA-binding site did not show transactivation ability in the cotransfection with a GATA expression vector. These findings suggest that the upregulation of c-mpl induced by GATA-1 expression in M1 cells is closely associated with erythroid and megakaryocytic differentiation.
Collapse
|
70
|
Forced GATA-1 Expression in the Murine Myeloid Cell Line M1: Induction of c-Mpl Expression and Megakaryocytic/Erythroid Differentiation. Blood 1998. [DOI: 10.1182/blood.v91.2.450] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe “zinc-finger” transcription factor GATA-1 was first shown in cells of erythroid lineage. It is also expressed in cells of other hematopoietic lineages including megakaryocytes, mast cells, and eosinophils. GATA-1 is now considered to be one of the central regulators in hematopoietic cell differentiation. To further analyze the role of GATA-1 in controlling differentiation from hematopoietic stem cells, we investigated the phenotypic changes induced by the overexpression of murine GATA-1 in the murine myeloid leukemic cell line, M1. Forced expression of GATA-1 induced the appearance of erythroid cells and megakaryocytes as assessed by cellular morphology, acetylcholinesterase activity, and expression of platelet factor 4 and β-globin mRNA synthesis. Because the c-mpl ligand, thrombopoietin, plays an important role in megakaryopoiesis, the expression of c-mpl and c-mpl ligand (thrombopoietin) mRNA was analyzed by Northern blot and reverse transcription-polymerase chain reaction (RT-PCR) in M1 cells overexpressing GATA-1. The c-mpl ligand mRNA was equally expressed both in parental M1 cells and in those transfected with the GATA-1 expression vector. In contrast, the mRNA expression of c-mpl was increased only in GATA-1 expressing M1 cells differentiated towards erythroid and megakaryocyte lineages. The increased expression of c-mpl mRNA induced by GATA-1 raised the question as to whether or not GATA-1 transactivated the c-mpl promoter. The activity of the c-mpl promoter in the presence of cotransfected GATA-1 was significantly increased compared with that of the control. A plasmid with the mutated GATA-binding site did not show transactivation ability in the cotransfection with a GATA expression vector. These findings suggest that the upregulation of c-mpl induced by GATA-1 expression in M1 cells is closely associated with erythroid and megakaryocytic differentiation.
Collapse
|
71
|
Murine Macrophage Mannose Receptor Promoter Is Regulated by the Transcription Factors PU.1 and SP1. Blood 1997. [DOI: 10.1182/blood.v90.10.4135] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AbstractThe mannose receptor (MR) is a transmembrane protein that functions primarily as a phagocytic receptor for a wide range of microorganisms. Its expression appears to be restricted to tissue macrophages and Langerhans cells. To gain an understanding of the regulation of the gene, we have isolated the 5′ flanking sequence of the murine MR gene and have analyzed a 536-bp sequence upstream of the ATG start site for transcriptional activity. This sequence lacks a TATA box but contains an initiator (Inr) consensus element overlapping the single transcriptional start site. Transcription factor binding sites contained within this sequence include PU.1, Sp1, ETS, GATA, and MYB motifs. Serial 100-bp deletions of this promoter fragment fused to a luciferase reporter gene showed various patterns of activity when transfected into different cell types. In myeloid cells, sequence elements upstream of bp −300 appeared to have a silencing effect on promoter activity. Of the four potential PU.1 binding sites contained within the fragment, one site (at −164) bound the PU.1 factor most strongly, whereas the adjacent PU.1 site (at −177 bp) bound PU.1 to a lesser degree. Mutations of these sites decreased transcriptional activity but did not abolish it. However, promoter activity was abrogated when both the −164 bp PU.1 site and the adjacent −177 bp PU.1 site were mutated. In addition, mutation of the Sp1 site also significantly reduced promoter activity. Cotransfection studies in Drosophila Schneider cells indicated that PU.1 and Sp1 may function synergistically in transactivating the murine MR. This study indicates that MR gene expression is regulated in part by the interaction between the ubiquitously expressed factor Sp1 and the lymphoid/myeloid factor PU.1 and provides a basis for studying the regulation of this gene.
