51
|
Zhang Y, Wang J, Chen X, Lu X, Wang D, Wang J, Wang S, Chen C, Guo L, Malik WA, Fan Y, Rui C, Cui R, Wang Q, Lei Y, Ye W. Genome-wide identification and characteristic analysis of the downstream melatonin metabolism gene GhM2H in Gossypium hirsutum L. Biol Res 2021; 54:36. [PMID: 34736526 PMCID: PMC8567562 DOI: 10.1186/s40659-021-00358-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 10/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Melatonin 2-hydroxylase (M2H) is the first enzyme in the catabolism pathway of melatonin, which catalyzes the production of 2-hydroxymelatonin (2-OHM) from melatonin. The content of 2-hydroxymelatonin in plants is much higher than that of melatonin. So M2H may be a key enzyme in the metabolic pathway of melatonin. Method We conducted a systematic analysis of the M2H gene family in Gossypium hirsutum based on the whole genome sequence by integrating the structural characteristics, phylogenetic relationships, expression profile, and biological stress of the members of the Gossypium hirsutum M2H gene family. Result We identified 265 M2H genes in the whole genome of Gossypium hirsutum, which were divided into 7 clades (clades I-VII) according to phylogenetic analysis. Most M2H members in each group had similar motif composition and gene structure characteristics. More than half of GhM2H members contain ABA-responsive elements and MeJA-responsive elements. Under different stress conditions, the expression levels of the gene changed, indicating that GhM2H members were involved in the regulation of abiotic stress. Some genes in the GhM2H family were involved in regulating melatonin levels in cotton under salt stress, and some genes were regulated by exogenous melatonin. Conclusion This study is helpful to explore the function of GhM2H, the downstream metabolism gene of melatonin in cotton, and lay the foundation for better exploring the molecular mechanism of melatonin improving cotton's response to abiotic stress. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00358-y.
Collapse
Affiliation(s)
- Yuexin Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Jing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Chao Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Waqar Afzal Malik
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Cun Rui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Ruifeng Cui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Qinqin Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Yuqian Lei
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China.
| |
Collapse
|
52
|
Huang Y, Cai S, Ruan X, Xu J, Cao D. CSN improves seed vigor of aged sunflower seeds by regulating the fatty acid, glycometabolism, and abscisic acid metabolism. J Adv Res 2021; 33:1-13. [PMID: 34603775 PMCID: PMC8463905 DOI: 10.1016/j.jare.2021.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/03/2021] [Accepted: 01/29/2021] [Indexed: 11/06/2022] Open
Abstract
Introduction Sunflower seeds possess higher oil content than do cereal crop seeds. Storage of sunflower seeds is accompanied by loss of seed vigor and oxidation of storage and membrane lipids. Objectives This study first reported that compound sodium nitrophenolate (CSN), a new plant growth modulator, improved the germination and seedling emergence of aged sunflower seeds. The present study provide a future reference as to the potential applications of CSN and the regulation mechanism of exogenous substances in increasing aged crop seed vigor. Methods Phenotypic analysis was performed to investigate the effect of CSN on germination and seedling emergence from naturally- and artificially-aged sunflower seeds. The biochemical and enzyme activity analysis were conducted to test the CSN-induced effect on glycometabolism, fatty acid and abscisic acid metabolism. Meanwhile, gene expression analysis was carried out to detect the changes in the transcription level of sunflower seeds during early germination period after CSN treatment. Results CSN application significantly increased the germination rate and seedling emergence rate of sunflower seeds under natural and artificial aging. Biochemical analysis indicated that, CSN treatment significantly enhanced the sucrose and fructose contents in aged sunflower seeds during early germination period. Moreover, the contents of several different fatty acids in CSN-treated sunflower seeds also significantly increased. Enzyme activity analysis revealed that CSN treatment remarkably up-regulated the activities of several critical enzymes related to triacylglycerol hydrolysis. Consequently, the transcription levels of the above key enzymes-related synthetic genes were also significantly up-regulated in CSN treatment. Furthermore, CSN treatment significantly decreased abscisic acid (ABA) content through the regulation of the gene expressions and activities of metabolism related-enzymes. Conclusion Taken together, the contribution of CSN to the improvement of aged sunflower seed germination and seedling emergence might be closely related to the fatty acid, glycometabolism, and ABA metabolism.
Collapse
Affiliation(s)
- Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, 310021 Hangzhou, China
| | - Shuyu Cai
- School of Architectural Engineering, Shaoxing University Yuanpei College, 312000 Shaoxing, China
| | - Xiaoli Ruan
- Zhejiang Nongke Seed Co. Ltd, 198 Shiqiao Road, Hangzhou 310021, China
| | - Jun Xu
- Bureau of Agriculture and Rural Affairs of Pinhu City, 500 Xinhuabei Road, Pinhu 314200, China
| | - Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, 310021 Hangzhou, China
| |
Collapse
|
53
|
Amoah JN, Seo YW. Effect of progressive drought stress on physio-biochemical responses and gene expression patterns in wheat. 3 Biotech 2021; 11:440. [PMID: 34603917 PMCID: PMC8450207 DOI: 10.1007/s13205-021-02991-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
The study aimed to decipher the impact of multiple drought stress on wheat. To that effect, Geumgangmil, PL 337 (1AL.1RS), PL 371 (1BL.1RS), and PL 257 (1DL.1RS) seedlings were subjected to four treatments: G1 (control), G2 (stressed thrice with rewatering), G3 (stressed twice with rewatering), and G4 (single stressful event). The findings provided a comprehensive framework of drought-hardening effect at physiological, biochemical, and gene expression levels of drought-stressed wheat genotypes. The treatments resulted in differentially higher levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), soluble sugar, and proline accumulation, and reduced relative water content (RWC) in wheat plants. Photosynthetic pigment (chlorophyll and carotenoid) levels, the membrane stability index (MSI), and shoot biomass decreased dramatically and differently across genotypes, particularly in G3 and G4 compared to G2. The activity of antioxidant enzymes [ascorbate peroxidase (APX), superoxide dismutase (SOD), and catalase (CAT)] increased with the duration and severity of drought treatment. Furthermore, the relative expression of DREB, LEA, HSP, P5CS, SOD1, CAT1, APX1, RBCL, and CCD1 genes was higher in G2 than in other treatments. Drought hardening increased drought tolerance and adaptability in plants under G2 by enhancing growth and activating defensive mechanisms at the physio-biochemical and molecular levels. The findings of the study indicated that early drought stress exposure-induced acclimation (hardening), which enhanced tolerance to subsequent drought stress in wheat seedlings. The findings of this study will be useful in initiating a breeding program to develop wheat cultivars with improved drought tolerance. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02991-6.
Collapse
Affiliation(s)
- Joseph Noble Amoah
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
54
|
SHARMA KAMALDEV, PATIL GAURAV, KIRAN ASHA. Characterization and differential expression of sucrose and starch metabolism genes in contrasting chickpea (Cicer arietinum L.) genotypes under low temperature. J Genet 2021. [DOI: 10.1007/s12041-021-01317-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
55
|
Chen M, Fu Y, Mou Q, An J, Zhu X, Ahmed T, Zhang S, Basit F, Hu J, Guan Y. Spermidine Induces Expression of Stress Associated Proteins (SAPs) Genes and Protects Rice Seed from Heat Stress-Induced Damage during Grain-Filling. Antioxidants (Basel) 2021; 10:antiox10101544. [PMID: 34679679 PMCID: PMC8533277 DOI: 10.3390/antiox10101544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023] Open
Abstract
Heat stress during seed maturation significantly reduced seed size and quality. Polyamines, especially spermidine (Spd), were reported to be closely related to seed development and plant heat tolerance. Stress-associated proteins (SAPs) also played a critical role in plant heat resistance, but the relationship between Spd and SAPs in improving rice tolerance to heat stress during grain filling has not been reported. Our results showed that the external spraying Spd (1.5 mM) significantly increased seed germination rate, germination index, vigor index and 1000-grain weight, significantly increased endogenous Spd, spermine (Spm) content and peroxidase activity; significantly reduced MDA content; and greatly alleviated the impact of heat stress on rice seed quality during grain filling stage as compared with high temperature control. OsSAP5 was the most upregulated expression induced by Spd, and may be mainly involved in the Spd-mediated enhancement of high-temperature resistance during rice seed development. Overexpression of OsSAP5 in Arabidopsis enhanced 1000-grain weight and seed heat resistance. Exogenous Spd alleviated the survival rate and seedling length, reduced MDA content, and upregulated the expression levels of SPDS and SPMS in Atsap4 mutant under high temperature during seed germination. In all, exogenous Spd alleviated the heat damage on seed quality during the grain filling stage and seed germination stage by improving endogenous Spd and Spm. OsSAP5, a key gene induced by Spd, might be involved in the rice heat resistance and seed quality in coordination with Spd and Spm.
Collapse
Affiliation(s)
- Min Chen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Yuying Fu
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230041, China;
| | - Qingshan Mou
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Jianyu An
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Xiaobo Zhu
- Hainan Research Institute, Zhejiang University, Sanya 572025, China;
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Sheng Zhang
- Taizhou Agricultural Technology Extension Center, Taizhou 318000, China;
| | - Farwa Basit
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Jin Hu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
- Hainan Research Institute, Zhejiang University, Sanya 572025, China;
| | - Yajing Guan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
- Correspondence:
| |
Collapse
|
56
|
Amin B, Atif MJ, Wang X, Meng H, Ghani MI, Ali M, Ding Y, Li X, Cheng Z. Effect of low temperature and high humidity stress on physiology of cucumber at different leaf stages. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:785-796. [PMID: 33900017 DOI: 10.1111/plb.13276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Low temperature (LT) and high humidity (HH) are important environmental factors in greenhouses and plastic tunnels during the cold season, as they hamper plant growth and development. Here, we studied the effect of LT (day/night: 9/5 °C, 25/18 °C as control) and HH (95%, 80% as control) on young cucumber plants at the 2, 4 or 6 leaf stages. LT+HH stress resulted in a decline in shoot, root and total fresh and dry weights, and decreased Pn , gs , Tr , Fv /Fm , qP, ETR and chlorophyll, and increased MDA, H2 O2 , O2 - , NPQ and Ci as compared to the control at the 2 leaf stage. SOD, POD, CAT, APX and GR were upregulated under LT+HH stress as compared to the control at the 6 leaf stage. ABA and JA increased under LT+HH stress as compared to the control at the 6 leaf stage, while IAA and GA decreased under LT+HH stress as compared to the control at the 2 leaf stage. Our results show that LT+HH stress affects young cucumber plant photosynthetic efficiency, PSII activity, antioxidant defence system, ROS and hormone profile. Plants at the 6 leaf stage were more tolerant than at the 2 and 4 leaf stages under stress conditions.
