51
|
Jurečková JF, Sýkorová E, Hafidh S, Honys D, Fajkus J, Fojtová M. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum. PLANTA 2017; 245:549-561. [PMID: 27900472 DOI: 10.1007/s00425-016-2624-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION In tobacco, three sequence variants of the TERT gene have been described. We revealed unbalanced levels of TERT variant transcripts in vegetative tobacco tissues and enhanced TERT transcription and telomerase activity in reproductive tissues. Telomerase is a ribonucleoprotein complex responsible for the maintenance of telomeres, structures delimiting ends of linear eukaryotic chromosomes. In the Nicotiana tabacum (tobacco) allotetraploid plant, three sequence variants (paralogs) of the gene coding for the telomerase reverse transcriptase subunit (TERT) have been described, two of them derived from the maternal N. sylvestris genome (TERT_Cs, TERT_D) and one originated from the N. tomentosiformis paternal genome (TERT_Ct). In this work, we analyzed the transcription of TERT variants in correlation with telomerase activity in tobacco tissues. High and approximately comparable levels of TERT_Ct and TERT_Cs transcripts were detected in seedlings, roots, flower buds and leaves, while the transcript of the TERT_D variant was markedly underrepresented. Similarly, in N. sylvestris tissues, TERT_Cs transcript significantly predominated. A specific pattern of TERT transcripts was found in samples of tobacco pollen with the TERT_Cs variant clearly dominating particularly at the early stage of pollen development. Detailed analysis of TERT_C variants representation in functionally distinct fractions of pollen transcriptome revealed their prevalence in large ribonucleoprotein particles encompassing translationally silent mRNA; only a minority of TERT_Ct and TERT_Cs transcripts were localized in actively translated polysomes. Histones of the TERT_C chromatin were decorated predominantly with the euchromatin-specific epigenetic modification in both telomerase-positive and telomerase-negative tobacco tissues. We conclude that the existence and transcription pattern of tobacco TERT paralogs represents an interesting phenomenon and our results indicate its functional significance. Nicotiana species have again proved to be appropriate and useful model plants in telomere biology studies.
Collapse
Affiliation(s)
- Jana Fišerová Jurečková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Said Hafidh
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic v.v.i., Rozvojová 263, 165 02, Prague, Czech Republic
| | - David Honys
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic v.v.i., Rozvojová 263, 165 02, Prague, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
52
|
Peng C, Wong CC. The story of protein arginine methylation: characterization, regulation, and function. Expert Rev Proteomics 2017; 14:157-170. [PMID: 28043171 DOI: 10.1080/14789450.2017.1275573] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Arginine methylation is an important post-translational modification (PTM) in cells, which is catalyzed by a group of protein arginine methyltransferases (PRMTs). It plays significant roles in diverse cellular processes and various diseases. Misregulation and aberrant expression of PRMTs can provide potential biomarkers and therapeutic targets for drug discovery. Areas covered: Herein, we review the arginine methylation literature and summarize the methodologies for the characterization of this modification, as well as describe the recent insights into arginine methyltransferases and their biological functions in diseases. Expert commentary: Benefits from the enzyme-based large-scale screening approach, the novel affinity enrichment strategies, arginine methylated protein family is the focus of attention. Although a number of arginine methyltransferases and related substrates are identified, the catalytic mechanism of different types of PRMTs remains unclear and few related demethylases are characterized. Novel functional studies continuously reveal the importance of this modification in the cell cycle and diseases. A deeper understanding of arginine methylated proteins, modification sites, and their mechanisms of regulation is needed to explore their role in life processes, especially their relationship with diseases, thus accelerating the generation of potent, selective, cell-penetrant drug candidates.
Collapse
Affiliation(s)
- Chao Peng
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| | - Catherine Cl Wong
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
53
|
Ye F, Zhang W, Lu W, Xie Y, Jiang H, Jin J, Luo C. Identification of Novel Inhibitors against Coactivator Associated Arginine Methyltransferase 1 Based on Virtual Screening and Biological Assays. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7086390. [PMID: 27872854 PMCID: PMC5107250 DOI: 10.1155/2016/7086390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/19/2016] [Accepted: 10/03/2016] [Indexed: 11/17/2022]
Abstract
Overexpression of coactivator associated arginine methyltransferase 1 (CARM1), a protein arginine N-methyltransferase (PRMT) family enzyme, is associated with various diseases including cancers. Consequently, the development of small-molecule inhibitors targeting PRMTs has significant value for both research and therapeutic purposes. In this study, together with structure-based virtual screening with biochemical assays, two compounds DC_C11 and DC_C66 were identified as novel inhibitors of CARM1. Cellular studies revealed that the two inhibitors are cell membrane permeable and effectively blocked proliferation of cancer cells including HELA, K562, and MCF7. We further predicted the binding mode of these inhibitors through molecular docking analysis, which indicated that the inhibitors competitively occupied the binding site of the substrate and destroyed the protein-protein interactions between CARM1 and its substrates. Overall, this study has shed light on the development of small-molecule CARM1 inhibitors with novel scaffolds.
Collapse
Affiliation(s)
- Fei Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Hangzhou, China
| | - Weiyao Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wenchao Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiqian Xie
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hao Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Jin
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
54
|
Shen Y, Szewczyk MM, Eram MS, Smil D, Kaniskan HÜ, de Freitas RF, Senisterra G, Li F, Schapira M, Brown PJ, Arrowsmith CH, Barsyte-Lovejoy D, Liu J, Vedadi M, Jin J. Discovery of a Potent, Selective, and Cell-Active Dual Inhibitor of Protein Arginine Methyltransferase 4 and Protein Arginine Methyltransferase 6. J Med Chem 2016; 59:9124-9139. [PMID: 27584694 DOI: 10.1021/acs.jmedchem.6b01033] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Well-characterized selective inhibitors of protein arginine methyltransferases (PRMTs) are invaluable chemical tools for testing biological and therapeutic hypotheses. Based on 4, a fragment-like inhibitor of type I PRMTs, we conducted structure-activity relationship (SAR) studies and explored three regions of this scaffold. The studies led to the discovery of a potent, selective, and cell-active dual inhibitor of PRMT4 and PRMT6, 17 (MS049). As compared to 4, 17 displayed much improved potency for PRMT4 and PRMT6 in both biochemical and cellular assays. It was selective for PRMT4 and PRMT6 over other PRMTs and a broad range of other epigenetic modifiers and nonepigenetic targets. We also developed 46 (MS049N), which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. Considering possible overlapping substrate specificity of PRMTs, 17 and 46 are valuable chemical tools for dissecting specific biological functions and dysregulation of PRMT4 and PRMT6 in health and disease.
