51
|
Kadelka C, Liechti T, Ebner H, Schanz M, Rusert P, Friedrich N, Stiegeler E, Braun DL, Huber M, Scherrer AU, Weber J, Uhr T, Kuster H, Misselwitz B, Cavassini M, Bernasconi E, Hoffmann M, Calmy A, Battegay M, Rauch A, Yerly S, Aubert V, Klimkait T, Böni J, Kouyos RD, Günthard HF, Trkola A. Distinct, IgG1-driven antibody response landscapes demarcate individuals with broadly HIV-1 neutralizing activity. J Exp Med 2018; 215:1589-1608. [PMID: 29794117 PMCID: PMC5987927 DOI: 10.1084/jem.20180246] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 05/01/2018] [Indexed: 12/30/2022] Open
Abstract
Kadelka et al. show that parameters linked with HIV-1 broadly neutralizing antibody (bnAb) development shape HIV-1–binding antibody responses in an antigen and IgG subclass dependent manner. Identified HIV-1 antibody signature landscapes reveal a shift toward IgG1-driven responses in bnAb developers. Understanding pathways that promote HIV-1 broadly neutralizing antibody (bnAb) induction is crucial to advance bnAb-based vaccines. We recently demarcated host, viral, and disease parameters associated with bnAb development in a large HIV-1 cohort screen. By establishing comprehensive antibody signatures based on IgG1, IgG2, and IgG3 activity to 13 HIV-1 antigens in 4,281 individuals in the same cohort, we now show that the same four parameters that are significantly linked with neutralization breadth, namely viral load, infection length, viral diversity, and ethnicity, also strongly influence HIV-1–binding antibody responses. However, the effects proved selective, shaping binding antibody responses in an antigen and IgG subclass–dependent manner. IgG response landscapes in bnAb inducers indicated a differentially regulated, IgG1-driven HIV-1 antigen response, and IgG1 binding of the BG505 SOSIP trimer proved the best predictor of HIV-1 neutralization breadth in plasma. Our findings emphasize the need to unravel immune modulators that underlie the differentially regulated IgG response in bnAb inducers to guide vaccine development.
Collapse
Affiliation(s)
- Claus Kadelka
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Liechti
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Hanna Ebner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Emanuel Stiegeler
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra U Scherrer
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Therese Uhr
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Herbert Kuster
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Misselwitz
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Cavassini
- University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital of Lugano, Lugano, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases, University Hospital of Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, University Hospital of Bern, Bern, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Vincent Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, Lausanne, Switzerland
| | - Thomas Klimkait
- Department of Biomedicine-Petersplatz, University of Basel, Basel, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland .,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland .,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
52
|
Planchais C, Hocqueloux L, Ibanez C, Gallien S, Copie C, Surenaud M, Kök A, Lorin V, Fusaro M, Delfau-Larue MH, Lefrou L, Prazuck T, Lévy M, Seddiki N, Lelièvre JD, Mouquet H, Lévy Y, Hüe S. Early Antiretroviral Therapy Preserves Functional Follicular Helper T and HIV-Specific B Cells in the Gut Mucosa of HIV-1-Infected Individuals. THE JOURNAL OF IMMUNOLOGY 2018; 200:3519-3529. [PMID: 29632141 DOI: 10.4049/jimmunol.1701615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
HIV-1 infection is associated with B cell dysregulation and dysfunction. In HIV-1-infected patients, we previously reported preservation of intestinal lymphoid structures and dendritic cell maturation pathways after early combination antiretroviral therapy (e-ART), started during the acute phase of the infection, compared with late combination antiretroviral therapy started during the chronic phase. In this study, we investigated whether the timing of combination antiretroviral therapy initiation was associated with the development of the HIV-1-specific humoral response in the gut. The results showed that e-ART was associated with higher frequencies of functional resting memory B cells in the gut. These frequencies correlated strongly with those of follicular Th cells in the gut. Importantly, frequencies of HIV-1 Env gp140-reactive B cells were higher in patients given e-ART, in whom gp140-reactive IgG production by mucosal B cells increased after stimulation. Moreover, IL-21 release by PBMCs stimulated with HIV-1 peptide pools was greater with e-ART than with late combination antiretroviral therapy. Thus, early treatment initiation helps to maintain HIV-1-reactive memory B cells in the gut as well as follicular Th cells, whose role is crucial in the development of potent affinity-matured and broadly neutralizing Abs.
Collapse
Affiliation(s)
- Cyril Planchais
- INSERM U955, équipe 16, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France.,Vaccine Research Institute, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France
| | - Laurent Hocqueloux
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional d'Orléans-La Source, Orléans F-45000, France
| | - Clara Ibanez
- INSERM U955, équipe 16, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France.,Vaccine Research Institute, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France
| | - Sébastien Gallien
- Vaccine Research Institute, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France.,Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Clinique, Groupe Henri-Mondor Albert-Chenevier, Créteil F-94010, France
| | - Christiane Copie
- Assistance Publique-Hôpitaux de Paris, Département de Pathologie, Groupe Henri-Mondor Albert-Chenevier, Créteil F-94010, France.,INSERM U955, équipe 9, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France
| | - Mathieu Surenaud
- INSERM U955, équipe 16, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France.,Vaccine Research Institute, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France
| | - Ayrin Kök
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Pasteur Institute, Paris 75015, France.,INSERM U1222, Paris 75015, France
| | - Valérie Lorin
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Pasteur Institute, Paris 75015, France.,INSERM U1222, Paris 75015, France
| | - Mathieu Fusaro
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Groupe Henri-Mondor Albert-Chenevier, Créteil F-94010, France
| | - Marie-Hélène Delfau-Larue
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Groupe Henri-Mondor Albert-Chenevier, Créteil F-94010, France
| | - Laurent Lefrou
- Service d'Hépato-Gastro-Entérologie, Centre Hospitalier Régional d'Orléans-La Source, Orléans F-45000, France; and
| | - Thierry Prazuck
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional d'Orléans-La Source, Orléans F-45000, France
| | - Michael Lévy
- Assistance Publique-Hôpitaux de Paris, Service d'Hépato-Gastro-Entérologie, Groupe Henri-Mondor Albert-Chenevier, Créteil F-94010, France
| | - Nabila Seddiki
- INSERM U955, équipe 16, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France.,Vaccine Research Institute, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France
| | - Jean-Daniel Lelièvre
- INSERM U955, équipe 16, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France.,Vaccine Research Institute, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France.,Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Clinique, Groupe Henri-Mondor Albert-Chenevier, Créteil F-94010, France
| | - Hugo Mouquet
- Vaccine Research Institute, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France.,Laboratory of Humoral Response to Pathogens, Department of Immunology, Pasteur Institute, Paris 75015, France.,INSERM U1222, Paris 75015, France
| | - Yves Lévy
- INSERM U955, équipe 16, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France; .,Vaccine Research Institute, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France.,Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Clinique, Groupe Henri-Mondor Albert-Chenevier, Créteil F-94010, France
| | - Sophie Hüe
- INSERM U955, équipe 16, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France; .,Vaccine Research Institute, Faculté de Médecine, Université Paris Est Créteil, Créteil F-94010, France.,Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Groupe Henri-Mondor Albert-Chenevier, Créteil F-94010, France
| |
Collapse
|
53
|
Wang X, Xu H. Potential Epigenetic Regulation in the Germinal Center Reaction of Lymphoid Tissues in HIV/SIV Infection. Front Immunol 2018; 9:159. [PMID: 29449847 PMCID: PMC5799247 DOI: 10.3389/fimmu.2018.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
The production of high-affinity and broadly neutralizing antibodies plays a key role in the defense against pathogens. These antibody responses require effective germinal center (GC) reaction within anatomical niches of GCs, where follicular helper T (Tfh) cells provide cognate help to B cells for T cell-dependent antibody responses. Emerging evidences indicate that GC reaction in normal state and perhaps establishment of latent Tfh cell reservoir in HIV/SIV infection are tightly regulated by epigenetic histone modifications, which are responsible for activating or silencing chromatin. A better understanding of the mechanisms behind GC responses at cellular and molecular levels thus provides necessary knowledge for vaccination and immunotherapy. In this review, we discussed the epigenetic regulation of GC responses, especially for GC B and Tfh cell under normal state or HIV/SIV infection.
Collapse
Affiliation(s)
- Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| |
Collapse
|
54
|
Abstract
OBJECTIVE To characterize the effect of the HIV-1 infection and antiretroviral treatment (ART) in the human memory B (MEB)-cell compartment. DESIGN A cross-sectional study was designed to analyze MEB cells of HIV-1 ART treated and ART-naive study participants, and uninfected individuals. METHODS Frequency and absolute counts of MEB cell subsets in blood were determined by multicolor flow cytometry. Spontaneous cell death and B-cell proliferative capacity was evaluated in vitro by cell culture and flow cytometry. Splenic function was determined by pitted erythrocytes quantification in HIV-1 ART-treated study participants. RESULTS HIV-1 ART-treated individuals did not show functional hyposplenism despite the lack of recovery IgMIgDCD27 marginal zone-like B cells. Moreover, two germinal center-dependent MEB cells subsets were also dysregulated in HIV-1 individuals: IgMIgDCD27 (IgM only) cells were increased, whereas the switched subset (IgMIgD) was reduced in viremic individuals. Althought ART restored the numbers of these populations; the switched MEB cells were enriched in CD27 cells, which showed the highest susceptibility to spontaneous cell death ex vivo. In addition, B cells from viremic individuals showed a poor response to B-cell receptor and toll-like receptor 9 stimulation that was circumvented when both stimuli were used simultaneously. CONCLUSION B cells from HIV-1 study participants show a poor stimulation capacity, that may be bypassed by the proper combination of stimuli, and a dysregulated MEB cell pool that suggest an affectation of the germinal center reaction, only partially normalized by ART. Interestingly, hyposplenism does not explain the lack of recovery of the marginal zone-like B cells in ART-treated HIV-1 individuals.