Collapse
Affiliation(s)
- B Amin
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M J Atif
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
- Horticultural Research Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - X Wang
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - H Meng
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M I Ghani
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M Ali
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - Y Ding
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - X Li
- Tianjin Kerun Cucumber Research Institute, Tianjin, 300192, China
| | - Z Cheng
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| |
Collapse
|
57
|
Wang Q, Lu X, Chen X, Zhao L, Han M, Wang S, Zhang Y, Fan Y, Ye W. Genome-wide identification and function analysis of HMAD gene family in cotton (Gossypium spp.). BMC PLANT BIOLOGY 2021; 21:386. [PMID: 34416873 PMCID: PMC8377987 DOI: 10.1186/s12870-021-03170-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The abiotic stress such as soil salinization and heavy metal toxicity has posed a major threat to sustainable crop production worldwide. Previous studies revealed that halophytes were supposed to tolerate other stress including heavy metal toxicity. Though HMAD (heavy-metal-associated domain) was reported to play various important functions in Arabidopsis, little is known in Gossypium. RESULTS A total of 169 G. hirsutum genes were identified belonging to the HMAD gene family with the number of amino acids ranged from 56 to 1011. Additionally, 84, 76 and 159 HMAD genes were identified in each G. arboreum, G. raimondii and G. barbadense, respectively. The phylogenetic tree analysis showed that the HMAD gene family were divided into five classes, and 87 orthologs of HMAD genes were identified in four Gossypium species, such as genes Gh_D08G1950 and Gh_A08G2387 of G. hirsutum are orthologs of the Gorai.004G210800.1 and Cotton_A_25987 gene in G. raimondii and G. arboreum, respectively. In addition, 15 genes were lost during evolution. Furthermore, conserved sequence analysis found the conserved catalytic center containing an anion binding (CXXC) box. The HMAD gene family showed a differential expression levels among different tissues and developmental stages in G. hirsutum with the different cis-elements for abiotic stress. CONCLUSIONS Current study provided important information about HMAD family genes under salt-stress in Gossypium genome, which would be useful to understand its putative functions in different species of cotton.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| |
Collapse
|
58
|
Campos MD, Félix MDR, Patanita M, Materatski P, Varanda C. High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding. HORTICULTURE RESEARCH 2021; 8:171. [PMID: 34333540 PMCID: PMC8325677 DOI: 10.1038/s41438-021-00607-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most economically important vegetables throughout the world. It is one of the best studied cultivated dicotyledonous plants, often used as a model system for plant research into classical genetics, cytogenetics, molecular genetics, and molecular biology. Tomato plants are affected by different pathogens such as viruses, viroids, fungi, oomycetes, bacteria, and nematodes, that reduce yield and affect product quality. The study of tomato as a plant-pathogen system helps to accelerate the discovery and understanding of the molecular mechanisms underlying disease resistance and offers the opportunity of improving the yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques, that allow the identification of plant key functional genes in susceptible and resistant responses, and the understanding of the molecular basis of compatible interactions during pathogen attack. Next-generation sequencing technologies (NGS), which produce massive quantities of sequencing data, have greatly accelerated research in biological sciences and offer great opportunities to better understand the molecular networks of plant-pathogen interactions. In this review, we summarize important research that used high-throughput RNA-seq technology to obtain transcriptome changes in tomato plants in response to a wide range of pathogens such as viruses, fungi, bacteria, oomycetes, and nematodes. These findings will facilitate genetic engineering efforts to incorporate new sources of resistance in tomato for protection against pathogens and are of major importance for sustainable plant-disease management, namely the ones relying on the plant's innate immune mechanisms in view of plant breeding.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - Maria do Rosário Félix
- MED - Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Mariana Patanita
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Patrick Materatski
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Carla Varanda
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| |
Collapse
|
59
|
Huang X, Tian T, Chen J, Wang D, Tong B, Liu J. Transcriptome analysis of Cinnamomum migao seed germination in medicinal plants of Southwest China. BMC PLANT BIOLOGY 2021; 21:270. [PMID: 34116632 PMCID: PMC8194011 DOI: 10.1186/s12870-021-03020-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cinnamomum migao is an endangered evergreen woody plant species endemic to China. Its fruit is used as a traditional medicine by the Miao nationality of China and has a high commercial value. However, its seed germination rate is extremely low under natural and artificial conditions. As the foundation of plant propagation, seed germination involves a series of physiological, cellular, and molecular changes; however, the molecular events and systematic changes occurring during C. migao seed germination remain unclear. RESULTS In this study, combined with the changes in physiological indexes and transcription levels, we revealed the regulation characteristics of cell structures, storage substances, and antioxidant capacity during seed germination. Electron microscopy analysis revealed that abundant smooth and full oil bodies were present in the cotyledons of the seeds. With seed germination, oil bodies and other substances gradually degraded to supply energy; this was consistent with the content of storage substances. In parallel to electron microscopy and physiological analyses, transcriptome analysis showed that 80-90 % of differentially expressed genes (DEGs) appeared after seed imbibition, reflecting important development and physiological changes. The unigenes involved in material metabolism (glycerolipid metabolism, fatty acid degradation, and starch and sucrose metabolism) and energy supply pathways (pentose phosphate pathway, glycolysis pathway, pyruvate metabolism, tricarboxylic acid cycle, and oxidative phosphorylation) were differentially expressed in the four germination stages. Among these DEGs, a small number of genes in the energy supply pathway at the initial stage of germination maintained high level of expression to maintain seed vigor and germination ability. Genes involved in lipid metabolism were firstly activated at a large scale in the LK (seed coat fissure) stage, and then genes involved in carbohydrates (CHO) metabolism were activated, which had their own species specificity. CONCLUSIONS Our study revealed the transcriptional levels of genes and the sequence of their corresponding metabolic pathways during seed germination. The changes in cell structure and physiological indexes also confirmed these events. Our findings provide a foundation for determining the molecular mechanisms underlying seed germination.
Collapse
Affiliation(s)
- Xiaolong Huang
- Department of Ecology, College of Forestry, Guizhou University, 550025, Guiyang, China
- Forest Ecology Research Center of Guizhou University, 550025, Guiyang, China
| | - Tian Tian
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, 550025, Guiyang, China
| | - Jingzhong Chen
- Department of Ecology, College of Forestry, Guizhou University, 550025, Guiyang, China
- Forest Ecology Research Center of Guizhou University, 550025, Guiyang, China
| | - Deng Wang
- Department of Ecology, College of Forestry, Guizhou University, 550025, Guiyang, China
- Forest Ecology Research Center of Guizhou University, 550025, Guiyang, China
| | - Bingli Tong
- Department of Ecology, College of Forestry, Guizhou University, 550025, Guiyang, China
- Forest Ecology Research Center of Guizhou University, 550025, Guiyang, China
| | - Jiming Liu
- Department of Ecology, College of Forestry, Guizhou University, 550025, Guiyang, China.
- Forest Ecology Research Center of Guizhou University, 550025, Guiyang, China.
| |
Collapse
|
60
|
Camarillo-Castillo F, Huggins TD, Mondal S, Reynolds MP, Tilley M, Hays DB. High-resolution spectral information enables phenotyping of leaf epicuticular wax in wheat. PLANT METHODS 2021; 17:58. [PMID: 34098962 PMCID: PMC8185930 DOI: 10.1186/s13007-021-00759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/26/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Epicuticular wax (EW) is the first line of defense in plants for protection against biotic and abiotic factors in the environment. In wheat, EW is associated with resilience to heat and drought stress, however, the current limitations on phenotyping EW restrict the integration of this secondary trait into wheat breeding pipelines. In this study we evaluated the use of light reflectance as a proxy for EW load and developed an efficient indirect method for the selection of genotypes with high EW density. RESULTS Cuticular waxes affect the light that is reflected, absorbed and transmitted by plants. The narrow spectral regions statistically associated with EW overlap with bands linked to photosynthetic radiation (500 nm), carotenoid absorbance (400 nm) and water content (~ 900 nm) in plants. The narrow spectral indices developed predicted 65% (EWI-13) and 44% (EWI-1) of the variation in this trait utilizing single-leaf reflectance. However, the normalized difference indices EWI-4 and EWI-9 improved the phenotyping efficiency with canopy reflectance across all field experimental trials. Indirect selection for EW with EWI-4 and EWI-9 led to a selection efficiency of 70% compared to phenotyping with the chemical method. The regression model EWM-7 integrated eight narrow wavelengths and accurately predicted 71% of the variation in the EW load (mg·dm-2) with leaf reflectance, but under field conditions, a single-wavelength model consistently estimated EW with an average RMSE of 1.24 mg·dm-2 utilizing ground and aerial canopy reflectance. CONCLUSIONS Overall, the indices EWI-1, EWI-13 and the model EWM-7 are reliable tools for indirect selection for EW based on leaf reflectance, and the indices EWI-4, EWI-9 and the model EWM-1 are reliable for selection based on canopy reflectance. However, further research is needed to define how the background effects and geometry of the canopy impact the accuracy of these phenotyping methods.
Collapse
Affiliation(s)
- Fátima Camarillo-Castillo
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, D.F, 06600, Mexico.
