51
|
Lee T, Schwandner R, Swaminath G, Weiszmann J, Cardozo M, Greenberg J, Jaeckel P, Ge H, Wang Y, Jiao X, Liu J, Kayser F, Tian H, Li Y. Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol Pharmacol 2008; 74:1599-609. [PMID: 18818303 DOI: 10.1124/mol.108.049536] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FFA2 (GPR43) has been identified as a receptor for short-chain fatty acids (SCFAs) that include acetate and propionate. FFA2 is highly expressed in islets, a subset of immune cells, and adipocytes. Although the potential roles of FFA2 activation in these tissues have previously been described, the physiological functions are still unclear. The potency for SCFAs on FFA2 is low, in the high micromolar to millimolar concentrations. To identify better pharmacological tools to study receptor function, we used high-throughput screening (HTS) to discover a series of small molecule phenylacetamides as novel and more potent FFA2 agonists. This series is specific for FFA2 over FFA1 (GPR40) and FFA3 (GPR41), and it is able to activate both the Galpha(q) and Galpha(i) pathways in vitro on Chinese hamster ovary cells stably expressing FFA2. Treatment of adipocytes with these compounds also resulted in Galpha(i)-dependent inhibition of lipolysis similar to that of endogenous ligands (SCFAs). It is noteworthy that these compounds not only acted as FFA2 agonists but also exhibited positive cooperativity with acetate or propionate. The observed allosteric modulation was consistent in all the functional assays that we have explored, including cAMP, calcium mobilization, guanosine 5'-[gamma-thio]triphosphate binding, and lipolysis. Molecular modeling analysis of FFA2 based on human beta(2)-adrenergic receptor structure revealed potential nonoverlapping binding sites for the endogenous and synthetic ligands, further providing insight into the binding pocket for the allosteric interactions. This is the first report describing the identification of novel allosteric modulators with agonist activity for FFA2, and these compounds may serve as tools for further unraveling the physiological functions of the receptor and its involvement in various diseases.
Collapse
Affiliation(s)
- Taeweon Lee
- Amgen Inc, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Niswender CM, Johnson KA, Weaver CD, Jones CK, Xiang Z, Luo Q, Rodriguez AL, Marlo JE, de Paulis T, Thompson AD, Days EL, Nalywajko T, Austin CA, Williams MB, Ayala JE, Williams R, Lindsley CW, Conn PJ. Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol Pharmacol 2008; 74:1345-58. [PMID: 18664603 PMCID: PMC2574552 DOI: 10.1124/mol.108.049551] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is caused by the death of dopamine neurons in the basal ganglia and results in motor symptoms such as tremor and bradykinesia. Activation of metabotropic glutamate receptor 4 (mGluR4) has been shown to modulate neurotransmission in the basal ganglia and results in antiparkinsonian effects in rodent PD models. N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) is a positive allosteric modulator (PAM) of mGluR4 that has been used to further validate the role of mGluR4 in PD, but the compound suffers from a lack of selectivity, relatively low potency, and poor solubility. Via high-throughput screening, we discovered more than 400 novel PAMs of mGluR4. Compounds derived from a novel chemical scaffold were characterized in vitro at both rat and human mGluR4 using two distinct assays of mGluR4 function. The lead compound was approximately 8-fold more potent than PHCCC, enhanced the potency of glutamate at mGluR4 by 8-fold, and did not show any significant potentiator or antagonist activity at other mGluR subtypes. Resolution of the regioisomers of the lead revealed that the cis regioisomer, (+/-)-cis-2-(3,5-dichlorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), contained the majority of the mGluR4 PAM activity and also exhibited partial agonist activity at mGluR4 at a site that was distinct from the glutamate binding site, suggesting that this compound is a mixed allosteric agonist/PAM of mGluR4. VU0155041 was soluble in an aqueous vehicle, and intracerebroventricular administration of 31 to 316 nmol of VU0155041 dose-dependently decreased haloperidol-induced catalepsy and reserpine-induced akinesia in rats. These exciting results provide continued support for mGluR4 as a therapeutic target in PD.