Collapse
|
72
|
Affiliation(s)
- J W Fickett
- Bioinformatics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | |
Collapse
|
73
|
Kataoka M, Yoshiyama K, Matsuura K, Hijiya N, Higuchi Y, Yamamoto S. Structure of the murine CD156 gene, characterization of its promoter, and chromosomal location. J Biol Chem 1997; 272:18209-15. [PMID: 9218457 DOI: 10.1074/jbc.272.29.18209] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The murine cell surface antigen mCD156 is a glycoprotein that is expressed in monocytic cell lines and consists of a metalloprotease domain, a disintegrin domain, a cysteine-rich domain, and an epidermal growth factor-like domain in the extracellular region. The mCD156 gene is composed of 24 exons and 23 introns and spans approximately 14 kilobases. The first exon encodes most of the signal peptide sequence, and the transmembrane region is encoded by a single exon (19). In contrast, the other regions are composed of multiple exons. Of these, exons 7-12 and 12-15 encode a metalloprotease domain and a disintegrin domain, respectively. Sequence analysis of the 5'-flanking DNA revealed many potential regulatory motifs. Chloramphenicol acetyltransferase analysis demonstrated that nucleotides at positions -183, -334, and -623 contained cis-acting enhancing elements in a mouse monocytic cell line, aHINS-B3. Nucleotides at positions -183 and -390 contained elements responsible for lipopolysaccharide (LPS) inducibility, although several other 5'-flanking regions were also involved in LPS responsiveness. Regions -202, -507, and -659 play a role in interferon-gamma inducibility. Some of the potential regulatory motifs and other unknown cis elements may be involved in the constitutive expression, and LPS and interferon-gamma inducibilities. The mCD156 gene was mapped to chromosome 7, region F3-F4.
Collapse
Affiliation(s)
- M Kataoka
- Department of Pathology, Oita Medical University, Hasama-machi Oita 879-55 Japan
| | | | | | | | | | | |
Collapse
|
74
|
|
75
|
|
76
|
Abstract
AbstractNeutrophil elastase (NE) is a serine protease that is transcriptionally regulated during early myeloid differentiation. The murine NE (mNE) promoter contains functionally important c-Myb, C/EBP, and ets binding sites. Deletion of the ets site reduced promoter activity by 90%. Although the ets transcription factor, PU.1, bound to this ets site, it only modestly activated the mNE promoter. Here, we show that a second transcription factor from myeloid cells — GABP — binds to the mNE ets site but strongly activates the mNE promoter. GABP is a heteromeric transcription factor complex that consists of GABPα, an ets factor, and GABPβ, a Notch-related protein. GABPα bound to the mNE ets site and, in turn, recruited GABPβ to form a transcriptionally active complex. GABPα and PU.1 competed with each other for binding to the mNE ets site. GABP increased the activity of the mNE promoter sevenfold in U937 myeloid cells. GABP cooperated with c-Myb and C/EBPα to activate the mNE promoter more than 85-fold in otherwise nonpermissive, nonhematopoietic NIH 3T3 cells. Thus, GABP binds to the crucial mNE promoter ets site and powerfully activates its expression alone and in cooperation with the transcription factors c-Myb and C/EBP.
Collapse
|
77
|
|
78
|
|
79
|
Sturrock A, Franklin KF, Hoidal JR. Human proteinase-3 expression is regulated by PU.1 in conjunction with a cytidine-rich element. J Biol Chem 1996; 271:32392-402. [PMID: 8943304 DOI: 10.1074/jbc.271.50.32392] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human proteinase-3 is one of three serine proteinases present in the azurophil granules of polymorphonuclear leukocytes along with elastase and cathepsin G. Proteinase-3 gene expression is confined to the promyelocytic stage of polymorphonuclear leukocyte maturation. The present investigation identifies elements responsible for this highly controlled tissue- and developmental-specific expression of proteinase-3. Within the first 200 base pairs of the proteinase-3 promoter, two elements were identified as important for expression, these elements at -101 and -190 confer the majority of the activity. The element at -101 has a PU.1 consensus. It binds a myeloid nuclear protein of approximately 45 kDa that "supershifts" with PU.1 antibody and is competed by the CD11b PU.1 element. The element at -190 has a core sequence of CCCCGCCC (CG element). The cytidines but not the guanidine are essential for promoter activity. The CG element binds a second nuclear protein with a molecular mass of approximately 40 kDa that is found in cells of myeloid lineage as well as non-myeloid HeLa cells. However, the proteinase-3 promoter is not active in HeLa cells which suggests that the CG element alone is not sufficient for proteinase-3 gene expression. Maturation of promyelocytic cells results in an inhibition of proteinase-3 gene expression and a reduction in nuclear protein binding to the PU.1 and CG elements. Similar elements occur in the elastase and cathepsin G promoters. Using the elastase and cathepsin G PU.1 and CG-like elements as probes results in identical band-shift patterns to that obtained with proteinase-3 PU.1 and CG elements. These data suggest that there is cooperative interaction between a PU.1 and a CG element with a consensus of CCCCXCCC and that they are important control elements for tissue- and developmental-specific expression of azurophil serine proteinases of polymorphonuclear leukocytes.