| | - Trevis D Huggins
- USDA ARS, Dale Bumper National Rice Research Center, Stuttgart, AR, 72160, USA
| | - Suchismita Mondal
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, D.F, 06600, Mexico
| | - Matthew P Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, D.F, 06600, Mexico
| | - Michael Tilley
- Agricultural Research Service, Center for Grain and Animal Health Research, USDA, 1515 College Ave., Manhattan, KS, 66502, USA
| | - Dirk B Hays
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, 77840, USA
| |
Collapse
|
61
|
Paul S, Reyes-Pérez P, Angulo-Bejarano PI, Srivastava A, Ramalingam S, Sharma A. Characterization of microRNAs from neem ( Azadirachta indica) and their tissue-specific expression study in leaves and stem. 3 Biotech 2021; 11:277. [PMID: 34040926 DOI: 10.1007/s13205-021-02839-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/08/2021] [Indexed: 01/29/2023] Open
Abstract
Neem (Azadirachta indica) is a very popular traditional medicinal plant used since ancient times to treat numerous ailments. MicroRNAs (miRNAs) are highly conserved, non-coding, short RNA molecules that play important regulatory roles in plant development and metabolism. In this study, deploying a high stringent genome-wide computational-based approach and following a set of strict filtering norms a total of 44 potential conserved neem miRNAs belonging to 21 families and their corresponding 48 potential target transcripts were identified. Important targets include Squamosa promoter binding protein-like proteins, NAC, Scarecrow proteins, Auxin response factor, and F-box proteins. A biological network has also been developed to understand the miRNA-mediated gene regulation using the minimum free energy (MFE) values of the miRNA-target interaction. Moreover, six selected miRNAs were reported to be involved in secondary metabolism in other plant species (miR156a, miR156l, miR160, miR164, miR171, miR395) were validated by qPCR and their tissue-specific differential expression pattern was observed in leaves and stem. Except for ain-miR395, all the other miRNAs were found overexpressed in the stem as compared to leaves. To the best of our knowledge, this is the first report of neem miRNAs and we believe the finding of the present study will be useful for the functional genomic study of medicinal plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02839-z.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, CP Mexico
| | - Paula Reyes-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, CP Mexico
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, CP Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, CP Mexico
| |
Collapse
|
62
|
Alzaabi MM, Hamdy R, Ashmawy NS, Hamoda AM, Alkhayat F, Khademi NN, Al Joud SMA, El-Keblawy AA, Soliman SSM. Flavonoids are promising safe therapy against COVID-19. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2021; 21:291-312. [PMID: 34054380 PMCID: PMC8139868 DOI: 10.1007/s11101-021-09759-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/28/2021] [Indexed: 05/13/2023]
Abstract
Flavonoids are a class of phenolic natural products, well-identified in traditional and modern medicines in the treatment of several diseases including viral infection. Flavonoids showed potential inhibitory activity against coronaviruses including the current pandemic outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and designated as COVID-19. Here, we have collected all data related to the potential inhibitory mechanisms of flavonoids against SARS-CoV-2 infection and their significant immunomodulatory activities. The data were mapped and compared to elect major flavonoids with a promising role in the current pandemic. Further, we have linked the global existence of flavonoids in medicinal plants and their role in protection against COVID-19. Computational analysis predicted that flavonoids can exhibit potential inhibitory activity against SARS-CoV-2 by binding to essential viral targets required in virus entry and/ or replication. Flavonoids also showed excellent immunomodulatory and anti-inflammatory activities including the inhibition of various inflammatory cytokines. Further, flavonoids showed significant ability to reduce the exacerbation of COVID-19 in the case of obesity via promoting lipids metabolism. Moreover, flavonoids exhibit a high safety profile, suitable bioavailability, and no significant adverse effects. For instance, plants rich in flavonoids are globally distributed and can offer great protection from COVID-19. The data described in this study strongly highlighted that flavonoids particularly quercetin and luteolin can exhibit promising multi-target activity against SARS-CoV-2, which promote their use in the current and expected future outbreaks. Therefore, a regimen of flavonoid-rich plants can be recommended to supplement a sufficient amount of flavonoids for the protection and treatment from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Moza Mohamed Alzaabi
- Department of Applied Biology, College of Science, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Research Institutes of Science and Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Naglaa S. Ashmawy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566 Abbassia, Cairo, Egypt
| | - Alshaimaa M. Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Fatemah Alkhayat
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Neda Naser Khademi
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | | | - Ali A. El-Keblawy
- Department of Applied Biology, College of Science, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Research Institutes of Science and Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
63
|
Huang YT, Wu W, Zhao TY, Lu M, Wu HP, Cao DD. Drying temperature regulates vigor of high moisture rice seeds via involvement in phytohormone, ROS, and relevant gene expression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2143-2155. [PMID: 32981065 DOI: 10.1002/jsfa.10837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/04/2020] [Accepted: 09/27/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice is an important food crop in China. Seed drying is an important step in the production of rice seeds. However, the regulatory mechanism of the effect of drying temperature on vigor of rice seeds with high initial moisture content (IMC) has not been examined. RESULTS This study presents hot-air drying of rice seeds with high IMC (>30%) to assess the effect of drying temperature (35, 41, and 47 °C) on drying performance and seed vigor in terms of germination capacity. The results show a significant positive correlation between the drying rate, seed temperature, and drying temperature. High-temperature drying tends to cause a large accumulation of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in rice seeds. High-temperature drying also significantly increased abscisic acid (ABA) content and decreased gibberellin (GA) content through the regulation of the activity of metabolism related-enzymes. Moreover, changes in GA and ABA metabolism during early seed germination might be an important reason for the decrease in seed vigor with high-temperature drying. High-temperature drying also significantly inhibited the activity of α-amylase during early seed germination. CONCLUSION A drying temperature of 35 °C was safe for rice seeds with high IMC, whereas higher drying temperatures (41 and 47 °C) reduced rice seed vigor remarkably. The metabolism of ROS, antioxidant enzymes, GA, ABA, and α-amylase might be closely involved in the regulation of the effect of drying temperature on the seed vigor of rice seeds with high IMC. The results of this study, therefore, provide a theoretical basis and technical guidance for mechanical drying of rice seeds. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Tao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Zhejiang, China
| | - Wei Wu
- Seed Management Station of Zhejiang Province, Zhejiang, China
| | | | - Min Lu
- Huzhou Keao Seed Co. Ltd, Zhejiang, China
| | | | - Dong-Dong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Zhejiang, China
- Huzhou Keao Seed Co. Ltd, Zhejiang, China
| |
Collapse
|
64
|
Abstract
Modern sweet corn is distinguished from other vegetable corns by the presence of one or more recessive alleles within the maize endosperm starch synthesis pathway. This results in reduced starch content and increased sugar concentration when consumed fresh. Fresh sweet corn originated in the USA and has since been introduced in countries around the World with increasing popularity as a favored vegetable choice. Several reviews have been published recently on endosperm genetics, breeding, and physiology that focus on the basic biology and uses in the US. However, new questions concerning sustainability, environmental care, and climate change, along with the introduction of sweet corn in other countries have produced a variety of new uses and research activities. This review is a summary of the sweet corn research published during the five years preceding 2021.
Collapse
|
65
|
Genome-wide association study in hexaploid wheat identifies novel genomic regions associated with resistance to root lesion nematode (Pratylenchus thornei). Sci Rep 2021; 11:3572. [PMID: 33574377 PMCID: PMC7878755 DOI: 10.1038/s41598-021-80996-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
Root lesion nematode (RLN; Pratylenchus thornei) causes extensive yield losses in wheat worldwide and thus pose serious threat to global food security. Reliance on fumigants (such as methyl bromide) and nematicides for crop protection has been discouraged due to environmental concerns. Hence, alternative environment friendly control measures like finding and deployment of resistance genes against Pratylenchus thornei are of significant importance. In the present study, genome-wide association study (GWAS) was performed using single-locus and multi-locus methods. In total, 143 wheat genotypes collected from pan-Indian wheat cultivation states were used for nematode screening. Genotypic data consisted of > 7K SNPs with known genetic positions on the high-density consensus map was used for association analysis. Principal component analysis indicated the existence of sub-populations with no major structuring of populations due to the origin. Altogether, 25 significant marker trait associations were detected with - log10 (p value) > 4.0. Three large linkage disequilibrium blocks and the corresponding haplotypes were found to be associated with significant SNPs. In total, 37 candidate genes with nine genes having a putative role in disease resistance (F-box-like domain superfamily, Leucine-rich repeat, cysteine-containing subtype, Cytochrome P450 superfamily, Zinc finger C2H2-type, RING/FYVE/PHD-type, etc.) were identified. Genomic selection was conducted to investigate how well one could predict the phenotype of the nematode count without performing the screening experiments. Prediction value of r = 0.40 to 0.44 was observed when 56 to 70% of the population was used as a training set. This is the first report where GWAS has been conducted to find resistance against root lesion nematode (P. thornei) in Indian wheat germplasm.
Collapse
|
66
|
Yang J, Zhang L, Jiang L, Zhan YG, Fan GZ. Quercetin alleviates seed germination and growth inhibition in Apocynum venetum and Apocynum pictum under mannitol-induced osmotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:268-276. [PMID: 33401201 DOI: 10.1016/j.plaphy.2020.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Quercetin is one of the main flavonoids in the human diet and mainly found in different plant tissues, including seeds, flowers, leaves, stems, and roots. However, its biological function in plant tissues, especially in seeds, is unknown. In this study, the seed germination and subsequent seedling growth of Apocynum pictum and A. venetum under osmotic stress (400 mmol L-1 mannitol) supplemented with 5 μmol L-1 quercetin were evaluated after 7, 14, and 21 days of germination. Results showed that quercetin improved the germination percentage and seed vigor, as indicated by the higher germination energy, shoot length, root length, dry weight, fresh weight, and chlorophyll content in A. pictum and A. venetum seedlings under the mannitol compared with those under the mannitol alone. Quercetin decreased H2O2 and O2- production and cell membrane damage, and mostly increased the gene expression of superoxide dismutase, peroxidase, catalase, chalcone synthase and flavonol synthase in A. pictum and A. venetum seedlings under the mannitol compared with those under the mannitol alone. In addition, the germination energy of A. pictum was 21.57% higher than that of A. venetum, and the gene expression of key enzymes in quercetin biosynthesis in A. pictum was mostly higher than that in A. venetum after 1 and 7 days of germination. These results indicated that quercetin was an effective anti-osmotic agent that alleviated the adverse effect of mannitol-induced osmotic stress on seed germination and seed vigor, and A. pictum seeds were more osmotic resistant than A. venetum seeds.
Collapse
Affiliation(s)
- Jiale Yang
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Lixiang Zhang
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Ya Guang Zhan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministey of Education, Northeast Forestry University, Harbin, 150040, China
| | - Gui Zhi Fan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministey of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
67
|
Hafeez A, Gě Q, Zhāng Q, Lǐ J, Gōng J, Liú R, Shí Y, Shāng H, Liú À, Iqbal MS, Dèng X, Razzaq A, Ali M, Yuán Y, Gǒng W. Multi-responses of O-methyltransferase genes to salt stress and fiber development of Gossypium species. BMC PLANT BIOLOGY 2021; 21:37. [PMID: 33430775 PMCID: PMC7798291 DOI: 10.1186/s12870-020-02786-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND O-methyltransferases (OMTs) are an important group of enzymes that catalyze the transfer of a methyl group from S-adenosyl-L-methionine to their acceptor substrates. OMTs are divided into several groups according to their structural features. In Gossypium species, they are involved in phenolics and flavonoid pathways. Phenolics defend the cellulose fiber from dreadful external conditions of biotic and abiotic stresses, promoting strength and growth of plant cell wall. RESULTS An OMT gene family, containing a total of 192 members, has been identified and characterized in three main Gossypium species, G. hirsutum, G. arboreum and G. raimondii. Cis-regulatory elements analysis suggested important roles of OMT genes in growth, development, and defense against stresses. Transcriptome data of different fiber developmental stages in Chromosome Substitution Segment Lines (CSSLs), Recombination Inbred Lines (RILs) with excellent fiber quality, and standard genetic cotton cultivar TM-1 demonstrate that up-regulation of OMT genes at different fiber developmental stages, and abiotic stress treatments have some significant correlations with fiber quality formation, and with salt stress response. Quantitative RT-PCR results revealed that GhOMT10_Dt and GhOMT70_At genes had a specific expression in response to salt stress while GhOMT49_At, GhOMT49_Dt, and GhOMT48_At in fiber elongation and secondary cell wall stages. CONCLUSIONS Our results indicate that O-methyltransferase genes have multi-responses to salt stress and fiber development in Gossypium species and that they may contribute to salt tolerance or fiber quality formation in Gossypium.