Collapse
Affiliation(s)
- Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Sheffler DJ, Conn PJ. Allosteric potentiators of metabotropic glutamate receptor subtype 1a differentially modulate independent signaling pathways in baby hamster kidney cells. Neuropharmacology 2008; 55:419-27. [PMID: 18625258 DOI: 10.1016/j.neuropharm.2008.06.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
Abstract
Recent studies suggest that subtype specific activators of metabotropic glutamate receptors (mGluRs) have exciting potential for the development of novel treatment strategies for numerous psychiatric and neurological disorders. A number of positive allosteric modulators (PAMs) have been identified that are highly selective for mGluR1, including the compounds Ro 01-6128, Ro 67-4853, and Ro 67-7476. These PAMs have been previously found to interact with a site distinct from that of negative allosteric modulators (NAMs), typified by R214127. These mGluR1 PAMs do not have an effect on baseline calcium levels but induce leftward shifts in the concentration-response of mGluR1 to agonists. However, their effects on a variety of signaling pathways and their mechanism of action have not been fully explored and are of critical importance for further development of mGluR1 allosteric modulators as novel drugs. In baby hamster kidney (BHK) cells, mGluR1 activates calcium mobilization, cAMP production, and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation; signaling cascades which are distinct and differentially regulated. In contrast to their effects on calcium mobilization, these compounds were found to activate ERK1/2 phosphorylation in the absence of exogenously added agonist, an effect that was fully blocked by both orthosteric (LY341495) and allosteric (R214127) mGluR1 antagonists. The mGluR1 PAMs were also found to activate cAMP production in the absence of agonist. Thus, these mGluR1 PAMs have qualitatively different effects on a variety of mGluR1-mediated signal transduction cascades. Together, these data provide further evidence that allosteric compounds can differentially modulate the coupling of a single receptor to independent signaling pathways or act in a system-dependent manner.
Collapse
Affiliation(s)
- Douglas J Sheffler
- Department of Pharmacology, Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | | |
Collapse
|
54
|
MGluR5 mediates the interaction between late-LTP, network activity, and learning. PLoS One 2008; 3:e2155. [PMID: 18478073 PMCID: PMC2364645 DOI: 10.1371/journal.pone.0002155] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 03/15/2008] [Indexed: 11/25/2022] Open
Abstract
Hippocampal synaptic plasticity and learning are strongly regulated by metabotropic glutamate receptors (mGluRs) and particularly by mGluR5. Here, we investigated the mechanisms underlying mGluR5-modulation of these phenomena. Prolonged pharmacological blockade of mGluR5 with MPEP produced a profound impairment of spatial memory. Effects were associated with 1) a reduction of mGluR1a-expression in the dentate gyrus; 2) impaired dentate gyrus LTP; 3) enhanced CA1-LTP and 4) suppressed theta (5–10 Hz) and gamma (30–100 Hz) oscillations in the dentate gyrus. Allosteric potentiation of mGluR1 after mGluR5 blockade significantly ameliorated dentate gyrus LTP, as well as suppression of gamma oscillatory activity. CA3-lesioning prevented MPEP effects on CA1-LTP, suggesting that plasticity levels in CA1 are driven by mGluR5-dependent synaptic and network activity in the dentate gyrus. These data support the hypothesis that prolonged mGluR5-inactivation causes altered hippocampal LTP levels and network activity, which is mediated in part by impaired mGluR1-expression in the dentate gyrus. The consequence is impairment of long-term learning.
Collapse
|
55
|
Chen Y, Goudet C, Pin JP, Conn PJ. N-{4-Chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide (CPPHA) acts through a novel site as a positive allosteric modulator of group 1 metabotropic glutamate receptors. Mol Pharmacol 2008; 73:909-18. [PMID: 18056795 DOI: 10.1124/mol.107.040097] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies suggest that a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor (mGluRs), mGluR5, termed 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (VU-29), potentiates mGluR5 responses by actions at a site that is overlapping with the binding site of 2-methyl-6-(phenylethynyl)pyridine (MPEP), a previously identified negative allosteric modulator of this receptor. It is interesting that a structurally distinct PAM, N-{4-Chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide (CPPHA), does not to bind to the MPEP site. We now report that CPPHA potentiates mGluR5 responses by a mechanism that is distinct from that of VU-29. VU-29- and CPPHA-induced potentiation of mGluR5 responses are blocked by a neutral ligand at the MPEP allosteric site termed 5-methyl-2-(phenylethynyl)pyridine (5MPEP). However, increasing concentrations of 5MPEP induce parallel rightward shifts in the VU-29 concentration-response curve, whereas 5MPEP inhibits CPPHA potentiation in a noncompetitive manner. Consistent with this, a mutation (A809V/mGluR5) that reduces binding of ligands to the MPEP site eliminates the effect of VU-29 but has no effect on the response to CPPHA. On the other hand, a mutation (F585I/mGluRs) that eliminates the effect of CPPHA does not alter the response to VU-29. CPPHA is also a PAM at mGluR1. It is interesting that the corresponding mutation of F585I/mGluR5 in mGluR1 (F599I/mGluR1) eliminates CPPHA's effect without altering the potentiation of a known PAM of mGluR1, (S)-2-(4-fluorophenyl)-1-(toluene-4-sulfonyl)pyrrolidine (Ro 67-7476). Likewise, another mutation (V757L/mGluR1) that abolishes potentiation of Ro 67-7476 has no effect on CPPHA. Finally, CPPHA does not displace binding of a radioligand for the mGluR1 allosteric antagonist characterized previously. Together, these data suggest that CPPHA acts at a novel allosteric site on both mGluR1 and -5 to potentiate responses to activation of these receptors.
