51
|
Men P, Wang M, Li J, Geng C, Huang X, Lu X. Establishing an Efficient Genetic Manipulation System for Sulfated Echinocandin Producing Fungus Coleophoma empetri. Front Microbiol 2021; 12:734780. [PMID: 34489920 PMCID: PMC8417879 DOI: 10.3389/fmicb.2021.734780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Micafungin is an important echinocandin antifungal agent for the treatment of invasive fungal infections. In industry, micafungin is derived from the natural product FR901379, which is a non-ribosomal cyclic hexapeptide produced by the filamentous fungus Coleophoma empetri. The difficulty of genetic manipulation in C. empetri restricts the clarification of FR901379 biosynthetic mechanism. In this work, we developed an efficient genetic manipulation system in the industrial FR901379-producing strain C. empetri MEFC009. Firstly, a convenient protoplast-mediated transformation (PMT) method was developed. Secondly, with this transformation method, the essential genetic elements were verified. Selectable markers hph, neo, and nat can be used for the transformation, and promotors Ppgk, PgpdA, and PgpdAt are functional in C. empetri MEFC009. Thirdly, the frequency of homologous recombination was improved from 4 to 100% by deleting the ku80 gene, resulting in an excellent chassis cell for gene-targeting. Additionally, the advantage of this genetic manipulation system was demonstrated in the identification of the polyketide synthase (PKS) responsible for the biosynthesis of dihydroxynapthalene (DHN)-melanin. This genetic manipulation system will be a useful platform for the research of FR901379 and further genome mining of secondary metabolites in C. empetri.
Collapse
Affiliation(s)
- Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Jinda Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
52
|
Wang X, Lu D, Tian C. Analysis of melanin biosynthesis in the plant pathogenic fungus Colletotrichum gloeosporioides. Fungal Biol 2021; 125:679-692. [PMID: 34420695 DOI: 10.1016/j.funbio.2021.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Melanin is recognized as a dark pigment that can protect fungi from the harm of environmental stresses. To investigate what roles of melanin played in the pathogenicity and development of Colletotrichum gloeosporioides, a causal agent of poplar anthracnose, genes encoding a transcription factor CgCmr1 and a polyketide synthase CgPks1 were isolated as the ortholog of Magnaporthe oryzae Pig1 and Pks1 respectively. Deletion of CgCmr1 or CgPks1 resulted in melanin-deficient fungal colony. The ΔCgPks1 mutant showed no melanin accumulation in appressoria, and lack of CgCmr1 also resulted in the delayed and decreased melanization of appressoria. In addition, the turgor pressure of the appressorium was lower in ΔCgPks1 and ΔCgCmr1 than in the wild-type (WT). However, DHN melanin was not a vital factor for virulence in C. gloeosporioides. Moreover, deletion of CgCmr1 and CgPks1 resulted in the hypersensitivity to hydrogen peroxide (H2O2) oxidative stress but not to other abiotic stresses. Collectively, these results suggest that CgCmr1 and CgPks1 play an important role in DHN melanin biosynthesis, and melanin was not an essential factor in penetration and pathogenicity in C. gloeosporioides. The data presented in this study will facilitate future evaluations of the melanin biosynthetic pathway and development in filamentous fungi.
Collapse
Affiliation(s)
- Xiaolian Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dongxiao Lu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
53
|
Palmer JM, Wiemann P, Greco C, Chiang YM, Wang CCC, Lindner DL, Keller NP. The sexual spore pigment asperthecin is required for normal ascospore production and protection from UV light in Aspergillus nidulans. J Ind Microbiol Biotechnol 2021; 48:6355442. [PMID: 34415047 PMCID: PMC8762651 DOI: 10.1093/jimb/kuab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2021] [Accepted: 08/03/2021] [Indexed: 11/12/2022]
Abstract
Many fungi develop both asexual and sexual spores that serve as propagules for dissemination and/or recombination of genetic traits. Asexual spores are often heavily pigmented and this pigmentation provides protection from UV light. However, little is known about any purpose pigmentation may serve for sexual spores. The model Ascomycete Aspergillus nidulans produces both green pigmented asexual spores (conidia) and red pigmented sexual spores (ascospores). Here we find that the previously characterized red pigment, asperthecin, is the A. nidulans ascospore pigment. The asperthecin biosynthetic gene cluster is composed of three genes, aptA, aptB, and aptC where deletion of either aptA (encoding a polyketide synthase) or aptB (encoding a thioesterase) yields small, mishappen hyaline ascospores while deletion of aptC (encoding a monooxygenase) yields morphologically normal but purple ascospores. ∆aptA and ∆aptB but not ∆aptC or WT ascospores are extremely sensitive to UV light. We find that two historical ascospore color mutants, clA6 and clB1, possess mutations in aptA and aptB sequences respectively.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI 53726, USA
| | - Philipp Wiemann
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claudio Greco
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yi Ming Chiang
- Departments of Chemistry and Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Clay C C Wang
- Departments of Chemistry and Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI 53726, USA
| | - Nancy P Keller
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
54
|
Li H, James A, Shen X, Wang Y. Roles of microbiota in the formation of botrytized grapes and wines. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1958925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Armachius James
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Xuemei Shen
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Yousheng Wang
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
55
|
Wang C, Rollins JA. Efficient genome editing using endogenous U6 snRNA promoter-driven CRISPR/Cas9 sgRNA in Sclerotinia sclerotiorum. Fungal Genet Biol 2021; 154:103598. [PMID: 34119663 DOI: 10.1016/j.fgb.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/19/2023]
Abstract
We previously reported on a CRISPR-Cas9 genome editing system for the necrotrophic fungal plant pathogen Sclerotinia sclerotiorum. This system (the TrpC-sgRNA system), based on an RNA polymerase II (RNA Pol II) promoter (TrpC) to drive sgRNA transcription in vivo, was successful in creating gene insertion mutants. However, relatively low efficiency targeted gene editing hampered the application of this method for functional genomic research in S. sclerotiorum. To further optimize the CRISPR-Cas9 system, a plasmid-free Cas9 protein/sgRNA ribonucleoprotein (RNP)-mediated system (the RNP system) and a plasmid-based RNA polymerase III promoter (U6)-driven sgRNA transcription system (the U6-sgRNA system) were established and evaluated. The previously characterized oxaloacetate acetylhydrolase (Ssoah1) locus and a new locus encoding polyketide synthase12 (Sspks12) were targeted in this study to create loss-of-function mutants. The RNP system, similar to the TrpC-sgRNA system we previously reported, creates mutations at the Ssoah1 gene locus with comparable efficiency. However, neither system successfully generated mutations at the Sspks12 gene locus. The U6-sgRNA system exhibited a significantly higher efficiency of genemutation at both loci. This technology provides a simple and efficient strategy for targeted gene mutation and thereby will accelerating the pace of research of pathogenicity and development in this economically important plant pathogen.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Plant Pathology, 1450 Fifield Hall, University of Florida, Gainesville, FL, USA
| | - Jeffrey A Rollins
- Department of Plant Pathology, 1450 Fifield Hall, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
56
|
Jia SL, Chi Z, Chen L, Liu GL, Hu Z, Chi ZM. Molecular evolution and regulation of DHN melanin-related gene clusters are closely related to adaptation of different melanin-producing fungi. Genomics 2021; 113:1962-1975. [PMID: 33901575 DOI: 10.1016/j.ygeno.2021.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2020] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Many genes responsible for melanin biosynthesis in fungi were physically linked together. The PKS gene clusters in most of the melanin-producing fungi were regulated by the Cmr1. It was found that a close rearrangement of the PKS gene clusters had evolved in most of the melanin-producing fungi and various functions of melanin in them were beneficial to their adaptation to the changing environments. The melanin-producing fungi had undergone at least five large-scale differentiations, making their PKS gene clusters be quickly evolved and the fungi be adapted to different harsh environments. The recent gene losses and expansion were remarkably frequent in the PKS gene clusters, leading to their rapid evolution and adaptation of their hosts to different environments. The PKS gene and the CMR1 gene in them were subject to a strong co-evolution, but the horizontal gene transfer events might have occurred in the genome-duplicated species, Aspergillus and Penicillium.
Collapse
Affiliation(s)
- Shu-Lei Jia
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Lu Chen
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China.
| |
Collapse
|
57
|
Vilanova L, Valero-Jiménez CA, van Kan JA. Deciphering the Monilinia fructicola Genome to Discover Effector Genes Possibly Involved in Virulence. Genes (Basel) 2021; 12:568. [PMID: 33919788 PMCID: PMC8070815 DOI: 10.3390/genes12040568] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Brown rot is the most economically important fungal disease of stone fruits and is primarily caused by Monilinia laxa and Monlinia fructicola. Both species co-occur in European orchards although M. fructicola is considered to cause the most severe yield losses in stone fruit. This study aimed to generate a high-quality genome of M. fructicola and to exploit it to identify genes that may contribute to pathogen virulence. PacBio sequencing technology was used to assemble the genome of M. fructicola. Manual structural curation of gene models, supported by RNA-Seq, and functional annotation of the proteome yielded 10,086 trustworthy gene models. The genome was examined for the presence of genes that encode secreted proteins and more specifically effector proteins. A set of 134 putative effectors was defined. Several effector genes were cloned into Agrobacterium tumefaciens for transient expression in Nicotiana benthamiana plants, and some of them triggered necrotic lesions. Studying effectors and their biological properties will help to better understand the interaction between M. fructicola and its stone fruit host plants.
Collapse
Affiliation(s)
- Laura Vilanova
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; (L.V.); (C.A.V.-J.)
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain
| | - Claudio A. Valero-Jiménez
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; (L.V.); (C.A.V.-J.)
| | - Jan A.L. van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; (L.V.); (C.A.V.-J.)
| |
Collapse
|
58
|
Abstract
Colorants find social and commercial applications in cosmetics, food, pharmaceuticals, textiles, and other industrial sectors. Among the available options, chemically synthesized colorants are popular due to their low-cost and flexible production modes, but health and environmental concerns have encouraged the valorization of biopigments that are natural and ecofriendly. Among natural biopigment producers, microorganisms are noteworthy for their all-seasonal production of stable and low-cost pigments with high-yield titers. Fungi are paramount sources of natural pigments. They occupy diverse ecological niches with adaptive metabolisms and biocatalytic pathways, making them entities with an industrial interest. Industrially important biopigments like carotenoids, melanins, riboflavins, azaphilones, and quinones produced by filamentous fungi are described within the context of this review. Most recent information about fungal pigment characteristics, biochemical production routes and pathways, potential applications, limitations, and future research perspectives are described.