Collapse
Affiliation(s)
- Abdul Hafeez
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Sindh Agriculture University Tandojam, Hyderabad, Sindh, 70060, Pakistan
| | - Qún Gě
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qí Zhāng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jùnwén Lǐ
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jǔwǔ Gōng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruìxián Liú
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yùzhēn Shí
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hǎihóng Shāng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Àiyīng Liú
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Muhammad S Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiǎoyīng Dèng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Abdul Razzaq
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Muharam Ali
- Sindh Agriculture University Tandojam, Hyderabad, Sindh, 70060, Pakistan.
| | - Yǒulù Yuán
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Wànkuí Gǒng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
68
|
Huang Y, Lu M, Wu H, Zhao T, Wu P, Cao D. High Drying Temperature Accelerates Sunflower Seed Deterioration by Regulating the Fatty Acid Metabolism, Glycometabolism, and Abscisic Acid/Gibberellin Balance. FRONTIERS IN PLANT SCIENCE 2021; 12:628251. [PMID: 34122464 PMCID: PMC8193951 DOI: 10.3389/fpls.2021.628251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/03/2021] [Indexed: 05/04/2023]
Abstract
Sunflower seed storage is accompanied by the loss of seed vigor. Seed drying is a key link between seed harvest and seed storage; however, to date, the effect of seed drying on sunflower seed deterioration during storage remains unclear. The present study performed hot air drying for sunflower seeds with an initial moisture content of 30% to examine the manner in which drying temperature (35, 40, 45, 50, and 55°C) affects the drying performance and seed vigor following storage process (6 and 12 months). A drying temperature of 40°C was evidently safe for sunflower seeds, whereas the high drying temperatures (HTD, 45, 50, and 55°C) significantly lowered sunflower seed vigor by regulating the fatty acid metabolism, glycometabolism, and abscisic acid (ABA)/gibberellin (GA) balance. HDT significantly increased the seed damage rate and accelerated sunflower seed deterioration during natural and artificial aging process. Further biochemical analysis indicated that HDT significantly increased lipoxygenase and dioxygenase activities, leading to malonaldehyde and reactive oxygen species over-accumulation during storage. During early seed germination, HDT significantly inhibited fatty acid hydrolysis and glycometabolism by decreasing triacylglycerol lipase, CoA-SH oxidase, and invertase activities. Moreover, HDT remarkably increased ABA levels but reduced GA levels by regulating gene expressions and metabolic enzyme activities during early imbibitions. Cumulatively, the seed drying effect on sunflower seed vigor deterioration during the storage process may be strongly related to fatty acid oxidation and hydrolysis metabolism, toxic substance accumulation, and ABA/GA balance.
Collapse
Affiliation(s)
- Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Lu
- Huzhou Keao Seed Co., Ltd., Huzhou, China
| | - Huaping Wu
- Huzhou Keao Seed Co., Ltd., Huzhou, China
| | | | - Pin Wu
- Huzhou Keao Seed Co., Ltd., Huzhou, China
| | - Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Huzhou Keao Seed Co., Ltd., Huzhou, China
- *Correspondence: Dongdong Cao,
| |
Collapse
|
69
|
Liang Y, Wang S, Zhao C, Ma X, Zhao Y, Shao J, Li Y, Li H, Song H, Ma H, Li H, Zhang B, Zhang L. Transcriptional regulation of bark freezing tolerance in apple (Malus domestica Borkh.). HORTICULTURE RESEARCH 2020; 7:205. [PMID: 33328456 PMCID: PMC7705664 DOI: 10.1038/s41438-020-00432-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 05/22/2023]
Abstract
Freezing tolerance is a significant trait in plants that grow in cold environments and survive through the winter. Apple (Malus domestica Borkh.) is a cold-tolerant fruit tree, and the cold tolerance of its bark is important for its survival at low temperatures. However, little is known about the gene activity related to its freezing tolerance. To better understand the gene expression and regulation properties of freezing tolerance in dormant apple trees, we analyzed the transcriptomic divergences in the bark from 1-year-old branches of two apple cultivars, "Golden Delicious" (G) and "Jinhong" (H), which have different levels of cold resistance, under chilling and freezing treatments. "H" can safely overwinter below -30 °C in extremely low-temperature regions, whereas "G" experiences severe freezing damage and death in similar environments. Based on 28 bark transcriptomes (from the epidermis, phloem, and cambium) from 1-year-old branches under seven temperature treatments (from 4 to -29 °C), we identified 4173 and 7734 differentially expressed genes (DEGs) in "G" and "H", respectively, between the chilling and freezing treatments. A gene coexpression network was constructed according to this expression information using weighted gene correlation network analysis (WGCNA), and seven biologically meaningful coexpression modules were identified from the network. The expression profiles of the genes from these modules suggested the gene regulatory pathways that are responsible for the chilling and freezing stress responses of "G" and/or "H." Module 7 was probably related to freezing acclimation and freezing damage in "H" at the lower temperatures. This module contained more interconnected hub transcription factors (TFs) and cold-responsive genes (CORs). Modules 6 and 7 contained C-repeat binding factor (CBF) TFs, and many CBF-dependent homologs were identified as hub genes. We also found that some hub TFs had higher intramodular connectivity (KME) and gene significance (GS) than CBFs. Specifically, most hub TFs in modules 6 and 7 were activated at the beginning of the early freezing stress phase and maintained upregulated expression during the whole freezing stress period in "G" and "H". The upregulation of DEGs related to methionine and carbohydrate biosynthetic processes in "H" under more severe freezing stress supported the maintenance of homeostasis in the cellular membrane. This study improves our understanding of the transcriptional regulation patterns underlying freezing tolerance in the bark of apple branches.
Collapse
Affiliation(s)
- Yinghai Liang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Shanshan Wang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Chenhui Zhao
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Xinwei Ma
- Department of Biology, Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yiyong Zhao
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 200438, Shanghai, People's Republic of China
| | - Jing Shao
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Yuebo Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Honglian Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Hongwei Song
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Hong Ma
- Department of Biology, Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hao Li
- Department of Biology, Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Bingbing Zhang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China.
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
70
|
Sun X, Yuan Z, Wang B, Zheng L, Tan J, Chen F. Physiological and transcriptome changes induced by exogenous putrescine in anthurium under chilling stress. BOTANICAL STUDIES 2020; 61:28. [PMID: 33125567 PMCID: PMC7599290 DOI: 10.1186/s40529-020-00305-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chilling stress is the major factor limiting plant productivity and quality in most regions of the world. In the present study, we aimed to evaluate the effects of putrescine (Put) and polyamine inhibitor D-arginine (D-arg) on the chilling tolerance of anthurium (Anthurium andraeanum). RESULTS Anthurium seedlings were pretreated with five different concentrations of Put solution or D-arg solution. Subsequently, the seedlings were subjected to chilling stress at 6 °C for 3 days, followed by a recovery at 25 °C for 1 day. Relative permeability of the plasma membrane, as well as physiological and morphologic parameters was assessed during the experiments. Additionally, transcriptome sequencing and patterns of differential gene expression related to chilling response were analyzed by qRT-PCR in 1.0 mM Put-treated and untreated anthurium seedlings. Results indicated that the supplementation of exogenous Put decreased the extent of membrane lipid peroxidation and the accumulation of malondialdehyde (MDA), promoted the antioxidant activities and proline content and maintained the morphologic performances compared with the control group. This finding indicated that the application of exogenous Put could effectively decrease the injury and maintain the quality of anthurium under chilling conditions. In contrast, the treatment of D-arg exhibited the opposite effects, which confirmed the effects of Put. CONCLUSIONS This research provided a possible approach to enhance the chilling tolerance of anthurium and reduce the energy consumption used in anthurium production.
Collapse
Affiliation(s)
- Xiangli Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Department of Horticulture, Soochow University, Suzhou, 215123, Jiangsu, China.
- Soochow University-Suzhou Yuanke Group Collaborative Innovation Center of Architectural and Urban Environment, Suzhou, 215123, Jiangsu, China.
- Jiangsu Sanwei Horticulture Limited Company, Suzhou, 215008, Jiangsu, China.
| | - Zebin Yuan
- Department of Horticulture, Soochow University, Suzhou, 215123, Jiangsu, China
- Soochow University-Suzhou Yuanke Group Collaborative Innovation Center of Architectural and Urban Environment, Suzhou, 215123, Jiangsu, China
| | - Bo Wang
- Department of Horticulture, Soochow University, Suzhou, 215123, Jiangsu, China
- Soochow University-Suzhou Yuanke Group Collaborative Innovation Center of Architectural and Urban Environment, Suzhou, 215123, Jiangsu, China
| | - Liping Zheng
- Department of Horticulture, Soochow University, Suzhou, 215123, Jiangsu, China
- Soochow University-Suzhou Yuanke Group Collaborative Innovation Center of Architectural and Urban Environment, Suzhou, 215123, Jiangsu, China
| | - Jianzhong Tan
- Department of Horticulture, Soochow University, Suzhou, 215123, Jiangsu, China
- Soochow University-Suzhou Yuanke Group Collaborative Innovation Center of Architectural and Urban Environment, Suzhou, 215123, Jiangsu, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
71
|
Khan R, Ma X, Shah S, Wu X, Shaheen A, Xiao L, Wu Y, Wang S. Drought-hardening improves drought tolerance in Nicotiana tabacum at physiological, biochemical, and molecular levels. BMC PLANT BIOLOGY 2020; 20:486. [PMID: 33097005 PMCID: PMC7584104 DOI: 10.1186/s12870-020-02688-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Drought stress is the most harmful one among other abiotic stresses with negative impacts on crop growth and development. Drought-hardening is a feasible and widely used method in tobacco seedlings cultivation. It has gained extensive interests due to its role in improving drought tolerance. This research aimed to investigate the role of drought-hardening and to unravel the multiple mechanisms underlying tobacco drought tolerance and adaptation. RESULTS This study was designed in which various drought-hardening treatments (CK (no drought-hardening), T1 (drought-hardening for 24 h), T2 (drought-hardening for 48 h), and T3 (drought-hardening for 72 h)) were applied to two tobacco varieties namely HongHuaDaJinYuan (H) and Yun Yan-100 (Y). The findings presented a complete framework of drought-hardening effect at physiological, biochemical, and gene expression levels of the two tobacco varieties under drought stress. The results showed that T2 and T3 significantly reduced the growth of the two varieties under drought stress. Similarly, among the various drought-hardening treatments, T3 improved both the enzymatic (POD, CAT, APX) and non-enzymatic (AsA) defense systems along with the elevated levels of proline and soluble sugar to mitigate the negative effects of oxidative damage and bringing osmoregulation in tobacco plants. Finally, the various drought-hardening treatments (T1, T2, and T3) showed differential regulation of genes expressed in the two varieties, while, particularly T3 drought-hardening treatment-induced drought tolerance via the expression of various stress-responsive genes by triggering the biosynthesis pathways of proline (P5CS1), polyamines (ADC2), ABA-dependent (SnRK2, AREB1), and independent pathways (DREB2B), and antioxidant defense-related genes (CAT, APX1, GR2) in response to drought stress. CONCLUSIONS Drought-hardening made significant contributions to drought tolerance and adaptation in two tobacco variety seedlings by reducing its growth and, on the other hand, by activating various defense mechanisms at biochemical and molecular levels. The findings of the study pointed out that drought-hardening is a fruitful strategy for conferring drought tolerance and adaptations in tobacco. It will be served as a useful method in the future to understand the drought tolerance and adaptation mechanisms of other plant species. Drought-hardening improved drought tolerance and adaptation of the two tobacco varieties. T1 indicates drought-hardening for 24 h, T2 indicates drought-hardening for 48 h, T3 indicates drought-hardening for 72 h.