Collapse
Affiliation(s)
- A Sturrock
- Department of Internal Medicine, Division of Respiratory, Critical Care, and Occupational Medicine, University of Utah Health Science Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
80
|
Yue X, Ross IL, Browne CM, Lichanska A, Favot P, Ostrowski MC, Hume DA. Transcriptional control of the expression of the c-fms gene encoding the receptor for macrophage colony-stimulating factor (CSF-1). Immunobiology 1996; 195:461-76. [PMID: 8933151 DOI: 10.1016/s0171-2985(96)80016-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- X Yue
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
LaVallee TM, Morrison SL. Identification and functional characterization of a highly conserved sequence in the intron of the kappa light chain gene. Mol Immunol 1996; 33:973-88. [PMID: 8960122 DOI: 10.1016/s0161-5890(96)00036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A highly conserved 225 bp sequence was identified within the J-C intron of the murine kappa light-chain immunoglobulin gene and its nuclear protein-binding and regulatory function were examined. The binding of nuclear proteins to this fragment was found to reflect the differentiation state of the cell used to prepare the nuclear extracts and three different complexes are seen with this fragment: CI, CII and CIII. CIII is present in all cell types. CI is present in fibroblasts, T cells and early B cells, but not mature B cells. Moreover, nuclear extracts prepared from the early pre-B cell line, 70Z/3, that was treated with agents which activate kappa gene transcription have a reduced ability to form CI. Therefore, the presence of CI correlates with the absence of kappa gene transcription. CII is present in all stages of B cell development, however its composition changes with B cell maturation. Contained within the 225 bp element is the ets family-binding motif GGAA and the B-cell-and-macrophage-specific family member, PU.1 binds this sequence and participates in CII formation. The 225 bp fragment showed modest augmentation of expression in CAT reporter constructs containing the heavy chain enhancer (HCE) and a light chain promoter in the plasmacytoma, S194, and uninduced 70Z/3 cells and mediated a small but reproducible response to IFN-gamma in 70Z/3 cells. Thus, the 225 bp sequence contained within the J-C intron may function as a regulatory element for kappa light chain gene expression.
Collapse
Affiliation(s)
- T M LaVallee
- Department of Microbiology and Molecular Genetics, University of California at Los Angeles 90095-1489, USA
| | | |
Collapse
|
83
|
Celada A, Borràs FE, Soler C, Lloberas J, Klemsz M, van Beveren C, McKercher S, Maki RA. The transcription factor PU.1 is involved in macrophage proliferation. J Exp Med 1996; 184:61-9. [PMID: 8691150 PMCID: PMC2192661 DOI: 10.1084/jem.184.1.61] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PU.1 is a tissue-specific transcription factor that is expressed in cells of the hematopoietic lineage including macrophages, granulocytes, and B lymphocytes. Bone marrow-derived macrophages transfected with an antisense PU.1 expression construct or treated with antisense oligonucleotides showed a decrease in proliferation compared with controls. In contrast, bone marrow macrophages transfected with a sense PU.1 expression construct displayed enhanced macrophage colony-stimulating factor (M-CSF)-dependent proliferation. Interestingly, there was no effect of sense or antisense constructs of PU.1 on the proliferation of the M-CSF-independent cell line, suggesting that the response was M-CSF dependent. This was further supported by the finding that macrophages transfected with a sense or an antisense PU.1 construct showed, respectively, an increased or a reduced level of surface expression of receptors for M-CSF. The enhancement of proliferation seems to be selective for PU.1, since transfections with several other members of the ets family, including ets-2 and fli-1, had no effect. Various mutants of PU.1 were also tested for their ability to affect macrophage proliferation. A reduction in macrophage proliferation was found when cells were transfected with a construct in which the DNA-binding domain of PU.1 was expressed. The PEST (proline-, glutamic acid-, serine-, and threonine-rich region) sequence of the PU.1 protein, which is an important domain for protein-protein interactions in B cells, was found to have no influence on PU.1-enhanced macrophage proliferation when an expression construct containing PU.1 minus the PEST domain was transfected into bone marrow-derived macrophages. In vivo, PU.1 is phosphorylated on several serine residues. The transfection of plasmids containing PU.1 with mutations at each of five serines showed that only positions 41 and 45 are critical for enhanced macrophage proliferation. We conclude that PU.1 is necessary for the M-CSF-dependent proliferation of macrophages. One of the proliferation-relevant targets of this transcription factor could be the M-CSF receptor.