Collapse
Affiliation(s)
- Haritha Meruvu
- Department of Chemical Engineering, Andhra University College of Engineering - AU North Campus, Andhra University, Visakhapatnam, India.,Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.,Department of Bioengineering, Faculty of Engineering and Natural Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Estrada Municipal do Campinho, Lorena/SP, Brazil
| |
Collapse
|
59
|
Compartmentalization of Melanin Biosynthetic Enzymes Contributes to Self-Defense against Intermediate Compound Scytalone in Botrytis cinerea. mBio 2021; 12:mBio.00007-21. [PMID: 33758088 PMCID: PMC8092192 DOI: 10.1128/mbio.00007-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023] Open
Abstract
In filamentous fungi, 1,8-dihydroxynaphthalene (DHN) melanin is a major component of the extracellular matrix, endowing fungi with environmental tolerance and some pathogenic species with pathogenicity. However, the subcellular location of the melanin biosynthesis pathway components remains obscure. Using the gray mold pathogen Botrytis cinerea, the DHN melanin intermediate scytalone was characterized via phenotypic and chemical analysis of mutants, and the key enzymes participating in melanin synthesis were fused with fluorescent proteins to observe their subcellular localizations. The Δbcscd1 mutant accumulated scytalone in the culture filtrate rather than in mycelium. Excessive scytalone appears to be self-inhibitory to the fungus, leading to repressed sclerotial germination and sporulation in the Δbcscd1 mutant. The BcBRN1/2 enzymes responsible for synthesizing scytalone were localized in endosomes and found to be trafficked to the cell surface, accompanied by the accumulation of BcSCD1 proteins in the cell wall. In contrast, the early-stage melanin synthesis enzymes BcPKS12/13 and BcYGH1 were localized in peroxisomes. Taken together, the results of this study revealed the subcellular distribution of melanin biosynthetic enzymes in B. cinerea, indicating that the encapsulation and externalization of the melanin synthetic enzymes need to be delicately orchestrated to ensure enzymatic efficiency and protect itself from the adverse effect of the toxic intermediate metabolite.IMPORTANCE The devastating gray mold pathogen Botrytis cinerea propagates via melanized conidia and sclerotia. This study reveals that the sclerotial germination of B. cinerea is differentially affected by different enzymes in the melanin synthesis pathway. Using gene knockout mutants and chemical analysis, we found that excessive accumulation of the melanin intermediate scytalone is inhibitory to B. cinerea. Subcellular localization analysis of the melanin synthesis enzymes of B. cinerea suggested two-stage partitioning of the melanogenesis pathway: the intracellular stage involves the steps until the intermediate scytalone was translocated to the cell surface, whereas the extracellular stage comprises all the steps occurring in the wall from scytalone to final melanin formation. These strategies make the fungus avert self-poisoning during melanin production. This study opens avenues for better understanding the mechanisms of secondary metabolite production in filamentous fungi.
Collapse
|
60
|
d'Ischia M, Manini P, Martins Z, Remusat L, O'D Alexander CM, Puzzarini C, Barone V, Saladino R. Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life? Phys Life Rev 2021; 37:65-93. [PMID: 33774429 DOI: 10.1016/j.plrev.2021.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
An interdisciplinary review of the chemical literature that points to a unifying scenario for the origin of life, referred to as the Primordial Multifunctional organic Entity (PriME) scenario, is provided herein. In the PriME scenario it is suggested that the Insoluble Organic Matter (IOM) in carbonaceous chondrites, as well as interplanetary dust particles from meteorites and comets may have played an important role in the three most critical processes involved in the origin of life, namely 1) metabolism, via a) the provision and accumulation of molecules that are the building blocks of life, b) catalysis (e.g., by templation), and c) protection of developing life molecules against radiation by excited state deactivation; 2) compartmentalization, via adsorption of compounds on the exposed organic surfaces in fractured meteorites, and 3) replication, via deaggregation, desorption and related physical phenomena. This scenario is based on the hitherto overlooked structural and physicochemical similarities between the IOM and the dark, insoluble, multifunctional melanin polymers found in bacteria and fungi and associated with the ability of these microorganisms to survive extreme conditions, including ionizing radiation. The underlying conceptual link between these two materials is strengthened by the fact that primary precursors of bacterial and fungal melanins (collectively referred to herein as allomelanins) are hydroxylated aromatic compounds like homogentisic acid and 1,8-dihydroxynaphthalene, and that similar hydroxylated aromatic compounds, including hydroxynaphthalenes, figure prominently among possible components of the organic materials on dust grains and ices in the interstellar matter, and may be involved in the formation of IOM in meteorites. Inspired by this rationale, a vis-à-vis review of the properties of IOM from various chondrites and non-nitrogenous allomelanin pigments from bacteria and fungi is provided herein. The unrecognized similarities between these materials may pave the way for a novel scenario at the origin of life, in which IOM-related complex organic polymers delivered to the early Earth are proposed to serve as PriME and were preserved and transformed in those primitive forms of life that shared the ability to synthesize melanin polymers playing an important role in the critical processes underlying the establishment of terrestrial eukaryotes.
Collapse
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Zita Martins
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Laurent Remusat
- Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, 61 rue Buffon, 75005 Paris, France
| | - Conel M O'D Alexander
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW Washington, DC 20015-1305, USA
| | - Cristina Puzzarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, Bologna, I-40126, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| | - Raffaele Saladino
- Biological and Ecological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis 01100 Viterbo, Italy
| |
Collapse
|
61
|
Höfer AM, Harting R, Aßmann NF, Gerke J, Schmitt K, Starke J, Bayram Ö, Tran VT, Valerius O, Braus-Stromeyer SA, Braus GH. The velvet protein Vel1 controls initial plant root colonization and conidia formation for xylem distribution in Verticillium wilt. PLoS Genet 2021; 17:e1009434. [PMID: 33720931 PMCID: PMC7993770 DOI: 10.1371/journal.pgen.1009434] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
The conserved fungal velvet family regulatory proteins link development and secondary metabolite production. The velvet domain for DNA binding and dimerization is similar to the structure of the Rel homology domain of the mammalian NF-κB transcription factor. A comprehensive study addressed the functions of all four homologs of velvet domain encoding genes in the fungal life cycle of the soil-borne plant pathogenic fungus Verticillium dahliae. Genetic, cell biological, proteomic and metabolomic analyses of Vel1, Vel2, Vel3 and Vos1 were combined with plant pathogenicity experiments. Different phases of fungal growth, development and pathogenicity require V. dahliae velvet proteins, including Vel1-Vel2, Vel2-Vos1 and Vel3-Vos1 heterodimers, which are already present during vegetative hyphal growth. The major novel finding of this study is that Vel1 is necessary for initial plant root colonization and together with Vel3 for propagation in planta by conidiation. Vel1 is needed for disease symptom induction in tomato. Vel1, Vel2, and Vel3 control the formation of microsclerotia in senescent plants. Vel1 is the most important among all four V. dahliae velvet proteins with a wide variety of functions during all phases of the fungal life cycle in as well as ex planta.
Collapse
Affiliation(s)
- Annalena M. Höfer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Nils F. Aßmann
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Özgür Bayram
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Van-Tuan Tran
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Susanna A. Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|
62
|
Choquer M, Rascle C, Gonçalves IR, de Vallée A, Ribot C, Loisel E, Smilevski P, Ferria J, Savadogo M, Souibgui E, Gagey MJ, Dupuy JW, Rollins JA, Marcato R, Noûs C, Bruel C, Poussereau N. The infection cushion of Botrytis cinerea: a fungal 'weapon' of plant-biomass destruction. Environ Microbiol 2021; 23:2293-2314. [PMID: 33538395 DOI: 10.1111/1462-2920.15416] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays. 1231 upregulated genes and 79 up-accumulated proteins were identified. The data support the secretion of effectors by IC: phytotoxins, ROS, proteases, cutinases, plant cell wall-degrading enzymes and plant cell death-inducing proteins. Parallel upregulation of sugar transport and sugar catabolism-encoding genes would indicate a role of IC in nutrition. The data also reveal a substantial remodelling of the IC cell wall and suggest a role for melanin and chitosan in IC function. Lastly, mutagenesis of two upregulated genes in IC identified secreted fasciclin-like proteins as actors in the pathogenesis of B. cinerea. These results support the role of IC in plant penetration and also introduce other unexpected functions for this fungal organ, in colonization, necrotrophy and nutrition of the pathogen.
Collapse
Affiliation(s)
- Mathias Choquer
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Christine Rascle
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Isabelle R Gonçalves
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Amélie de Vallée
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Cécile Ribot
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Elise Loisel
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Pavlé Smilevski
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Jordan Ferria
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Mahamadi Savadogo
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Eytham Souibgui
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Marie-Josèphe Gagey
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Jean-William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, Bordeaux, France
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Riccardo Marcato
- Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France.,Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Legnaro, Italy
| | - Camille Noûs
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Christophe Bruel
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Nathalie Poussereau
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| |
Collapse
|
63
|
Cheng Q, Chen J, Zhao L. Draft genome sequence of Marssonina coronaria, causal agent of apple blotch, and comparisons with the Marssonina brunnea and Marssonina rosae genomes. PLoS One 2021; 16:e0246666. [PMID: 33544779 PMCID: PMC7864672 DOI: 10.1371/journal.pone.0246666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2020] [Accepted: 01/24/2021] [Indexed: 11/25/2022] Open
Abstract
Marssonina coronaria Ellis & Davis is a filamentous fungus in the class Leotiomycetes that causes apple blotch, an economically important disease of apples worldwide. Here, we sequenced the whole genome of M. coronaria strain NL1. The genome contained 50.3 Mb with 589 scaffolds and 9,622 protein-coding genes. A phylogenetic analysis using multiple loci and a whole-genome alignment revealed that M. coronaria is closely related to Marssonina rosae and Marssonina brunnea. A comparison of the three genomes revealed 90 species-specific carbohydrate-active enzymes, 19 of which showed atypical distributions, and 12 species-specific secondary metabolite biosynthetic gene clusters, two of which have the potential to synthesize products analogous to PR toxin and swainsonine, respectively. We identified 796 genes encoding for small secreted proteins in Marssonina spp., many encoding for unknown hypothetical proteins. In addition, we revealed the genetic architecture of the MAT1-1 and MAT1-2 mating-type loci of M. coronaria, as well as 16 tested isolates carrying either MAT1-1 idiomorph (3) or MAT1-2 idiomorph (13). Our results showed a series of species-specific carbohydrate-active enzyme, secondary metabolite biosynthetic gene clusters and small-secreted proteins that may be involved in the adaptation of Marssonina spp. to their distinct hosts. We also confirmed that M. coronaria possesses a heterothallic mating system and has outcrossing potential in nature.