Collapse
Affiliation(s)
- Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinghua Ma
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| | - Shahen Shah
- Department of Agronomy, The University of Agriculture Peshawar, Peshawar, 25130 Pakistan
| | - Xiaoying Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Aaqib Shaheen
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Lixia Xiao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| | - Yuanhua Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| | - Shusheng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| |
Collapse
|
72
|
Huang YT, Wu W, Zou WX, Wu HP, Cao DD. Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzyme metabolism. J Zhejiang Univ Sci B 2020; 21:796-810. [PMID: 33043645 DOI: 10.1631/jzus.b2000297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Seed vigor is a key factor affecting seed quality. The mechanical drying process exerts a significant influence on rice seed vigor. The initial moisture content (IMC) and drying temperature are considered the main factors affecting rice seed vigor through mechanical drying. This study aimed to determine the optimum drying temperature for rice seeds according to the IMC, and elucidate the mechanisms mediating the effects of drying temperature and IMC on seed vigor. Rice seeds with three different IMCs (20%, 25%, and 30%) were dried to the target moisture content (14%) at four different drying temperatures. The results showed that the drying temperature and IMC had significant effects on the drying performance and vigor of the rice seeds. The upper limits of drying temperature for rice seeds with 20%, 25%, and 30% IMCs were 45, 42, and 38 °C, respectively. The drying rate and seed temperature increased significantly with increasing drying temperature. The drying temperature, drying rate, and seed temperature showed extremely significant negative correlations with germination energy (GE), germination rate, germination index (GI), and vigor index (VI). A high IMC and drying temperature probably induced a massive accumulation of hydrogen peroxide (H2O2) and superoxide anions in the seeds, enhanced superoxide dismutase (SOD) and catalase (CAT) activity, and increased the abscisic acid (ABA) content. In the early stage of seed germination, the IMC and drying temperature regulated seed germination through the metabolism of H2O2, gibberellin acid (GA), ABA, and α-amylase. These results indicate that the metabolism of reactive oxygen species (ROS), antioxidant enzymes, GA, ABA, and α-amylase might be involved in the mediation of the effects of drying temperature on seed vigor. The results of this study provide a theoretical basis and technical guidance for the mechanical drying of rice seeds.
Collapse
Affiliation(s)
- Yu-Tao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wu
- Seed Management Station of Zhejiang Province, Hangzhou 310020, China
| | - Wen-Xiong Zou
- Seed Management Station of Zhejiang Province, Hangzhou 310020, China
| | - Hua-Ping Wu
- Huzhou Keao Seed Co., Ltd., Huzhou 313000, China
| | - Dong-Dong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.,Huzhou Keao Seed Co., Ltd., Huzhou 313000, China
| |
Collapse
|
73
|
Dong Q, Zhao H, Huang Y, Chen Y, Wan M, Zeng Z, Yao P, Li C, Wang X, Chen H, Wu Q. FtMYB18 acts as a negative regulator of anthocyanin/proanthocyanidin biosynthesis in Tartary buckwheat. PLANT MOLECULAR BIOLOGY 2020; 104:309-325. [PMID: 32833148 DOI: 10.1007/s11103-020-01044-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE FtMYB18 plays a role in the repression of anthocyanins and proanthocyanidins accumulation by strongly down-regulating the CHS and DFR genes in Tartary buckwheat, and the C5 motif plays an important role in this process. Anthocyanins and proanthocyanidins (PAs) are important flavonoids in Tartary buckwheat (Fagopyrum tataricum Gaertn.), which provides various vibrant color and stronge abiotic stress resistance. Their synthesis is generally regulated by MYB transcription factors at transcription level. However, the negative regulations of MYB and their effects on flavonol metabolism are poorly understood. A SG4-like MYB subfamily TF, FtMYB18, containing C5 motif was identified from Tartary buckwheat. The expression of FtMYB18 was not only showed a negative correlation with anthocyanins and PAs content but also strongly respond to MeJA and ABA. As far as the transgenic lines with FtMYB18 overexpression, anthocyanins and PAs accumulations were decreased through down-regulating expression levels of NtCHS and NtDFR in tobacco, AtDFR and AtTT12 in Arabidopsis, FtCHS, FtDFR and FtANS in Tartary buckwheat hairy roots, respectively. However, FtMYB18 showed no effect on the FLS gene expression and the metabolites content in flavonol synthesis branch. The further molecular interaction analysis indicated FtMYB18 could mediate the inhibition of anthocyanins and PAs synthesis by forming MBW transcriptional complex with FtTT8 and FtTTG1, or MYB-JAZ complex with FtJAZ1/-3/-4/-7. Importantly, in FtMYB18 mutant lines with C5 motif deletion (FtMYB18-C), both of anthocyanins and PAs accumulations had recovered to the similar level as that in wild type, which was attributed to the weakened MBW complex activity or the deficient molecular interaction between FtMYB18ΔC5 with FtJAZ3/-4. The results showed that FtMYB18 could suppress anthocyanins and PAs synthesis at transcription level through the specific interaction of C5 motif with other proteins in Tartary buckwheat.
Collapse
Affiliation(s)
- Qixin Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Yunji Huang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Min Wan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Panfeng Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Xiaoli Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
74
|
Ji J, Shi S, Chen W, Xie T, Du C, Sun J, Shi Z, Gao R, Jiang Z, Xiao W. Effects of exogenous γ-Aminobutyric acid on the regulation of respiration and protein expression in germinating seeds of mungbean (Vigna radiata) under salt conditions. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
75
|
Nazir F, Fariduddin Q, Khan TA. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. CHEMOSPHERE 2020; 252:126486. [PMID: 32234629 DOI: 10.1016/j.chemosphere.2020.126486] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a significant regulatory component interrelated with signal transduction in plants. The positive role of H2O2 in plants subjected to myriad of abiotic factors has led us to comprehend that it is not only a free radical, generated as a product of oxidative stress, but also helpful in the maintenance of cellular homeostasis in crop plants. Studies over the last two centuries has indicated that H2O2 is a key molecule which regulate photosynthesis, stomatal movement, pollen growth, fruit and flower development and leaf senescence. Exogenously-sourced H2O2 at nanomolar levels functions as a signalling molecule, facilitates seed germination, chlorophyll content, stomatal opening, and delays senescence, while at elevated levels, it triggers oxidative burst to organic molecules, which could lead to cell death. Furthermore, H2O2 is also known to interplay synergistically or antagonistically with other plant growth regulators such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid, nitric oxide and Ca2+ (as signalling molecules), and brassinosteroids (steroidal PGRs) under myriad of environmental stresses and thus, mediate plant growth and development and reactions to abiotic factors. The purpose of this review is to specify accessible knowledge on the role and dynamic mechanisms of H2O2 in mediating growth responses and plant resilience to HM stresses, and its crosstalk with other significant PGRs in controlling various processes. More recently, signal transduction by mitogen activated protein kinases and other transcription factors which attenuate HM stresses in plants have also been dissected.
Collapse
Affiliation(s)
- Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tanveer Alam Khan
- Department of Plant Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| |
Collapse
|
76
|
Sidhu GK, Tuan PA, Renault S, Daayf F, Ayele BT. Polyamine-Mediated Transcriptional Regulation of Enzymatic Antioxidative Response to Excess Soil Moisture during Early Seedling Growth in Soybean. BIOLOGY 2020; 9:biology9080185. [PMID: 32708038 PMCID: PMC7465689 DOI: 10.3390/biology9080185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 01/24/2023]
Abstract
This study examined the expression patterns of antioxidative genes and the activity of the corresponding enzymes in the excess moisture-stressed seedlings of soybean in response to seed treatment with polyamines, spermine (Spm) and spermidine (Spd). At the 4 day after planting (DAP) stage, the excess moisture impaired the embryo axis growth, and this effect is associated with the downregulation of superoxide dismutase (GmSOD1) expression and SOD activity in the cotyledon. Seed treatment with Spm reversed the effects of excess moisture on embryo axis growth partly through enhancing glutathione reductase (GR) activity, in both the cotyledon and embryo axis, although no effect on the GmGR expression level was evident. Excess moisture inhibited the shoot and root growth in 7 DAP seedlings, and this is associated with decreased activities of GR in the shoot and SOD in the root. The effect of excess moisture on shoot and root growth was reversed by seed treatment with Spd, and this was mediated by the increased activities of ascorbate peroxidase (APX), catalase (CAT) and GR in the shoot, and APX in the root, however, only GR in the shoot appears to be regulated transcriptionally. Root growth was also reversed by seed treatment with Spm with no positive effect on gene expression and enzyme activity.
Collapse
Affiliation(s)
- Gagandip K. Sidhu
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Sylvie Renault
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Fouad Daayf
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Belay T. Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
- Correspondence: ; Tel.: +1-204-474-8227; Fax: +1-204-474-7528
| |
Collapse
|
77
|
Links S, van Zyl K, Cassiem A, Flett B, Viljoen A, Rose L. The association of maize characteristics with resistance to Fusarium verticillioides and fumonisin accumulation in commercial maize cultivars. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fusarium verticillioides is the primary fungus that causes Fusarium ear rot (FER) of maize. Infection results in reduced grain yield and quality due to moulding and the contamination of grain with toxic compounds namely fumonisins. Resistance to fungal infection and fumonisin accumulation in maize and maize grain is governed at different levels. In this study, the structural, physico-chemical and genetic basis of resistance to F. verticillioides was investigated in two, replicated field trials at Potchefstroom and Vaalharts in South Africa. Phenotypic data (silk length, husk coverage, pericarp thickness hundred-kernel mass and kernel hardness), physico-chemical data (kernel pH, moisture content, total nitrogen and carbon as well as phenolic acid content) and the expression of pathogenesis-related-5 gene (PR5) and peroxidase gene expression was evaluated in 15 commercial cultivars under artificially inoculated and natural infection conditions. The data were correlated to FER severity, fumonisin accumulation and fungal DNA (referred to as infection indicators). Disease development and fumonisin contamination in Vaalharts was significantly more than in Potchefstroom. There were no significant correlations (r=≥0.60) between phenotypic characteristics and infection indicators. Kernel pH was the most important trait associated with disease development and was negatively correlated (between r=-0.58 and r=-0.75) to all infection indicators. PR5 gene expression had significant positive correlations (r=0.69 and r=0.72) with the fungal and fumonisin levels, respectively. This study presents of the first data demonstrating the use of gene expression in identifying FER/fumonisin-resistant plant material and could aid breeders and growers in selecting resistant material more effectively.