Collapse
|
55
|
Abstract
Retroviruses are genome invaders that have shared a long history of coevolution with vertebrates and their immune system. Found endogenously in genomes as traces of past invasions, retroviruses are also considerable threats to human health when they exist as exogenous viruses such as HIV. The immune response to retroviruses is engaged by germline-encoded sensors of innate immunity that recognize viral components and damage induced by the infection. This response develops with the induction of antiviral effectors and launching of the clonal adaptive immune response, which can contribute to protective immunity. However, retroviruses efficiently evade the immune response, owing to their rapid evolution. The failure of specialized immune cells to respond, a form of neglect, may also contribute to inadequate antiretroviral immune responses. Here, we discuss the mechanisms by which immune responses to retroviruses are mounted at the molecular, cellular, and organismal levels. We also discuss how intrinsic, innate, and adaptive immunity may cooperate or conflict during the generation of immune responses.
Collapse
Affiliation(s)
- Asier Sáez-Cirión
- HIV Inflammation and Persistence, Institut Pasteur, 75015 Paris, France;
| | - Nicolas Manel
- Immunity and Cancer Department, INSERM U932, Institut Curie, PSL Research University, 75005 Paris, France;
| |
Collapse
|
56
|
Matavele Chissumba R, Namalango E, Maphossa V, Macicame I, Bhatt N, Polyak C, Robb M, Michael N, Jani I, Kestens L. Helios + Regulatory T cell frequencies are correlated with control of viral replication and recovery of absolute CD4 T cells counts in early HIV-1 infection. BMC Immunol 2017; 18:50. [PMID: 29246111 PMCID: PMC5732399 DOI: 10.1186/s12865-017-0235-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/06/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The acute phase of HIV infection is characterized by massive depletion of CD4 T cells, high viral plasma levels and pronounced systemic immune activation. Regulatory T cells (Tregs) have the potential to control systemic immune activation but also to suppress antigen specific T and B cell response. The co-expression of FoxP3 and Helios transcription factors, has been described for identification of highly suppressive Tregs. The aim of this study was to characterize the phenotype of classic Tregs during early HIV infection, and to assess the correlations between the frequencies and phenotype of Tregs with the plasma viral load, CD4 counts, immune activation and the frequency of antibodies reactive to HIV-1 proteins, measured by an immunochromatographic test. RESULTS The relative frequency of classic Tregs cells in peripheral blood correlated positively with HIV viral load and immune activation of CD8 T cells, and inversely with absolute CD4 counts and development of anti-HIV antibodies in subjects with early HIV infection. However, the expression of Helios in classic Tregs was inversely correlated with viral replication and immune activation, and positively with recovery of CD4 T cell counts and appearance of antibodies reactive to HIV-1 proteins. CONCLUSION These results raise the hypothesis that classic Tregs are inefficient at controlling systemic immune activation in subjects with early HIV infection and may be associated with delayed production of antibodies against HIV proteins, delaying the control of viral replication. Conversely, Helios expressing Tregs might contribute to control of viral replication by mechanisms involving the limitation of systemic immune activation.
Collapse
Affiliation(s)
- Raquel Matavele Chissumba
- Instituto Nacional de Saúde, Maputo, Mozambique. .,Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | - Christina Polyak
- Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
| | - Merlin Robb
- Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
| | - Nelson Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
| | - Ilesh Jani
- Instituto Nacional de Saúde, Maputo, Mozambique
| | - Luc Kestens
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
57
|
High avidity anti-integrase antibodies discriminate recent and non-recent HIV infection: Implications for HIV incidence assay. J Virol Methods 2017; 253:5-10. [PMID: 29248529 DOI: 10.1016/j.jviromet.2017.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/21/2017] [Accepted: 12/13/2017] [Indexed: 11/22/2022]
Abstract
Estimation of HIV incidence provides real-time information of HIV transmission trends for decision makers. Anti-integrase antibodies are the last ones produced during seroconversion and presence of high-avidity anti-integrase antibodies indicates the chronicity of HIV infection. This study aimed to evaluate the performance of these antibodies in discriminating of recent from non-recent HIV infection. For this purpose, different ELISA formats were developed to detect high-avidity anti-integrase antibodies in a commercially available performance panel, and the best assay was selected for further evaluation. The false recent rate of the selected assay was evaluated in a panel of Iranian patients and compared to two commercial assays, BED-EIA and LAg-Avidity. While the false recent rate of the developed assay was 3.8%, it was 14.1% and 1.3% for BED-EIA and LAg-Avidity, respectively. To our knowledge, this is the first report to study the performance of high-avidity anti-integrase antibodies for classification of HIV infection. The preliminary results showed that the specificity of the newly developed assay is markedly higher than BED-EIA and is comparable with LAg-Avidity. The promising results point to the potential use of anti-integrase antibodies as a biomarker in HIV incidence laboratory tests or algorithms. The developed assay needs further evaluation in future.
Collapse
|
58
|
de Taeye SW, de la Peña AT, Vecchione A, Scutigliani E, Sliepen K, Burger JA, van der Woude P, Schorcht A, Schermer EE, van Gils MJ, LaBranche CC, Montefiori DC, Wilson IA, Moore JP, Ward AB, Sanders RW. Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. J Biol Chem 2017; 293:1688-1701. [PMID: 29222332 PMCID: PMC5798299 DOI: 10.1074/jbc.ra117.000709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
To provide protective immunity against circulating primary HIV-1 strains, a vaccine most likely has to induce broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) spike. Recombinant Env trimers such as the prototype BG505 SOSIP.664 that closely mimic the native Env spike can induce autologous neutralizing antibodies (NAbs) against relatively resistant (tier 2) primary viruses. Ideally, Env immunogens should present broadly neutralizing antibody epitopes but limit the presentation of immunodominant non-NAb epitopes that might induce off-target and potentially interfering responses. The V3 loop in gp120 is such a non-NAb epitope that can effectively elicit non-NAbs when animals are immunized with SOSIP.664 trimers. V3 immunogenicity can be diminished, but not abolished, by reducing the conformational flexibility of trimers via targeted sequence changes, including an A316W substitution in V3, that create the SOSIP.v4.1 and SOSIP.v5.2 variants. Here, we further modified these trimer designs by introducing leucine residues at V3 positions 306 and 308 to create hydrophobic interactions with the tryptophan residue at position 316 and with other topologically proximal sites in the V1V2 domain. Together, these modifications further stabilized the resulting SOSIP.v5.2 S306L/R308L trimers in the prefusion state in which V3 is sequestered. When we tested these trimers as immunogens in rabbits, the induction of V3 non-NAbs was significantly reduced compared with the SOSIP.v5.2 trimers and even more so compared with the SOSIP.664 prototype, without affecting the autologous NAb response. Hence, these additional trimer sequence modifications may be beneficial for immunization strategies that seek to minimize off-target non-NAb responses.
Collapse
Affiliation(s)
- Steven W de Taeye
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Alba Torrents de la Peña
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Andrea Vecchione
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Enzo Scutigliani
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Kwinten Sliepen
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Judith A Burger
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Patricia van der Woude
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Anna Schorcht
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Edith E Schermer
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Marit J van Gils
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Celia C LaBranche
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - David C Montefiori
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - Ian A Wilson
- the Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, California 92037, and
| | - John P Moore
- the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Andrew B Ward
- the Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, California 92037, and
| | - Rogier W Sanders
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands, .,the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|
59
|
Davis-Gardner ME, Gardner MR, Alfant B, Farzan M. eCD4-Ig promotes ADCC activity of sera from HIV-1-infected patients. PLoS Pathog 2017; 13:e1006786. [PMID: 29253851 PMCID: PMC5749896 DOI: 10.1371/journal.ppat.1006786] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/02/2018] [Accepted: 12/03/2017] [Indexed: 12/17/2022] Open
Abstract
Antibody-dependent cell-mediated cytotoxity (ADCC) can eliminate HIV-1 infected cells, and may help reduce the reservoir of latent virus in infected patients. Sera of HIV-1 positive individuals include a number of antibodies that recognize epitopes usually occluded on HIV-1 envelope glycoprotein (Env) trimers. We have recently described eCD4-Ig, a potent and exceptionally broad inhibitor of HIV-1 entry that can be used to protect rhesus macaques from multiple high-dose challenges with simian-human immunodeficiency virus AD8 (SHIV-AD8). Here we show that eCD4-Ig bearing an IgG1 Fc domain (eCD4-IgG1) can mediate efficient ADCC activity against HIV-1 isolates with differing tropisms, and that it does so at least 10-fold more efficiently than CD4-Ig, even when more CD4-Ig molecules bound cell surface-expressed Env. An ADCC-inactive IgG2 form of eCD4-Ig (eCD4-IgG2) exposes V3-loop and CD4-induced epitopes on cell-expressed trimers, and renders HIV-1-infected cells susceptible to ADCC mediated by antibodies of these classes. Moreover, eCD4-IgG2, but not IgG2 forms of the broadly neutralizing antibodies VRC01 and 10-1074, enhances the ADCC activities of serum antibodies from patients by 100-fold, and significantly enhanced killing of two latently infected T-cell lines reactivated by vorinostat or TNFα. Thus eCD4-Ig is qualitatively different from CD4-Ig or neutralizing antibodies in its ability to mediate ADCC, and it may be uniquely useful in treating HIV-1 infection or reducing the reservoir of latently infected cells.