Collapse
Affiliation(s)
- Yudao Shen
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - David Smil
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - H Ümit Kaniskan
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jian Jin
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
55
|
Grammatikakis I, Abdelmohsen K, Gorospe M. Posttranslational control of HuR function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27307117 DOI: 10.1002/wrna.1372] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/28/2022]
Abstract
The RNA-binding protein HuR (human antigen R) associates with numerous transcripts, coding and noncoding, and controls their splicing, localization, stability, and translation. Through its regulation of target transcripts, HuR has been implicated in cellular events including proliferation, senescence, differentiation, apoptosis, and the stress and immune responses. In turn, HuR influences processes such as cancer and inflammation. HuR function is primarily regulated through posttranslational modifications that alter its subcellular localization and its ability to bind target RNAs; such modifications include phosphorylation, methylation, ubiquitination, NEDDylation, and proteolytic cleavage. In this review, we describe the modifications that impact upon HuR function on gene expression programs and disease states. WIREs RNA 2017, 8:e1372. doi: 10.1002/wrna.1372 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
56
|
Huang HY, Chang HF, Tsai MJ, Chen JS, Wang MJ. 6-Mercaptopurine attenuates tumor necrosis factor-α production in microglia through Nur77-mediated transrepression and PI3K/Akt/mTOR signaling-mediated translational regulation. J Neuroinflammation 2016; 13:78. [PMID: 27075886 PMCID: PMC4831152 DOI: 10.1186/s12974-016-0543-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/07/2016] [Indexed: 02/07/2023] Open
Abstract
Background The pathogenesis of several neurodegenerative diseases often involves the microglial activation and associated inflammatory processes. Activated microglia release pro-inflammatory factors that may be neurotoxic. 6-Mercaptopurine (6-MP) is a well-established immunosuppressive drug. Common understanding of their immunosuppressive properties is largely limited to peripheral immune cells. However, the effect of 6-MP in the central nervous system, especially in microglia in the context of neuroinflammation is, as yet, unclear. Tumor necrosis factor-α (TNF-α) is a key cytokine of the immune system that initiates and promotes neuroinflammation. The present study aimed to investigate the effect of 6-MP on TNF-α production by microglia to discern the molecular mechanisms of this modulation. Methods Lipopolysaccharide (LPS) was used to induce an inflammatory response in cultured primary microglia or murine BV-2 microglial cells. Released TNF-α was measured by enzyme-linked immunosorbent assay (ELISA). Gene expression was determined by real-time reverse transcription polymerase chain reaction (RT-PCR). Signaling molecules were analyzed by western blotting, and activation of NF-κB was measured by ELISA-based DNA binding analysis and luciferase reporter assay. Chromatin immunoprecipitation (ChIP) analysis was performed to examine NF-κB p65 and coactivator p300 enrichments and histone modifications at the endogenous TNF-α promoter. Results Treatment of LPS-activated microglia with 6-MP significantly attenuated TNF-α production. In 6-MP pretreated microglia, LPS-induced MAPK signaling, IκB-α degradation, NF-κB p65 nuclear translocation, and in vitro p65 DNA binding activity were not impaired. However, 6-MP suppressed transactivation activity of NF-κB and TNF-α promoter by inhibiting phosphorylation and acetylation of p65 on Ser276 and Lys310, respectively. ChIP analyses revealed that 6-MP dampened LPS-induced histone H3 acetylation of chromatin surrounding the TNF-α promoter, ultimately leading to a decrease in p65/coactivator-mediated transcription of TNF-α gene. Furthermore, 6-MP enhanced orphan nuclear receptor Nur77 expression. Using RNA interference approach, we further demonstrated that Nur77 upregulation contribute to 6-MP-mediated inhibitory effect on TNF-α production. Additionally, 6-MP also impeded TNF-α mRNA translation through prevention of LPS-activated PI3K/Akt/mTOR signaling cascades. Conclusions These results suggest that 6-MP might have a therapeutic potential in neuroinflammation-related neurodegenerative disorders through downregulation of microglia-mediated inflammatory processes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0543-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Hui-Fen Chang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Ming-Jen Tsai
- Department of Emergency Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Jhih-Si Chen
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Mei-Jen Wang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| |
Collapse
|
57
|
The Role of Protein Arginine Methyltransferases in Inflammatory Responses. Mediators Inflamm 2016; 2016:4028353. [PMID: 27041824 PMCID: PMC4793140 DOI: 10.1155/2016/4028353] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV). Although most PRMTs do not require posttranslational modification (PTM) to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6) in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.
Collapse
|
58
|
Harris DP, Chandrasekharan UM, Bandyopadhyay S, Willard B, DiCorleto PE. PRMT5-Mediated Methylation of NF-κB p65 at Arg174 Is Required for Endothelial CXCL11 Gene Induction in Response to TNF-α and IFN-γ Costimulation. PLoS One 2016; 11:e0148905. [PMID: 26901772 PMCID: PMC4768879 DOI: 10.1371/journal.pone.0148905] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/24/2016] [Indexed: 12/24/2022] Open
Abstract
Inflammatory agonists differentially activate gene expression of the chemokine family of proteins in endothelial cells (EC). TNF is a weak inducer of the chemokine CXCL11, while TNF and IFN-γ costimulation results in potent CXCL11 induction. The molecular mechanisms underlying TNF plus IFN-γ-mediated CXCL11 induction are not fully understood. We have previously reported that the protein arginine methyltransferase PRMT5 catalyzes symmetrical dimethylation of the NF-κB subunit p65 in EC at multiple arginine residues. Methylation of Arg30 and Arg35 on p65 is critical for TNF induction of CXCL10 in EC. Here we show that PRMT5-mediated methylation of p65 at Arg174 is required for induction of CXCL11 when EC are costimulated with TNF and IFN-γ. Knockdown of PRMT5 by RNAi reduced CXCL11 mRNA and protein levels in costimulated cells. Reconstitution of p65 Arg174Ala or Arg174Lys mutants into EC that were depleted of endogenous p65 blunted TNF plus IFN-γ-mediated CXCL11 induction. Mass spectrometric analyses showed that p65 Arg174 arginine methylation is enhanced by TNF plus IFN-γ costimulation, and is catalyzed by PRMT5. Chromatin immunoprecipitation assays (ChIP) demonstrated that PRMT5 is necessary for p65 association with the CXCL11 promoter in response to TNF plus IFN-γ. Further, reconstitution of p65 Arg174Lys mutant in EC abrogated this p65 association with the CXCL11 promoter. Finally, ChIP and Re-ChIP assays revealed that symmetrical dimethylarginine-containing proteins complexed with the CXCL11 promoter were diminished in p65 Arg174Lys-reconstituted EC stimulated with TNF and IFN-γ. In total, these results indicate that PRMT5-mediated p65 methylation at Arg174 is essential for TNF plus IFN-γ-mediated CXCL11 gene induction. We therefore suggest that the use of recently developed small molecule inhibitors of PRMT5 may present a therapeutic approach to moderating chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Daniel P. Harris
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Unnikrishnan M. Chandrasekharan
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Smarajit Bandyopadhyay
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Belinda Willard
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Paul E. DiCorleto
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
59
|
Morales Y, Cáceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 2015; 590:138-152. [PMID: 26612103 DOI: 10.1016/j.abb.2015.11.030] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022]
Abstract
Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated. An overview of what we understand about substrate recognition and binding is provided. Control of product specificity and enzyme processivity are introduced as necessary but flexible features of the PRMTs. Precise control of PRMT activity is a critical component to eukaryotic cell health, especially given that an arginine demethylase has not been identified. We therefore conclude the review with a comprehensive discussion of how protein arginine methylation is regulated.
Collapse
Affiliation(s)
- Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Tamar Cáceres
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Kyle May
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States.
| |
Collapse
|
60
|
Purcell DJ, Chauhan S, Jimenez-Stinson D, Elliott KR, Tsewang TD, Lee YH, Marples B, Lee DY. Novel CARM1-Interacting Protein, DZIP3, Is a Transcriptional Coactivator of Estrogen Receptor-α. Mol Endocrinol 2015; 29:1708-19. [PMID: 26505218 DOI: 10.1210/me.2015-1083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is known to promote estrogen receptor (ER)α-mediated transcription in breast cancer cells. To further characterize the regulation of ERα-mediated transcription by CARM1, we screened CARM1-interacting proteins by yeast two-hybrid. Here, we have identified an E3 ubiquitin ligase, DAZ (deleted in azoospermia)-interacting protein 3 (DZIP3), as a novel CARM1-binding protein. DZIP3-dependent ubiquitination of histone H2A has been associated with repression of transcription. However, ERα reporter gene assays demonstrated that DZIP3 enhanced ERα-mediated transcription and cooperated synergistically with CARM1. Interaction with CARM1 was observed with the E3 ligase RING domain of DZIP3. The methyltransferase activity of CARM1 partially contributed to the synergy with DZIP3 for transcription activation, but the E3 ubiquitin ligase activity of DZIP3 was dispensable. DZIP3 also interacted with the C-terminal activation domain 2 of glucocorticoid receptor-interacting protein 1 (GRIP1) and enhanced the interaction between GRIP1 and CARM1. Depletion of DZIP3 by small interfering RNA in MCF7 cells reduced estradiol-induced gene expression of ERα target genes, GREB1 and pS2, and DZIP3 was recruited to the estrogen response elements of the same ERα target genes. These results indicate that DZIP3 is a novel coactivator of ERα target gene expression.