Collapse
Affiliation(s)
- Qiang Cheng
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- * E-mail:
| | - Junxiang Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
64
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
65
|
An Unconventional Melanin Biosynthesis Pathway in Ustilago maydis. Appl Environ Microbiol 2021; 87:AEM.01510-20. [PMID: 33218994 DOI: 10.1128/aem.01510-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022] Open
Abstract
Ustilago maydis is a phytopathogenic fungus responsible for corn smut disease. Although it is a very well-established model organism for the study of plant-microbe interactions, its potential to produce specialized metabolites, which might contribute to this interaction, has not been studied in detail. By analyzing the U. maydis genome, we identified a biosynthetic gene cluster whose activation led to the production of a black melanin pigment. Single deletion mutants of the cluster genes revealed that five encoded enzymes are required for the accumulation of the black pigment, including three polyketide synthases (pks3, pks4, and pks5), a cytochrome P450 monooxygenase (cyp4), and a protein with similarity to versicolorin B synthase (vbs1). Metabolic profiles of deletion mutants in this gene cluster suggested that Pks3 and Pks4 act in concert as heterodimers to generate orsellinic acid (OA), which is reduced to the corresponding aldehyde by Pks5. The OA-aldehyde can then react with triacetic acid lactone (TAL), also derived from Pks3/Pks4 heterodimers to form larger molecules, including novel coumarin derivatives. Our findings suggest that U. maydis synthesizes a novel type of melanin based on coumarin and pyran-2-one intermediates, while most fungal melanins are derived from 1,8-dihydroxynaphthalene (DHN) or l-3,4-dihydroxyphenylalanine (l-DOPA). Along with these observations, this work also provides insight into the mechanisms of polyketide synthases in this filamentous fungus.IMPORTANCE The fungus Ustilago maydis represents one of the major threats to maize plants since it is responsible for corn smut disease, which generates considerable economical losses around the world. Therefore, contributing to a better understanding of the biochemistry of defense mechanisms used by U. maydis to protect itself against harsh environments, such as the synthesis of melanin, could provide improved biological tools for tackling the problem and protect the crops. In addition, the fact that this fungus synthesizes melanin in an unconventional way, requiring more than one polyketide synthase for producing melanin precursors, gives a different perspective on the complexity of these multidomain enzymes and their evolution in the fungal kingdom.
Collapse
|
66
|
Liu R, Wang Y, Li P, Sun L, Jiang J, Fan X, Liu C, Zhang Y. Genome Assembly and Transcriptome Analysis of the Fungus Coniella diplodiella During Infection on Grapevine ( Vitis vinifera L.). Front Microbiol 2021; 11:599150. [PMID: 33505371 PMCID: PMC7829486 DOI: 10.3389/fmicb.2020.599150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Grape white rot caused by Coniella diplodiella (Speg.) affects the production and quality of grapevine in China and other grapevine-growing countries. Despite the importance of C. diplodiella as a serious disease-causing agent in grape, the genome information and molecular mechanisms underlying its pathogenicity are poorly understood. To bridge this gap, 40.93 Mbp of C. diplodiella strain WR01 was de novo assembled. A total of 9,403 putative protein-coding genes were predicted. Among these, 608 and 248 genes are potentially secreted proteins and candidate effector proteins (CEPs), respectively. Additionally, the transcriptome of C. diplodiella was analyzed after feeding with crude grapevine leaf homogenates, which reveals the transcriptional expression of 9,115 genes. Gene ontology enrichment analysis indicated that the highly enriched genes are related with carbohydrate metabolism and secondary metabolite synthesis. Forty-three putative effectors were cloned from C. diplodiella, and applied for further functional analysis. Among them, one protein exhibited strong effect in the suppression of BCL2-associated X (BAX)-induced hypersensitive response after transiently expressed in Nicotiana benthamiana leaves. This work facilitates valuable genetic basis for understanding the molecular mechanism underlying C. diplodiella-grapevine interaction.
Collapse
Affiliation(s)
- Ruitao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yiming Wang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Peng Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
67
|
Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F. Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. FRONTIERS IN PLANT SCIENCE 2020; 11:597642. [PMID: 33384704 PMCID: PMC7769811 DOI: 10.3389/fpls.2020.597642] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
68
|
Xu Y, Li X, Liang W, Liu M. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in the Phytopathogenic Fungus Botrytis cinerea. Front Microbiol 2020; 11:585614. [PMID: 33329453 PMCID: PMC7728723 DOI: 10.3389/fmicb.2020.585614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Posttranslational modifications (PTMs) of the whole proteome have become a hot topic in the research field of epigenetics, and an increasing number of PTM types have been identified and shown to play significant roles in different cellular processes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly detected PTM, and the 2-hydroxyisobutyrylome has been identified in several species. Botrytis cinerea is recognized as one of the most destructive pathogens due to its broad host distribution and very large economic losses; thus the many aspects of its pathogenesis have been continuously studied. However, distribution and function of Khib in this phytopathogenic fungus are not clear. In this study, a proteome-wide analysis of Khib in B. cinerea was performed, and 5,398 Khib sites on 1,181 proteins were identified. Bioinformatics analysis showed that the 2-hydroxyisobutyrylome in B. cinerea contains both conserved proteins and novel proteins when compared with Khib proteins in other species. Functional classification, functional enrichment and protein interaction network analyses showed that Khib proteins are widely distributed in cellular compartments and involved in diverse cellular processes. Significantly, 37 proteins involved in different aspects of regulating the pathogenicity of B. cinerea were detected as Khib proteins. Our results provide a comprehensive view of the 2-hydroxyisobutyrylome and lay a foundation for further studying the regulatory mechanism of Khib in both B. cinerea and other plant pathogens.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxia Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
69
|
Targeted Disruption of Scytalone Dehydratase Gene Using Agrobacterium tumefaciens-Mediated Transformation Leads to Altered Melanin Production in Ascochyta lentis. J Fungi (Basel) 2020; 6:jof6040314. [PMID: 33255939 PMCID: PMC7712762 DOI: 10.3390/jof6040314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
Sustainable crop production is constantly challenged by the rapid evolution of fungal pathogens equipped with an array of host infection strategies and survival mechanisms. One of the devastating fungal pathogens that infect lentil is the ascomycete Ascochyta lentis which causes black spot or ascochyta blight (AB) on all above ground parts of the plant. In order to explore the mechanisms involved in the pathogenicity of A. lentis, we developed a targeted gene replacement method using Agrobacterium tumefaciens mediated transformation (ATMT) to study and characterize gene function. In this study, we investigated the role of scytalone dehydratase (SCD) in the synthesis of 1,8-dihydroxynaphthalene (DHN)-melanin in AlKewell. Two SCD genes have been identified in AlKewell, AlSCD1 and AlSCD2. Phylogenetic analysis revealed that AlSCD1 clustered with the previously characterized fungal SCDs; thus, AlSCD1 was disrupted using the targeted gene replacement vector, pTAR-hyg-SCD1. The vector was constructed in a single step process using Gibson Assembly, which facilitated an easy and seamless assembly of multiple inserts. The resulting AlKewell scd1::hyg transformants appeared light brown/brownish-pink in contrast to the dark brown pycnidia of the WT strain and ectopic transformant, indicating an altered DHN-melanin production. Disruption of AlSCD1 gene did not result in a change in the virulence profile of AlKewell towards susceptible and resistant lentil varieties. This is the first report of a targeted gene manipulation in A. lentis which serves as a foundation for the functional gene characterization to provide a better understanding of molecular mechanisms involved in pathogen diversity and host specificity.
Collapse
|
70
|
The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens 2020; 9:pathogens9110923. [PMID: 33171745 PMCID: PMC7695001 DOI: 10.3390/pathogens9110923] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen.
Collapse
|
71
|
Zhang N, Yang Z, Liang W, Liu M. Global Proteomic Analysis of Lysine Crotonylation in the Plant Pathogen Botrytis cinerea. Front Microbiol 2020; 11:564350. [PMID: 33193151 PMCID: PMC7644960 DOI: 10.3389/fmicb.2020.564350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Lysine crotonylation (Kcr), a recently discovered post-translational modification, plays a key role in the regulation of diverse cellular processes. Botrytis cinerea is a destructive necrotrophic fungal pathogen distributed worldwide with broad ranging hosts. However, the functions of Kcr are unknown in B. cinerea or any other plant fungal pathogens. Here, we comprehensively evaluated the crotonylation proteome of B. cinerea and identified 3967 Kcr sites in 1041 proteins, which contained 9 types of modification motifs. Our results show that although the crotonylation was largely conserved, different organisms contained distinct crotonylated proteins with unique functions. Bioinformatics analysis demonstrated that the majority of crotonylated proteins were distributed in cytoplasm (35%), mitochondria (26%), and nucleus (22%). The identified proteins were found to be involved in various metabolic and cellular processes, such as cytoplasmic translation and structural constituent of ribosome. Particularly, 26 crotonylated proteins participated in the pathogenicity of B. cinerea, suggesting a significant role for Kcr in this process. Protein interaction network analysis demonstrated that many protein interactions are regulated by crotonylation. Furthermore, our results show that different nutritional conditions had a significant influence on the Kcr levels of B. cinerea. These data represent the first report of the crotonylome of B. cinerea and provide a good foundation for further explorations of the role of Kcr in plant fungal pathogens.
Collapse
Affiliation(s)
- Ning Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhenzhou Yang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
72
|
Wang P, Li B, Pan YT, Zhang YZ, Li DW, Huang L. Calcineurin-Responsive Transcription Factor CgCrzA Is Required for Cell Wall Integrity and Infection-Related Morphogenesis in Colletotrichum gloeosporioides. THE PLANT PATHOLOGY JOURNAL 2020; 36:385-397. [PMID: 33082723 PMCID: PMC7542025 DOI: 10.5423/ppj.oa.04.2020.0071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/23/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 05/04/2023]
Abstract
The ascomycete fungus Colletotrichum gloeosporioides infects a wide range of plant hosts and causes enormous economic losses in the world. The transcription factors (TFs) play an important role in development and pathogenicity of many organisms. In this study, we found that the C2H2 TF CgCrzA is localized in both cytoplasm and nucleus under standard condition, and it translocated from cytoplasm to nucleus in a calcineurin-dependent manner. Moreover, the ΔCgCrzA was hypersensitive to cell wall perturbing agents and showed severe cell wall integrity defects. Deletion of the CgCRZA inhibited the development of invasive structures and lost pathogenicity to plant hosts. Our results suggested that calcineurin-responsive TF CgCrzA was not only involved in regulating cell wall integrity, but also in morphogenesis and virulence in C. gloeosporioides.
Collapse
Affiliation(s)
- Ping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 20037, China
| | - Bing Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 5009, China
| | - Yu-Ting Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 20037, China
| | - Yun-Zhao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 20037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, USA
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 20037, China
- Corresponding author. Phone) +86-25-85427301, E-mail) , ORCID, De-Wei Li https://orcid.org/0000-0002-2788-7938, Lin Huang https://orcid.org/0000-0001-7536-0914
| |
Collapse
|
73
|
Yu FY, Chiu CM, Lee YZ, Lee SJ, Chou CM, You BJ, Hsieh DK, Lee MR, Lee MH, Bostock RM. Polyketide Synthase Gene Expression in Relation to Chloromonilicin and Melanin Production in Monilinia fructicola. PHYTOPATHOLOGY 2020; 110:1465-1475. [PMID: 32286920 DOI: 10.1094/phyto-02-20-0059-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Monilinia fructicola is a fungal pathogen of worldwide significance that causes brown rot of stone fruits. There are only few reports related to the production of biologically active polyketides by this pathogen. In this study, we examined an atypical M. fructicola strain TW5-4 that shows strong antimicrobial activity against various plant pathogens. TW5-4 also displays sparse growth in culture, low virulence, and higher levels of melanin compared with its albino mutant, TW5-4WM, and a wild-type strain Mf13-81. Antifungal compounds were extracted from TW5-4 and purified by thin-layer chromatography following visualization with an on-the-chromatogram inhibition assay. The principal antifungal compound was identified by linear ion trap mass spectrometry, high-resolution electro-spray ionization mass spectrometry, and proton nuclear magnetic resonance analyses as the polyketide chloromonilicin. Multiple M. fructicola polyketide synthase (PKS) sequences were then cloned by degenerate PCR and inverse PCR. Sequence analyses support presence of a 10-member PKS gene family in the M. fructicola genome. Analyses of PKS gene expression found no strong correlation between chloromonilicin production in culture and transcript levels of any of the PKS gene family members in mycelium of strains TW5-4, TW5-4WM, and Mf13-81. However, MfPKS12, a homolog of BcPKS12 involved in biosynthesis of 1,8-dihydroxynaphthalene (DHN)-melanin in Botrytis cinerea, was strongly expressed in mycelia of TW5-4 and Mf13-81. An MfPKS12-silenced mutant accumulated significantly less melanin in mycelia, had lower resistance to polyethylene glycol-induced osmotic stress, and displayed reduced virulence on nectarine fruit. The results suggest that DHN-melanin is required for tolerance to osmotic stress and full virulence in M. fructicola.