Collapse
Affiliation(s)
- Meredith E. Davis-Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Matthew R. Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Barnett Alfant
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| |
Collapse
|
60
|
Yaseen MM, Abuharfeil NM, Alqudah MA, Yaseen MM. Mechanisms and Factors That Drive Extensive Human Immunodeficiency Virus Type-1 Hypervariability: An Overview. Viral Immunol 2017; 30:708-726. [PMID: 29064351 DOI: 10.1089/vim.2017.0065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extensive hypervariability of human immunodeficiency virus type-1 (HIV-1) populations represents a major barrier against the success of currently available antiretroviral therapy. Moreover, it is still the most important obstacle that faces the development of an effective preventive vaccine against this infectious virus. Indeed, several factors can drive such hypervariability within and between HIV-1 patients. These factors include: first, the very low fidelity nature of HIV-1 reverse transcriptase; second, the extremely high HIV-1 replication rate; and third, the high genomic recombination rate that the virus has. All these factors together with the APOBEC3 proteins family and the immune and antiviral drugs pressures drive the extensive hypervariability of HIV-1 populations. Studying these factors and the mechanisms that drive such hypervariability will provide valuable insights that may guide the development of effective therapeutic and preventive strategies against HIV-1 infection in the near future. To this end, in this review, we summarized recent advances in this area of HIV-1 research.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- 1 Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Jordan University of Science and Technology , Irbid, Jordan
| | - Nizar Mohammad Abuharfeil
- 2 Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology , Irbid, Jordan
| | - Mohammad Ali Alqudah
- 3 Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology , Irbid, Jordan
| | - Mohammad Mahmoud Yaseen
- 4 Department of Public Health, College of Medicine, Jordan University of Science and Technology , Irbid, Jordan
| |
Collapse
|
61
|
Brief Report: Impact of Early Antiretroviral Therapy on the Performance of HIV Rapid Tests and HIV Incidence Assays. J Acquir Immune Defic Syndr 2017; 75:426-430. [PMID: 28471839 DOI: 10.1097/qai.0000000000001421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Antiretroviral therapy (ART) can downregulate antibody responses to HIV infection. We evaluated the impact of early vs. delayed ART on the performance of HIV diagnostic and incidence assays. METHODS Samples were obtained from 207 participants in the HPTN 052 trial, who were stably suppressed on ART for ≥4 years [Malawi sites; pre-ART CD4 cell count 350-550 cells/mm (early ART arm, N = 180) or <250 cells/mm or an AIDS-defining illness (delayed ART arm, N = 27)]. Samples were tested with 2 HIV rapid tests and 2 HIV incidence assays; selected samples were also tested with two fourth-generation immunoassays and a Western blot (WB) assay. A pre-ART sample was analyzed if the follow-up sample had a false-negative or weakly-reactive rapid test result, or had an incidence assay result indicative of recent infection (false-recent result). RESULTS Ten (4.8%) samples had a nonreactive or weakly-reactive rapid test result (7/180 early ART arm, 3/27 delayed ART arm, P = 0.13); one sample had nonreactive fourth-generation assay results and 3 had indeterminate WBs. Forty (18.9%) samples had a false-recent incidence assay result; 16 (7.8%) had false-recent results with both incidence assays. Baseline samples had stronger rapid test and WB bands, higher fourth-generation assay signal-to-cutoff values, and fewer HIV incidence assay results indicative of recent infection. CONCLUSIONS False-negative/weakly-reactive HIV rapid tests and false-recent HIV incidence assay results were observed in virally-suppressed individuals, regardless of pre-ART CD4 cell count. Downregulation of the antibody response to HIV infection in the setting of ART may impact population-level surveys of HIV prevalence and incidence.
Collapse
|
62
|
Towards an ultra-rapid smartphone- connected test for infectious diseases. Sci Rep 2017; 7:11971. [PMID: 28931860 PMCID: PMC5607310 DOI: 10.1038/s41598-017-11887-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
The development is reported of an ultra-rapid, point-of-care diagnostic device which harnesses surface acoustic wave (SAW) biochips, to detect HIV in a finger prick of blood within 10 seconds (sample-in-result-out). The disposable quartz biochip, based on microelectronic components found in every consumer smartphone, is extremely fast because no complex labelling, amplification or wash steps are needed. A pocket-sized control box reads out the SAW signal and displays results electronically. High analytical sensitivity and specificity are found with model and real patient blood samples. The findings presented here open up the potential of consumer electronics to cut lengthy test waiting times, giving patients on the spot access to potentially life-saving treatment and supporting more timely public health interventions to prevent disease transmission.
Collapse
|
63
|
Bhattacharya D, Danaviah S, Muema DM, Akilimali NA, Moodley P, Ndung'u T, Das G. Cellular Architecture of Spinal Granulomas and the Immunological Response in Tuberculosis Patients Coinfected with HIV. Front Immunol 2017; 8:1120. [PMID: 28955338 PMCID: PMC5601989 DOI: 10.3389/fimmu.2017.01120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) and HIV are individually responsible for the most deaths worldwide among all infectious agents, and coinfection with M.tb and HIV is a significant public health challenge in the developing world. Although the lung is the primary target organ for tuberculosis (TB), M.tb can also cause extrapulmonary tuberculosis (EPTB) such as in the bones and joints. Treatment of EPTB is much more challenging than treatment of pulmonary TB. The hallmark of the host immune response against TB is the formation of organized structures called granulomas that are infiltrated with immune cells and are rich in cytokines and chemokines. Inside granulomas, the host confines the M.tb bacteria to a particular region of the organ and avoids dispersion. In this study, we analyzed immune cells in bone granulomas of patients with EPTB that are also coinfected with HIV. We found that HIV-infected TB patients have dispersed bone granulomas, with reduced T cell numbers and a concomitant increase in plasma cells. Additionally, HIV-infected patients exhibited dramatically increased serum levels of IgM and IgG1 antibodies, which is indicative of T-cell-independent B-cell activation and mucosal T-cell activation, respectively. Interestingly, we also observed that CD29+ stem cells are increased in HIV-TB coinfection, suggesting a link with HIV infection. Therefore, our work provides new insights into the architecture of spinal TB granulomas and the role of B-cells and humoral immunity against a highly infectious intracellular pathogen. We propose that our findings will inform biomarker identification for EPTB and possibly the development of related therapeutics and/or vaccines to protect HIV-infected patients against disseminated TB.
Collapse
Affiliation(s)
- Debapriya Bhattacharya
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India.,Medical Microbiology Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Siva Danaviah
- Africa Health Research Institute, Durban, South Africa
| | | | | | - Prashini Moodley
- Medical Microbiology Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, United States
| | - Gobardhan Das
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
64
|
Intrastructural help: improving the HIV-1 envelope antibody response induced by virus-like particle vaccines. Curr Opin HIV AIDS 2017; 12:272-277. [PMID: 28422791 DOI: 10.1097/coh.0000000000000358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW The importance of IgG Fc-effector functions for the efficacy of HIV vaccines is increasingly recognized. Although different types of vaccines were shown to induce antibodies with different Fc-activities, there is no clear strategy how to raise antibody responses with a desired pattern of Fc-effector functions. Given the central role of T-helper cells in regulating the germinal center reaction and the differentiation of B cells in an antigen-specific manner, the review will discuss whether T-helper cells directed against non-HIV envelope (Env) antigens could be harnessed to improve the HIV-Env antibody response. RECENT FINDINGS Comparing CD4 T-cell responses in HIV-infected individuals with and without neutralizing antibody breadth suggests that robust Gag-specific CD4 T cells may provide important T-cell help to Env-specific B cells. In a murine model, GagPol-specific T-helper cells were shown to provide intrastructural help for HIV-Env-specific antibody responses after immunization with a virus-like particle vaccine. GagPol-specific T-helper cells imprinted the IgG subtype ratio observed for Gag onto the HIV-Env antibody response and modulated the glycosylation pattern of the HIV Env-specific antibodies. SUMMARY Intrastructural help is a promising strategy to improve overall levels and Fc-effector functions of the HIV-Env antibody response.
Collapse
|
65
|
T-bet-expressing B cells during HIV and HCV infections. Cell Immunol 2017; 321:26-34. [PMID: 28739077 DOI: 10.1016/j.cellimm.2017.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
T-bet-expressing B cells, first identified as perpetuators of autoimmunity, were recently shown to be critical for murine antiviral responses. While their role in human viral infections remains unclear, B cells expressing T-bet or demonstrating a related phenotype have been described in individuals chronically infected with HIV or HCV, suggesting these cells represent a component of human antiviral responses. In this review, we discuss the induction of T-bet in B cells following both HIV and HCV infections, the factors driving T-bet+ B cell expansions, T-bet's relationship to atypical memory B cells, and the consequences of T-bet induction. We propose potential antiviral roles for T-bet+ B cells and discuss whether this population poses any utility to the HIV and HCV immune responses.
Collapse
|
66
|
Ferrari G, Pollara J, Tomaras GD, Haynes BF. Humoral and Innate Antiviral Immunity as Tools to Clear Persistent HIV Infection. J Infect Dis 2017; 215:S152-S159. [PMID: 28520963 PMCID: PMC5410976 DOI: 10.1093/infdis/jiw555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) type 1 uses the CD4 molecule as its principal receptor to infect T cells. HIV-1 integrates its viral genome into the host cell, leading to persistent infection wherein HIV-1 can remain transcriptionally silent in latently infected CD4+ T cells. On reactivation of replication-competent provirus, HIV-1 envelope glycoproteins (Env) are expressed and accumulate on the cell surface, allowing infected cells to be detected and targeted by endogenous immune responses or immune interventions. HIV-1 Env-specific antibodies have the potential to bind HIV-1 cell surface Env and promote elimination of infected CD4+ T cells by recruiting cytotoxic effector cells, such as natural killer cells, monocytes, and polymorphonuclear cells. Harnessing humoral and innate cellular responses has become one focus of research to develop innovative strategies to recruit and redirect cytotoxic effector cells to eliminate the HIV-1 latently infected CD4+ T-cell reservoir.