Collapse
Affiliation(s)
- A Celada
- Departament de Fisiologia (Immunologia), Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Zhang DE, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ, Chen HM, Hiebert SW, Tenen DG. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 1996; 16:1231-40. [PMID: 8622667 PMCID: PMC231105 DOI: 10.1128/mcb.16.3.1231] [Citation(s) in RCA: 335] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcription factors play a key role in the development and differentiation of specific lineages from multipotential progenitors. Identification of these regulators and determining the mechanism of how they activate their target genes are important for understanding normal development of monocytes and macrophages and the pathogenesis of a common form of adult acute leukemia, in which the differentiation of monocytic cells is blocked. Our previous work has shown that the monocyte-specific expression of the macrophage colony-stimulating factor (M-CSF) receptor is regulated by three transcription factors interacting with critical regions of the M-CSF receptor promoter, including PU.1 and AML1.PU.1 is essential for myeloid cell development, while the AML1 gene is involved in several common leukemia-related chromosome translocations, although its role in hematopoiesis has not been fully identified. Along with AML1, a third factor, Mono A, interacts with a small region of the promoter which can function as a monocyte-specific enhancer when multimerized and linked to a heterologous basal promoter. Here, we demonstrate by electrophoretic mobility shift assays with monocytic nuclear extracts, COS-7 cell-transfected factors, and specific antibodies that the monocyte-enriched factor Mono A is CCAAT enhancer-binding protein (C/EBP). C/EBP has been shown previously to be an important transcription factor involved in hepatocyte and adipocyte differentiation; in hematopoietic cells, C/EBP is specifically expressed in myeloid cells. In vitro binding analysis reveals a physical interaction between C/EBP and AML1. Further transfection studies show that C/EBP and AML1 in concert with the AML1 heterodimer partner CBF beta synergistically activate M-CSF receptor by more then 60 fold. These results demonstrate that C/EBP and AML1 are important factors for regulating a critical hematopoietic growth factor receptor, the M-CSF receptor, suggesting a mechanism of how the AML1 fusion protein could contribute to acute myeloid leukemia. Furthermore, they demonstrate physical and functional interactions between AML1 and C/EBP transcription factor family members.