Collapse
Affiliation(s)
- Fang-Yi Yu
- Department of Plant Pathology, National Chung Hsing University, Taiwan
| | - Chiu-Min Chiu
- Department of Plant Pathology, National Chung Hsing University, Taiwan
- Department of Plant Pathology, University of California, Davis, CA
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan
| | - Yue-Zhi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taiwan
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taiwan
| | - Chien-Ming Chou
- Department of Plant Pathology, National Chung Hsing University, Taiwan (deceased 18 September 2017)
| | - Bang-Jau You
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Dai-Keng Hsieh
- Department of Plant Pathology, National Chung Hsing University, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taiwan
| | - Maw-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology, National Chung Hsing University, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan
| | - Richard M Bostock
- Department of Plant Pathology, University of California, Davis, CA
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan
| |
Collapse
|
74
|
Cui K, Zhao Y, He L, Ding J, Li B, Mu W, Liu F. Comparison of Transcriptome Profiles of the Fungus Botrytis cinerea and Insect Pest Bradysia odoriphaga in Response to Benzothiazole. Front Microbiol 2020; 11:1043. [PMID: 32655508 PMCID: PMC7325989 DOI: 10.3389/fmicb.2020.01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
Benzothiazole (BT) has a strong inhibitory effect on the growth and development of a wide spectrum of fungi and insects, such as Botrytis cinerea and Bradysia odoriphaga, that cause serious losses in agriculture. To investigate the underlying antifungal and insecticidal mechanisms of BT, RNA-seq analysis was performed for B. cinerea after BT treatment for 12, 24, and 48 h and for B. odoriphaga after BT treatment for 6 and 24 h. In B. cinerea, the pectin degradation process was inhibited, suggesting a low utilization of carbohydrate sources. As the treatment time was extended, the cell walls of B. cinerea thickened, and increases in melanin synthesis and ion transport were observed. In B. odoriphaga, signaling pathways including MAPK, insulin, adipocytokine, forkhead box class O, and peroxisome proliferator-activated receptor were activated at 6 h, and phosphoenolpyruvate carboxykinase was the core gene in the signal transduction pathways that responded to BT; digestive system and melanogenesis genes were obviously altered at 24 h. In addition, we identified several insecticidal target genes, such as trypsin, aminopeptidase N, and tyrosinase. Benzothiazole significantly affected nutrient metabolism, especially carbohydrate metabolism, in both species, and the pentose and glucuronate interconversions pathway was shared by both species, although the individual genes were different in each species. Overall, our results suggested that BT was a melanogenesis disrupter for the insect but an activator for the fungus. Our findings are helpful for deeply exploring the genes targeted by BT and for developing new pesticide compounds with unique mechanisms of action.
Collapse
Affiliation(s)
- Kaidi Cui
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yunhe Zhao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Leiming He
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Jinfeng Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
75
|
Schumacher J, Gorbushina AA. Light sensing in plant- and rock-associated black fungi. Fungal Biol 2020; 124:407-417. [DOI: 10.1016/j.funbio.2020.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
76
|
Ambrico PF, Šimek M, Rotolo C, Morano M, Minafra A, Ambrico M, Pollastro S, Gerin D, Faretra F, De Miccolis Angelini RM. Surface Dielectric Barrier Discharge plasma: a suitable measure against fungal plant pathogens. Sci Rep 2020; 10:3673. [PMID: 32111863 PMCID: PMC7048822 DOI: 10.1038/s41598-020-60461-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2019] [Accepted: 02/03/2020] [Indexed: 01/08/2023] Open
Abstract
Fungal diseases seriously affect agricultural production and the food industry. Crop protection is usually achieved by synthetic fungicides, therefore more sustainable and innovative technologies are increasingly required. The atmospheric pressure low-temperature plasma is a novel suitable measure. We report on the effect of plasma treatment on phytopathogenic fungi causing quantitative and qualitative losses of products both in the field and postharvest. We focus our attention on the in vitro direct inhibitory effect of non-contact Surface Dielectric Barrier Discharge on conidia germination of Botrytis cinerea, Monilinia fructicola, Aspergillus carbonarius and Alternaria alternata. A few minutes of treatment was required to completely inactivate the fungi on an artificial medium. Morphological analysis of spores by Scanning Electron Microscopy suggests that the main mechanism is plasma etching due to Reactive Oxygen Species or UV radiation. Spectroscopic analysis of plasma generated in humid air gives the hint that the rotational temperature of gas should not play a relevant role being very close to room temperature. In vivo experiments on artificially inoculated cherry fruits demonstrated that inactivation of fungal spores by the direct inhibitory effect of plasma extend their shelf life. Pre-treatment of fruits before inoculation improve the resistance to infections maybe by activating defense responses in plant tissues.
Collapse
Affiliation(s)
- Paolo F Ambrico
- Consiglio Nazionale delle Ricerche, Istituto per la Scienza e la Tecnologia dei Plasmi, via Amendola 122/D, 70126, Bari, Italy.
| | - Milan Šimek
- Academy of Sciences of the Czech Republic, Institute of Plasma Physics v.v.i., Department of Pulse Plasma Systems, Za Slovankou 1782/3, 18200, Prague, Czech Republic
| | - Caterina Rotolo
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy
| | - Massimo Morano
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy
| | - Angelantonio Minafra
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, via Amendola 122/D, 70126, Bari, Italy
| | - Marianna Ambrico
- Consiglio Nazionale delle Ricerche, Istituto per la Scienza e la Tecnologia dei Plasmi, via Amendola 122/D, 70126, Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy
| | - Donato Gerin
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy.
| | - Rita M De Miccolis Angelini
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
77
|
Wang T, Ren D, Guo H, Chen X, Zhu P, Nie H, Xu L. CgSCD1 Is Essential for Melanin Biosynthesis and Pathogenicity of Colletotrichum gloeosporioides. Pathogens 2020; 9:pathogens9020141. [PMID: 32093195 PMCID: PMC7169410 DOI: 10.3390/pathogens9020141] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023] Open
Abstract
Colletotrichum gloeosporioides, an important phytopathogenic fungus, mainly infects tropical fruits and results in serious anthracnose. Previous studies have shown that melanin biosynthesis inhibitor can inhibit the melanization of the appressoria of Magnaporthe grisea and Colletotrichumorbiculare, resulting in limited infection of the hosts. In this study, we identified and characterized a scytalone dehydratase gene (CgSCD1) from C. gloeosporioides which is involved in melanin synthesis. The CgSCD1 gene deletion mutant ΔCgscd1 was obtained using homologous recombination. The ΔCgscd1 mutant showed no melanin accumulation on appressoria formation and vegetative hyphae. Furthermore, the virulence of ΔCgscd1 was significantly reduced in comparison with the wild-type (WT) strain. Further investigations showed that the growth rate as well as germination and appressorium formation of ΔCgscd1 displayed no difference compared to the wild-type and complemented transformant Cgscd1com strains. Furthermore, we found that the appressorial turgor pressure in the ΔCgscd1 mutant showed no difference compared to that in the WT and Cgscd1com strains in the incipient cytorrhysis experiment. However, fewer infectious hyphae of ΔCgscd1 were observed in the penetration experiments, suggesting that the penetration ability of nonpigmented appressoria was partially impaired. In conclusion, we identified the CgSCD1 gene, which is involved in melanin synthesis and pathogenicity, and found that the melanization defect did not affect appressorial turgor pressure in C. gloeosporioides.
Collapse
Affiliation(s)
| | | | | | | | | | - Haozhen Nie
- Correspondence: (H.N.); (L.X.); Tel.: +86-021-5434-1012 (L.X.)
| | - Ling Xu
- Correspondence: (H.N.); (L.X.); Tel.: +86-021-5434-1012 (L.X.)
| |
Collapse
|
78
|
Harting R, Höfer A, Tran VT, Weinhold LM, Barghahn S, Schlüter R, Braus GH. The Vta1 transcriptional regulator is required for microsclerotia melanization in Verticillium dahliae. Fungal Biol 2020; 124:490-500. [PMID: 32389312 DOI: 10.1016/j.funbio.2020.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Many fungi are able to produce resting structures, which ensure survival and protect them against various stresses in their habitat such as exposure to UV light, temperature variations, drought as well as changing pH and nutrient conditions. Verticillium dahliae is a plant pathogenic fungus that forms melanized resting structures, called microsclerotia, for survival of time periods without a host. These highly stress resistant microsclerotia persist in the soil for many years and are therefore problematic for an effective treatment of the fungus. The Verticillium transcription activator of adhesion 1 (Vta1) was initially identified as one of several transcriptional regulators that rescue adhesion in non-adhesive Saccharomyces cerevisiae cells. Vta2 and Vta3 are required for early steps in plant infection and colonization and additionally control microsclerotia formation. Here, we show that Vta1 function is different, because it is dispensable for root colonization and infection. Vta1 is produced in the fungal cell during microsclerotia development. Analysis of the deletion mutant revealed that the absence of Vta1 allows microsclerotia production, but they are colorless and no more melanized. Vta1 is required for melanin production and activates transcription of melanin biosynthesis genes including the polyketide synthase encoding PKS1 and the laccase LAC1. The primary function of Vta1 in melanin production is important for survival of microsclerotia as resting structures of V. dahliae.