Collapse
Affiliation(s)
- Daniel J Purcell
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Swati Chauhan
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Diane Jimenez-Stinson
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Kathleen R Elliott
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Tenzin D Tsewang
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Young-Ho Lee
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Brian Marples
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - David Y Lee
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| |
Collapse
|
61
|
Bonnefond L, Stojko J, Mailliot J, Troffer-Charlier N, Cura V, Wurtz JM, Cianférani S, Cavarelli J. Functional insights from high resolution structures of mouse protein arginine methyltransferase 6. J Struct Biol 2015; 191:175-83. [PMID: 26094878 DOI: 10.1016/j.jsb.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/19/2015] [Accepted: 06/18/2015] [Indexed: 01/15/2023]
Abstract
PRMT6 is a protein arginine methyltransferase involved in transcriptional regulation, human immunodeficiency virus pathogenesis, DNA base excision repair, and cell cycle progression. Like other PRMTs, PRMT6 is overexpressed in several cancer types and is therefore considered as a potential anti-cancer drug target. In the present study, we described six crystal structures of PRMT6 from Mus musculus, solved and refined at 1.34 Å for the highest resolution structure. The crystal structures revealed that the folding of the helix αX is required to stabilize a productive active site before methylation of the bound peptide can occur. In the absence of cofactor, metal cations can be found in the catalytic pocket at the expected position of the guanidinium moiety of the target arginine substrate. Using mass spectrometry under native conditions, we show that PRMT6 dimer binds two cofactor and a single H4 peptide molecules. Finally, we characterized a new site of in vitro automethylation of mouse PRMT6 at position 7.
Collapse
Affiliation(s)
- Luc Bonnefond
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Johann Stojko
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, Strasbourg 67087, France
| | - Justine Mailliot
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Jean-Marie Wurtz
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, Strasbourg 67087, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France.
| |
Collapse
|
62
|
Li JH, Chiu WC, Yao YC, Cheng RP. Effect of arginine methylation on the RNA recognition and cellular uptake of Tat-derived peptides. Bioorg Med Chem 2015; 23:2281-6. [DOI: 10.1016/j.bmc.2015.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 12/16/2022]
|
63
|
Blum G, Islam K, Luo M. Bioorthogonal profiling of protein methylation (BPPM) using an azido analog of S-adenosyl-L-methionine. ACTA ACUST UNITED AC 2015; 5:45-66. [PMID: 23667794 DOI: 10.1002/9780470559277.ch120240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein methyltransferases (PMTs) utilize S-adenosyl-L-methionine (SAM) as a cofactor and transfer its sulfonium methyl moiety to diverse substrates. These methylation events can lead to meaningful biological outcomes, from transcriptional activation/silencing to cell cycle regulation. This article describes recently developed technology based on protein engineering in tandem with SAM analog cofactors and bioorthogonal click chemistry to unambiguously profile the substrates of a specific PMT. The protocols encapsulate the logic and methods of selectively profiling the substrates of a candidate PMT by (1) engineering the selected PMT to accommodate a bulky SAM analog; (2) generating a proteome containing the engineered PMT; (3) visualizing the proteome-wide substrates of the designated PMT via bioorthogonal labeling with a fluorescent tag; and finally (4) pulling down the proteome-wide substrates for mass spectrometric analysis.
Collapse
Affiliation(s)
- Gil Blum
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|
64
|
Affiliation(s)
| | - Philip A. Cole
- Department
of Pharmacology
and Molecular Sciences, The Johns Hopkins
University School of Medicine, 725 North Wolfe Street, Hunterian 316, Baltimore, Maryland 21205, United States
| |
Collapse
|
65
|
Hu SB, Xiang JF, Li X, Xu Y, Xue W, Huang M, Wong CC, Sagum CA, Bedford MT, Yang L, Cheng D, Chen LL. Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus. Genes Dev 2015; 29:630-45. [PMID: 25792598 PMCID: PMC4378195 DOI: 10.1101/gad.257048.114] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
Abstract
In many cells, mRNAs containing inverted repeated Alu elements (IRAlus) in their 3' untranslated regions (UTRs) are inefficiently exported to the cytoplasm. Such nuclear retention correlates with paraspeckle-associated protein complexes containing p54(nrb). However, nuclear retention of mRNAs containing IRAlus is variable, and how regulation of retention and export is achieved is poorly understood. Here we show one mechanism of such regulation via the arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1). We demonstrate that disruption of CARM1 enhances the nuclear retention of mRNAs containing IRAlus. CARM1 regulates this nuclear retention pathway at two levels: CARM1 methylates the coiled-coil domain of p54(nrb), resulting in reduced binding of p54(nrb) to mRNAs containing IRAlus, and also acts as a transcription regulator to suppress NEAT1 transcription, leading to reduced paraspeckle formation. These actions of CARM1 work together synergistically to regulate the export of transcripts containing IRAlus from paraspeckles under certain cellular stresses, such as poly(I:C) treatment. This work demonstrates how a post-translational modification of an RNA-binding protein affects protein-RNA interaction and also uncovers a mechanism of transcriptional regulation of the long noncoding RNA NEAT1.
Collapse
Affiliation(s)
- Shi-Bin Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-Feng Xiang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yefen Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Xue
- Key Laboratory of Computational Biology, Chinese Academy of Sciences (CAS)-German Max Planck Society (MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Huang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catharine C Wong
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cari A Sagum
- The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Mark T Bedford
- The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Li Yang
- Key Laboratory of Computational Biology, Chinese Academy of Sciences (CAS)-German Max Planck Society (MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Donghang Cheng
- The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA;
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
66
|
Han HS, Choi D, Choi S, Koo SH. Roles of protein arginine methyltransferases in the control of glucose metabolism. Endocrinol Metab (Seoul) 2014; 29:435-40. [PMID: 25559572 PMCID: PMC4285034 DOI: 10.3803/enm.2014.29.4.435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs) were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.
Collapse
Affiliation(s)
- Hye Sook Han
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Dahee Choi
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Seri Choi
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Seung Hoi Koo
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea.
| |
Collapse
|
67
|
Abstract
Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Department of Structural and Chemical Biology, ‡Department of Oncological Sciences, §Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | | | | |
Collapse
|
68
|
Yang J, Li Z, Fan X, Cheng Y. Drug-disease association and drug-repositioning predictions in complex diseases using causal inference-probabilistic matrix factorization. J Chem Inf Model 2014; 54:2562-9. [PMID: 25116798 DOI: 10.1021/ci500340n] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug-disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug-target-pathway-gene-disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug-disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug-disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and many treatment effects of drugs on diseases were investigated for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. Related chains in causal networks were extracted for these 65 clinical-verified associations, and we further illustrated the therapeutic role of etodolac in breast cancer by inferred chains. Overall, CI-PMF is a useful approach for associating drugs with complex diseases and provides potential values for drug repositioning.
Collapse
Affiliation(s)
- Jihong Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, China
| | | | | | | |
Collapse
|
69
|
Valor LM, Viosca J, Lopez-Atalaya JP, Barco A. Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr Pharm Des 2014; 19:5051-64. [PMID: 23448461 PMCID: PMC3722569 DOI: 10.2174/13816128113199990382] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/18/2013] [Indexed: 01/27/2023]
Abstract
Neuropsychiatric pathologies, including neurodegenerative diseases and neurodevelopmental syndromes, are frequently associated with dysregulation of various essential cellular mechanisms, such as transcription, mitochondrial respiration and protein degradation. In these complex scenarios, it is difficult to pinpoint the specific molecular dysfunction that initiated the pathology or that led to the fatal cascade of events that ends with the death of the neuron. Among the possible original factors, epigenetic dysregulation has attracted special attention. This review focuses on two highly related epigenetic factors that are directly involved in a number of neurological disorders, the lysine acetyltransferases CREB-binding protein (CBP) and E1A-associated protein p300 (p300). We first comment on the role of chromatin acetylation and the enzymes that control it, particularly CBP and p300, in neuronal plasticity and cognition. Next, we describe the involvement of these proteins in intellectual disability and in different neurodegenerative diseases. Finally, we discuss the potential of ameliorative strategies targeting CBP/p300 for the treatment of these disorders.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias, Av. Santiago Ramon y Cajal s/n. Sant Joan d'Alacant 03550, Alicante, Spain
| | | | | | | |
Collapse
|
70
|
|
71
|
Coactivator-associated arginine methyltransferase 1 targeted by miR-15a regulates inflammation in acute coronary syndrome. Atherosclerosis 2014; 233:349-356. [PMID: 24530761 DOI: 10.1016/j.atherosclerosis.2014.01.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Coactivator-associated arginine methyltransferase 1 (CARM1) is essential for the activation of a subset of NF-кB-dependent genes, which code the chemokines triggering plaque vulnerability. Unstable atherosclerotic plaques lead to the onset of acute coronary syndrome (ACS). Therefore, we aimed to investigate whether CARM1 is involved in the pathogenesis of ACS and ascertain the regulatory mechanism of CARM1 expression at posttranscriptional level. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood of 19 patients with ACS and 22 subjects with risk factors for coronary heart disease. Gene expression was determined by quantitative real-time PCR and Western blot. The effects of CARM1 and miR-15a on their target genes expression were assessed by gain-of-function and loss-of-function approaches. RESULTS PBMCs from patients with ACS showed higher levels of CARM1 mRNA and protein expression. The levels of CARM1 mRNA were positively correlated with three chemokines including interferon-inducible protein-10 (IP-10), monocyte chemoattractant protein 1 (MCP-1), and interleukin-8 (IL-8) in PBMCs (CARM1 and IP-10: r=0.55, P=0.008; CARM1 and MCP-1: r=0.64, P=0.002; CARM1 and IL-8: r=0.55, P=0.008). Moreover, CARM1 regulated the transcription of these chemokines in human embryonic kidney 293T (HEK293T) cells. We also found that the levels of miR-15a were decreased by 37% in patients with ACS and miR-15a modulated CARM1 expression through targeted binding to CARM1 3'-UTR. CONCLUSION The present study demonstrated that CARM1 targeted by miR-15a played an important role in chemokine activation in the pathogenesis of ACS.