Collapse
Affiliation(s)
- D E Zhang
- Department of Medicine, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Zhang DE, Hohaus S, Voso MT, Chen HM, Smith LT, Hetherington CJ, Tenen DG. Function of PU.1 (Spi-1), C/EBP, and AML1 in early myelopoiesis: regulation of multiple myeloid CSF receptor promoters. Curr Top Microbiol Immunol 1996; 211:137-47. [PMID: 8585944 DOI: 10.1007/978-3-642-85232-9_14] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our studies of the promoters of the myeloid CSF receptors (M, GM, and G) in cell lines have led to the findings that the promoters are small, and are all activated by the PU.1 and C/EBP proteins. To date, we have only found evidence for involvement of C/EBP alpha, although further experiments will be needed to exclude the role of C/EBP beta and C/EBP delta in receptor gene expression. These studies suggest a model of hematopoiesis (Fig. 2) in which the lineage commitment decisions of multipotential cells are made by the alternative patterns of expression of certain transcription factors, which then activate growth factor receptors which allow those cells to respond to the appropriate growth factor to proliferate and survive. For example, expression of GATA-1 activates its own expression, as well as that of the erythropoietin receptor, inducing these cells to be capable of responding to erythropoietin. Similarly, expression of PU.1 activates its own promoter, and turns on the three myeloid CSF receptors (M, GM, and G), pushing these cells along the pathway of myeloid differentiation. C/EBP proteins, particularly C/EBP alpha, are also critical for myeloid receptor promoter function, and may also act via autoregulatory mechanisms. Murine C/EBP alpha has a C/EBP binding site in its own promoter. Human C/EBP alpha autoregulates its own expression in adipocytes by activating the USF transcription factor. Myeloid genes expressed later during differentiation, such as CD11b, are also activated by PU.1, which is expressed at highest levels in mature myeloid cells, but not by C/EBP alpha, which is downregulated in a differentiated murine myeloid cell line. Consistent with this model are the findings that overexpression of PU.1 in erythroid cells blocks erythroid differentiation, leading to erythroleukemia, and overexpression of GATA-1 in a myeloid line blocks myeloid differentiation. While these findings have provided some framework for understanding myeloid gene regulation, there are a number of critical questions to be addressed in the near future: What is the pattern of expression of the C/EBP proteins during the course of myeloid differentiation and activation of human CD34+ cells? What is the effect of targeted disruption and other mutations of the C/EBP and AML1 proteins on myeloid development and receptor expression? What are the interactions among these three different types of factors (ets, basic region-zipper, and Runt domain proteins) to activate the promoters? What is the effect of translocations, mutations, and alterations in expression of these factors, particularly in different forms of AML?
Collapse
Affiliation(s)
- D E Zhang
- Hematology/Oncology Division, Beth Israel Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Klemsz MJ, Maki RA. Activation of transcription by PU.1 requires both acidic and glutamine domains. Mol Cell Biol 1996; 16:390-7. [PMID: 8524320 PMCID: PMC231014 DOI: 10.1128/mcb.16.1.390] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The B-lymphocyte- and macrophage-specific transcription factor PU.1 is a member of the ets family of proteins. To understand how PU.1 functions as a transcription factor, we initiated a series of experiments to define its activation domain. Using deletion analysis, we showed that the activation domain of PU.1 is located in the amino-terminal half of the protein. Within this region, we identified three acidic subdomains and one glutamine-rich subdomain. The deletion of any of these subdomains resulted in a significant loss in the ability of PU.1 to transactivate in cotransfection studies. Amino acid substitution analysis showed that the activation of transcription by PU.1 requires acidic residues between amino acids 7 and 74 and a group of glutamine residues between amino acids 75 and 84. These data show that PU.1 contains two types of known activation domains and that both are required for maximal transactivation.
Collapse
Affiliation(s)
- M J Klemsz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | |
Collapse
|
87
|
Chapter 27. The Role of JAKs and STATs in Transcriptional Regulation by Cytokines. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1996. [DOI: 10.1016/s0065-7743(08)60466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
88
|
Borràs FE, Lloberas J, Maki RA, Celada A. Repression of I-A beta gene expression by the transcription factor PU.1. J Biol Chem 1995; 270:24385-91. [PMID: 7592651 DOI: 10.1074/jbc.270.41.24385] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The PU.1 protein is an ets-related transcription factor that is expressed in macrophages and B lymphocytes. We present evidence that PU.1 binds to the promoter of the I-A beta gene, i.e. a PU box located next to the Y box. Transfection of PU.1 in B lymphocytes or in interferon-gamma-treated macrophages represses I-A beta gene expression. The inhibitory effect of PU.1 was obtained with the DNA binding domain of the protein, but not with the activation domain. Using the gel shift retardation assay we found that in vitro transcribed/translated NF-YA and NF-YB bind to the Y box of the I-A beta promoter. When PU.1 was added to the assay, a supershifted DNA band was found, indicating that PU.1 and NFY proteins bind to the same DNA molecule. We conclude that I-A beta gene expression is repressed by PU.1 binding to the PU box domain.