Collapse
Affiliation(s)
- Guido Ferrari
- Departments of Surgery.,Molecular Genetics and Microbiology and.,Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - Justin Pollara
- Departments of Surgery.,Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - Georgia D Tomaras
- Departments of Surgery.,Immunology, and.,Molecular Genetics and Microbiology and.,Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - Barton F Haynes
- Medicine.,Immunology, and.,Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| |
Collapse
|
67
|
A Cytokine Pattern That Differentiates Preseroconversion From Postseroconversion Phases of Primary HIV Infection. J Acquir Immune Defic Syndr 2017; 74:459-466. [PMID: 28225519 DOI: 10.1097/qai.0000000000001272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND During acute HIV infection, HIV actively replicates but seroconversion has not yet occurred. Primary HIV infection (PHI) is characterized by a transient nonspecific febrile illness, a massive inflammatory response, and the progressive appearance of anti-HIV-specific antibodies. In this study, we have identified patterns of inflammatory biomarkers associated with the innate immunological reaction before completion of a full humoral response. METHODS A symptom-based screening was used to identify acute HIV infection in the Manhiça District Hospital in Mozambique. Plasma levels of biomarkers were determined by Luminex and enzyme-linked immunosorbent assay. Anti-HIV antibodies were analyzed by flow cytometry and Western blot. Statistical analyses used random forest and logistic regression models. RESULTS Of 3116 rapid test seronegative or indeterminate individuals, 85 (2.7%) had positive plasma HIV viral load and were enrolled as PHI, of which n = 45 (52.9%), n = 8 (9.4%), n = 12 (14.1%), and n = 20 (23.5%) were classified as Fiebig I-III, IV, V, and VI stages, respectively, by Western blot. Comparison of individuals at early (Fiebig I-IV) and late (Fiebig V-VI) immune stages identified significant differences in the expression level of plasma B-cell activating factor , monocyte chemotactic protein-1, sCD163, and monokine induced by interferon (IFN-γ). This cytokine signature classified patients in the preseroconversion phase with a sensitivity of 92.5% and a specificity of 81.2% CONCLUSIONS:: Identification of a cytokine signature specific for the preseroconversion stage of PHI may help to understand the earliest HIV pathogenic events and identify new potential targets for immunotherapy aimed at modulating the cytokine response to HIV infection.
Collapse
|
68
|
Knox JJ, Buggert M, Kardava L, Seaton KE, Eller MA, Canaday DH, Robb ML, Ostrowski MA, Deeks SG, Slifka MK, Tomaras GD, Moir S, Moody MA, Betts MR. T-bet+ B cells are induced by human viral infections and dominate the HIV gp140 response. JCI Insight 2017; 2:92943. [PMID: 28422752 DOI: 10.1172/jci.insight.92943] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
Humoral immunity is critical for viral control, but the identity and mechanisms regulating human antiviral B cells are unclear. Here, we characterized human B cells expressing T-bet and analyzed their dynamics during viral infections. T-bet+ B cells demonstrated an activated phenotype, a distinct transcriptional profile, and were enriched for expression of the antiviral immunoglobulin isotypes IgG1 and IgG3. T-bet+ B cells expanded following yellow fever virus and vaccinia virus vaccinations and also during early acute HIV infection. Viremic HIV-infected individuals maintained a large T-bet+ B cell population during chronic infection that was associated with increased serum and cell-associated IgG1 and IgG3 expression. The HIV gp140-specific B cell response was dominated by T-bet-expressing memory B cells, and we observed a concomitant biasing of gp140-specific serum immunoglobulin to the IgG1 isotype. These findings suggest that T-bet induction promotes antiviral immunoglobulin isotype switching and development of a distinct T-bet+ B cell subset that is maintained by viremia and coordinates the HIV Env-specific humoral response.
Collapse
Affiliation(s)
- James J Knox
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kelly E Seaton
- Duke Human Vaccine Institute; and Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University School of Medicine, and Cleveland VA, Cleveland, Ohio, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Mario A Ostrowski
- Departments of Immunology and Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute; and Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute; Department of Pediatrics; and Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
69
|
Rainwater-Lovett K, Ziemniak C, Watson D, Luzuriaga K, Siberry G, Petru A, Chen Y, Uprety P, McManus M, Ho YC, Lamers SL, Persaud D. Paucity of Intact Non-Induced Provirus with Early, Long-Term Antiretroviral Therapy of Perinatal HIV Infection. PLoS One 2017; 12:e0170548. [PMID: 28178277 PMCID: PMC5298215 DOI: 10.1371/journal.pone.0170548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/06/2017] [Indexed: 11/21/2022] Open
Abstract
The latent reservoir is a major barrier to HIV eradication. Reservoir size is emerging as an important biomarker to assess the likelihood of HIV remission in the absence of antiretroviral therapy (ART) and may be reduced by earlier initiation of ART that restricts HIV spread into CD4+ T cells. Reservoir size is traditionally measured with a quantitative viral outgrowth assay (QVOA) that induces replication-competent HIV production through in vitro stimulation of resting CD4+ T cells. However, the recent identification of replication-intact, non-induced proviral genomes (NIPG) suggests the QVOA significantly underestimates (by 62-fold) latent reservoir size in chronically-infected adults. Whether formation and persistence of Intact, NIPG is thwarted by early ART initiation and long-term virologic suppression in perinatal infection is unclear. Here, we show that the latent reservoir in 11 early treated, long-term suppressed perinatally infected children and adolescents was not inducible by QVOA and dominated by defective, NIPG. Single genome analysis of 164 NIPG from 232 million cultured resting CD4+ T cells revealed no replication-intact, near-full length sequences. Forty-three (26%) NIPG contained APOBEC3G-mediated hypermutation, 115 (70%) NIPG contained large internal deletions, one NIPG contained nonsense mutations and indels, and 5 (3%) NIPG were assigned as “Not Evaluable” due to multiple failed sequencing attempts that precluded further classification. The lack of replication competent inducible provirus and intact NIPG in this cohort indicate early, long-term ART of perinatal infection leads to marked diminution of replication-competent HIV-1 reservoirs, creating a favorable state towards interventions aimed at virologic remission.
Collapse
Affiliation(s)
- Kaitlin Rainwater-Lovett
- Department of Pediatrics-Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Carrie Ziemniak
- Department of Pediatrics-Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Douglas Watson
- Department of Pediatrics, University of Maryland, Baltimore, MD, United States of America
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - George Siberry
- Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD, United States of America
| | - Ann Petru
- Department of Pediatric Infectious Diseases, Children's Hospital and Research Center Oakland, Oakland, CA, United States of America
| | - YaHui Chen
- Department of Pediatrics-Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Priyanka Uprety
- Department of Pediatrics-Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Margaret McManus
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Ya-Chi Ho
- Department of Medicine-Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | | | - Deborah Persaud
- Department of Pediatrics-Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
70
|
Ferrari G, Haynes BF, Koenig S, Nordstrom JL, Margolis DM, Tomaras GD. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection. Nat Rev Drug Discov 2016; 15:823-834. [PMID: 27725635 PMCID: PMC5549020 DOI: 10.1038/nrd.2016.173] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV-1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection.
Collapse
Affiliation(s)
- Guido Ferrari
- Department of Surgery, Duke University, Durham, North Carolina 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Medicine, Duke University, Durham, North Carolina 27710, USA
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | | | | | - David M Margolis
- University of North Carolina at Chapel Hill HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University, Durham, North Carolina 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
71
|
Enhanced binding of antibodies generated during chronic HIV infection to mucus component MUC16. Mucosal Immunol 2016; 9:1549-1558. [PMID: 26960182 PMCID: PMC5017893 DOI: 10.1038/mi.2016.8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/09/2016] [Indexed: 02/04/2023]
Abstract
Transmission of HIV across mucosal barriers accounts for the majority of HIV infections worldwide. Thus, efforts aimed at enhancing protective immunity at these sites are a top priority, including increasing virus-specific antibodies (Abs) and antiviral activity at mucosal sites. Mucin proteins, including the largest cell-associated mucin, mucin 16 (MUC16), help form mucus to provide a physical barrier to incoming pathogens. Here, we describe a natural interaction between Abs and MUC16 that is enhanced in specific disease settings such as chronic HIV infection. Binding to MUC16 was independent of IgG subclass, but strongly associated with shorter Ab glycan profiles, with agalactosylated (G0) Abs demonstrating the highest binding to MUC16. Binding of Abs to epithelial cells was diminished following MUC16 knockdown, and the MUC16 N-linked glycans were critical for binding. Further, agalactosylated VRC01 captured HIV more efficiently in MUC16. These data point to a novel opportunity to enrich Abs at mucosal sites by targeting Abs to MUC16 through changes in Fc glycosylation, potentially blocking viral movement and sequestering the virus far from the epithelial border. Thus, next-generation vaccines or monoclonal therapeutics may enhance protective immunity by tuning Ab glycosylation to promote the enrichment of Abs at mucosal barriers.