Collapse
|
72
|
Vu LP, Perna F, Wang L, Voza F, Figueroa ME, Tempst P, Erdjument-Bromage H, Gao R, Chen S, Paietta E, Deblasio T, Melnick A, Liu Y, Zhao X, Nimer SD. PRMT4 blocks myeloid differentiation by assembling a methyl-RUNX1-dependent repressor complex. Cell Rep 2013; 5:1625-38. [PMID: 24332853 DOI: 10.1016/j.celrep.2013.11.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/02/2013] [Accepted: 11/13/2013] [Indexed: 01/16/2023] Open
Abstract
Defining the role of epigenetic regulators in hematopoiesis has become critically important, because recurrent mutations or aberrant expression of these genes has been identified in both myeloid and lymphoid hematological malignancies. We found that PRMT4, a type I arginine methyltransferase whose function in normal and malignant hematopoiesis is unknown, is overexpressed in acute myelogenous leukemia patient samples. Overexpression of PRMT4 blocks the myeloid differentiation of human stem/progenitor cells (HSPCs), whereas its knockdown is sufficient to induce myeloid differentiation of HSPCs. We demonstrated that PRMT4 represses the expression of miR-223 in HSPCs via the methylation of RUNX1, which triggers the assembly of a multiprotein repressor complex that includes DPF2. As part of the feedback loop, PRMT4 expression is repressed posttranscriptionally by miR-223. Depletion of PRMT4 results in differentiation of myeloid leukemia cells in vitro and their decreased proliferation in vivo. Thus, targeting PRMT4 holds potential as a novel therapy for acute myelogenous leukemia.
Collapse
Affiliation(s)
- Ly P Vu
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan-Kettering Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Fabiana Perna
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Lan Wang
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Francesca Voza
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Maria E Figueroa
- Department of Pathology, the University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Paul Tempst
- Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Hediye Erdjument-Bromage
- Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Rui Gao
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sisi Chen
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elisabeth Paietta
- Cancer Center, Montefiore Medical Center-North Division, Bronx, NY 10466, USA
| | - Tony Deblasio
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ari Melnick
- Department of Medicine, Hematology Oncology Division, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yan Liu
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xinyang Zhao
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Biochemistry & Molecular Genetics, University of Alabama, Birmingham, AL 35294, USA.
| | - Stephen D Nimer
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan-Kettering Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
73
|
Abstract
Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge.
Collapse
Affiliation(s)
- Christopher J. Millard
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
- Correspondence to:
| |
Collapse
|
74
|
Thakur JK, Yadav A, Yadav G. Molecular recognition by the KIX domain and its role in gene regulation. Nucleic Acids Res 2013; 42:2112-25. [PMID: 24253305 PMCID: PMC3936767 DOI: 10.1093/nar/gkt1147] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The kinase-inducible domain interacting (KIX) domain is a highly conserved independently folding three-helix bundle that serves as a docking site for transcription factors, whereupon promoter activation and target specificity are achieved during gene regulation. This docking event is a harbinger of an intricate multi-protein assembly at the transcriptional apparatus and is regulated in a highly precise manner in view of the critical role it plays in multiple cellular processes. KIX domains have been characterized in transcriptional coactivators such as p300/CREB-binding protein and mediator of RNA polymerase II transcription subunit 15, and even recQ protein-like 5 helicases in various organisms. Their targets are often intrinsically disordered regions within the transactivation domains of transcription factors that attain stable secondary structure only upon complexation with KIX. In this article, we review the KIX domain in terms of its sequence and structure and present the various implications of its ability to act as a transcriptional switch, the mechanistic basis of molecular recognition by KIX, its binding specificity, target promiscuity, combinatorial potential and unique mode of regulation via allostery. We also discuss the possible roles of KIX domains in plants and hope that this review will accelerate scientific interest in KIX and pave the way for novel avenues of research on this critical domain.
Collapse
Affiliation(s)
- Jitendra K Thakur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
75
|
Burke SJ, Updegraff BL, Bellich RM, Goff MR, Lu D, Minkin SC, Karlstad MD, Collier JJ. Regulation of iNOS gene transcription by IL-1β and IFN-γ requires a coactivator exchange mechanism. Mol Endocrinol 2013; 27:1724-42. [PMID: 24014650 DOI: 10.1210/me.2013-1159] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The proinflammatory cytokines IL-1β and IFN-γ decrease functional islet β-cell mass in part through the increased expression of specific genes, such as inducible nitric oxide synthase (iNOS). Dysregulated iNOS protein accumulation leads to overproduction of nitric oxide, which induces DNA damage, impairs β-cell function, and ultimately diminishes cellular viability. However, the transcriptional mechanisms underlying cytokine-mediated expression of the iNOS gene are not completely understood. Herein, we demonstrated that individual mutations within the proximal and distal nuclear factor-κB sites impaired cytokine-mediated transcriptional activation. Surprisingly, mutating IFN-γ-activated site (GAS) elements in the iNOS gene promoter, which are classically responsive to IFN-γ, modulated transcriptional sensitivity to IL-1β. Transcriptional sensitivity to IL-1β was increased by generation of a consensus GAS element and decreased correspondingly with 1 or 2 nucleotide divergences from the consensus sequence. The nuclear factor-κB subunits p65 and p50 bound to the κB response elements in an IL-1β-dependent manner. IL-1β also promoted binding of serine-phosphorylated signal transducer and activator of transcription-1 (STAT1) (Ser727) but not tyrosine-phosphorylated STAT1 (Tyr701) to GAS elements. However, phosphorylation at Tyr701 was required for IFN-γ to potentiate the IL-1β response. Furthermore, coactivator p300 and coactivator arginine methyltransferase were recruited to the iNOS gene promoter with concomitant displacement of the coactivator CREB-binding protein in cells exposed to IL-1β. Moreover, these coordinated changes in factor recruitment were associated with alterations in acetylation, methylation, and phosphorylation of histone proteins. We conclude that p65 and STAT1 cooperate to control iNOS gene transcription in response to proinflammatory cytokines by a coactivator exchange mechanism. This increase in transcription is also associated with signal-specific chromatin remodeling that leads to RNA polymerase II recruitment and phosphorylation.
Collapse
Affiliation(s)
- Susan J Burke
- Department of Nutrition, University of Tennessee, 1215 Cumberland Avenue, 229 JHB, Knoxville, Tennessee 37996-1920.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Osada S, Suzuki S, Yoshimi C, Matsumoto M, Shirai T, Takahashi S, Imagawa M. Elevated expression of coactivator-associated arginine methyltransferase 1 is associated with early hepatocarcinogenesis. Oncol Rep 2013; 30:1669-74. [PMID: 23912631 DOI: 10.3892/or.2013.2651] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 11/05/2022] Open
Abstract
Aberrant expression of regulators for epigenetics is involved in tumorigenesis. There is an urgent need to identify and characterize regulators concerned with epigenetics in the early stages of hepatocarcinogenesis. In the present study, we found that the expression of coactivator-associated arginine methyltransferase 1 (CARM1), a histone methyltransferase that functions as a cofactor for nuclear hormone receptors and several transcription factors, was elevated in adenomas and aberrant in carcinomas during hepatocellular carcinogenesis. In addition to RNA expression, immunohistochemical staining of liver sections revealed that CARM1 was highly expressed in the nucleus of tumor marker glutathione S-transferase placental form (GST-P)-positive foci. Neoplastic transformation of GST-P-positive foci guides the formation of hepatocellular carcinomas. CARM1 expression was not elevated in GST-P-negative regions. Furthermore, a luciferase reporter analysis revealed that CARM1 activated the Gst-p promoter in H4IIE, a hepatocellular carcinoma cell line. This activation was mediated by the enhancer element responsible for the carcinogenic-specific expression of Gst-p and nuclear factor E2-related factor 2. Knockdown of Carm1 by shRNA in H4IIE cells inhibited cell proliferation. These findings suggest that aberrantly expressed CARM1 in tumor marker-positive cells promotes tumorigenesis in the early stages of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Shigehiro Osada
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | | | | | | | | | | | | |
Collapse
|
77
|
Davis MB, Liu X, Wang S, Reeves J, Khramtsov A, Huo D, Olopade OI. Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity. Mol Cancer 2013; 12:40. [PMID: 23663560 PMCID: PMC3663705 DOI: 10.1186/1476-4598-12-40] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 04/03/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. METHODS We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. RESULTS We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. CONCLUSIONS Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product.