Collapse
Affiliation(s)
- F E Borràs
- Department de Fisiologia (Immunologia), Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
89
|
Rosmarin AG, Caprio DG, Kirsch DG, Handa H, Simkevich CP. GABP and PU.1 compete for binding, yet cooperate to increase CD18 (beta 2 leukocyte integrin) transcription. J Biol Chem 1995; 270:23627-33. [PMID: 7559529 DOI: 10.1074/jbc.270.40.23627] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CD18 (beta 2 leukocyte integrin) is a leukocyte-specific adhesion molecule that plays a crucial role in immune and inflammatory responses. A 79-nucleotide fragment of the CD18 promoter is sufficient to direct myeloid transcription. The CD18 promoter is bound by the B lymphocyte- and myeloid-restricted ets factor, PU.1, and disruption of the PU.1-binding sites significantly reduces promoter activity. However, PU.1 alone cannot fully account for the leukocyte-specific and myeloid-inducible transcription of CD18. We identified a ubiquitously expressed nuclear protein complex of extremely low electrophoretic mobility that also binds to this region of the CD18 promoter. This binding complex is a heterotetramer composed of GABP alpha, and ets factor, and GABP beta, a subunit with homology to Drosophila Notch. GABP alpha competes with the lineage restricted factor, PU.1, for the same critical CD18 ets sites. The CD18 promoter is activated in myeloid cells by transfection with both GABP alpha and GABP beta together, but not by either factor alone. Transfection of non-hematopoietic cells with the two GABP subunits together with PU.1 is sufficient to activate CD18 transcription in otherwise non-permissive cells. Thus, GABP and PU.1 compete for the same binding sites but cooperate to activate CD18 transcription.
Collapse
Affiliation(s)
- A G Rosmarin
- Brown University School of Medicine, Division of Hematology, Miriam Hospital, Providence, Rhode Island 02906, USA
| | | | | | | | | |
Collapse
|
90
|
Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang DE, Tenen DG. PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. Mol Cell Biol 1995; 15:5830-45. [PMID: 7565736 PMCID: PMC230835 DOI: 10.1128/mcb.15.10.5830] [Citation(s) in RCA: 238] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Growth factor receptors play an important role in hematopoiesis. In order to further understand the mechanisms directing the expression of these key regulators of hematopoiesis, we initiated a study investigating the transcription factors activating the expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha gene. Here, we demonstrate that the human GM-CSF receptor alpha promoter directs reporter gene activity in a tissue-specific fashion in myelomonocytic cells, which correlates with its expression pattern as analyzed by reverse transcription PCR. The GM-CSF receptor alpha promoter contains an important functional site between positions -53 and -41 as identified by deletion analysis of reporter constructs. We show that the myeloid and B cell transcription factor PU.1 binds specifically to this site. Furthermore, we demonstrate that a CCAAT site located upstream of the PU.1 site between positions -70 and -54 is involved in positive-negative regulation of the GM-CSF receptor alpha promoter activity. C/EBP alpha is the major CCAAT/enhancer-binding protein (C/EBP) form binding to this site in nuclear extracts of U937 cells. Point mutations of either the PU.1 site or the C/EBP site that abolish the binding of the respective factors result in a significant decrease of GM-CSF receptor alpha promoter activity in myelomonocytic cells only. Furthermore, we demonstrate that in myeloid and B cell extracts, PU.1 forms a novel, specific, more slowly migrating complex (PU-SF) when binding the GM-CSF receptor alpha promoter PU.1 site. This is the first demonstration of a specific interaction with PU.1 on a myeloid PU.1 binding site. The novel complex is distinct from that described previously as binding to B cell enhancer sites and can be formed by addition of PU.1 to extracts from certain nonmyeloid cell types which do not express PU.1, including T cells and epithelial cells, but not from erythroid cells. Furthermore, we demonstrate that the PU-SF complex binds to PU.1 sites found on a number of myeloid promoters, and its formation requires an intact PU.1 site adjacent to a single-stranded region. Expression of PU.1 in nonmyeloid cells can activate the GM-CSF receptor alpha promoter. Deletion of the amino-terminal region of PU.1 results in a failure to form the PU-SF complex and in a concomitant loss of transactivation, suggesting that formation of the PU-SF complex is of functional importance for the activity of the GM-CSF receptor alpha promoter. Finally, we demonstrate that C/EBP alpha can also active the GM-CSF receptor alpha promoter in nonmyeloid cells. These results suggest that PU.1 and C/EBP alpha direct the cell-type-specific expression of GM-CSF receptor alpha, further establish the role of PU.1 as a key regulator of hematopoiesis, and point to C/EBP alpha as an additional important factor in this process.