Collapse
Affiliation(s)
- S. Links
- Stellenbosch University, Faculty of AgriSciences, Stellenbosch, Matieland 7602, South Africa
- Grain SA, Research and Policy Centre, 457 Witherite Street, Willow Acres, Pretoria, 7600, South Africa
| | - K. van Zyl
- Stellenbosch University, Faculty of AgriSciences, Stellenbosch, Matieland 7602, South Africa
| | - A. Cassiem
- Stellenbosch University, Faculty of AgriSciences, Stellenbosch, Matieland 7602, South Africa
| | - B.C. Flett
- Agricultural Research Council, Grain Crops, Potchefstroom, 2520, South Africa
| | - A. Viljoen
- Stellenbosch University, Faculty of AgriSciences, Stellenbosch, Matieland 7602, South Africa
| | - L.J. Rose
- Stellenbosch University, Faculty of AgriSciences, Stellenbosch, Matieland 7602, South Africa
| |
Collapse
|
78
|
Molecular genetic analysis of spring wheat core collection using genetic diversity, population structure, and linkage disequilibrium. BMC Genomics 2020; 21:434. [PMID: 32586286 PMCID: PMC7318758 DOI: 10.1186/s12864-020-06835-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Wheat (Triticum aestivium L.) is an important crop globally which has a complex genome. To identify the parents with useful agronomic characteristics that could be used in the various breeding programs, it is very important to understand the genetic diversity among global wheat genotypes. Also, understanding the genetic diversity is useful in breeding studies such as marker-assisted selection (MAS), genome-wide association studies (GWAS), and genomic selection. Results To understand the genetic diversity in wheat, a set of 103 spring wheat genotypes which represented five different continents were used. These genotypes were genotyped using 36,720 genotyping-by-sequencing derived SNPs (GBS-SNPs) which were well distributed across wheat chromosomes. The tested 103-wheat genotypes contained three different subpopulations based on population structure, principle coordinate, and kinship analyses. A significant variation was found within and among the subpopulations based on the AMOVA. Subpopulation 1 was found to be the more diverse subpopulation based on the different allelic patterns (Na, Ne, I, h, and uh). No high linkage disequilibrium was found between the 36,720 SNPs. However, based on the genomic level, D genome was found to have the highest LD compared with the two other genomes A and B. The ratio between the number of significant LD/number of non-significant LD suggested that chromosomes 2D, 5A, and 7B are the highest LD chromosomes in their genomes with a value of 0.08, 0.07, and 0.05, respectively. Based on the LD decay, the D genome was found to be the lowest genome with the highest number of haplotype blocks on chromosome 2D. Conclusion The recent study concluded that the 103-spring wheat genotypes and their GBS-SNP markers are very appropriate for GWAS studies and QTL-mapping. The core collection comprises three different subpopulations. Genotypes in subpopulation 1 are the most diverse genotypes and could be used in future breeding programs if they have desired traits. The distribution of LD hotspots across the genome was investigated which provides useful information on the genomic regions that includes interesting genes.
Collapse
|
79
|
Zhang P, Liu X, Yu X, Wang F, Long J, Shen W, Jiang D, Zhao X. The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus. BMC PLANT BIOLOGY 2020; 20:254. [PMID: 32493275 PMCID: PMC7271526 DOI: 10.1186/s12870-020-02475-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Limonoids are major bioactive compounds that are produced by the triterpenoid metabolic pathway. The detailed biochemical process of limonoid biosynthesis and the mechanism of its molecular regulation remain elusive. The identification of transcription factors that regulate limonoid biosynthetic pathways is very important for understanding the underlying regulatory mechanisms. This information could also provide tools for manipulating biosynthesis genes to modulate limonoid production. RESULTS In this study, the CiMYB42 transcription factor was isolated to identify its role in limonoid biosynthesis. Multiple alignment analysis and phylogenetic analysis demonstrated that CiMYB42 is a typical R2R3MYB transcription factor that shares high similarity of its amino acid sequence with AtMYB42. Limonoids contents were higher in Citrus sinensis and Citrus grandis than in other species. Limonoid accumulation during leaf development also showed diverse trends in different genotypes. The expression of CiMYB42 was significantly related to the limonoid content and the expression of CiOSC in some citrus accessions. The overexpression of CiMYB42 in sweet orange resulted in significant accumulation of limonin, whereas the downregulation of CiMYB42 by RNAi resulted in a dwarf phenotype and less nomilin accumulation. Furthermore, the results of a yeast one-hybrid assay and EMSA indicated that CiMYB42 binds exclusively to the TTGTTG sequence (type II MYB core) in the promoter of CiOSC. Together, these results suggest that CiMYB42 positively regulates limonoid biosynthesis by regulating the expression of CiOSC by binding to the TTGTTG sequence (type II MYB core) of its promoter. CONCLUSIONS CiMYB42 is an important transcription activator involved in limonoid biosynthesis that regulates the expression of CiOSC by binding to the TTGTTG sequence (type II MYB core).
Collapse
Affiliation(s)
- Pan Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xiaofeng Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xin Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Fusheng Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Junhong Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Dong Jiang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China.
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China.
| |
Collapse
|
80
|
Spermidine Enhanced Free Polyamine Levels and Expression of Polyamine Biosynthesis Enzyme Gene in Rice Spikelets under Heat Tolerance before Heading. Sci Rep 2020; 10:8976. [PMID: 32488145 PMCID: PMC7265301 DOI: 10.1038/s41598-020-64978-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/24/2020] [Indexed: 01/11/2023] Open
Abstract
High temperatures (HT) before heading strongly inhibit the development of spikelets in rice. Spermidine (Spd) can improve rice’s resistance to HT stress; however, the mechanism underlying this effect has not been elucidated. This study investigated several parameters, including yield, superoxide anion (O2.-), protective enzyme activities, and polyamine content, in a heat-sensitive genotype, Shuanggui 1. The yield and yield components decreased dramatically when subjected to HT stress, while this reduction could be partially recovered by exogenous Spd. Spd also slowed the generation rate of O2.- and increased protective enzyme, superoxide dismutase (SOD) and catalase (CAT) activities both under normal and high temperatures, which suggested that Spd may participate in the antioxidant system. Furthermore, genes involved in polyamine synthesis were analyzed. The results show that HT before heading significantly increased the expression of arginine decarboxylase OsADC1, Spd synthase OsSPDS1 and OsSPDS3 and had little effect on the expression of the S-adenosylmethionine decarboxylase OsSAMDC2 and ornithine decarboxylase OsODC1. In addition, exogenous Spd considerably reduced the expression of OsSAMDC2, OsSPDS1 and OsSPDS3 under HT but not the expression of OsADC1. The above mentioned results indicate that the exogenous Spd could help young rice spikelets to resist HT stress by reducing the expression of OsSAMDC2, OsSPDS1 and OsSPDS3, resulting in higher levels of endogenous Spd and Spm, which were also positively correlated with yield. In conclusion, the adverse effect of HT stress on young spikelets seems to be alleviated by increasing the amounts of Spd and Spm, which provides guidance for adaptation to heat stress during rice production.
Collapse
|
81
|
Auber RP, Suttiyut T, McCoy RM, Ghaste M, Crook JW, Pendleton AL, Widhalm JR, Wisecaver JH. Hybrid de novo genome assembly of red gromwell ( Lithospermum erythrorhizon) reveals evolutionary insight into shikonin biosynthesis. HORTICULTURE RESEARCH 2020; 7:82. [PMID: 32528694 PMCID: PMC7261806 DOI: 10.1038/s41438-020-0301-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 05/08/2023]
Abstract
Lithospermum erythrorhizon (red gromwell; zicao) is a medicinal and economically valuable plant belonging to the Boraginaceae family. Roots from L. erythrorhizon have been used for centuries based on the antiviral and wound-healing properties produced from the bioactive compound shikonin and its derivatives. More recently, shikonin, its enantiomer alkannin, and several other shikonin/alkannin derivatives have collectively emerged as valuable natural colorants and as novel drug scaffolds. Despite several transcriptomes and proteomes having been generated from L. erythrorhizon, a reference genome is still unavailable. This has limited investigations into elucidating the shikonin/alkannin pathway and understanding its evolutionary and ecological significance. In this study, we obtained a de novo genome assembly for L. erythrorhizon using a combination of Oxford Nanopore long-read and Illumina short-read sequencing technologies. The resulting genome is ∼367.41 Mb long, with a contig N50 size of 314.31 kb and 27,720 predicted protein-coding genes. Using the L. erythrorhizon genome, we identified several additional p-hydroxybenzoate:geranyltransferase (PGT) homologs and provide insight into their evolutionary history. Phylogenetic analysis of prenyltransferases suggests that PGTs originated in a common ancestor of modern shikonin/alkannin-producing Boraginaceous species, likely from a retrotransposition-derived duplication event of an ancestral prenyltransferase gene. Furthermore, knocking down expression of LePGT1 in L. erythrorhizon hairy root lines revealed that LePGT1 is predominantly responsible for shikonin production early in culture establishment. Taken together, the reference genome reported in this study and the provided analysis on the evolutionary origin of shikonin/alkannin biosynthesis will guide elucidation of the remainder of the pathway.