Collapse
Affiliation(s)
- Melissa B Davis
- The Institute for Genomics and Systems Biology, University of Chicago Biological Sciences Division, Chicago, IL, USA
- Department of Human Genetics, University of Chicago Biological Sciences Division, Chicago, IL, USA
- Georgia Health Sciences University, Athens, GA 30602, USA
- University of Georgia Medical Partnership, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xinyu Liu
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Shiyao Wang
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Jaxk Reeves
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Andrey Khramtsov
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Dezheng Huo
- Department of Health Studies, Center for Clinical Cancer Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Olufunmilayo I Olopade
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|
78
|
Streubel G, Bouchard C, Berberich H, Zeller MS, Teichmann S, Adamkiewicz J, Müller R, Klempnauer KH, Bauer UM. PRMT4 is a novel coactivator of c-Myb-dependent transcription in haematopoietic cell lines. PLoS Genet 2013; 9:e1003343. [PMID: 23505388 PMCID: PMC3591284 DOI: 10.1371/journal.pgen.1003343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/10/2013] [Indexed: 01/10/2023] Open
Abstract
Protein arginine methyltransferase 4 (PRMT4)–dependent methylation of arginine residues in histones and other chromatin-associated proteins plays an important role in the regulation of gene expression. However, the exact mechanism of how PRMT4 activates transcription remains elusive. Here, we identify the chromatin remodeller Mi2α as a novel interaction partner of PRMT4. PRMT4 binds Mi2α and its close relative Mi2β, but not the other components of the repressive Mi2-containing NuRD complex. In the search for the biological role of this interaction, we find that PRMT4 and Mi2α/β interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. This coactivation requires the methyltransferase and ATPase activity of PRMT4 and Mi2, respectively. Chromatin immunoprecipitation analysis shows that c-Myb target genes are direct transcriptional targets of PRMT4 and Mi2. Knockdown of PRMT4 or Mi2α/β in haematopoietic cells of the erythroid lineage results in diminished transcriptional induction of c-Myb target genes, attenuated cell growth and survival, and deregulated differentiation resembling the effects caused by c-Myb depletion. These findings reveal an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling. Our manuscript deals with the Protein arginine methyltransferase 4 (PRMT4), which modifies arginine residues in histones and other chromatin-associated proteins and plays an important role in the regulation of gene expression. We addressed the question of how the transcriptional function of PRMT4 might contribute to cell lineage specification despite its ubiquitious expression pattern and how this could explain its involvement in tumorigenesis. As protein associations are likely to provide an answer to this question, we attempted to identify novel interaction partners of PRMT4 using a biochemical approach. By this means, we found that PRMT4 binds Mi2α and its close relative Mi2β. In the search for the biological role of this interaction, we found that PRMT4 and Mi2α/β interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. Depletion of PRMT4 or Mi2α/β in human erythroleukemia cells resulted in deregulated cell proliferation and differentiation resembling the effects caused by c-Myb depletion. Our findings unravel an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling and gene activation and identify both coregulators as attractive targets for leukaemia research and therapy in the future.
Collapse
Affiliation(s)
- Gundula Streubel
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Hannah Berberich
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Marc S. Zeller
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | | | - Jürgen Adamkiewicz
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Rolf Müller
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
79
|
Abstract
There are nine protein arginine methyltransferases (PRMTs) encoded in mammalian genomes, the protein products of which catalyse three types of arginine methylation--monomethylation and two types of dimethylation. Protein arginine methylation is an abundant modification that has been implicated in signal transduction, gene transcription, DNA repair and mRNA splicing, among others. Studies have only recently linked this modification to carcinogenesis and metastasis. Sequencing studies have not generally found alterations to the PRMTs; however, overexpression of these enzymes is often associated with various cancers, which might make some of them viable targets for therapeutic strategies.
Collapse
Affiliation(s)
- Yanzhong Yang
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. BOX 389, Smithville, Texas 78957, USA
| | | |
Collapse
|
80
|
Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 2012; 32:815-67. [PMID: 22777714 DOI: 10.1002/mrr.20228] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and offer information otherwise difficult to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation, chemical ligation, mass spectrometry, biochemical methylation and demethylation assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes, or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic applications in the clinic.
Collapse
Affiliation(s)
- Keqin Kathy Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
81
|
Jafarov T, Alexander JWM, St-Arnaud R. αNAC interacts with histone deacetylase corepressors to control Myogenin and Osteocalcin gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1208-16. [PMID: 23092676 DOI: 10.1016/j.bbagrm.2012.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/27/2023]
Abstract
In the nucleus of differentiated osteoblasts, the DNA-binding αNAC protein acts as a transcriptional coactivator of the Osteocalcin gene. Chromatin immunoprecipitation-microarray assays (ChIP-chip) showed that αNAC binds the Osteocalcin promoter but also identified the Myogenin promoter as an αNAC target. Here, we confirm these array data using quantitative ChIP and further detected that αNAC binds to these promoters in myoblasts. Since these genes are differentially regulated during osteoblastogenesis or myogenesis, these results suggest cell- and promoter-context specific functions for αNAC. We hypothesized that αNAC dynamically recruits corepressors to inhibit Myogenin expression in cells committing to the osteoblastic lineage or to inhibit Osteocalcin transcription in differentiating myoblasts. Using co-immunoprecipitation assays, we detected complexes between αNAC and the corepressors HDAC1 and HDAC3, in myoblasts and osteoblasts. Sequential ChIP confirmed HDAC1 recruitment by αNAC at the Osteocalcin and Myogenin promoters. Interaction with the corepressors was detectable in pre-osteoblasts and in myoblasts but disappeared as the cells differentiate. Treatment with an HDAC inhibitor caused de-repression of Osteocalcin expression in myoblasts. Overexpression of αNAC in myoblasts inhibits expression of Myogenin and differentiation. However, overexpression of an N-terminus truncated αNAC mutant allowed myoblasts to express Myogenin and differentiate, and this mutant did not interact with HDAC1 or HDAC3. This study identified an additional DNA-binding target and novel protein-protein interactions for αNAC. We propose that αNAC plays a role in regulating gene transcription during mesenchymal cell differentiation by differentially recruiting corepressors at target promoters.
Collapse
|
82
|
Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions. Cell Stem Cell 2012; 11:333-45. [PMID: 22863532 DOI: 10.1016/j.stem.2012.07.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/22/2012] [Accepted: 07/11/2012] [Indexed: 01/23/2023]
Abstract
In skeletal muscle, asymmetrically dividing satellite stem cells give rise to committed satellite cells that transcribe the myogenic determination factor Myf5, a Pax7-target gene. We identified the arginine methyltransferase Carm1 as a Pax7 interacting protein and found that Carm1 specifically methylates multiple arginines in the N terminus of Pax7. Methylated Pax7 directly binds the C-terminal cleavage forms of the trithorax proteins MLL1/2 resulting in the recruitment of the ASH2L:MLL1/2:WDR5:RBBP5 histone H3K4 methyltransferase complex to regulatory enhancers and the proximal promoter of Myf5. Finally, Carm1 is required for the induction of de novo Myf5 transcription following asymmetric satellite stem cell divisions. We defined the C-terminal MLL region as a reader domain for the recognition of arginine methylated proteins such as Pax7. Thus, arginine methylation of Pax7 by Carm1 functions as a molecular switch controlling the epigenetic induction of Myf5 during satellite stem cell asymmetric division and entry into the myogenic program.