Collapse
|
72
|
Yaseen MM, Yaseen MM, Alqudah MA. Broadly neutralizing antibodies: An approach to control HIV-1 infection. Int Rev Immunol 2016; 36:31-40. [PMID: 27739924 DOI: 10.1080/08830185.2016.1225301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although available antiretroviral therapy (ART) has changed human immunodeficiency virus (HIV)-1 infection to a non-fatal chronic disease, the economic burden of lifelong therapy, severe adverse ART effects, daily ART adherence, and emergence of ART-resistant HIV-1 mutants require prospecting for alternative therapeutic modalities. Indeed, a growing body of evidence suggests that broadly neutralizing anti-HIV-1 antibodies (BNAbs) may offer one such feasible alternative. To evaluate their therapeutic potential in established HIV-1 infection, we sought to address recent advances in pre-clinical and clinical investigations in this area of HIV-1 research. In addition, we addressed the obstacles that may impede the success of such immunotherapeutic approach, suggested strategic solutions, and briefly compared this approach with the currently used ART to open new insights for potential future passive immunotherapy for HIV-1 infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- a Department of Medical Laboratory Sciences , College of Applied Medical Sciences, Jordan University of Science and Technology , Irbid , Jordan
| | - Mohammad Mahmoud Yaseen
- b Department of Public Health, College of Nursing , University of Benghazi , Benghazi , Libya
| | - Mohammad Ali Alqudah
- c Department of Clinical Pharmacy , College of Pharmacy, Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
73
|
Heydarchi B, Center RJ, Gonelli C, Muller B, Mackenzie C, Khoury G, Lichtfuss M, Rawlin G, Purcell DFJ. Repeated Vaccination of Cows with HIV Env gp140 during Subsequent Pregnancies Elicits and Sustains an Enduring Strong Env-Binding and Neutralising Antibody Response. PLoS One 2016; 11:e0157353. [PMID: 27300145 PMCID: PMC4907510 DOI: 10.1371/journal.pone.0157353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/28/2016] [Indexed: 11/18/2022] Open
Abstract
An important feature of a potential vaccine against HIV is the production of broadly neutralising antibodies (BrNAbs) capable of potentially blocking infectivity of a diverse array of HIV strains. BrNAbs naturally arise in some HIV infected individuals after several years of infection and their serum IgG can neutralise various HIV strains across different subtypes. We previously showed that vaccination of cows with HIV gp140 AD8 trimers resulted in a high titre of serum IgG against HIV envelope (Env) that had strong BrNAb activity. These polyclonal BrNAbs concentrated into the colostrum during the late stage of pregnancy and can be harvested in vast quantities immediately after calving. In this study, we investigated the effect of prolonged HIV gp140 vaccination on bovine colostrum IgG HIV Env-binding and BrNAb activity over subsequent pregnancies. Repeated immunisation led to a maintained high titre of HIV Env specific IgG in the colostrum batches, but this did not increase through repeated cycles. Colostrum IgG from all batches also strongly competed with sCD4 binding to gp140 Env trimer and with human-derived monoclonal VRC01 and b12 BrNAbs that bind the CD4 binding site (CD4bs). Furthermore, competition neutralisation assays using RSC3 Env gp120 protein core and a derivative CD4bs mutant, RSC3 Δ371I/P363N, showed that CD4bs neutralising antibodies contribute to the neutralising activity of all batches of purified bovine colostrum IgG. This result indicates that the high IgG titre/avidity of anti-CD4bs antibodies with BrNAb activity was achieved during the first year of vaccination and was sustained throughout the years of repeated vaccinations in the cow tested. Although IgG of subsequent colostrum batches may have a higher avidity towards the CD4bs, the overall breadth in neutralisation was not enhanced. This implies that the boosting vaccinations over 4 years elicited a polyclonal antibody response that maintained the proportion of both neutralising and non-neutralising CD4bs antibodies.
Collapse
Affiliation(s)
- Behnaz Heydarchi
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rob J. Center
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Gonelli
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian Muller
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marit Lichtfuss
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Grant Rawlin
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
74
|
Stephenson KE, Neubauer GH, Bricault CA, Shields J, Bayne M, Reimer U, Pawlowski N, Knaute T, Zerweck J, Seaman MS, Rosenberg ES, Barouch DH. Antibody Responses After Analytic Treatment Interruption in Human Immunodeficiency Virus-1-Infected Individuals on Early Initiated Antiretroviral Therapy. Open Forum Infect Dis 2016; 3:ofw100. [PMID: 27419172 PMCID: PMC4943535 DOI: 10.1093/ofid/ofw100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/16/2023] Open
Abstract
The examination of antibody responses in human immunodeficiency virus (HIV)-1-infected individuals in the setting of antiretroviral treatment (ART) interruption can provide insight into the evolution of antibody responses during viral rebound. In this study, we assessed antibody responses in 20 subjects in AIDS Clinical Trials Group A5187, wherein subjects were treated with antiretroviral therapy during acute/early HIV-1 infection, underwent analytic treatment interruption, and subsequently demonstrated viral rebound. Our data suggest that early initiation of ART arrests the maturation of HIV-1-specific antibody responses, preventing epitope diversification of antibody binding and the development of functional neutralizing capacity. Antibody responses do not appear permanently blunted, however, because viral rebound triggered the resumption of antibody maturation in our study. We also found that antibody responses measured by these assays did not predict imminent viral rebound. These data have important implications for the HIV-1 vaccine and eradication fields.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School; Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts
| | - George H Neubauer
- Center for Virology and Vaccine Research , Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Christine A Bricault
- Center for Virology and Vaccine Research , Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Jennifer Shields
- Center for Virology and Vaccine Research , Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Madeleine Bayne
- Center for Virology and Vaccine Research , Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Ulf Reimer
- JPT Peptide Technologies , Berlin , Germany
| | | | | | | | - Michael S Seaman
- Center for Virology and Vaccine Research , Beth Israel Deaconess Medical Center, Harvard Medical School
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School; Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts
| |
Collapse
|
75
|
Liu Y, Wang H, Li D, Tian Y, Liu W, Zhang L, Zheng W, Hao Y, Liu J, Yang Z, Shao Y, Jiang X. In situ formation of peptidic nanofibers can fundamentally optimize the quality of immune responses against HIV vaccine. NANOSCALE HORIZONS 2016; 1:135-143. [PMID: 32260635 DOI: 10.1039/c5nh00064e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report that the in situ formed peptidic nanofibers facilitate the induction of multiple crucial immunities against HIV DNA vaccine, including polyfunctional T cell response, broad IgG subclasses response, and V1/V2 loop-specific antibody response, all of which can hardly be triggered by HIV DNA vaccine alone. Such novel in situ formation fundamentally overcomes the big hurdle for the applications of such nanofibers, which previously can only trigger these crucial immune responses via adding exogenous alkaline phosphatase. Such robustness of peptidic nanofibers for inducing crucial immune responses may allow better inhibition against HIV than reported materials.
Collapse
Affiliation(s)
- Ye Liu
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No., 11 Zhongguancun Beiyitiao, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
HIV-1 strategies to overcome the immune system by evading and invading innate immune system. HIV & AIDS REVIEW 2016. [DOI: 10.1016/j.hivar.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
77
|
Identifying Recent HIV Infections: From Serological Assays to Genomics. Viruses 2015; 7:5508-24. [PMID: 26512688 PMCID: PMC4632395 DOI: 10.3390/v7102887] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/07/2023] Open
Abstract
In this paper, we review serological and molecular based methods to identify HIV infection recency. The accurate identification of recent HIV infection continues to be an important research area and has implications for HIV prevention and treatment interventions. Longitudinal cohorts that follow HIV negative individuals over time are the current gold standard approach, but they are logistically challenging, time consuming and an expensive enterprise. Methods that utilize cross-sectional testing and biomarker information have become an affordable alternative to the longitudinal approach. These methods use well-characterized biological makers to differentiate between recent and established HIV infections. However, recent results have identified a number of limitations in serological based assays that are sensitive to the variability in immune responses modulated by HIV subtypes, viral load and antiretroviral therapy. Molecular methods that explore the dynamics between the timing of infection and viral evolution are now emerging as a promising approach. The combination of serological and molecular methods may provide a good solution to identify recent HIV infection in cross-sectional data. As part of this review, we present the advantages and limitations of serological and molecular based methods and their potential complementary role for the identification of HIV infection recency.
Collapse
|
78
|
Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) Identifies Immune-Selected HIV Variants. Viruses 2015; 7:5443-75. [PMID: 26506369 PMCID: PMC4632389 DOI: 10.3390/v7102881] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations of mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus "hot-spots" under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. With well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent "cocktail" vaccines.
Collapse
|
79
|
Corey L, Gilbert PB, Tomaras GD, Haynes BF, Pantaleo G, Fauci AS. Immune correlates of vaccine protection against HIV-1 acquisition. Sci Transl Med 2015; 7:310rv7. [PMID: 26491081 PMCID: PMC4751141 DOI: 10.1126/scitranslmed.aac7732] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The partial efficacy reported in the RV144 HIV vaccine trial in 2009 has driven the HIV vaccine field to define correlates of risk associated with HIV-1 acquisition and connect these functionally to preventing HIV infection. Immunological correlates, mainly including CD4(+) T cell responses to the HIV envelope and Fc-mediated antibody effector function, have been connected to reduced acquisition. These immunological correlates place immunological and genetic pressure on the virus. Indeed, antibodies directed at conserved regions of the V1V2 loop and antibodies that mediate antibody-dependent cellular cytotoxicity to HIV envelope in the absence of inhibiting serum immunoglobulin A antibodies correlated with decreased HIV risk. More recently, researchers have expanded their search with nonhuman primate studies using vaccine regimens that differ from that used in RV144; these studies indicate that non-neutralizing antibodies are associated with protection from experimental lentivirus challenge as well. These immunological correlates have provided the basis for the design of a next generation of vaccine regimens to improve upon the qualitative and quantitative degree of magnitude of these immune responses on HIV acquisition.
Collapse
Affiliation(s)
- Lawrence Corey
- HIV Vaccine Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Peter B Gilbert
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Giuseppe Pantaleo
- Lausanne University Hospital and Swiss Vaccine Research Institute, Lausanne 1011, Switzerland
| | - Anthony S Fauci
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
80
|
Vijayan A, García-Arriaza J, Raman SC, Conesa JJ, Chichón FJ, Santiago C, Sorzano CÓS, Carrascosa JL, Esteban M. A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen. PLoS One 2015. [PMID: 26208356 PMCID: PMC4514760 DOI: 10.1371/journal.pone.0133595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Suresh C Raman
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - José Javier Conesa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco Javier Chichón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - César Santiago
- X-ray Crystallization Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
81
|
Gallerano D, Wollmann E, Lupinek C, Schlederer T, Ebner D, Harwanegg C, Niespodziana K, Schmetterer K, Pickl W, Puchhammer-Stöckl E, Sibanda E, Valenta R. HIV microarray for the mapping and characterization of HIV-specific antibody responses. LAB ON A CHIP 2015; 15:1574-1589. [PMID: 25648429 DOI: 10.1039/c4lc01510j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We used the microarray technology to develop chips containing a comprehensive set of proteins and peptides covering the proteome of HIV-1 clade C, which is the HIV-1 subtype that causes the majority of infections worldwide. We demonstrate that the HIV microarray allows simultaneous, sensitive and specific detection of antibody responses for the major immunoglobulin classes (IgG, IgA, IgM, IgE) and subclasses (IgG1-4) with minute amounts of serum samples towards a large number of HIV antigens and peptides. Furthermore, we show that the HIV chip can be used for the monitoring of antibody responses during the course of the disease and during treatment. The HIV microarray should be useful to study antibody responses to multiple HIV antigens and epitopes in HIV-infected patients to explore pathomechanisms of the disease, for diagnosis and for monitoring of treatment and of vaccine trials.