Collapse
Affiliation(s)
- S Hohaus
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
91
|
Schwyter DH, Huang JD, Dubnicoff T, Courey AJ. The decapentaplegic core promoter region plays an integral role in the spatial control of transcription. Mol Cell Biol 1995; 15:3960-8. [PMID: 7791801 PMCID: PMC230635 DOI: 10.1128/mcb.15.7.3960] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Drosophila melanogaster decapentaplegic (dpp) gene encodes a transforming growth factor beta-related cell signaling molecule that plays a critical role in dorsal/ventral pattern formation. The dpp expression pattern in the Drosophila embryo is dynamic, consisting of three phases. Phase I, in which dpp is expressed in a broad dorsal domain, depends on elements in the dpp second intron that interact with the Dorsal transcription factor to repress transcription ventrally. In contrast, phases II and III, in which dpp is expressed first in broad longitudinal stripes (phase II) and subsequently in narrow longitudinal stripes (phase III), depend on multiple independent elements in the dpp 5'-flanking region. Several aspects of the normal dpp expression pattern appear to depend on the unique properties of the dpp core promoter. For example, this core promoter (extending from -22 to +6) is able to direct a phase II expression pattern in the absence of additional upstream or downstream regulatory elements. In addition, a ventral-specific enhancer in the dpp 5'-flanking region that binds the Dorsal factor activates the heterologous hsp70 core promoter but not the dpp core promoter. Thus, the dpp core promoter region may contribute to spatially regulated transcription both by interacting directly with spatially restricted activators and by modifying the activity of proteins bound to enhancer elements.
Collapse
Affiliation(s)
- D H Schwyter
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | | | |
Collapse
|
92
|
Buras JA, Reenstra WR, Fenton MJ. NF beta A, a factor required for maximal interleukin-1 beta gene expression is identical to the ets family member PU.1. Evidence for structural alteration following LPS activation. Mol Immunol 1995; 32:541-54. [PMID: 7609733 DOI: 10.1016/0161-5890(95)00018-a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously identified and characterized the macrophage-, neutrophil- and B cell-specific nuclear factor beta A (NF beta A), which is involved in transcriptional regulation of the interleukin-1 beta (IL-1 beta) gene. NF beta A binds to a highly conserved sequence element located 6 bp upstream of the TATA motif within the IL-1 beta promoter and is required for maximal expression of the IL-1 beta gene. Here we show that NF beta A is identical to the previously identified ets gene family member PU.1. The NF beta A binding element shares 100% sequence identity with a novel PU.1 binding element recently found in the immunoglobulin J-chain promoter. Methylation interference DNA footprinting data demonstrated that NF beta A and PU.1 make identical protein/DNA contacts. In vitro synthesized PU.1 possesses a mobility and binding specificity identical to NF beta A as determined by electrophoretic mobility shift analysis (EMSA). Antisera directed against amino acids 39-55 of PU.1 recognizes NF beta A in a manner indistinguishable from PU.1 in EMSA 'supershift' studies. NF beta A and PU.1 also possess similar protein structure as determined by proteolytic clipping bandshift analysis. Furthermore, we show that PU.1 is able to transactivate an NF beta A-dependent promoter when co-transfected into HeLa cells which lack PU.1/NF beta A. EMSA studies using recombinant TATA binding protein (TBP) and PU.1 suggest that PU.1 may induce assembly of a distinct TBP-dependent complex on the IL-1 beta promoter. Finally, immunohistochemical confocal laser scanning microscopy studies suggest that LPS stimulation of RAW macrophages induces a structural change in the N-terminal transcriptional activation domain of PU.1.