Collapse
Affiliation(s)
- Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Annalena Höfer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Van-Tuan Tran
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Lisa-Maria Weinhold
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Sina Barghahn
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
79
|
Chang PK, Cary JW, Lebar MD. Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Appl Microbiol Biotechnol 2020; 104:2277-2286. [PMID: 31974722 DOI: 10.1007/s00253-020-10347-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 11/27/2022]
Abstract
Fungal pigments, which are classified as secondary metabolites, are polymerized products derived mostly from phenolic precursors with remarkable structural diversity. Pigments of conidia and sclerotia serve myriad functions. They provide tolerance against various environmental stresses such as ultraviolet light, oxidizing agents, and ionizing radiation. Some pigments even play a role in fungal pathogenesis. This review gathers available research and discusses current knowledge on the formation of conidial and sclerotial pigments in aspergilli. It examines organization of genes involved in pigment production, biosynthetic pathways, and biological functions and reevaluates some of the current dogma, especially with respect to the DHN-melanin pathway, on the production of these enigmatic polymers. A better understanding of the structure and biosynthesis of melanins and other pigments could facilitate strategies to mitigate fungal pathogenesis.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Agricultural Research Service, U. S. Department of Agriculture, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA.
| | - Jeffrey W Cary
- Agricultural Research Service, U. S. Department of Agriculture, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA.
| | - Matthew D Lebar
- Agricultural Research Service, U. S. Department of Agriculture, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA
| |
Collapse
|
80
|
Graham-Taylor C, Kamphuis LG, Derbyshire MC. A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. BMC Genomics 2020; 21:7. [PMID: 31898475 PMCID: PMC6941272 DOI: 10.1186/s12864-019-6424-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The broad host range pathogen Sclerotinia sclerotiorum infects over 400 plant species and causes substantial yield losses in crops worldwide. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but little is known about the secondary metabolite repertoire of S. sclerotiorum. In this study, we predicted secondary metabolite biosynthetic gene clusters in the genome of S. sclerotiorum and analysed their expression during infection of Brassica napus using an existing transcriptome data set. We also investigated their sequence diversity among a panel of 25 previously published S. sclerotiorum isolate genomes. RESULTS We identified 80 putative secondary metabolite clusters. Over half of the clusters contained at least three transcriptionally coregulated genes. Comparative genomics revealed clusters homologous to clusters in the closely related plant pathogen Botrytis cinerea for production of carotenoids, hydroxamate siderophores, DHN melanin and botcinic acid. We also identified putative phytotoxin clusters that can potentially produce the polyketide sclerin and an epipolythiodioxopiperazine. Secondary metabolite clusters were enriched in subtelomeric genomic regions, and those containing paralogues showed a particularly strong association with repeats. The positional bias we identified was borne out by intraspecific comparisons that revealed putative secondary metabolite genes suffered more presence / absence polymorphisms and exhibited a significantly higher sequence diversity than other genes. CONCLUSIONS These data suggest that S. sclerotiorum produces numerous secondary metabolites during plant infection and that their gene clusters undergo enhanced rates of mutation, duplication and recombination in subtelomeric regions. The microevolutionary regimes leading to S. sclerotiorum secondary metabolite diversity have yet to be elucidated. Several potential phytotoxins documented in this study provide the basis for future functional analyses.
Collapse
Affiliation(s)
- Carolyn Graham-Taylor
- 0000 0004 0375 4078grid.1032.0Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia Australia
| | - Lars G. Kamphuis
- 0000 0004 0375 4078grid.1032.0Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia Australia
| | - Mark C. Derbyshire
- 0000 0004 0375 4078grid.1032.0Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia Australia
| |
Collapse
|
81
|
Challacombe JF, Hesse CN, Bramer LM, McCue LA, Lipton M, Purvine S, Nicora C, Gallegos-Graves LV, Porras-Alfaro A, Kuske CR. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics 2019; 20:976. [PMID: 31830917 PMCID: PMC6909477 DOI: 10.1186/s12864-019-6358-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2019] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The dominant fungi in arid grasslands and shrublands are members of the Ascomycota phylum. Ascomycota fungi are important drivers in carbon and nitrogen cycling in arid ecosystems. These fungi play roles in soil stability, plant biomass decomposition, and endophytic interactions with plants. They may also form symbiotic associations with biocrust components or be latent saprotrophs or pathogens that live on plant tissues. However, their functional potential in arid soils, where organic matter, nutrients and water are very low or only periodically available, is poorly characterized. RESULTS Five Ascomycota fungi were isolated from different soil crust microhabitats and rhizosphere soils around the native bunchgrass Pleuraphis jamesii in an arid grassland near Moab, UT, USA. Putative genera were Coniochaeta, isolated from lichen biocrust, Embellisia from cyanobacteria biocrust, Chaetomium from below lichen biocrust, Phoma from a moss microhabitat, and Aspergillus from the soil. The fungi were grown in replicate cultures on different carbon sources (chitin, native bunchgrass or pine wood) relevant to plant biomass and soil carbon sources. Secretomes produced by the fungi on each substrate were characterized. Results demonstrate that these fungi likely interact with primary producers (biocrust or plants) by secreting a wide range of proteins that facilitate symbiotic associations. Each of the fungal isolates secreted enzymes that degrade plant biomass, small secreted effector proteins, and proteins involved in either beneficial plant interactions or virulence. Aspergillus and Phoma expressed more plant biomass degrading enzymes when grown in grass- and pine-containing cultures than in chitin. Coniochaeta and Embellisia expressed similar numbers of these enzymes under all conditions, while Chaetomium secreted more of these enzymes in grass-containing cultures. CONCLUSIONS This study of Ascomycota genomes and secretomes provides important insights about the lifestyles and the roles that Ascomycota fungi likely play in arid grassland, ecosystems. However, the exact nature of those interactions, whether any or all of the isolates are true endophytes, latent saprotrophs or opportunistic phytopathogens, will be the topic of future studies.
Collapse
Affiliation(s)
- Jean F Challacombe
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Present address: Colorado State University, College of Agricultural Sciences, 301 University Ave, Fort Collins, CO, 80523, USA.
| | - Cedar N Hesse
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Horticultural Crops Research, USDA ARS, Corvallis, OR, USA
| | - Lisa M Bramer
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Lee Ann McCue
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Mary Lipton
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel Purvine
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie Nicora
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
82
|
Kilani J, Davanture M, Simon A, Zivy M, Fillinger S. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca 2+ signalling pathways. J Proteomics 2019; 212:103580. [PMID: 31733416 DOI: 10.1016/j.jprot.2019.103580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2019] [Revised: 10/21/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022]
Abstract
Signal transduction (ST) is essential for rapid adaptive responses to changing environmental conditions. It acts through rapid post-translational modifications of signalling proteins and downstream effectors that regulate the activity and/or subcellular localisation of target proteins, or the expression of downstream genes. We have performed a quantitative, comparative proteomics study of ST mutants in the phytopathogenic fungus Botrytis cinerea during axenic growth under non-stressed conditions to decipher the roles of two kinases of the hyper-osmolarity pathway in B. cinerea physiology. We studied the mutants of the sensor histidine kinase Bos1 and of the MAP kinase Sak1. Label-free shotgun proteomics detected 2425 proteins, 628 differentially abundant between mutants and wild-type, 270 common to both mutants, indicating independent and shared regulatory functions for both kinases. Gene ontology analysis showed significant changes in functional categories that may explain in vitro growth and virulence defects of both mutants (secondary metabolism enzymes, lytic enzymes, proteins linked to osmotic, oxidative and cell wall stress). The proteome data also highlight a new link between Sak1 MAPK, cAMP and Ca2+ signalling. This study reveals the potential of proteomic analyses of signal transduction mutants to decipher their biological functions. TEXT-VULGARISATION: The fungus Botrytis cinerea is responsible for grey mold disease of hundreds of plant species. During infection, the fungus has to face important changes of its environment. Adaptation to these changing environmental conditions involves proteins of such called signal transduction pathways that regulate the production, activity or localisation of cellular components, mainly proteins. While the components of such signal transduction pathways are well known, their role globally understood, the precise impact on protein production remains unknown. In this study we have analysed and compared the global protein content of two Botrytis cinerea signal transduction mutants - both avirulent - to the pathogenic parental strain. The data of 628 differential proteins between mutants and wild-type, showed significant changes in proteins related to plant infection (secondary metabolism enzymes, lytic enzymes, proteins linked to osmotic, oxidative and cell wall stress) that may explain the virulence defects of both mutants. Moreover, we observed intracellular accumulation of secreted proteins in one of the mutants suggesting a potential secretion defect.
Collapse
Affiliation(s)
- Jaafar Kilani
- UMR BIOGER, INRA, AgroParisTech, Université Paris Saclay, Thiverval-Grignon, France; Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Marlène Davanture
- PAPPSO, GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Adeline Simon
- UMR BIOGER, INRA, AgroParisTech, Université Paris Saclay, Thiverval-Grignon, France
| | - Michel Zivy
- PAPPSO, GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Sabine Fillinger
- UMR BIOGER, INRA, AgroParisTech, Université Paris Saclay, Thiverval-Grignon, France.
| |
Collapse
|
83
|
Zhang P, Zhou S, Wang G, An Z, Liu X, Li K, Yin WB. Two transcription factors cooperatively regulate DHN melanin biosynthesis and development in Pestalotiopsis fici. Mol Microbiol 2019; 112:649-666. [PMID: 31116900 DOI: 10.1111/mmi.14281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/14/2019] [Indexed: 01/17/2023]
Abstract
Fungal 1,8-dihydroxynaphthalene (DHN) melanin plays important roles in UV protection, oxidative stress and pathogenesis. However, knowledge of the regulatory mechanisms of its biosynthesis is limited. Previous studies showed two transcription factors, PfmaF and PfmaH, located in the DHN melanin biosynthetic gene cluster (Pfma) in Pestalotiopsis fici. In this study, deletion of PfmaH resulted in loss of melanin and affected conidia cell wall integrity. Specifically, PfmaH directly regulates the expression of scytalone dehydratase, which catalyzes the transition of scytalone to T3 HN. However, PfmaF disruption using CRISPR/Cas9 system affected neither DHN melanin distribution nor conidia cell wall integrity in P. fici. Unexpectedly, overexpression of PfmaF leads to heavy pigment accumulation in P. fici hyphae. Transcriptome and qRT-PCR analyses provide insight into the roles of PfmaF and PfmaH in DHN melanin regulation. PfmaH, as a pathway specific regulator, mainly regulates melanin biosynthesis that contributes to cell wall development. Furthermore, PfmaF functions as a broad regulator to stimulate PfmaH expression in melanin production, secondary metabolism as well as fungal development.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shuang Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhiqiang An
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
84
|
Fang Y, Klosterman SJ, Tian C, Wang Y. Insights into VdCmr1-mediated protection against high temperature stress and UV irradiation in Verticillium dahliae. Environ Microbiol 2019; 21:2977-2996. [PMID: 31136051 DOI: 10.1111/1462-2920.14695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on more than 200 plant species worldwide. This fungus can survive for years in soil as melanized microsclerotia. We found that VdCmr1, a transcription factor, is required for the melanin production and increased survival following UV irradiation in V. dahliae but not for microsclerotia production or virulence. Here, we provided evidence how VdCmr1 protects against high temperature (HT) and UV irradiation in V. dahliae. The results indicate that VdCmr1 mediates entry to the diapause period in V. dahliae in response to HT and contributes to the expression of proteins to minimize protein misfolding and denaturation. VdCmr1 deletion results in the misregulation of DNA repair machinery, suggestive of reduced DNA repair capacity following UV irradiation and in correlation with the low survival rate of UV-treated VdCmr1 mutants. We discovered a putative VdCmr1-dependent gene cluster associated with secondary metabolism and stress responses. We also functionally characterized two VdCmr1-responsive genes participating in HT and UV response. These results shed further light on the roles of VdCmr1 in protection from HT or UV irradiation, and the additional insights into the mechanisms of this protection may be useful to exploit for more effective disease control.