Collapse
Affiliation(s)
- Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 3Q, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Luzuriaga K, Gay H, Ziemniak C, Sanborn K, Somasundaran M, Rainwater-Lovett K, Mellors J, Rosenbloom DI, Persaud D. Viremic relapse after HIV-1 remission in a perinatally infected child. N Engl J Med 2015; 372:786-8. [PMID: 25693029 PMCID: PMC4440331 DOI: 10.1056/nejmc1413931] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Katherine Luzuriaga
- Department of Pediatrics, Molecular Medicine, and Center for Clinical and Translational Science, University of MA Medical School, Worcester, MA
| | - Hannah Gay
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS
| | - Carrie Ziemniak
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Keri Sanborn
- Department of Pediatrics, Molecular Medicine, and Center for Clinical and Translational Science, University of MA Medical School, Worcester, MA
| | - Mohan Somasundaran
- Department of Pediatrics, Molecular Medicine, and Center for Clinical and Translational Science, University of MA Medical School, Worcester, MA
| | | | - John Mellors
- Department of Medicine, University of Pittsburg, Pittsburg, PA
| | | | - Deborah Persaud
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
83
|
Stephenson KE, Neubauer GH, Reimer U, Pawlowski N, Knaute T, Zerweck J, Korber BT, Barouch DH. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development. J Immunol Methods 2015; 416:105-23. [PMID: 25445329 PMCID: PMC4324361 DOI: 10.1016/j.jim.2014.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023]
Abstract
An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George H Neubauer
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ulf Reimer
- JPT Peptide Technologies, Berlin, Germany
| | | | | | | | - Bette T Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Ragon Institute of MGH, MIT, and Harvard, Boston, MA, United States.
| |
Collapse
|
84
|
Yates NL, Liao HX, Fong Y, deCamp A, Vandergrift NA, Williams WT, Alam SM, Ferrari G, Yang ZY, Seaton KE, Berman PW, Alpert MD, Evans DT, O'Connell RJ, Francis D, Sinangil F, Lee C, Nitayaphan S, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Tartaglia J, Pinter A, Zolla-Pazner S, Gilbert PB, Nabel GJ, Michael NL, Kim JH, Montefiori DC, Haynes BF, Tomaras GD. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med 2014; 6:228ra39. [PMID: 24648342 DOI: 10.1126/scitranslmed.3007730] [Citation(s) in RCA: 387] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1-specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1-specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1-specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials.
Collapse
|
85
|
Bęczkowski PM, Logan N, McMonagle E, Litster A, Willett BJ, Hosie MJ. An investigation of the breadth of neutralizing antibody response in cats naturally infected with feline immunodeficiency virus. J Gen Virol 2014; 96:671-680. [PMID: 25395594 PMCID: PMC4336861 DOI: 10.1099/vir.0.071522-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neutralizing antibodies (NAbs) are believed to comprise an essential component of the protective immune response induced by vaccines against feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) infections. However, relatively little is known about the role of NAbs in controlling FIV infection and subsequent disease progression. Here, we present studies where we examined the neutralization of HIV-luciferase pseudotypes bearing homologous and heterologous FIV envelope proteins (n = 278) by sequential plasma samples collected at 6 month intervals from naturally infected cats (n = 38) over a period of 18 months. We evaluated the breadth of the NAb response against non-recombinant homologous and heterologous clade A and clade B viral variants, as well as recombinants, and assessed the results, testing for evidence of an association between the potency of the NAb response and the duration of infection, CD4+ T lymphocyte numbers, health status and survival times of the infected cats. Neutralization profiles varied significantly between FIV-infected cats and strong autologous neutralization, assessed using luciferase-based in vitro assays, did not correlate with the clinical outcome. No association was observed between strong NAb responses and either improved health status or increased survival time of infected animals, implying that other protective mechanisms were likely to be involved. Similarly, no correlation was observed between the development of autologous NAbs and the duration of infection. Furthermore, cross-neutralizing antibodies were evident in only a small proportion (13 %) of cats.
Collapse
Affiliation(s)
- Paweł M Bęczkowski
- Small Animal Hospital, University of Glasgow, Glasgow, UK.,MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Nicola Logan
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Elizabeth McMonagle
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Annette Litster
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Brian J Willett
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Margaret J Hosie
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
86
|
Curtis KA, Kennedy MS, Owen SM. Longitudinal analysis of HIV-1-specific antibody responses. AIDS Res Hum Retroviruses 2014; 30:1099-105. [PMID: 25314631 DOI: 10.1089/aid.2014.0105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Laboratory assays for determining recent HIV-1 infection are of great public health importance for aiding in the estimation of HIV incidence. Concerns have been raised about the potential for misclassification with serology-based assays due to fluctuations in the antibody response, particularly following progression to AIDS. We characterized longitudinal antibody responses to HIV using a cohort of men who have sex with men (MSM) sampled for up to 17 years, in which 57% of the 65 study subjects included in the current analyses progressed to AIDS during the study period. Envelope-specific total IgG antibody levels, avidity, and p24-specific IgG3 levels were evaluated using a multiplexed Bio-Plex assay. For the majority of the analytes, no significant difference in IgG reactivity was observed between AIDS and non-AIDS specimens. Although a slight decline in gp120 reactivity was noted with decreasing CD4(+) T cell count, the drop in assay values was relatively minimal and would likely not lead to an increase in the misclassification rate of the assay. A peak in HIV-1 p24 IgG3 levels was observed during early infection, as confirmed by testing 1,216 specimens from 342 recent seroconverters with the Bio-Plex assay. As expected, IgG3 reactivity declined with disease progression and decreasing CD4(+) T cell count in the MSM cohort; however, 37% of the study subjects exhibited relatively high IgG3 levels late in the course of infection.
Collapse
Affiliation(s)
- Kelly A. Curtis
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - M. Susan Kennedy
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - S. Michele Owen
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
87
|
Biocompatible anionic polymeric microspheres as priming delivery system for effetive HIV/AIDS Tat-based vaccines. PLoS One 2014; 9:e111360. [PMID: 25356594 PMCID: PMC4214729 DOI: 10.1371/journal.pone.0111360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Here we describe a prime-boost regimen of vaccination in Macaca fascicularis that combines priming with novel anionic microspheres designed to deliver the biologically active HIV-1 Tat protein and boosting with Tat in Alum. This regimen of immunization modulated the IgG subclass profile and elicited a balanced Th1-Th2 type of humoral and cellular responses. Remarkably, following intravenous challenge with SHIV89.6Pcy243, vaccinees significantly blunted acute viremia, as compared to control monkeys, and this control was associated with significantly lower CD4+ T cell depletion rate during the acute phase of infection and higher ability to resume the CD4+ T cell counts in the post-acute and chronic phases of infection. The long lasting control of viremia was associated with the persistence of high titers anti-Tat antibodies whose profile clearly distinguished vaccinees in controllers and viremics. Controllers, as opposed to vaccinated and viremic cynos, exhibited significantly higher pre-challenge antibody responses to peptides spanning the glutamine-rich and the RGD-integrin-binding regions of Tat. Finally, among vaccinees, titers of anti-Tat IgG1, IgG3 and IgG4 subclasses had a significant association with control of viremia in the acute and post-acute phases of infection. Altogether these findings indicate that the Tat/H1D/Alum regimen of immunization holds promise for next generation vaccines with Tat protein or other proteins for which maintenance of the native conformation and activity are critical for optimal immunogenicity. Our results also provide novel information on the role of anti-Tat responses in the prevention of HIV pathogenesis and for the design of new vaccine candidates.
Collapse
|
88
|
Dugast AS, Stamatatos L, Tonelli A, Suscovich TJ, Licht AF, Mikell I, Ackerman ME, Streeck H, Klasse P, Moore JP, Alter G. Independent evolution of Fc- and Fab-mediated HIV-1-specific antiviral antibody activity following acute infection. Eur J Immunol 2014; 44:2925-37. [PMID: 25043633 PMCID: PMC4311770 DOI: 10.1002/eji.201344305] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/25/2014] [Accepted: 07/04/2014] [Indexed: 11/07/2022]
Abstract
Fc-related antibody activities, such as antibody-dependent cellular cytotoxicity (ADCC), or more broadly, antibody-mediated cellular viral inhibition (ADCVI), play a role in curbing early SIV viral replication, are enriched in human long-term infected nonprogressors, and could potentially contribute to protection from infection. However, little is known about the mechanism by which such humoral immune responses are naturally induced following infection. Here, we focused on the early evolution of the functional antibody response, largely driven by the Fc portion of the antibody, in the context of the evolving binding and neutralizing antibody response, which is driven mainly by the antibody-binding fragment (Fab). We show that ADCVI/ADCC-inducing responses in humans are rapidly generated following acute HIV-1 infection, peak at approximately 6 months postinfection, but decay rapidly in the setting of persistent immune activation, as Fab-related activities persistently increase. Moreover, the loss of Fc activity occurred in synchrony with a loss of HIV-specific IgG3 responses. Our data strongly suggest that Fc- and Fab-related antibody functions are modulated in a distinct manner following acute HIV infection. Vaccination strategies intended to optimally induce both sets of antiviral antibody activities may, therefore, require a fine tuning of the inflammatory response.