Collapse
Affiliation(s)
- Robert P. Auber
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Thiti Suttiyut
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Rachel M. McCoy
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Manoj Ghaste
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Joseph W. Crook
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Amanda L. Pendleton
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Joshua R. Widhalm
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
82
|
Zhu D, Chang Y, Pei T, Zhang X, Liu L, Li Y, Zhuang J, Yang H, Qin F, Song C, Ren D. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:747-760. [PMID: 31863495 DOI: 10.1111/tpj.14660] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play vital roles in regulating plant growth, development, and stress responses. MAPK-like (MPKL) proteins are a group of kinases containing the MAPK signature TxY motif and showing sequence similarity to MAPKs. However, the functions of plant MPKL proteins are currently unknown. The maize (Zea mays) genome contains four genes encoding MPKL proteins, here named ZmMPKL1 to ZmMPKL4. In this study, we show that ZmMPKL1 possesses kinase activity and that drought-induced ZmMPKL1 expression, ZmMPKL1 overexpression and knockout maize seedlings exhibited no visible morphological difference from wild-type B73 seedlings when grown under normal conditions. By contrast, under drought conditions, ZmMPKL1-overexpressing seedlings showed increased stomatal aperture, water loss, and leaf wilting and knockout seedlings showed the opposite phenotypes. Moreover, these drought-sensitive phenotypes in ZmMPKL1-overexpressing seedlings were restored by exogenous abscisic acid (ABA). ZmMPKL1 overexpression reduced drought-induced ABA production in seedlings and the knockout showed enhanced ABA production. Drought-induced transcription of ABA biosynthetic genes were suppressed and ABA catabolic genes were enhanced in ZmMPKL1-overexpressing seedlings, while their transcription were reversely regulated in knockout seedlings. These results suggest that ZmMPKL1 positively regulates seedlings drought sensitivity by altering the transcription of ABA biosynthetic and catabolic genes, and ABA homeostasis.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Ting Pei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiuyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Zhuang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
83
|
Shen Q, Zhang S, Liu S, Chen J, Ma H, Cui Z, Zhang X, Ge C, Liu R, Li Y, Zhao X, Yang G, Song M, Pang C. Comparative Transcriptome Analysis Provides Insights into the Seed Germination in Cotton in Response to Chilling Stress. Int J Mol Sci 2020; 21:ijms21062067. [PMID: 32197292 PMCID: PMC7139662 DOI: 10.3390/ijms21062067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 11/17/2022] Open
Abstract
Gossypium hirsutum L., is a widely cultivated cotton species around the world, but its production is seriously threatened by its susceptibility to chilling stress. Low temperature affects its germination, and the underlying molecular mechanisms are rarely known, particularly from a transcriptional perspective. In this study, transcriptomic profiles were analyzed and compared between two cotton varieties, the cold-tolerant variety KN27-3 and susceptible variety XLZ38. A total of 7535 differentially expressed genes (DEGs) were identified. Among them, the transcripts involved in energy metabolism were significantly enriched during germination based on analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as glycolysis/gluconeogenesis, tricarboxylic acid cycle (TCA cycle), and glyoxylate cycle (GAC). Results from further GO enrichment analysis show the earlier appearance of DNA integration, meristem growth, cotyledon morphogenesis, and other biological processes in KN27-3 compared with XLZ38 under chilling conditions. The synthesis of asparagine, GDP-mannose, and trehalose and the catabolic process of raffinose were activated. DEGs encoding antioxidants (spermidine) and antioxidase (CAT1, GPX4, DHAR2, and APX1) were much more up-regulated in embryos of KN27-3. The content of auxin (IAA), cis-zeatin riboside (cZR), and trans-zeatin riboside (tZR) in KN27-3 are higher than that in XLZ38 at five stages (from 12 h to 54 h). GA3 was expressed at a higher level in KN27-3 from 18 h to 54 h post imbibition compared to that in XLZ38. And abscisic acid (ABA) content of KN27-3 is lower than that in XLZ38 at five stages. Results from hormone content measurements and the related gene expression analysis indicated that IAA, CTK, and GA3 may promote germination of the cold-tolerant variety, while ABA inhibits it. These results expand the understanding of cottonseed germination and physiological regulations under chilling conditions by multiple pathways.
Collapse
Affiliation(s)
- Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
- MOA Key Laboratory of Crop Eco-physiology and Farming system in the Middle Reaches of Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
| | - Ziqian Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
| | - Xiaomeng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
| | - Yang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
| | - Xinhua Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
| | - Guozheng Yang
- MOA Key Laboratory of Crop Eco-physiology and Farming system in the Middle Reaches of Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
- Correspondence: (G.Y.); (M.S.); (C.P.)
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
- Correspondence: (G.Y.); (M.S.); (C.P.)
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan 455000, China; (Q.S.); (S.Z.); (S.L.); (J.C.); (H.M.); (Z.C.); (X.Z.); (C.G.); (R.L.); (Y.L.); (X.Z.)
- Correspondence: (G.Y.); (M.S.); (C.P.)
| |
Collapse
|
84
|
Shan Z, Luo X, Wu M, Wei L, Fan Z, Zhu Y. Genome-wide identification and expression of GRAS gene family members in cassava. BMC PLANT BIOLOGY 2020; 20:46. [PMID: 31996133 PMCID: PMC6990482 DOI: 10.1186/s12870-020-2242-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/08/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cassava is highly tolerant to stressful conditions, especially drought stress conditions; however, the mechanisms underlying this tolerance are poorly understood. The GRAS gene family is a large family of transcription factors that are involved in regulating the growth, development, and stress responses of plants. Currently, GRAS transcription factors have not been systematically studied in cassava, which is the sixth most important crop in the world. RESULTS Seventy-seven MeGRAS genes were identified from the cassava genome database. Phylogenetic analysis revealed that the MeGRAS proteins could be divided into 14 subfamilies. The gene structure and motif compositions of the proteins were considerably conserved within the same subfamily. Duplication events, particularly segmental duplication, were identified as the main driving force for GRAS gene expansion in cassava. Global expression analysis revealed that MeGRAS genes exhibited similar or distinct expression profiles within different tissues among different varieties. Moreover, qRT-PCR analysis revealed the expression patterns of MeGRAS genes in response to abiotic stress (drought, salt, cold, and H2O2), and the results suggest that these genes may have multiple functions. CONCLUSION This study is the first to provide comprehensive information on GRAS gene family members in cassava. The data will increase our understanding of both the molecular basis and the effects of GRAS genes. In addition, the results will contribute further to identifying the responses to various environmental conditions and provide insights into the potential functions of GRAS genes.
Collapse
Affiliation(s)
- Zhongying Shan
- Agricultural College, Guangxi University, Nanning, 530005 China
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, 253023 China
| | - Xinglu Luo
- Agricultural College, Guangxi University, Nanning, 530005 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning, 530004 China
| | - Meiyan Wu
- Agricultural College, Guangxi University, Nanning, 530005 China
| | - Limei Wei
- Agricultural College, Guangxi University, Nanning, 530005 China
| | - Zhupeng Fan
- Agricultural College, Guangxi University, Nanning, 530005 China
| | - Yanmei Zhu
- Agricultural College, Guangxi University, Nanning, 530005 China
| |
Collapse
|
85
|
Barashkova AS, Rogozhin EA. Isolation of antimicrobial peptides from different plant sources: Does a general extraction method exist? PLANT METHODS 2020; 16:143. [PMID: 33110440 PMCID: PMC7585225 DOI: 10.1186/s13007-020-00687-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 05/06/2023]
Abstract
Plants are good sources of biologically active compounds with antimicrobial activity, including polypeptides. Antimicrobial peptides (AMPs) represent one of the main barriers of plant innate immunity to environmental stress factors and are attracting much research interest. There are some extraction methods for isolation of AMPs from plant organs based on the type of extractant and initial fractionation stages. But most methods are directed to obtain some specific structural types of AMPs and do not allow to understand the molecular diversity of AMP inside a whole plant. In this mini-review, we suggest an optimized scheme of AMP isolation from plants followed by obtaining a set of peptides belonging to various structural families. This approach can be performed for large-scale screening of plants to identify some novel or homologous AMPs for fundamental and applied studies.
Collapse
Affiliation(s)
- Anna S. Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow, Russia 117997
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow, Russia 117997
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow, Russia 119021
| |
Collapse
|
86
|
Tajti J, Hamow KÁ, Majláth I, Gierczik K, Németh E, Janda T, Pál M. Polyamine-Induced Hormonal Changes in eds5 and sid2 Mutant Arabidopsis Plants. Int J Mol Sci 2019; 20:ijms20225746. [PMID: 31731788 PMCID: PMC6887987 DOI: 10.3390/ijms20225746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022] Open
Abstract
Polyamines are multifaceted compounds which play a role in regulating plant growth and stress tolerance in interactions with plant hormones. The aim of the present study was to reveal how exogenous polyamines influence the synthesis of salicylic acid, with a special emphasis on the effect of salicylic acid deficiency on the polyamine metabolism and polyamine-induced changes in other plant hormone contents. Our hypothesis was that the individual polyamines induced different changes in the polyamine and salicylic acid metabolism of the wild type and salicylic acid-deficient Arabidopsis mutants, which in turn influenced other hormones. To our knowledge, such a side-by-side comparison of the influence of eds5-1 and sid2-2 mutations on polyamines has not been reported yet. To achieve our goals, wild and mutant genotypes were tested after putrescine, spermidine or spermine treatments. Polyamine and plant hormone metabolism was investigated at metabolite and gene expression levels. Individual polyamines induced different changes in the Arabidopsis plants, and the responses were also genotype-dependent. Polyamines upregulated the polyamine synthesis and catabolism, and remarkable changes in hormone synthesis were found especially after spermidine or spermine treatments. The sid2-2 mutant showed pronounced differences compared to Col-0. Interactions between plant hormones may also be responsible for the observed differences.
Collapse
Affiliation(s)
- Judit Tajti
- Plant Physiology Department, Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary; (J.T.); (I.M.); (E.N.); (T.J.)
| | - Kamirán Áron Hamow
- Plant Protection Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary;
| | - Imre Majláth
- Plant Physiology Department, Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary; (J.T.); (I.M.); (E.N.); (T.J.)
| | - Krisztián Gierczik
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, H-2462 Mrtonvásár, Hungary;
| | - Edit Németh
- Plant Physiology Department, Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary; (J.T.); (I.M.); (E.N.); (T.J.)
| | - Tibor Janda
- Plant Physiology Department, Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary; (J.T.); (I.M.); (E.N.); (T.J.)
| | - Magda Pál
- Plant Physiology Department, Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary; (J.T.); (I.M.); (E.N.); (T.J.)
- Correspondence: ; Tel.: +36-22-569-502; Fax: +36-22-569-576
| |
Collapse
|
87
|
Seed Priming with Melatonin Improves the Seed Germination of Waxy Maize under Chilling Stress via Promoting the Antioxidant System and Starch Metabolism. Sci Rep 2019; 9:15044. [PMID: 31636312 PMCID: PMC6803654 DOI: 10.1038/s41598-019-51122-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Chilling stress is one of the major abiotic stresses affecting waxy maize plant growth. Melatonin (MT) is able to improve tolerance to abiotic stress in plants. To investigate the effects of seed priming with MT on tolerance to chilling stress in waxy maize, the seed germination characteristics and physiological parameters were tested with varied MT concentrations (0, 50, 100 µM) and treatment times (12, 24 h) at ambient (25 °C) and chilling (13 °C) temperature. MT primed seeds significantly enhanced the germination potential (by 20.29% and 50.71%, respectively), germination rate (by 20.88% and 33.72%), and increased the radicle length (by 90.73% and 217.14%), hypocotyl length (by 60.28% and 136.14%), root length (by 74.59% and 108.70%), and seed vigor index (46.13%, 63.81%), compared with the non-priming seeds under chilling stress. No significant difference was found in priming time between primed and non-primed seeds. In addition, lower H2O2 and malondialdehyde concentrations, increased antioxidant enzyme activities (superoxide dismutase, peroxidase, catalase and ascorbateperoxidase), and promoted starch metabolism were found in primed seeds compared to non-primed ones. It was suggested that seed priming with MT improved waxy maize seed germination under chilling stress through improving antioxidant system and starch metabolism, which protected from oxidative damage.
Collapse
|
88
|
Huybrechts M, Cuypers A, Deckers J, Iven V, Vandionant S, Jozefczak M, Hendrix S. Cadmium and Plant Development: An Agony from Seed to Seed. Int J Mol Sci 2019; 20:ijms20163971. [PMID: 31443183 PMCID: PMC6718997 DOI: 10.3390/ijms20163971] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Anthropogenic pollution of agricultural soils with cadmium (Cd) should receive adequate attention as Cd accumulation in crops endangers human health. When Cd is present in the soil, plants are exposed to it throughout their entire life cycle. As it is a non-essential element, no specific Cd uptake mechanisms are present. Therefore, Cd enters the plant through transporters for essential elements and consequently disturbs plant growth and development. In this review, we will focus on the effects of Cd on the most important events of a plant's life cycle covering seed germination, the vegetative phase and the reproduction phase. Within the vegetative phase, the disturbance of the cell cycle by Cd is highlighted with special emphasis on endoreduplication, DNA damage and its relation to cell death. Furthermore, we will discuss the cell wall as an important structure in retaining Cd and the ability of plants to actively modify the cell wall to increase Cd tolerance. As Cd is known to affect concentrations of reactive oxygen species (ROS) and phytohormones, special emphasis is put on the involvement of these compounds in plant developmental processes. Lastly, possible future research areas are put forward and a general conclusion is drawn, revealing that Cd is agonizing for all stages of plant development.