Collapse
Affiliation(s)
- J A Buras
- Evans Department of Clinical Research, Boston, MA 02118, USA
| | | | | |
Collapse
|
93
|
Ernst P, Smale ST. Combinatorial regulation of transcription. I: General aspects of transcriptional control. Immunity 1995; 2:311-9. [PMID: 7719936 DOI: 10.1016/1074-7613(95)90139-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P Ernst
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, School of Medicine, Los Angeles 90095-1662, USA
| | | |
Collapse
|
94
|
Sengupta TK, Chen A, Zhong Z, Darnell JE, Ivashkiv LB. Activation of monocyte effector genes and STAT family transcription factors by inflammatory synovial fluid is independent of interferon gamma. J Exp Med 1995; 181:1015-25. [PMID: 7869026 PMCID: PMC2191917 DOI: 10.1084/jem.181.3.1015] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Activated monocytes play an important role in the pathogenesis of inflammatory arthritis. Blood monocytes which enter the inflamed joint become activated upon adherence to extracellular matrix and exposure to a complex inflammatory environment. We have analyzed the mechanism of monocyte activation by soluble factors present in inflammatory synovial fluid (SF). Greater than 75% of inflammatory SFs tested (a total of 22 fluids to date) increased cell surface expression and dramatically increased mRNA levels of monocyte activation markers Fc gamma RI, Fc gamma RIII, and HLA-DRA. This induction was not triggered by adherence, a known activating stimulus, and several lines of evidence showed that induction was not dependent upon interferon gamma (IFN-gamma). Induction was not prevented by neutralizing anti-IFN-gamma antibodies and IFN-gamma was not detected in the SFs using a sensitive enzyme-linked immunosorbent assay. The SFs also were not able to activate the IFN-gamma-activated transcription factor Stat1, thus providing further support for the absence of IFN-gamma. SFs did activate a related signal transducer and activator of transcription (STAT) family factor, termed Stat-SF, which bound specifically to the IFN-gamma response region (GRR), a well-characterized transcription element in the Fc gamma RI promoter. Based upon DNA-binding specificity and mobilities in gel shift assays, and reactivity with specific antisera, Stat-SF likely contains Stat3, or a closely related STAT family member. Neutralization of interleukin 6, a cytokine present in SFs which is known to activate Stat3, abolished the activation of Stat-SF and inhibited the induction of Fc gamma RI expression by SFs. These results demonstrate the activation of monocytes by inflammatory SF and suggest that monocyte activation at an inflammatory site may occur in the absence of IFN-gamma through the triggering of signal transduction pathways that activate STAT transcription factors.
Collapse
Affiliation(s)
- T K Sengupta
- Department of Medicine, Hospital for Special Surgery, New York, New York 10021
| | | | | | | | | |
Collapse
|
95
|
Wu T, Ikezono T, Angus CW, Shelhamer JH. Characterization of the promoter for the human 85 kDa cytosolic phospholipase A2 gene. Nucleic Acids Res 1994; 22:5093-8. [PMID: 7800505 PMCID: PMC523783 DOI: 10.1093/nar/22.23.5093] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The 85 kDa cytosolic phospholipase A2 (cPLA2) plays a key role in the production of arachidonic acid and lysophospholipids, the precursors of eicosanoids and platelet-activating factor. Here we report the cloning of the promoter of the human cPLA2 gene. A 5.7 kb EcoRI fragment containing the most 5' region of the cPLA2 cDNA was sequenced. The transcription initiation site was identified by rapid amplification of 5'-cDNA ends (5'-RACE) and primer extension analysis. DNA sequence analysis of the 595 base pairs 5' of the transcription start site reveals a 48 base purine-pyrimidine dinucleotide repeat (CA repeat), five interferon-gamma response elements (gamma-IRE), one interferon-gamma activated sequence (GAS) and two glucocorticoid response elements (GRE). The promoter lacks a TATA box. It contains a possible CAAT box at -111 and two octamer binding motifs. The 595 base fragment located immediately upstream of the transcriptional start site exhibited functional promoter activity in transient transfection assays in a bronchial epithelial cell line (BEAS 2B cells). Deletion analysis revealed that the CA repeat may confer an inhibitory effect on the cPLA2 promoter activity. The characterization of the human cPLA2 promoter sequence will allow further studies defining the molecular events regulating the expression of the cPLA2 enzyme, especially the cytokine mediated cPLA2 gene expression.
Collapse
Affiliation(s)
- T Wu
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|