Collapse
Affiliation(s)
- Anne-Sophie Dugast
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA; United States of America
| | - Leonidas Stamatatos
- Seattle Biomedical Research Institute, Seattle; United States of America
- Department of Global Health, University of Washington, Seattle, WA; United States of America
| | - Andrew Tonelli
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA; United States of America
| | - Todd J. Suscovich
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA; United States of America
| | - Anna F. Licht
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA; United States of America
| | - Iliyana Mikell
- Seattle Biomedical Research Institute, Seattle; United States of America
- Department of Global Health, University of Washington, Seattle, WA; United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH; United States of America
| | - Hendrik Streeck
- US Military HIV Research Program, Silver Spring, Maryland; United States of America
| | - P.J. Klasse
- Weill Cornell Medical College, New York, New York; United States of America
| | - John P. Moore
- Weill Cornell Medical College, New York, New York; United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA; United States of America
| |
Collapse
|
89
|
Mathematical model of multivalent virus-antibody complex formation in humans following acute and chronic HIV infections. J Math Biol 2014; 71:513-32. [PMID: 25190279 DOI: 10.1007/s00285-014-0826-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/29/2014] [Indexed: 10/24/2022]
Abstract
Antibodies that bind viral surface proteins can limit the spread of the infection through neutralizing and non-neutralizing functions. During both acute and chronic Human Immunodeficiency Virus infection, antibody-virion immune complexes are formed, but fail to ensure protection. In this study, we develop a mathematical model of multivalent antibody binding and use it to determine the dynamical interactions that lead to immune complexes formation and the role of complexes with increased numbers of bound antibodies in the pathogenesis of the disease. We compare our predictions with published temporal virus and immune complex data from acute infected patients. Finally, we derive quantitative and qualitative conditions needed for antibody-induced protection.
Collapse
|
90
|
Mestecky J, Wei Q, Alexander R, Raska M, Novak J, Moldoveanu Z. Humoral immune responses to HIV in the mucosal secretions and sera of HIV-infected women. Am J Reprod Immunol 2014; 71:600-7. [PMID: 24494997 PMCID: PMC4024328 DOI: 10.1111/aji.12203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/17/2013] [Indexed: 12/16/2022] Open
Abstract
Although sera and all external secretions contain antibodies to human immunodeficiency virus (HIV), their levels, specificity, isotypes, and relevant effector functions display a great degree of variability. Antibodies that bind HIV antigens and neutralize the virus are predominantly associated with the IgG isotype in sera and in all external secretions, even where total levels of IgG are much lower than those of IgA. Rectal fluid that contains high IgA, but low IgG levels, displayed low neutralizing activity independent of antibodies. Therefore, external secretions should be evaluated before and after selective depletion of Ig. At the systemic level, HIV-specific IgA may interfere with the effector functions of IgG, as suggested by recent studies of individuals systemically immunized with an experimental HIV vaccine. Although HIV-specific IgG and IgA antibodies may exhibit their protective activities at mucosal surfaces through interference with viral entry and local neutralization at the systemic level, such antibodies may display discordant effector functions.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Institute of Immunology and Microbiology, Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rashada Alexander
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Office of the Director, National Institutes of Health, Bethesda, MD
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Immunology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
91
|
Pollara J, Bonsignori M, Moody MA, Pazgier M, Haynes BF, Ferrari G. Epitope specificity of human immunodeficiency virus-1 antibody dependent cellular cytotoxicity [ADCC] responses. Curr HIV Res 2014; 11:378-87. [PMID: 24191939 PMCID: PMC3878369 DOI: 10.2174/1570162x113116660059] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/19/2013] [Accepted: 09/28/2013] [Indexed: 12/02/2022]
Abstract
Antibody dependent cellular cytotoxicity [ADCC] has been suggested to play an important role in control of Human Immunodeficiency Virus-1 [HIV-1] viral load and protection from infection. ADCC antibody responses have been mapped to multiple linear and conformational epitopes within the HIV-1 envelope glycoproteins gp120 and gp41. Many epitopes targeted by antibodies that mediate ADCC overlap with those recognized by antibodies capable of virus neutralization. In addition, recent studies conducted with human monoclonal antibodies derived from HIV-1 infected individuals and HIV-1 vaccine-candidate vaccinees have identified a number of antibodies that lack the ability to capture primary HIV-1 isolates or mediate neutralizing activity, but are able to bind to the surface of infected CD4+ T cells and mediate ADCC. Of note, the conformational changes in the gp120 that may not exclusively relate to binding of the CD4 molecule are important in exposing epitopes recognized by ADCC responses. Here we discuss the HIV-1 envelope epitopes targeted by ADCC antibodies in the context of the potential protective capacities of ADCC.
Collapse
Affiliation(s)
- Justin Pollara
- Department of Surgery, Duke University Medical Center, P.O. Box 2926, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
92
|
Holl TM, Yang G, Kuraoka M, Verkoczy L, Alam SM, Moody MA, Haynes BF, Kelsoe G. Enhanced antibody responses to an HIV-1 membrane-proximal external region antigen in mice reconstituted with cultured lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:3269-79. [PMID: 24591365 PMCID: PMC4003504 DOI: 10.4049/jimmunol.1302829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have shown that the protective HIV-1 Ab, 2F5, avidly reacts with a conserved mammalian self-Ag, kynureninase, and that the development of B cells specific for the 2F5 epitope is constrained by immunological tolerance. These observations suggest that the capacity to mount Ab responses to the 2F5 epitope is mitigated by tolerance, but such capacity may be latent in the pretolerance and/or anergic B cell pools. In this study, we use B cell tetramer reagents to track the frequencies of B cells that recognize the HIV-1 2F5 epitope (SP62): in C57BL/6 mice, SP62-binding transitional B cells are readily identified in bone marrow but are lost during subsequent development. Unsurprisingly then, immunization with SP62 immunogen does not elicit significant humoral responses in normal C57BL/6 mice. Reconstitution of Rag1(null) mice with normal congenic B cells that have matured in vitro restores the capacity to mount significant serum Ab and germinal center responses to this HIV-1 epitope. These B cell cultures are permissive for the development of autoreactive B cells and support the development of SP62-specific B cell compartments normally lost in 2F5 Ab knockin mice. The recovery of humoral responses to the 2F5/SP62 epitope of HIV-1 by reconstitution with B cells containing forbidden, autoreactive clones provides direct evidence that normal C57BL/6 mice latently possess the capacity to generate humoral responses to a conserved, neutralizing HIV-1 epitope.
Collapse
Affiliation(s)
- T. Matt Holl
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | - Guang Yang
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | - Masayuki Kuraoka
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | - Laurent Verkoczy
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Pathology, Duke University, Durham, North Carolina 27710, USA
| | - S. Munir Alam
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Pathology, Duke University, Durham, North Carolina 27710, USA
- Department of Medicine Duke University, Durham, North Carolina 27710, USA
| | - M. Anthony Moody
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Pathology, Duke University, Durham, North Carolina 27710, USA
| | - Barton F. Haynes
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Medicine Duke University, Durham, North Carolina 27710, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
93
|
Gerns Storey HL, Richardson BA, Singa B, Naulikha J, Prindle VC, Diaz-Ochoa VE, Felgner PL, Camerini D, Horton H, John-Stewart G, Walson JL. Use of principal components analysis and protein microarray to explore the association of HIV-1-specific IgG responses with disease progression. AIDS Res Hum Retroviruses 2014; 30:37-44. [PMID: 24134221 DOI: 10.1089/aid.2013.0088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of HIV-1-specific antibody responses in HIV disease progression is complex and would benefit from analysis techniques that examine clusterings of responses. Protein microarray platforms facilitate the simultaneous evaluation of numerous protein-specific antibody responses, though excessive data are cumbersome in analyses. Principal components analysis (PCA) reduces data dimensionality by generating fewer composite variables that maximally account for variance in a dataset. To identify clusters of antibody responses involved in disease control, we investigated the association of HIV-1-specific antibody responses by protein microarray, and assessed their association with disease progression using PCA in a nested cohort design. Associations observed among collections of antibody responses paralleled protein-specific responses. At baseline, greater antibody responses to the transmembrane glycoprotein (TM) and reverse transcriptase (RT) were associated with higher viral loads, while responses to the surface glycoprotein (SU), capsid (CA), matrix (MA), and integrase (IN) proteins were associated with lower viral loads. Over 12 months greater antibody responses were associated with smaller decreases in CD4 count (CA, MA, IN), and reduced likelihood of disease progression (CA, IN). PCA and protein microarray analyses highlighted a collection of HIV-specific antibody responses that together were associated with reduced disease progression, and may not have been identified by examining individual antibody responses. This technique may be useful to explore multifaceted host-disease interactions, such as HIV coinfections.
Collapse
Affiliation(s)
| | | | - Benson Singa
- Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | | | | | | | - Helen Horton
- Seattle Biomedical Research Institute, Seattle, Washington
| | | | | |
Collapse
|
94
|
Lacerda M, Moore PL, Ngandu NK, Seaman M, Gray ES, Murrell B, Krishnamoorthy M, Nonyane M, Madiga M, Wibmer CK, Sheward D, Bailer RT, Gao H, Greene KM, Karim SSA, Mascola JR, Korber BTM, Montefiori DC, Morris L, Williamson C, Seoighe C. Identification of broadly neutralizing antibody epitopes in the HIV-1 envelope glycoprotein using evolutionary models. Virol J 2013; 10:347. [PMID: 24295501 PMCID: PMC4220805 DOI: 10.1186/1743-422x-10-347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/21/2013] [Indexed: 11/19/2022] Open
Abstract
Background Identification of the epitopes targeted by antibodies that can neutralize diverse HIV-1 strains can provide important clues for the design of a preventative vaccine. Methods We have developed a computational approach that can identify key amino acids within the HIV-1 envelope glycoprotein that influence sensitivity to broadly cross-neutralizing antibodies. Given a sequence alignment and neutralization titers for a panel of viruses, the method works by fitting a phylogenetic model that allows the amino acid frequencies at each site to depend on neutralization sensitivities. Sites at which viral evolution influences neutralization sensitivity were identified using Bayes factors (BFs) to compare the fit of this model to that of a null model in which sequences evolved independently of antibody sensitivity. Conformational epitopes were identified with a Metropolis algorithm that searched for a cluster of sites with large Bayes factors on the tertiary structure of the viral envelope. Results We applied our method to ID50 neutralization data generated from seven HIV-1 subtype C serum samples with neutralization breadth that had been tested against a multi-clade panel of 225 pseudoviruses for which envelope sequences were also available. For each sample, between two and four sites were identified that were strongly associated with neutralization sensitivity (2ln(BF) > 6), a subset of which were experimentally confirmed using site-directed mutagenesis. Conclusions Our results provide strong support for the use of evolutionary models applied to cross-sectional viral neutralization data to identify the epitopes of serum antibodies that confer neutralization breadth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland.