Collapse
|
83
|
Wu J, Cui N, Wang R, Li J, Wong J. A role for CARM1-mediated histone H3 arginine methylation in protecting histone acetylation by releasing corepressors from chromatin. PLoS One 2012; 7:e34692. [PMID: 22723830 PMCID: PMC3377634 DOI: 10.1371/journal.pone.0034692] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/05/2012] [Indexed: 12/21/2022] Open
Abstract
Arginine methylation broadly occurs in histones and has been linked to transcriptional regulation, cell cycle regulation and DNA repair. While numerous proteins (histone code effectors) that specifically recognize or read the methylated lysine residues in core histones have been identified, little is known for effectors specific for methylated arginines in histones. In this study, we attempted to identify effector(s) recognizing asymmetrically methylated R17 and R26 in H3, which are catalyzed by CARM1/PRMT4, through an unbiased biochemical approach. Although we have yet to identify such effector using this approach, we find that these modifications function cooperatively with histone acetylation to inhibit the binding of the nucleosome remodeling and deacetylase complex (NuRD) and TIF1 family corepressors to H3 tail in vitro. In support of this finding, we show that overexpression of CARM1 in 293 T cells leads to reduced association of NuRD with chromatin, whereas knockdown of CARM1 in HeLa cells leads to increased association of NuRD with chromatin and decreased level of histone acetylation. Furthermore, in the Carm1−/− MEF cells there is an increased association of NuRD and TIF1β with chromatin and a global decrease in histone acetylation. By chromatin immunoprecipitation assay, we show that overexpression of CARM1 results in reduced association of NuRD complex and TIF1β with an episomal reporter and that CARM1 is required in MEF cells for LPS-induced dissociation of NuRD from a NF-κb target gene. Taking together, our study provides evidence for a role of CARM1-mediated arginine methylation in regulation of histone acetylation and transcription: facilitating transcription by discharging corepressors from chromatin.
Collapse
Affiliation(s)
- Jing Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Nan Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
84
|
Cha B, Jho EH. Protein arginine methyltransferases (PRMTs) as therapeutic targets. Expert Opin Ther Targets 2012; 16:651-64. [PMID: 22621686 DOI: 10.1517/14728222.2012.688030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Protein arginine methyltransferases (PRMTs) add one or two monomethyl groups to the guanidino nitrogen atoms of arginine residues, resulting in epigenetic modification of histones or changes of protein-protein interactions, which in turn leads to the regulation of a variety of biological functions, including transcriptional activation/repression, signal transduction, cell differentiation, and embryonic development. As dysregulation of PRMTs has been observed in diverse types of cancers and modulation of their levels affects cancer cell growth, these enzymes are considered to be potential therapeutic targets. AREAS COVERED In this review, we examined recent advances in our understanding of the regulatory mechanisms of PRMT activity and the biological roles of PRMTs in embryonic stem cell, Wnt/β-catenin signaling, and cancer development. EXPERT OPINION The roles of PRMTs have been fairly well established, but further studies are required to determine how PRMTs are regulated by cellular signaling pathways in vivo. Since the usage of adult stem cells is under intense scrutiny by society, identification of the roles of PRMTs in adult stem cells is expected in the near future. Although small molecules specific to PRMTs with high potency in vitro have been identified, development of small molecules that can regulate the activity of PRMTs in vivo is urgently required for therapeutic purposes.
Collapse
Affiliation(s)
- Boksik Cha
- The University of Seoul, Department of Life Science, 90 Jeonnong-dong, Dongdaemun-gu, Seoul, 130-743, Republic of Korea
| | | |
Collapse
|
85
|
Kouzmenko A, Ohtake F, Fujiki R, Kato S. Hormonal gene regulation through DNA methylation and demethylation. Epigenomics 2012; 2:765-74. [PMID: 22122081 DOI: 10.2217/epi.10.58] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Methylation and demethylation of cytosine residues in the genomic DNA play key roles in a wide range of fundamental biological processes such as differentiation and development, genome stability, imprinting, X chromosome inactivation, carcinogenesis and aging. DNA methylation is considered to be a stable modification associated with the epigenetic silencing of genomic loci and maintained through cellular division. Recent studies however, suggest that DNA methylation and demethylation are considerably more dynamic than previously thought and may be involved in repression and derepression of gene activity during the lifespan of a cell. This article is focused on epigenetic mechanisms in the hormonal regulation of the cytochrome p450 27B1 or CYP27B1 gene activity that involve reversible epigenetic modifications to chromatin and DNA methylation profiles.
Collapse
Affiliation(s)
- Alexander Kouzmenko
- Institute of Molecular & Cellular Biosciences, University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
86
|
Histone H3R17me2a mark recruits human RNA polymerase-associated factor 1 complex to activate transcription. Proc Natl Acad Sci U S A 2012; 109:5675-80. [PMID: 22451921 DOI: 10.1073/pnas.1114905109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The histone coactivator-associated arginine methyltransferase 1 (CARM1) is a coactivator for a number of transcription factors, including nuclear receptors. Although CARM1 and its asymmetrically deposited dimethylation at histone H3 arginine 17 (H3R17me2a) are associated with transcription activation, the mechanism by which CARM1 activates transcription remains unclear. Using an unbiased biochemical approach, we discovered that the transcription elongation-associated PAF1 complex (PAF1c) directly interacts with H3R17me2a. PAF1c binds to histone H3 tails harboring dimethylation at R17 in CARM1-methylated histone octamers. Knockdown of either PAF1c subunits or CARM1 affected transcription of CARM1-regulated, estrogen-responsive genes. Furthermore, either CARM1 knockdown or CARM1 enzyme-deficient mutant knockin resulted in decreased H3R17me2a accompanied by the reduction of PAF1c occupancy at the proximal promoter estrogen-responsive elements. In contrast, PAF1c knockdown elicited no effects on H3R17me2a but reduced the H3K4me3 level at estrogen-responsive elements. These observations suggest that, apart from PAF1c's established roles in directing histone modifications, PAF1c acts as an arginine methyl histone effector that is recruited to promoters and activates a subset of genes, including targets of estrogen signaling.
Collapse
|
87
|
Luo M. Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 2012; 7:443-63. [PMID: 22220966 DOI: 10.1021/cb200519y] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein methyltransferases (PMTs) play various physiological and pathological roles through methylating histone and nonhistone targets. However, most PMTs including more than 60 human PMTs remain to be fully characterized. The current approaches to elucidate the functions of PMTs have been diversified by many emerging chemical biology technologies. This review focuses on progress in these aspects and is organized into four discussion modules (assays, substrates, cofactors, and inhibitors) that are important to elucidate biological functions of PMTs. These modules are expected to provide general guidance and present emerging methods for researchers to select and combine suitable PMT-activity assays, well-defined substrates, novel SAM surrogates, and PMT inhibitors to interrogate PMTs.