Collapse
Affiliation(s)
- Yulin Fang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA, 93905, USA
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
85
|
Transcriptome analysis reveals molecular mechanisms of sclerotial development in the rice sheath blight pathogen Rhizoctonia solani AG1-IA. Funct Integr Genomics 2019; 19:743-758. [PMID: 31054140 DOI: 10.1007/s10142-019-00677-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/03/2023]
Abstract
Rhizoctonia solani AG1-IA is a soil-borne necrotrophic pathogen that causes devastating rice sheath blight disease in rice-growing regions worldwide. Sclerotia play an important role in the life cycle of R. solani AG1-IA. In this study, RNA sequencing was used to investigate the transcriptomic dynamics of sclerotial development (SD) of R. solani AG1-IA. Gene ontology and pathway enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to investigate the functions and pathways of differentially expressed genes (DEGs). Six cDNA libraries were generated, and more than 300 million clean reads were obtained and assembled into 15,100 unigenes. In total, 12,575 differentially expressed genes were identified and 34.62% (4353) were significantly differentially expressed with a FDR ≤ 0.01 and |log2Ratio| ≥ 1, which were enriched into eight profiles using Short Time-series Expression Miner. Furthermore, KEGG and gene ontology analyses suggest the DEGs were significantly enriched in several biological processes and pathways, including binding and catalytic functions, biosynthesis of ribosomes, and other biological functions. Further annotation of the DEGs using the Clusters of Orthologous Groups (COG) database found most DEGs were involved in amino acid transport and metabolism, as well as energy production and conversion. Furthermore, DEGs relevant to SD of R. solani AG1-IA were involved in secondary metabolite biosynthesis, melanin biosynthesis, ubiquitin processes, autophagy, and reactive oxygen species metabolism. The gene expression profiles of 10 randomly selected DEGs were validated by quantitative real-time reverse transcription PCR and were consistent with the dynamics in transcript abundance identified by RNA sequencing. The data provide a high-resolution map of gene expression during SD, a key process contributing to the pathogenicity of this devastating pathogen. In addition, this study provides a useful resource for further studies on the genomics of R. solani AG1-IA and other Rhizoctonia species.
Collapse
|
86
|
Ebert MK, Spanner RE, de Jonge R, Smith DJ, Holthusen J, Secor GA, Thomma BPHJ, Bolton MD. Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi. Environ Microbiol 2019; 21:913-927. [PMID: 30421572 PMCID: PMC7379194 DOI: 10.1111/1462-2920.14475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
Abstract
Perylenequinones are a family of structurally related polyketide fungal toxins with nearly universal toxicity. These photosensitizing compounds absorb light energy which enables them to generate reactive oxygen species that damage host cells. This potent mechanism serves as an effective weapon for plant pathogens in disease or niche establishment. The sugar beet pathogen Cercospora beticola secretes the perylenequinone cercosporin during infection. We have shown recently that the cercosporin toxin biosynthesis (CTB) gene cluster is present in several other phytopathogenic fungi, prompting the search for biosynthetic gene clusters (BGCs) of structurally similar perylenequinones in other fungi. Here, we report the identification of the elsinochrome and phleichrome BGCs of Elsinoë fawcettii and Cladosporium phlei, respectively, based on gene cluster conservation with the CTB and hypocrellin BGCs. Furthermore, we show that previously reported BGCs for elsinochrome and phleichrome are involved in melanin production. Phylogenetic analysis of the corresponding melanin polyketide synthases (PKSs) and alignment of melanin BGCs revealed high conservation between the established and newly identified C. beticola, E. fawcettii and C. phlei melanin BGCs. Mutagenesis of the identified perylenequinone and melanin PKSs in C. beticola and E. fawcettii coupled with mass spectrometric metabolite analyses confirmed their roles in toxin and melanin production.
Collapse
Affiliation(s)
- Malaika K. Ebert
- Red River Valley Agricultural Research CenterUSDA Agricultural Research ServiceFargoNDUSA,Department of Plant PathologyNorth Dakota State UniversityFargoNDUSA,Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands
| | - Rebecca E. Spanner
- Red River Valley Agricultural Research CenterUSDA Agricultural Research ServiceFargoNDUSA,Department of Plant PathologyNorth Dakota State UniversityFargoNDUSA
| | - Ronnie de Jonge
- Plant‐Microbe Interactions, Department of BiologyScience4Life, Utrecht UniversityUtrechtThe Netherlands,Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium,VIB Center for Plant Systems BiologyGhentBelgium
| | - David J. Smith
- Red River Valley Agricultural Research CenterUSDA Agricultural Research ServiceFargoNDUSA
| | - Jason Holthusen
- Red River Valley Agricultural Research CenterUSDA Agricultural Research ServiceFargoNDUSA
| | - Gary A. Secor
- Department of Plant PathologyNorth Dakota State UniversityFargoNDUSA
| | | | - Melvin D. Bolton
- Red River Valley Agricultural Research CenterUSDA Agricultural Research ServiceFargoNDUSA,Department of Plant PathologyNorth Dakota State UniversityFargoNDUSA
| |
Collapse
|
87
|
Schumacher J, Studt L, Tudzynski P. The putative H3K36 demethylase BcKDM1 affects virulence, stress responses and photomorphogenesis in Botrytis cinerea. Fungal Genet Biol 2019; 123:14-24. [DOI: 10.1016/j.fgb.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2018] [Revised: 11/04/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022]
|
88
|
Griffiths SA, Cox RJ, Overdijk EJR, Mesarich CH, Saccomanno B, Lazarus CM, de Wit PJGM, Collemare J. Assignment of a dubious gene cluster to melanin biosynthesis in the tomato fungal pathogen Cladosporium fulvum. PLoS One 2018; 13:e0209600. [PMID: 30596695 PMCID: PMC6312243 DOI: 10.1371/journal.pone.0209600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
Pigments and phytotoxins are crucial for the survival and spread of plant pathogenic fungi. The genome of the tomato biotrophic fungal pathogen Cladosporium fulvum contains a predicted gene cluster (CfPKS1, CfPRF1, CfRDT1 and CfTSF1) that is syntenic with the characterized elsinochrome toxin gene cluster in the citrus pathogen Elsinoë fawcettii. However, a previous phylogenetic analysis suggested that CfPks1 might instead be involved in pigment production. Here, we report the characterization of the CfPKS1 gene cluster to resolve this ambiguity. Activation of the regulator CfTSF1 specifically induced the expression of CfPKS1 and CfRDT1, but not of CfPRF1. These co-regulated genes that define the CfPKS1 gene cluster are orthologous to genes involved in 1,3-dihydroxynaphthalene (DHN) melanin biosynthesis in other fungi. Heterologous expression of CfPKS1 in Aspergillus oryzae yielded 1,3,6,8-tetrahydroxynaphthalene, a typical precursor of DHN melanin. Δcfpks1 deletion mutants showed similar altered pigmentation to wild type treated with DHN melanin inhibitors. These mutants remained virulent on tomato, showing this gene cluster is not involved in pathogenicity. Altogether, our results showed that the CfPKS1 gene cluster is involved in the production of DHN melanin and suggests that elsinochrome production in E. fawcettii likely involves another gene cluster.
Collapse
Affiliation(s)
- Scott A. Griffiths
- Fungal Natural Products, Westerdijk Fungal Biodiversity Institute, CT, Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Russell J. Cox
- Institut für Organische Chemie, Leibniz Universität Hannover, Hannover
| | - Elysa J. R. Overdijk
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands
| | - Carl H. Mesarich
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Benedetta Saccomanno
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Colin M. Lazarus
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Jérôme Collemare
- Fungal Natural Products, Westerdijk Fungal Biodiversity Institute, CT, Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
89
|
Mafezoli J, Xu YM, Hilário F, Freidhof B, Espinosa-Artiles P, dos Santos LC, de Oliveira MCF, Gunatilaka AAL. Modulation of polyketide biosynthetic pathway of the endophytic fungus, Anteaglonium sp. FL0768, by copper (II) and anacardic acid. PHYTOCHEMISTRY LETTERS 2018; 28:157-163. [PMID: 31354886 PMCID: PMC6660184 DOI: 10.1016/j.phytol.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
In an attempt to explore the biosynthetic potential of endosymbiotic fungi, the secondary metabolite profiles of the endophytic fungus, Anteaglonium sp. FL0768, cultured under a variety of conditions were investigated. In potato dextrose broth (PDB) medium, Anteaglonium sp. FL0768 produced the heptaketides, herbaridine A (1), herbarin (2), 1-hydroxydehydroherbarin (3), scorpinone (4), and the methylated hexaketide 9S,11R-(+)-ascosalitoxin (5). Incorporation of commonly used epigenetic modifiers, 5-azacytidine and suberoylanilide hydroxamic acid, into the PDB culture medium of this fungus had no effect on its secondary metabolite profile. However, the histone acetyl transferase inhibitor, anacardic acid, slightly affected the metabolite profile affording scorpinone (4) as the major metabolite together with 1-hydroxydehydroherbarin (3) and a different methylated hexaketide, ascochitine (6). Intriguingly, incorporaion of Cu2+ into the PDB medium enhanced production of metabolites and drastically affected the biosynthetic pathway resulting in the production of pentaketide dimers, palmarumycin CE4 (7), palmarumycin CP4 (8), and palmarumycin CP1 (9), in addition to ascochitine (6). The structure of the new metabolite 7 was established with the help of spectroscopic data and by MnO2 oxidation to the known pentaketide dimer, palmarumycin CP3 (10). Biosynthetic pathways to some metabolites in Anteaglonium sp. FL0768 are presented and possible effects of AA and Cu2+ on these pathways are discussed.
Collapse
Affiliation(s)
- Jair Mafezoli
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, USA
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - Ya-ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, USA
| | - Felipe Hilário
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, USA
- Departamento de Química Orgânica, Instituto de Química, UNESP, Universidade Estadual Paulista, Araraquara, Sao Paulo, 14800-900, Brazil
| | - Brandon Freidhof
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, USA
| | - Patricia Espinosa-Artiles
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, USA
| | - Lourdes C. dos Santos
- Departamento de Química Orgânica, Instituto de Química, UNESP, Universidade Estadual Paulista, Araraquara, Sao Paulo, 14800-900, Brazil
| | - Maria C. F. de Oliveira
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, USA
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, USA
| |
Collapse
|
90
|
Characterization of the Neurospora crassa DHN melanin biosynthetic pathway in developing ascospores and peridium cells. Fungal Biol 2018; 123:1-9. [PMID: 30654952 DOI: 10.1016/j.funbio.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2018] [Revised: 08/07/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022]
Abstract
Neurospora crassa contains all four enzymes for the synthesis of DHN (dihydroxynaphthalene), the substrate for melanin formation. We show that the DHN melanin pathway functions during N. crassa female development to generate melanized peridium and ascospore cell walls. N. crassa contains one polyketide synthase (PER-1), two polyketide hydrolases (PKH-1 and PKH-2), two THN (tetrahydroxynaphthalene) reductases (PKR-1 and PKR-2), and one scytalone dehydratase (SCY-1). We show that the PER-1, PKH-1, PKR-1 and SCY-1 are required for ascospoer melanization. We also identified the laccase that functions in the conversion of DHN into melanin via a free radical oxidative polymerization reaction, and have named the gene lacm-1 (laccase for melanin formation-1). In maturing perithecia, we show that LACM-1 is localized to the peridium cell wall space while the DHN pathway enzymes are localized to intracellular vesicles. We present a model for melanin formation in which melanin is formed within the cell wall space and the cell wall structure is similar to "reinforced concrete" with the cell wall glucan, chitin, and glycoproteins encased within the melanin polymer. This arrangement provides for a very strong and resilient cell wall and protects the glucan/chitin/glycoprotein matrix from digestion from enzymes and damage from free radicals.