Collapse
Affiliation(s)
- Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Jana Deckers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Marijke Jozefczak
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
89
|
Zdunek-Zastocka E, Grabowska A. The interplay of PsABAUGT1 with other abscisic acid metabolic genes in the regulation of ABA homeostasis during the development of pea seeds and germination in the presence of H 2O 2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:79-90. [PMID: 31203896 DOI: 10.1016/j.plantsci.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/08/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Inactivation of abscisic acid (ABA) in vitro may be catalyzed either by ABA 8'-hydroxylase (ABA8'OH) or by ABA uridine diphosphate glucosyltransferase (ABAUGT), which conjugates ABA with glucose. However, the involvement of these enzymes in the control of ABA content in vivo, especially ABAUGT, has not been fully elucidated. In pea seeds, both PsABAUGT1 and PsABA8'OH1 contribute to the reduction of ABA content during seed maturation and imbibition; however, during the first hours of imbibition, a high expression of only PsABAUGT1 was observed. Imbibition of seeds with H2O2 increased the ABA content despite the oxygen availability and altered the expression of metabolic genes. The expression of the biosynthetic gene 9-cis-epoxycarotene dioxygenase (PsNCED2) was increased, while that of PsABAUGT1 was decreased in each H2O2 experiment despite O2 availability. Under hypoxia, only seeds imbibed with H2O2 germinated, while under nonlimiting oxygen conditions, the germination rate was not altered by H2O2. Under hypoxia, the germination rate of H2O2-imbibed seeds seemed to not depend on the absolute ABA content and rather on the balance between ABA and gibberellins (GA), as H2O2 increased the expression of GA synthesis genes. Overexpression of PsABAUGT1 in Arabidopsis decreases seed ABA content, accelerates germination and reduces seed sensitivity to exogenously applied ABA, confirming the ability of PsABAUGT1 to inactivate ABA. Thus, PsABAUGT1 is a new player in the regulation of ABA content in maturating and imbibed pea seeds, both under standard conditions and in response to H2O2.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Agnieszka Grabowska
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
90
|
Fu Y, Gu Q, Dong Q, Zhang Z, Lin C, Hu W, Pan R, Guan Y, Hu J. Spermidine Enhances Heat Tolerance of Rice Seeds by Modulating Endogenous Starch and Polyamine Metabolism. Molecules 2019; 24:E1395. [PMID: 30970602 PMCID: PMC6480098 DOI: 10.3390/molecules24071395] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/02/2023] Open
Abstract
Polyamines have been reported to be involved in grain filling and they might contribute to the construction of heat resistance of some cereals. In this study, the hybrid rice 'YLY 689' was used to explore the possible effects of exogenous spermidine (Spd) on seed quality under high temperature during the filling stage. Rice spikes were treated with Spd or its synthesis inhibitor cyclohexylamine (CHA) after pollination, and then the rice plants were transferred to 40 °C for 5-day heat treatment. The results showed that, compared with the control under high temperature, Spd pretreatment significantly improved the germination percentage, germination index, vigor index, seedling shoot height, and dry weight of seeds harvested at 35 days after pollination, while the CHA significantly decreased the seed germination and seedling growth. Meanwhile, Spd significantly increased the peroxidase (POD) activity and decreased the malondialdehyde (MDA) content in seeds. In addition, after spraying with Spd, the endogenous content of spermidine and spermine and the expression of their synthetic genes, spermidine synthase (SPDSYN) and spermine synthase (SPMS1 and SPMS2), significantly increased, whereas the accumulation of amylose and total starch and the expression of their related synthase genes, soluble starch synthase II-3 (SS II-3) and granules bound starch synthase I (GBSSI), also increased to some extent. The data suggests that exogenous Spd pretreatment could alleviate the negative impacts of high temperature stress on rice seed grain filling and improve the rice seed quality to some extent, which might be partly caused by up-regulating endogenous polyamines and starch metabolism.
Collapse
Affiliation(s)
- Yuying Fu
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Qingqing Gu
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Qian Dong
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Zhihao Zhang
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Cheng Lin
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Weimin Hu
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Ronghui Pan
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Yajing Guan
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Jin Hu
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
91
|
Li Z, Gao Y, Zhang Y, Lin C, Gong D, Guan Y, Hu J. Reactive Oxygen Species and Gibberellin Acid Mutual Induction to Regulate Tobacco Seed Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:1279. [PMID: 30356911 PMCID: PMC6190896 DOI: 10.3389/fpls.2018.01279] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Seed germination is a complex process controlled by various mechanisms. To examine the potential contribution of reactive oxygen species (ROS) and gibberellin acid (GA) in regulating seed germination, diphenylene iodonium chloride (DPI) and uniconazole (Uni), as hydrogen peroxide (H2O2) and GA synthesis inhibitor, respectively, were exogenously applied on tobacco seeds using the seed priming method. Seed priming with DPI or Uni decreased germination percentage as compared with priming with H2O, especially the DPI + Uni combination. H2O2 and GA completely reversed the inhibition caused by DPI or Uni. The germination percentages with H2O2 + Uni and GA + DPI combinations kept the same level as with H2O. Meanwhile, GA or H2O2 increased GA content and deceased ABA content through corresponding gene expressions involving homeostasis and signal transduction. In addition, the activation of storage reserve mobilization and the enhancement of soluble sugar content and isocitrate lyase (ICL) activity were also induced by GA or H2O2. These results strongly suggested that H2O2 and GA were essential for tobacco seed germination and by downregulating the ABA/GA ratio and inducing reserve composition mobilization mutually promoted seed germination. Meanwhile, ICL activity was jointly enhanced by a lower ABA/GA ratio and a higher ROS concentration.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajing Guan
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
92
|
Abstract
The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.
Collapse
|
93
|
Amerik AY, Martirosyan YT, Gachok IV. Regulation of Natural Rubber Biosynthesis by Proteins Associated with Rubber Particles. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s106816201801003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
94
|
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science 2018; 359:359/6374/eaan2788. [DOI: 10.1126/science.aan2788] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
95
|
Banerjee A, Roychoudhury A. The gymnastics of epigenomics in rice. PLANT CELL REPORTS 2018; 37:25-49. [PMID: 28866772 DOI: 10.1007/s00299-017-2192-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/01/2017] [Indexed: 05/21/2023]
Abstract
Epigenomics is represented by the high-throughput investigations of genome-wide epigenetic alterations, which ultimately dictate genomic, transcriptomic, proteomic and metabolomic dynamism. Rice has been accepted as the global staple crop. As a result, this model crop deserves significant importance in the rapidly emerging field of plant epigenomics. A large number of recently available data reveal the immense flexibility and potential of variable epigenomic landscapes. Such epigenomic impacts and variability are determined by a number of epigenetic regulators and several crucial inheritable epialleles, respectively. This article highlights the correlation of the epigenomic landscape with growth, flowering, reproduction, non-coding RNA-mediated post-transcriptional regulation, transposon mobility and even heterosis in rice. We have also discussed the drastic epigenetic alterations which are reported in rice plants grown from seeds exposed to the extraterrestrial environment. Such abiotic conditions impose stress on the plants leading to epigenomic modifications in a genotype-specific manner. Some significant bioinformatic databases and in silico approaches have also been explained in this article. These softwares provide important interfaces for comparative epigenomics. The discussion concludes with a unified goal of developing epigenome editing to promote biological hacking of the rice epigenome. Such a cutting-edge technology if properly standardized, can integrate genomics and epigenomics together with the generation of high-yielding trait in several cultivars of rice.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
96
|
Li Z, Xu J, Gao Y, Wang C, Guo G, Luo Y, Huang Y, Hu W, Sheteiwy MS, Guan Y, Hu J. The Synergistic Priming Effect of Exogenous Salicylic Acid and H 2O 2 on Chilling Tolerance Enhancement during Maize ( Zea mays L.) Seed Germination. FRONTIERS IN PLANT SCIENCE 2017; 8:1153. [PMID: 28725229 PMCID: PMC5496956 DOI: 10.3389/fpls.2017.01153] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 06/15/2017] [Indexed: 05/18/2023]
Abstract
Chilling stress is an important constraint for maize seedling establishment in the field. To examine the role of salicylic acid (SA) and hydrogen peroxide (H2O2) in response to chilling stress, we investigated the effects of seed priming with SA, H2O2, and SA+H2O2 combination on maize resistance under chilling stress (13°C). Priming with SA, H2O2, and especially SA+H2O2 shortened seed germination time and enhanced seed vigor and seedling growth as compared with hydropriming and non-priming treatments under low temperature. Meanwhile, SA+H2O2 priming notably increased the endogenous H2O2 and SA content, antioxidant enzymes activities and their corresponding genes ZmPAL, ZmSOD4, ZmAPX2, ZmCAT2, and ZmGR expression levels. The α-amylase activity was enhanced to mobilize starch to supply metabolites such as soluble sugar and energy for seed germination under chilling stress. In addition, the SA+H2O2 combination positively up-regulated expressions of gibberellic acid (GA) biosynthesis genes ZmGA20ox1 and ZmGA3ox2, and down-regulated GA catabolism gene ZmGA2ox1 expression; while it promoted GA signaling transduction genes expressions of ZmGID1 and ZmGID2 and decreased the level of seed germination inhibitor gene ZmRGL2. The abscisic acid (ABA) catabolism gene ZmCYP707A2 and the expressions of ZmCPK11 and ZmSnRK2.1 encoding response receptors in ABA signaling pathway were all up-regulated. These results strongly suggested that priming with SA and H2O2 synergistically promoted hormones metabolism and signal transduction, and enhanced energy supply and antioxidant enzymes activities under chilling stress, which were closely relevant with chilling injury alleviation and chilling-tolerance improvement in maize seed. Highlights:Seed germination and seedling growth were significantly improved under chilling stress by priming with SA+H2O2 combination, which was closely relevant with the change of reactive oxygen species, metabolites and energy supply, hormones metabolism and regulation.
Collapse
Affiliation(s)
- Zhan Li
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Jungui Xu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yue Gao
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Chun Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Genyuan Guo
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Ying Luo
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yutao Huang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Weimin Hu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Mohamed S. Sheteiwy
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- Department of Agronomy, Faculty of Agriculture, Mansoura UniversityMansoura, Egypt
| | - Yajing Guan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- *Correspondence: Yajing Guan,
| | - Jin Hu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| |
Collapse
|