Collapse
Affiliation(s)
- Minkui Luo
- Molecular Pharmacology
and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New
York 10065, United States
| |
Collapse
|
88
|
Wang YC, Li C. Evolutionarily conserved protein arginine methyltransferases in non-mammalian animal systems. FEBS J 2012; 279:932-45. [PMID: 22251447 DOI: 10.1111/j.1742-4658.2012.08490.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein arginine methylation is catalyzed by members of the protein arginine methyltransferase (PRMT) family. In the present review, nine PRMTs identified in mammals (human) were used as templates to survey homologous PRMTs in 10 animal species with a completed sequence available in non-mammalian vertebrates, invertebrate chordates, echinoderms, arthropods, nematodes and cnidarians. We show the conservation of the most typical type I PRMT1 and type II PRMT5 in all of the species examined, the wide yet different distribution of PRMT3, 4 and 7 in non-mammalian animals, the vertebrate-restricted distribution of PRMT8 and the special reptile/avian-deficient distribution of PRMT2 and 6. We summarize the basic functions of each PRMT and focus on the current investigations of PRMTs in the non-mammalian animal models, including Xenopus, fish (zebrafish, flounder and medaka), Drosophila and Caenorhabditis elegans. Studies in the model systems not only complement the understanding of the functions of PRMTs in mammals, but also provide valuable information about their evolution, as well as their critical roles and interplays.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | | |
Collapse
|
89
|
Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues. J Biol Chem 2012; 287:7859-70. [PMID: 22241471 DOI: 10.1074/jbc.m111.336271] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full-length human protein arginine methyltransferase 7 (PRMT7) expressed as a fusion protein in Escherichia coli was initially found to generate only ω-N(G)-monomethylated arginine residues in small peptides, suggesting that it is a type III enzyme. A later study, however, characterized fusion proteins of PRMT7 expressed in bacterial and mammalian cells as a type II/type I enzyme, capable of producing symmetrically dimethylated arginine (type II activity) as well as small amounts of asymmetric dimethylarginine (type I activity). We have sought to clarify the enzymatic activity of human PRMT7. We analyzed the in vitro methylation products of a glutathione S-transferase (GST)-PRMT7 fusion protein with robust activity using a variety of arginine-containing synthetic peptides and protein substrates, including a GST fusion with the N-terminal domain of fibrillarin (GST-GAR), myelin basic protein, and recombinant human histones H2A, H2B, H3, and H4. Regardless of the methylation reaction conditions (incubation time, reaction volume, and substrate concentration), we found that PRMT7 only produces ω-N(G)-monomethylarginine with these substrates. In control experiments, we showed that mammalian GST-PRMT1 and Myc-PRMT5 were, unlike PRMT7, able to dimethylate both peptide P-SmD3 and SmB/D3 to give the expected asymmetric and symmetric products, respectively. These experiments show that PRMT7 is indeed a type III human methyltransferase capable of forming only ω-N(G)-monomethylarginine, not asymmetric ω-N(G),N(G)-dimethylarginine or symmetric ω-N(G),N(G')-dimethylarginine, under the conditions tested.
Collapse
Affiliation(s)
- Cecilia I Zurita-Lopez
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|
90
|
Zhong J, Cao RX, Zu XY, Hong T, Yang J, Liu L, Xiao XH, Ding WJ, Zhao Q, Liu JH, Wen GB. Identification and characterization of novel spliced variants of PRMT2 in breast carcinoma. FEBS J 2012; 279:316-335. [PMID: 22093364 DOI: 10.1111/j.1742-4658.2011.08426.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein N-arginine methyltransferases (PRMTs) participate in a number of cellular processes, including cell growth, nuclear/cytoplasmic protein shuttling, differentiation, RNA splicing and post-transcriptional regulation. PRMT2 (also known as HRMT1L1) is clearly involved in lung function, the inflammatory response, apoptosis promotion, Wnt signaling and leptin signaling regulation through different mechanisms. In this study, we report the molecular and cell biological characterization of three novel PRMT2 splice variants isolated from breast cancer cells and referred to as PRMT2α, PRMT2β and PRMT2γ. Compared with the wild-type PRMT2, these variants lack different motifs and therefore generate distinct C-terminal domains. Confocal microscopy scanning revealed a distinct intracellular localization of PRMT2 variants, suggesting that the alternatively spliced C-terminus of PRMT2 can directly influence its subcellular localization. Our findings reveal that these variants are capable of binding to estrogen receptor alpha (ERα) both in vitro and in vivo, and the N-terminal regions of these variants contribute to ERα-PRMT2 interactions. Furthermore, these variants were proved to be able to enhance ERα-mediated transactivation activity. Luciferase reporter assays showed that PRMT2s could modulate promoter activities of the ERα-targeted genes of Snail and E-cadherin. In addition, PRMT2 silencing could enhance 17β-estradiol-induced proliferation by regulating E2F1 expression and E2F1-responsive genes in ERα-positive breast cancer cells. Real-time PCR and immunohistochemistry showed that overall PRMT2 expression was upregulated in breast cancer tissues and significantly associated with ERα positivity status both in breast cancer cell lines and breast cancer tissues. We speculate that PRMT2 and its splice variants may directly modulate ERα signaling and play a role in the progression of breast cancer.
Collapse
Affiliation(s)
- Jing Zhong
- Clinical Medical Research Institute of the First Affiliated Hospital, University of South China, Hengyang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Batut J, Duboé C, Vandel L. The methyltransferases PRMT4/CARM1 and PRMT5 control differentially myogenesis in zebrafish. PLoS One 2011; 6:e25427. [PMID: 22016767 PMCID: PMC3189919 DOI: 10.1371/journal.pone.0025427] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/05/2011] [Indexed: 12/31/2022] Open
Abstract
In vertebrates, skeletal myogenesis involves the sequential activation of myogenic factors to lead ultimately to the differentiation into slow and fast muscle fibers. How transcriptional co-regulators such as arginine methyltransferases PRMT4/CARM1 and PRMT5 control myogenesis in vivo remains poorly understood. Loss-of-function experiments using morpholinos against PRMT4/CARM1 and PRMT5 combined with in situ hybridization, quantitative polymerase chain reaction, as well as immunohistochemistry indicate a positive, but differential, role of these enzymes during myogenesis in vivo. While PRMT5 regulates myod, myf5 and myogenin expression and thereby slow and fast fiber formation, PRMT4/CARM1 regulates myogenin expression, fast fiber formation and does not affect slow fiber formation. However, our results show that PRMT4/CARM1 is required for proper slow myosin heavy chain localization. Altogether, our results reveal a combinatorial role of PRMT4/CARM1 and PRMT5 for proper myogenesis in zebrafish.
Collapse
Affiliation(s)
- Julie Batut
- Université de Toulouse-Paul Sabatier, Centre de Biologie du Développement, Toulouse, France
| | | | | |
Collapse
|
92
|
Tumor suppressor protein (p)53, is a regulator of NF-kappaB repression by the glucocorticoid receptor. Proc Natl Acad Sci U S A 2011; 108:17117-22. [PMID: 21949408 DOI: 10.1073/pnas.1114420108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids can inhibit inflammation by abrogating the activity of NF-κB, a family of transcription factors that regulates the production of proinflammatory cytokines. To understand the molecular mechanism of repression of NF-κB activity by glucocorticoids, we performed a high-throughput siRNA oligo screen to identify novel genes involved in this process. Here, we report that loss of p53, a tumor suppressor protein, impaired repression of NF-κB target gene transcription by glucocorticoids. Additionally, loss of p53 also impaired transcription of glucocorticoid receptor (GR) target genes, whereas upstream NF-κB and glucocorticoid receptor signaling cascades remained intact. We further demonstrate that p53 loss severely impaired glucocorticoid rescue of death in a mouse model of LPS shock. Our findings unveil a new role for p53 in the repression of NF-κB by glucocorticoids and suggest important implications for treatment of the proinflammatory microenvironments found in tumors with aberrant p53 activity.
Collapse
|
93
|
Ceschin DG, Walia M, Wenk SS, Duboé C, Gaudon C, Xiao Y, Fauquier L, Sankar M, Vandel L, Gronemeyer H. Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin. Genes Dev 2011; 25:1132-46. [PMID: 21632823 DOI: 10.1101/gad.619211] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple signaling pathways ultimately modulate the epigenetic information embedded in the chromatin of gene promoters by recruiting epigenetic enzymes. We found that, in estrogen-regulated gene programming, the acetyltransferase CREB-binding protein (CBP) is specifically and exclusively methylated by the coactivator-associated arginine methyltransferase (CARM1) in vivo. CARM1-dependent CBP methylation and p160 coactivators were required for estrogen-induced recruitment to chromatin targets. Notably, methylation increased the histone acetyltransferase (HAT) activity of CBP and stimulated its autoacetylation. Comparative genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) studies revealed a variety of patterns by which p160, CBP, and methyl-CBP (meCBP) are recruited (or not) by estrogen to chromatin targets. Moreover, significant target gene-specific variation in the recruitment of (1) the p160 RAC3 protein, (2) the fraction of a given meCBP species within the total CBP, and (3) the relative recruitment of different meCBP species suggests the existence of a target gene-specific "fingerprint" for coregulator recruitment. Crossing ChIP-seq and transcriptomics profiles revealed the existence of meCBP "hubs" within the network of estrogen-regulated genes. Together, our data provide evidence for an unprecedented mechanism by which CARM1-dependent CBP methylation results in gene-selective association of estrogen-recruited meCBP species with different HAT activities and specifies distinct target gene hubs, thus diversifying estrogen receptor programming.