Collapse
Affiliation(s)
- Yelin Chen
- Department of Pharmacology, Vanderbilt University Medical Center, 23rd Avenue South at Pierce, 417-D Preston Research Building, Nashville, TN 37232-6600, USA
| | | | | | | |
Collapse
|
56
|
Chen Y, Nong Y, Goudet C, Hemstapat K, de Paulis T, Pin JP, Conn PJ. Interaction of novel positive allosteric modulators of metabotropic glutamate receptor 5 with the negative allosteric antagonist site is required for potentiation of receptor responses. Mol Pharmacol 2007; 71:1389-98. [PMID: 17303702 DOI: 10.1124/mol.106.032425] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exciting advances have been made in the discovery of selective positive allosteric modulators of the metabotropic glutamate receptor (mGluR) mGluR5. These compounds may provide a novel approach that could be useful in the treatment of certain central nervous system disorders. However, because of their low potencies, previously described mGluR5 potentiators are not useful for functional studies in native preparations. In addition, binding sites at which these compounds act have not been identified. It has been suggested that two allosteric potentiators, 3,3'-difluorobenzaldazine and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), act by binding to the same allosteric site as the negative allosteric modulators of mGluR5 such as 2-methyl-6-(phenylethynyl)pyridine (MPEP). However, another mGluR5 potentiator, N-{4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)m-ethyl]phenyl}-2-hydroxybenzamide, does not bind to this site, bringing this hypothesis into question. We have synthesized a series of CDPPB analogs and report that these compounds bind to the MPEP site with affinities that are closely related to their potencies as mGluR5 potentiators. Furthermore, allosteric potentiation is antagonized by a neutral ligand at the MPEP site and reduced by a mutation of mGluR5 that eliminates MPEP binding. Together, these data suggest that interaction with the MPEP site is important for allosteric potentiation of mGluR5 by CDPPB and related compounds. In addition, whole-cell patch-clamp studies in midbrain slices reveal that a highly potent analog of CDPPB, 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (VU-29), selectively potentiates mGluR5 but not mGluR1-mediated responses in midbrain neurons, whereas a previously identified allosteric potentiator of mGluR1 has the opposite effect.
Collapse
Affiliation(s)
- Yelin Chen
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Hemstapat K, Da Costa H, Nong Y, Brady AE, Luo Q, Niswender CM, Tamagnan GD, Conn PJ. A novel family of potent negative allosteric modulators of group II metabotropic glutamate receptors. J Pharmacol Exp Ther 2007; 322:254-64. [PMID: 17416742 DOI: 10.1124/jpet.106.117093] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Group II metabotropic glutamate receptors (mGluRs), mGluR2 and mGluR3, play a number of important roles in mammalian brain and represent exciting new targets for certain central nervous system disorders. We now report synthesis and characterization of a novel family of derivatives of dihydrobenzo[1,4]diazepin-2-one that are selective negative allosteric modulators for group II mGluRs. These compounds inhibit both mGluR2 and mGluR3 but have no activity at group I and III mGluRs. The novel mGluR2/3 antagonists also potently block mGluR2/3-mediated inhibition of the field excitatory postsynaptic potentials at the perforant path synapse in hippocampal slices. These compounds induce a rightward shift and decrease the maximal response in the glutamate concentration-response relationship, consistent with a noncompetitive antagonist mechanism of action. Furthermore, radioligand binding studies revealed no effect on binding of the orthosteric antagonist [(3)H]LY341495 [2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)propionic acid]. Site-directed mutagenesis revealed that a single point mutation in transmembrane V (N735D), previously shown to be an important residue for potentiation activity of the mGluR2 allosteric potentiator LY487379 [N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl)pyrid-3-ylmethylamine], is not critical for the inhibitory activity of negative allosteric modulators of group II mGluRs. However, this single mutation in human GluR2 almost completely blocked the enhancing activity of biphenyl-indanone A, a novel allosteric potentiator of mGluR2. Our data suggest that these two positive allosteric modulators of mGluR2 may share a common binding site and that this site may be distinct from the binding site for the new negative allosteric modulators of group II mGluRs.
Collapse
Affiliation(s)
- Kamondanai Hemstapat
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Program in Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
The past decade has witnessed a significant growth in the identification of allosteric modulators of G protein-coupled receptors (GPCRs), i.e., ligands that interact with binding sites that are topographically distinct from the orthosteric site recognized by the receptor's endogenous agonist. Because of their ability to modulate receptor conformations in the presence of orthosteric ligand, allosteric modulators can "fine-tune" classical pharmacological responses. This is advantageous in terms of a potential for engendering greater GPCR subtype-selectivity, but represents a significant challenge for detecting and validating allosteric behaviors. Although allosteric sites need not have evolved to accommodate endogenous ligands, there are a number of examples of where such modulators have been shown to contribute to physiological or pathophysiological processes. Studies are also beginning to unravel the structural basis of allosteric modulation of GPCRs. It remains to be determined whether such modulation represents interactions within monomers versus across dimers.
Collapse
Affiliation(s)
- Lauren T May
- Department of Pharmacology, University of Melbourne, 3010 Parkville, Victoria
| | | | | | | |
Collapse
|