| | | |
Collapse
|
95
|
Developing Combined HIV Vaccine Strategies for a Functional Cure. Vaccines (Basel) 2013; 1:481-96. [PMID: 26344343 PMCID: PMC4494210 DOI: 10.3390/vaccines1040481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 11/16/2022] Open
Abstract
Increasing numbers of HIV-infected individuals have access to potent antiretroviral drugs that control viral replication and decrease the risk of transmission. However, there is no cure for HIV and new strategies have to be developed to reach an eradication of the virus or a natural control of viral replication in the absence of drugs (functional cure). Therapeutic vaccines against HIV have been evaluated in many trials over the last 20 years and important knowledge has been gained from these trials. However, the major obstacle to HIV eradication is the persistence of latent proviral reservoirs. Different molecules are currently tested in ART-treated subjects to reactivate these latent reservoirs. Such anti-latency agents should be combined with a vaccination regimen in order to control or eradicate reactivated latently-infected cells. New in vitro assays should also be developed to assess the success of tested therapeutic vaccines by measuring the immune-mediated killing of replication-competent HIV reservoir cells. This review provides an overview of the current strategies to combine HIV vaccines with anti-latency agents that could act as adjuvant on the vaccine-induced immune response as well as new tools to assess the efficacy of these approaches.
Collapse
|
96
|
Jelicic K, Cimbro R, Nawaz F, Huang DW, Zheng X, Yang J, Lempicki RA, Pascuccio M, Van Ryk D, Schwing C, Hiatt J, Okwara N, Wei D, Roby G, David A, Hwang IY, Kehrl JH, Arthos J, Cicala C, Fauci AS. The HIV-1 envelope protein gp120 impairs B cell proliferation by inducing TGF-β1 production and FcRL4 expression. Nat Immunol 2013; 14:1256-65. [PMID: 24162774 PMCID: PMC3870659 DOI: 10.1038/ni.2746] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/25/2013] [Indexed: 01/08/2023]
Abstract
The humoral immune response after acute infection with HIV-1 is delayed and ineffective. The HIV-1 envelope protein gp120 binds to and signals through integrin α4β7 on T cells. We found that gp120 also bound to and signaled through α4β7 on naive B cells, which resulted in an abortive proliferative response. In primary B cells, signaling by gp120 through α4β7 resulted in increased expression of the immunosuppressive cytokine TGF-β1 and FcRL4, an inhibitory receptor expressed on B cells. Coculture of B cells with HIV-1-infected autologous CD4(+) T cells also increased the expression of FcRL4 by B cells. Our findings indicated that in addition to mediating chronic activation of the immune system, viral proteins contributed directly to HIV-1-associated B cell dysfunction. Our studies identify a mechanism whereby the virus may subvert the early HIV-1-specific humoral immune response.
Collapse
Affiliation(s)
- Katija Jelicic
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Domestic cat microsphere immunoassays: detection of antibodies during feline immunodeficiency virus infection. J Immunol Methods 2013; 396:74-86. [PMID: 23954271 DOI: 10.1016/j.jim.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 12/27/2022]
Abstract
Microsphere immunoassays (MIAs) allow rapid and accurate evaluation of multiple analytes simultaneously within a biological sample. Here we describe the development and validation of domestic cat-specific MIAs for a) the quantification of total IgG and IgA levels in plasma, and b) the detection of IgG and IgA antibodies to feline immunodeficiency virus (FIV) capsid (CA) and surface (SU) proteins, and feline CD134 in plasma. These assays were used to examine the temporal antibody response of domestic cats infected with apathogenic and pathogenic FIVs, and domestic cats infected with parental and chimeric FIVs of varying pathogenicity. The results from these studies demonstrated that a) total IgG antibodies increase over time after infection; b) α-CA and α-SU IgG antibodies are detectable between 9 and 28 days post-infection and increase over time, and these antibodies combined represent a fraction (1.8 to 21.8%) of the total IgG increase due to infection; c) measurable α-CD134 IgG antibody levels vary among individuals and over time, and are not strongly correlated with viral load; d) circulating IgA antibodies, in general, do not increase during the early stage of infection; and e) total IgG, and α-CA and α-SU IgG antibody kinetics and levels vary with FIV viral strain/pathogenicity. The MIAs described here could be used to screen domestic cats for FIV infection, and to evaluate the FIV-specific or total antibody response elicited by various FIV strains/other diseases.
Collapse
|
98
|
A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein. PLoS Comput Biol 2013; 9:e1003046. [PMID: 23696718 PMCID: PMC3656115 DOI: 10.1371/journal.pcbi.1003046] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 envelope (Env) spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD) simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth.
Collapse
|
99
|
Buckner CM, Moir S, Ho J, Wang W, Posada JG, Kardava L, Funk EK, Nelson AK, Li Y, Chun TW, Fauci AS. Characterization of plasmablasts in the blood of HIV-infected viremic individuals: evidence for nonspecific immune activation. J Virol 2013; 87:5800-11. [PMID: 23487459 PMCID: PMC3648153 DOI: 10.1128/jvi.00094-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/05/2013] [Indexed: 01/08/2023] Open
Abstract
Terminal differentiation of B cells and hypergammaglobulinemia are hallmarks of B-cell hyperactivity in HIV disease. Plasmablasts are terminally differentiating B cells that circulate transiently in the blood following infection or vaccination; however, in HIV infection, they arise early and are maintained at abnormally high levels in viremic individuals. Here we show that only a small fraction of plasmablasts in the blood of viremic individuals is HIV specific. Assessment of plasmablast immunoglobulin isotype distribution revealed increased IgG(+) plasmablasts in early and most prominently during chronic HIV viremia, contrasting with a predominantly IgA(+) plasmablast profile in HIV-negative individuals or in aviremic HIV-infected individuals on treatment. Of note, IgG is the predominant immunoglobulin isotype of plasmablasts that arise transiently in the blood following parenteral immunization. Serum immunoglobulin levels were also elevated in HIV-infected viremic individuals, especially IgG, and correlated with levels of IgG(+) plasmablasts. Several soluble factors associated with immune activation were also increased in the sera of HIV-infected individuals, especially in viremic individuals, and correlated with serum immunoglobulin levels, particularly IgG. Thus, our data suggest that while plasmablasts in the blood may contribute to the HIV-specific immune response, the majority of these cells are not HIV specific and arise early, likely from indirect immune-activating effects of HIV replication, and reflect over time the effects of chronic antigenic stimulation. Such B-cell dysregulation may help explain why the antibody response is inadequate in HIV-infected individuals, even during early infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuxing Li
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, USA
- IAVI Center for Neutralizing Antibodies at TSRI
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
100
|
Pleguezuelos O, Stoloff GA, Caparrós-Wanderley W. Synthetic immunotherapy induces HIV virus specific Th1 cytotoxic response and death of an HIV-1 infected human cell line through classic complement activation. Virol J 2013; 10:107. [PMID: 23557359 PMCID: PMC3626621 DOI: 10.1186/1743-422x-10-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background This manuscript describes the development of a novel synthetic immunotherapy (HIV-v) composed of four multi-epitope polypeptides targeting conserved regions in the Nef, Rev, Vif and Vpr viral proteins. Immunogenicity and cytotoxicity of HIV-v are discussed. Methods Short conserved T-cell multi-epitope regions were identified in silico in the HIV proteome. The immunogenicity of the identified HIV-v polypeptides was assessed in vivo by immunisation of C57BLK6 mice transgenic for HLA-A*0201. Splenocytes from immunised animals were exposed in vitro to soluble HIV-v polypeptides or to syngeneic (T1) or allogeneic (Jurkat) cells transfected with these polypeptides. Specific T-cell reactivity was assessed by cell-based IFN-γ ELISA. Virus specific CD3 + CD8+ IFN-γ+ recall responses were also determined by flow cytometry following in vitro exposure of splenocytes from immunised mice to syngeneic (T1) and allogeneic (H9) cells infected with HIV-1 strain IIIB. HIV-v specific antibodies were quantified by ELISA whilst antibody mediated anti-viral immunotherapeutic effect on T1 cells infected with a laboratory adapted and a primary isolate of the HIV-1 virus was assessed in a LDH-based complement mediated lysis assay. Results HIV-v elicited antigen-specific IgG and IFN−γ responses against the synthetic polypeptides in the formulation. HIV-v specific T cells recognised polypeptides presented either as soluble antigen or complexed to HLA-A*0201 following natural processing and presentation by syngeneic human T1 cells. Moreover, the CD3 + CD8+ component of the response recognised syngeneic T1 cells naturally infected with HIV-1 in a virus-specific and MHC restricted-manner. The HIV-v specific IgG response was also able to recognise human T1 cells naturally infected with HIV-1 and induce cell death through classic activation of complement. Conclusions HIV-v induces a vaccine-specific type I immune response characterised by activation of effector CD8+ T cell and antibody responses that recognise and kill human cell lines naturally infected with a laboratory adapted and a primary isolate of the HIV-1 virus. The data supports the hypothesis that alternative HIV protein targets can be effectively used to prime both cellular and antibody immune responses of clinical value in the prevention and treatment of HIV infection.
Collapse
Affiliation(s)
- Olga Pleguezuelos
- Research and Development, SEEK, 45 Beech Street, London, EC2Y 8AD, UK.
| | | | | |
Collapse
|