Collapse
Affiliation(s)
- Danilo Guillermo Ceschin
- Department of Cancer Biology, Institut Génétique de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Bissinger EM, Heinke R, Spannhoff A, Eberlin A, Metzger E, Cura V, Hassenboehler P, Cavarelli J, Schüle R, Bedford MT, Sippl W, Jung M. Acyl derivatives of p-aminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1. Bioorg Med Chem 2011; 19:3717-31. [DOI: 10.1016/j.bmc.2011.02.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/15/2011] [Accepted: 02/19/2011] [Indexed: 10/18/2022]
|
95
|
Wang R, Zheng W, Yu H, Deng H, Luo M. Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-L-methionine analogues. J Am Chem Soc 2011; 133:7648-51. [PMID: 21539310 PMCID: PMC3104021 DOI: 10.1021/ja2006719] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Elucidating physiological and pathogenic functions of protein methyltransferases (PMTs) relies on knowing their substrate profiles. S-adenosyl-L-methionine (SAM) is the sole methyl-donor cofactor of PMTs. Recently, SAM analogues have emerged as novel small-molecule tools to efficiently label PMT substrates. Here we reported the development of a clickable SAM analogue cofactor, 4-propargyloxy-but-2-enyl SAM, and its implementation to label substrates of human protein arginine methyltransferase 1 (PRMT1). In the system, the SAM analogue cofactor, coupled with matched PRMT1 mutants rather than native PRMT1, was shown to label PRMT1 substrates. The transferable 4-propargyloxy-but-2-enyl moiety of the SAM analogue further allowed corresponding modified substrates to be characterized through a subsequent click chemical ligation with an azido-based probe. The SAM analogue, in combination with a rational protein-engineering approach, thus shows potential to label and identify PMT targets in the context of a complex cellular mixture.
Collapse
Affiliation(s)
- Rui Wang
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021
| | - Weihong Zheng
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Haiqiang Yu
- Proteomics Resource Center, Rockefeller University, New York, NY 10065
| | - Haiteng Deng
- Proteomics Resource Center, Rockefeller University, New York, NY 10065
- School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Minkui Luo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021
| |
Collapse
|
96
|
Kuhn P, Chumanov R, Wang Y, Ge Y, Burgess RR, Xu W. Automethylation of CARM1 allows coupling of transcription and mRNA splicing. Nucleic Acids Res 2011; 39:2717-26. [PMID: 21138967 PMCID: PMC3074151 DOI: 10.1093/nar/gkq1246] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/29/2010] [Accepted: 11/17/2010] [Indexed: 12/18/2022] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), the histone arginine methyltransferase and coactivator for many transcription factors, is subject to multiple post-translational modifications (PTMs). To unbiasedly investigate novel CARM1 PTMs we employed high-resolution top-down mass spectrometry. Surprisingly, mouse CARM1 expressed in insect and mammalian expression systems was completely dimethylated at a single site in the C-terminal domain (CTD). We demonstrate that dimethylation of CARM1 occurs both in vivo and in vitro and proceeds via an automethylation mechanism. To probe function of automethylation, we mutated arginine 551 to lysine to create an automethylation-deficient CARM1. Although mutation of CARM1's automethylation site did not affect its enzymatic activity, it did impair both CARM1-activated transcription and pre-mRNA splicing. These results strongly imply that automethylation of CARM1 provides a direct link to couple transcription and pre-mRNA splicing in a manner differing from the other steroid receptor coactivators. Furthermore, our study identifies a self-regulatory signaling mechanism from CARM1's catalytic domain to its CTD.
Collapse
Affiliation(s)
- Peter Kuhn
- McArdle Laboratory for Cancer Research and Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Rob Chumanov
- McArdle Laboratory for Cancer Research and Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research and Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Ying Ge
- McArdle Laboratory for Cancer Research and Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Richard R. Burgess
- McArdle Laboratory for Cancer Research and Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research and Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
97
|
Chumanov RS, Kuhn PA, Xu W, Burgess RR. Expression and purification of full-length mouse CARM1 from transiently transfected HEK293T cells using HaloTag technology. Protein Expr Purif 2011; 76:145-53. [PMID: 21126607 PMCID: PMC3248244 DOI: 10.1016/j.pep.2010.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/05/2010] [Accepted: 11/15/2010] [Indexed: 12/17/2022]
Abstract
Coactivator-associated arginine methyl transferase 1 (CARM1) is a protein arginine methyltransferase (PRMT) family member that functions as a coactivator in androgen and estrogen signaling pathways and plays a role in the progression of prostate and breast cancer. CARM1 catalyzes methylation of diverse protein substrates. Prior attempts to purify the full-length mouse CARM1 protein have proven unsatisfactory. The full-length protein expressed in Escherichia coli forms insoluble inclusion bodies that are difficult to denature and refold. The presented results demonstrate the use of a novel HaloTag™ technology to purify full-length CARM1 from both E. coli and mammalian HEK293T cells. A small amount of CARM1 was purified from E. coli; however, the protein was truncated on the N-terminus by 10-50 amino acids, most likely due to endogenous proteolytic activity. In contrast, substantial quantities of soluble full-length CARM1 were purified from transiently transfected HEK293T cells. The CARM1 from HEK293T cells was isolated alongside a number of co-purifying interacting proteins. The covalent bond formed between the HaloTag and the HaloLink resin allowed the use of stringent wash conditions without risk of eluting the CARM1 protein. The results also illustrate a highly effective approach for purifying and enriching both CARM1-associated proteins as well as substrates for CARM1's methyltransferase activity.
Collapse
Affiliation(s)
- Robert S. Chumanov
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Peter A. Kuhn
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Richard R. Burgess
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
98
|
Lee YH, Bedford MT, Stallcup MR. Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes Dev 2011; 25:176-88. [PMID: 21245169 DOI: 10.1101/gad.1975811] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor suppression by p53 and BRCA1 involves regulation of cell cycle, apoptosis, and DNA repair and is influenced by transcriptional coactivators and post-translational modifications. Here we show that coactivator-associated arginine methyltransferase 1 (CARM1) methylates Arg 754 in the KIX region of coactivator p300. Methylated p300 and p300 protein fragments are preferentially recognized by BRCT domains of BRCA1, identifying the BRCT domain as a novel methylarginine-binding module. CARM1 and p300 cooperate with BRCA1 and p53 to induce expression of the critical cell cycle and proliferation regulator p21(WAF1/CIP1) in response to DNA damage. This induction was severely attenuated by elimination of CARM1 or its methyltransferase activity, or by mutation of Arg 754 of p300. Absence of CARM1 methyltransferase activity led to failure of cells to arrest in the G1 phase of the cell cycle in response to DNA damage. CARM1 methyltransferase activity was required for induction of some p53 target genes (p21 and Gadd45) but not others (Bax) by DNA damage. Recruitment of BRCA1 to the p53-binding region of the p21 promoter in response to DNA damage required methylation of Arg 754 of p300 by CARM1. Thus, coactivator methylation may be crucial for fine-tuning the tumor suppressor function of BRCA1 and other BRCT domain proteins.
Collapse
Affiliation(s)
- Young-Ho Lee
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
99
|
Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 2010. [DOI: 10.1002/med.20228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
100
|
Wang Y. 5 Methylation and demethylation of his tone arg and lys residues in chromatin structure and function. Enzymes 2010; 24:123-53. [PMID: 26718039 DOI: 10.1016/s1874-6047(06)80007-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Chromatin is the physiological template of all eukaryotic genomic activities. Histone proteins are the fundamental building elements of chromatin, which are the subject of various posttranslational modifications, including methylation. Adding and removing the methyl moieties from histones plays an important epigenetic role to ensure the release of the appropriate genetic information. Both Lys and Arg residues in histones can be dynamically methylated and demethylated by different enzymes. The processes of adding and removing methyl groups on histone Lys residues are catalyzed by histone Lys methyltransferases (HKMTs) and histone-Lys-specific demethylase (LSD), respectively. Protein Arg methyltransferases (PRMTs) add methyl groups to histone Arg residues. On the other hand, peptidy-larginine deiminases remove the methyl groups in conjunction with the amine group, leaving the citrulline aminoacid in histones. The fate of citrulline residues in histone is currently unknown. Importantly, methylation has been implicated as playing a major role in regulating gene expression to control normal cell growth, proliferation, and differentiation. The steady-state balance of histone methylation is important for the normal development and the health of an organism.
Collapse
Affiliation(s)
- Yanming Wang
- Department of Biochemistry and Molecular Biology Pennsylvania State University 108 Althouse Lab University Park, PA 16802, USA
| |
Collapse
|