Collapse
|
91
|
Fatema U, Broberg A, Jensen DF, Karlsson M, Dubey M. Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Sci Rep 2018; 8:15009. [PMID: 30301915 PMCID: PMC6177402 DOI: 10.1038/s41598-018-33391-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2018] [Accepted: 09/27/2018] [Indexed: 01/07/2023] Open
Abstract
Clonostachys rosea is a mycoparasitic fungus used for biological control of plant diseases. Its genome contains 31 genes putatively encoding for polyketide synthases (PKSs), 75% of which are arranged in biosynthetic gene clusters. Gene expression analysis during C. rosea interactions with the fungal plant pathogens Botrytis cinerea and Fusarium graminearum showed common and species-specific induction of PKS genes. Our data showed a culture media dependent correlation between PKS gene expression and degree of antagonism in C. rosea. The pks22 and pks29 genes were highly induced during fungal-fungal interactions but not during pigmentation, and gene deletion studies revealed that PKS29 was required for full antagonism against B. cinerea, and for biocontrol of fusarium foot rot on barley. Metabolite analysis revealed that Δpks29 strains has a 50% reduced production (P = 0.001) of an unknown polyketide with molecular formula C15H28O3, while Δpks22 strains lost the ability to produce four previously unknown polyketides named Clonorosein A-D. Clonorosein A and B were purified, their structures determined, and showed strong antifungal activity against B. cinerea and F. graminearum. These results show that PKS22 is required for production of antifungal polyketide Clonorosein A-D, and demonstrate the role of PKS29 in antagonism and biocontrol of fungal plant diseases.
Collapse
Affiliation(s)
- Umma Fatema
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden.,Department of Plant and Soil Sciences, 412 Plant Science Building 1405 Veterans Drive, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Anders Broberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-75007, Uppsala, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden.
| |
Collapse
|
92
|
Liang X, Rollins JA. Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2018; 108:1128-1140. [PMID: 30048598 DOI: 10.1094/phyto-06-18-0197-rvw] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/20/2023]
Abstract
Among necrotrophic fungi, Sclerotinia sclerotiorum is remarkable for its extremely broad host range and for its aggressive host tissue colonization. With full genome sequencing, transcriptomic analyses and the increasing pace of functional gene characterization, the factors underlying the basis of this broad host range necrotrophic pathogenesis are now being elucidated at a greater pace. Among these, genes have been characterized that are required for infection via compound appressoria in addition to genes associated with colonization that regulate oxalic acid (OA) production and OA catabolism. Moreover, virulence-related secretory proteins have been identified, among which are candidates for manipulating host activities apoplastically and cytoplasmically. Coupled with these mechanistic studies, cytological observations of the colonization process have blurred the heretofore clear-cut biotroph versus necrotroph boundary. In this review, we reexamine the cytology of S. sclerotiorum infection and put more recent molecular and genomic data into the context of this cytology. We propose a two-phase infection model in which the pathogen first evades, counteracts and subverts host basal defense reactions prior to killing and degrading host cells. Spatially, the pathogen may achieve this via the production of compatibility factors/effectors in compound appressoria, bulbous subcuticular hyphae, and primary invasive hyphae. By examining the nuances of this interaction, we hope to illuminate new classes of factors as targets to improve our understanding of broad host range necrotrophic pathogens and provide the basis for understanding corresponding host resistance.
Collapse
Affiliation(s)
- Xiaofei Liang
- First author: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University; and second author: Department of Plant Pathology, University of Florida, P.O. Box 110680, Gainesville 32611-0680
| | - Jeffrey A Rollins
- First author: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University; and second author: Department of Plant Pathology, University of Florida, P.O. Box 110680, Gainesville 32611-0680
| |
Collapse
|
93
|
Izquierdo-Bueno I, González-Rodríguez VE, Simon A, Dalmais B, Pradier JM, Le Pêcheur P, Mercier A, Walker AS, Garrido C, Collado IG, Viaud M. Biosynthesis of abscisic acid in fungi: identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea. Environ Microbiol 2018; 20:2469-2482. [PMID: 29708647 DOI: 10.1111/1462-2920.14258] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Abstract
While abscisic acid (ABA) is known as a hormone produced by plants through the carotenoid pathway, a small number of phytopathogenic fungi are also able to produce this sesquiterpene but they use a distinct pathway that starts with the cyclization of farnesyl diphosphate (FPP) into 2Z,4E-α-ionylideneethane which is then subjected to several oxidation steps. To identify the sesquiterpene cyclase (STC) responsible for the biosynthesis of ABA in fungi, we conducted a genomic approach in Botrytis cinerea. The genome of the ABA-overproducing strain ATCC58025 was fully sequenced and five STC-coding genes were identified. Among them, Bcstc5 exhibits an expression profile concomitant with ABA production. Gene inactivation, complementation and chemical analysis demonstrated that BcStc5/BcAba5 is the key enzyme responsible for the key step of ABA biosynthesis in fungi. Unlike what is observed for most of the fungal secondary metabolism genes, the key enzyme-coding gene Bcstc5/Bcaba5 is not clustered with the other biosynthetic genes, i.e., Bcaba1 to Bcaba4 that are responsible for the oxidative transformation of 2Z,4E-α-ionylideneethane. Finally, our study revealed that the presence of the Bcaba genes among Botrytis species is rare and that the majority of them do not possess the ability to produce ABA.
Collapse
Affiliation(s)
- Inmaculada Izquierdo-Bueno
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Cádiz, 11510 Puerto Real, Spain
| | - Victoria E González-Rodríguez
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias de Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz 11510, Spain
| | - Adeline Simon
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Bérengère Dalmais
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Jean-Marc Pradier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Pascal Le Pêcheur
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Alex Mercier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France.,Université Paris-Sud, 91405 Orsay, France
| | - Anne-Sophie Walker
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Carlos Garrido
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias de Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz 11510, Spain
| | - Isidro González Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Cádiz, 11510 Puerto Real, Spain
| | - Muriel Viaud
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| |
Collapse
|
94
|
Li J, Zhang Y, Zhang Y, Yu PL, Pan H, Rollins JA. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum. mBio 2018; 9:e00567-18. [PMID: 29946044 PMCID: PMC6020291 DOI: 10.1128/mbio.00567-18] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
The necrotrophic fungal plant pathogen Sclerotinia sclerotiorum is responsible for substantial global crop losses annually resulting in localized food insecurity and loss of livelihood. Understanding the basis of this broad-host-range and aggressive pathogenicity is hampered by the quantitative nature of both host resistance and pathogen virulence. To improve this understanding, methods for efficient functional gene characterization that build upon the existing complete S. sclerotiorum genome sequence are needed. Here, we report on the development of a clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (CRISPR-Cas9)-mediated strategy for creating gene disruption mutants and the application of this technique for exploring roles of known and hypothesized virulence factors. A key finding of this research is that transformation with a circular plasmid encoding Cas9, target single guide RNA (sgRNA), and a selectable marker resulted in a high frequency of targeted, insertional gene mutation. We observed that 100% of the mutants integrated large rearranged segments of the transforming plasmid at the target site facilitated by the nonhomologous end joining (NHEJ) repair pathway. This result was confirmed in multiple target sites within the same gene in three independent wild-type isolates of S. sclerotiorum and in a second independent gene. Targeting the previously characterized Ssoah1 gene allowed us to confirm the loss-of-function nature of the CRISPR-Cas9-mediated mutants and explore new aspects of the mutant phenotype. Applying this technology to create mutations in a second previously uncharacterized gene allowed us to determine the requirement for melanin accumulation in infection structure development and function.IMPORTANCE Fungi that cause plant diseases by rotting or blighting host tissue with limited specificity remain among the most difficult to control. This is largely due to the quantitative nature of host resistance and a limited understanding of fungal pathogenicity. A mechanistic understanding of pathogenicity requires the ability to manipulate candidate virulence genes to test hypotheses regarding their roles in disease development. Sclerotinia sclerotiorum is among the most notorious of these so-called broad-host-range necrotrophic plant pathogens. The work described here provides a new method for rapidly constructing gene disruption vectors to create gene mutations with high efficiency compared with existing methods. Applying this method to characterize gene functions in S. sclerotiorum, we confirm the requirement for oxalic acid production as a virulence factor in multiple isolates of the fungus and demonstrate that melanin accumulation is not required for infection. Using this approach, the pace of functional gene characterization and the understanding of pathogenicity and related disease resistance will increase.
Collapse
Affiliation(s)
- Jingtao Li
- College of Plant Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Yucheng Zhang
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Pei-Ling Yu
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
95
|
Xie N, Ruprich-Robert G, Silar P, Herbert E, Ferrari R, Chapeland-Leclerc F. Characterization of three multicopper oxidases in the filamentous fungus Podospora anserina: A new role of an ABR1-like protein in fungal development? Fungal Genet Biol 2018; 116:1-13. [PMID: 29654834 DOI: 10.1016/j.fgb.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
Abstract
The Podospora anserina genome contains a large family of 15 multicopper oxidases (MCOs), including three genes encoding a FET3-like protein, an ABR1-like protein and an ascorbate oxidase (AO)-like protein. FET3, ABR1 and AO1 are involved in global laccase-like activity since deletion of the relevant genes led to a decrease of activity when laccase substrate (ABTS) was used as substrate. However, contrary to the P. anserina MCO proteins previously characterized, none of these three MCOs seemed to be involved in lignocellulose degradation and in resistance to phenolic compounds and oxidative stress. We showed that the bulk of ferroxidase activity was clearly due to ABR1, and only in minor part to FET3, although ABR1 does not contain all the residues typical of FET3 proteins. Moreover, we showed that ABR1, related to the Aspergillus fumigatus ABR1 protein, was clearly and specifically involved in pigmentation of ascospores. Surprisingly, phenotypes were more severe in mutants lacking both abr1 and ao1. Deletion of the ao1 gene led to an almost total loss of AO activity. No direct involvement of AO1 in fungal developmental process in P. anserina was evidenced, except in a abr1Δ background. Overall, unlike other previously characterized MCOs, we thus evidence a clear involvement of ABR1 protein in fungal development.
Collapse
Affiliation(s)
- Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France
| | - Gwenaël Ruprich-Robert
- Univ Paris Descartes, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France
| | - Philippe Silar
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France
| | - Eric Herbert
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France
| | - Roselyne Ferrari
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France
| | - Florence Chapeland-Leclerc
- Univ Paris Descartes, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France.
| |
Collapse
|
96
|
Wang Y, Hu X, Fang Y, Anchieta A, Goldman PH, Hernandez G, Klosterman SJ. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae. MICROBIOLOGY (READING, ENGLAND) 2018; 164:685-696. [PMID: 29485393 PMCID: PMC5982140 DOI: 10.1099/mic.0.000633] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/22/2017] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
Abstract
Verticillium dahliae is a soilborne fungus that causes vascular wilt diseases on numerous plant species worldwide. The production of darkly melanized microsclerotia is crucial in the disease cycle of V. dahliae, as these structures allow for long-term survival in soil. Previously, transcriptomic and genomic analysis identified a cluster of genes in V. dahliae that encodes some dihydroxynaphthalene (DHN) melanin biosynthetic pathway homologues found in related fungi. In this study, we explored the roles of cluster-specific transcription factor VdCmr1, as well as two other genes within the cluster encoding a polyketide synthase (VdPKS1) and a laccase (VdLac1), enzymes at initial and endpoint steps in DHN melanin production. The results revealed that VdCmr1 and VdPKS1 are required for melanin production, but neither is required for microsclerotia production. None of the three genes were required for pathogenesis on tobacco and lettuce. Exposure of ΔVdCmr1 and wild-type strains to UV irradiation, or to high temperature (40 °C), revealed an approx. 50 % reduction of survival in the ΔVdCmr1 strain, relative to the wild-type strain, in response to either condition. Expression profiles revealed that expression of some melanin biosynthetic genes are in part dependent on VdCmr1. Combined data indicate VdCmr1 is a key regulator of melanin biosynthesis, and that via regulation of melanogenesis, VdCmr1 affects survival of V. dahliae in response to abiotic threats. We conclude with a model showing regulation of VdCmr1 by a high osmolarity glycerol response (Hog)-type MAP kinase pathway.
Collapse
Affiliation(s)
- Yonglin Wang
- College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Xiaoping Hu
- Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Yulin Fang
- College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Amy Anchieta
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| | - Polly H. Goldman
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| | - Gustavo Hernandez
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| |
Collapse
|
97
|
Gerin D, González-Candelas L, Ballester AR, Pollastro S, De Miccolis Angelini RM, Faretra F. Functional Characterization of the alb1 Orthologue Gene in the Ochratoxigenic Fungus Aspergillus carbonarius (AC49 strain). Toxins (Basel) 2018. [PMID: 29534508 PMCID: PMC5869408 DOI: 10.3390/toxins10030120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022] Open
Abstract
Aspergillus carbonarius, belonging to the group Nigri, is the main species responsible for contamination by ochratoxin A (OTA) in grapes and derivative products. OTA can accumulate in the mycelium and in black conidia of the fungus and released into the matrix. Here, we have deleted in A. carbonarius the alb1 orthologue gene of A. fumigatus, involved in melanin biosynthesis. Three A. carbonarius Δalb1 mutants were characterized for morphologic traits and OTA production on different media and temperatures. Δalb1 mutants showed a fawn color of conidia associated with a significant reduction of the conidiogenesis and a statistically significant increase (p ≤ 0.01) of total OTA production as compared to the wild type (WT) strain. The alb1 gene somehow affected OTA partitioning since in Δalb1 mutants OTA amount was lower in conidia and was more abundantly secreted into the medium as compared to the WT. On grape berries the Δalb1 mutants and the WT caused lesions with similar sizes but OTA amount in berry tissues was higher for the mutants. These results demonstrate that A. carbonarius conidia pigmentation is largely dependent on polyketide biosynthesis. The gene is not directly involved in virulence and its deletion affects morphological features and OTA production in the fungus.
Collapse
Affiliation(s)
- Donato Gerin
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy.
| | - Luis González-Candelas
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Calle Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Ana-Rosa Ballester
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Calle Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy.
- SELGE Network of Public Research Laboratories, via Amendola 165/A, 70126 Bari, Italy.
| | - Rita Milvia De Miccolis Angelini
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy.
- SELGE Network of Public Research Laboratories, via Amendola 165/A, 70126 Bari, Italy.
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy.
- SELGE Network of Public Research Laboratories, via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
98
|
Rodenburg SYA, Terhem RB, Veloso J, Stassen JHM, van Kan JAL. Functional Analysis of Mating Type Genes and Transcriptome Analysis during Fruiting Body Development of Botrytis cinerea. mBio 2018; 9:e01939-17. [PMID: 29440571 PMCID: PMC5821092 DOI: 10.1128/mbio.01939-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Botrytis cinerea is a plant-pathogenic fungus producing apothecia as sexual fruiting bodies. To study the function of mating type (MAT) genes, single-gene deletion mutants were generated in both genes of the MAT1-1 locus and both genes of the MAT1-2 locus. Deletion mutants in two MAT genes were entirely sterile, while mutants in the other two MAT genes were able to develop stipes but never formed an apothecial disk. Little was known about the reprogramming of gene expression during apothecium development. We analyzed transcriptomes of sclerotia, three stages of apothecium development (primordia, stipes, and apothecial disks), and ascospores by RNA sequencing. Ten secondary metabolite gene clusters were upregulated at the onset of sexual development and downregulated in ascospores released from apothecia. Notably, more than 3,900 genes were differentially expressed in ascospores compared to mature apothecial disks. Among the genes that were upregulated in ascospores were numerous genes encoding virulence factors, which reveals that ascospores are transcriptionally primed for infection prior to their arrival on a host plant. Strikingly, the massive transcriptional changes at the initiation and completion of the sexual cycle often affected clusters of genes, rather than randomly dispersed genes. Thirty-five clusters of genes were jointly upregulated during the onset of sexual reproduction, while 99 clusters of genes (comprising >900 genes) were jointly downregulated in ascospores. These transcriptional changes coincided with changes in expression of genes encoding enzymes participating in chromatin organization, hinting at the occurrence of massive epigenetic regulation of gene expression during sexual reproduction.IMPORTANCE Fungal fruiting bodies are formed by sexual reproduction. We studied the development of fruiting bodies ("apothecia") of the ubiquitous plant-pathogenic ascomycete Botrytis cinerea The role of mating type genes in apothecium development was investigated by targeted mutation. Two genes are essential for the initiation of sexual development; mutants in these genes are sterile. Two other genes were not essential for development of stipes; however, they were essential for stipes to develop a disk and produce sexual ascospores. We examined gene expression profiles during apothecium development, as well as in ascospores sampled from apothecia. We provide the first study ever of the transcriptome of pure ascospores in a filamentous fungus. The expression of numerous genes involved in plant infection was induced in the ascospores, implying that ascospores are developmentally primed for infection before their release from apothecia.
Collapse
Affiliation(s)
- Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Wageningen University, Bioinformatics Group, Wageningen, The Netherlands
| | - Razak B Terhem
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Javier Veloso
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Plant Physiology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Joost H M Stassen
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
99
|
Zhou Y, Li N, Yang J, Yang L, Wu M, Chen W, Li G, Zhang J. Contrast Between Orange- and Black-Colored Sclerotial Isolates of Botrytis cinerea: Melanogenesis and Ecological Fitness. PLANT DISEASE 2018; 102:428-436. [PMID: 30673519 DOI: 10.1094/pdis-11-16-1663-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
Botrytis cinerea usually produces grayish mycelia and conidia as well as black-colored sclerotia (BS) due to accumulation of melanin. An isolate (XN-1) of B. cinerea producing orange-colored sclerotia (OS) on agar media was obtained from an orange-colored apothecium of an uncultured soil fungus. Whether or not the OS B. cinerea occurs on plants and how they differ from the BS isolates in melanogensis and ecological fitness remained unknown. This study, for the first time, confirmed the presence of the OS B. cinerea in strawberry and tomato plants that were surveyed in Hubei Province of China. Only five OS isolates were obtained from a total of 2,031 isolates surveyed from the two crops. The OS isolate XN-1 was compared and contrasted with the BS isolate B05.10 in sclerotial melanogenesis and ecological fitness. Sclerotial melanogenesis was evident in B05.10 but was deficient in XN-1. The OS were more susceptible to the two mycoparasites Trichoderma koningiopsis and Clonostachys rosea than the BS. The percentage of viable sclerotia after the mycoparasitism study was significantly (P < 0.01) lower in OS (21%) than in BS (48%). This study also reaffirmed the importance of melanization for survival of B. cinerea sclerotia.
Collapse
Affiliation(s)
- Yingjun Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China, and Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Na Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University
| | - Jingyi Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University
| | - Weidong Chen
- United States Department of Agriculture-Agricultural Research Service, Washington State University, Pullman
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University
| |
Collapse
|
100
|
Zhou Y, Yang L, Wu M, Chen W, Li G, Zhang J. A Single-Nucleotide Deletion in the Transcription Factor Gene bcsmr1 Causes Sclerotial-Melanogenesis Deficiency in Botrytis cinerea. Front Microbiol 2017; 8:2492. [PMID: 29312200 PMCID: PMC5733056 DOI: 10.3389/fmicb.2017.02492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
Botrytis cinerea is an important plant pathogenic fungus with a wide range of host. It usually produces black-colored sclerotia (BS) due to deposition of 1,8-dihydroxynaphthalene melanin in sclerotial melanogenesis. Our previous study (Zhou et al., 2018) reported six B. cinerea isolates producing orange-colored sclerotia (OS) with deficiency in sclerotial melanogenesis. Comparison of ecological fitness (conidia, mycelia, sclerotia), natural distribution, and melanogenesis of selected BS and OS isolates suggests that sclerotia play an important role in the disease cycle caused by B. cinerea. However, the molecular mechanism for formation of the OS B. cinerea remains unknown. This study was done to unravel the molecular mechanism for the sclerotial melanogenesis deficiency in the OS isolates. We found that all the five sclerotial melanogenesis genes (bcpks12, bcygh1, bcbrn1/2, bcscd1) were down-regulated in OS isolates, compared to the genes in the BS isolates. However, the sclerotial melanogenesis-regulatory gene bcsmr1 had similar expression in both types of sclerotia, suggesting the sclerotial melanogenesis deficiency is due to loss-of-function of bcsmr1, rather than lack of expression of bcsmr1. Therefore, we cloned bcsmr1 from OS (bcsmr1OS ) and BS (bcsmr1BS ) isolates, and found a single-nucleotide deletion in bcsmr1OS . The single-nucleotide deletion caused formation of a premature stop codon in the open reading frame of bcsmr1OS , resulting in production of a 465-aa truncated protein. The transcription activity of the truncated protein was greatly reduced, compared to that of the 935-aa full-length protein encoded by bcsmr1BS in the BS isolates. The function of bcsmr1OS was partially complemented by bcsmr1BS . This study not only elucidated the molecular mechanism for formation of orange-colored sclerotia by the spontaneous mutant XN-1 of B. cinerea, but also confirmed the regulatory function of bcsmr1 in sclerotial melanogenesis of B. cinerea.
Collapse
Affiliation(s)
- Yingjun Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Laboratory of Biological Processing, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, United States
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|