51
|
Henden L, Fearnley LG, Grima N, McCann EP, Dobson-Stone C, Fitzpatrick L, Friend K, Hobson L, Chan Moi Fat S, Rowe DB, D'Silva S, Kwok JB, Halliday GM, Kiernan MC, Mazumder S, Timmins HC, Zoing M, Pamphlett R, Adams L, Bahlo M, Blair IP, Williams KL. Short tandem repeat expansions in sporadic amyotrophic lateral sclerosis and frontotemporal dementia. SCIENCE ADVANCES 2023; 9:eade2044. [PMID: 37146135 PMCID: PMC10162670 DOI: 10.1126/sciadv.ade2044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/07/2023]
Abstract
Pathogenic short tandem repeat (STR) expansions cause over 20 neurodegenerative diseases. To determine the contribution of STRs in sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), we used ExpansionHunter, REviewer, and polymerase chain reaction validation to assess 21 neurodegenerative disease-associated STRs in whole-genome sequencing data from 608 patients with sporadic ALS, 68 patients with sporadic FTD, and 4703 matched controls. We also propose a data-derived outlier detection method for defining allele thresholds in rare STRs. Excluding C9orf72 repeat expansions, 17.6% of clinically diagnosed ALS and FTD cases had at least one expanded STR allele reported to be pathogenic or intermediate for another neurodegenerative disease. We identified and validated 162 disease-relevant STR expansions in C9orf72 (ALS/FTD), ATXN1 [spinal cerebellar ataxia type 1 (SCA1)], ATXN2 (SCA2), ATXN8 (SCA8), TBP (SCA17), HTT (Huntington's disease), DMPK [myotonic dystrophy type 1 (DM1)], CNBP (DM2), and FMR1 (fragile-X disorders). Our findings suggest clinical and pathological pleiotropy of neurodegenerative disease genes and highlight their importance in ALS and FTD.
Collapse
Affiliation(s)
- Lyndal Henden
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Liam G Fearnley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Natalie Grima
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emily P McCann
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lauren Fitzpatrick
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kathryn Friend
- SA Pathology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Lynne Hobson
- SA Pathology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Sandrine Chan Moi Fat
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Dominic B Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Susan D'Silva
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - John B Kwok
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Srestha Mazumder
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Margaret Zoing
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Roger Pamphlett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Discipline of Pathology, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Lorel Adams
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ian P Blair
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Kelly L Williams
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
52
|
Prado MB, Hamoy-Jimenez G, Adiao KJ. Characteristic and management motor neuron disease in the largest tertiary hospital in the Philippines: A one-year period cross sectional analytic study. J Clin Neurosci 2023; 112:68-72. [PMID: 37104886 DOI: 10.1016/j.jocn.2023.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2023] [Revised: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Motor neuron disease (MND) is largely understudied in many underdeveloped and developing countries, including the Philippines. The practice and management of MND is generally insufficient, and thus, the quality of life of these patients are consequently compromised. OBJECTIVES The aim of this study is to determine the clinical profile and describe the management of MND patients seen in the largest tertiary hospital in the Philippines for one year. METHODS This is a cross-sectional study of MND patients diagnosed clinically and via electromyogram-nerve conduction study (EMG NCS) in the Philippine General Hospital (PGH) from January to December 2022. Clinical characteristics, diagnostics and management information were obtained and summarized. RESULTS The incidence of MND in our neurophysiology unit was 4.3% (28/648), with amyotrophic lateral sclerosis (ALS) being the most common variant (67.9%, n = 19). Male to Female ratio was 1:1, with the median age of onset of 55 (36-72) years old and median onset duration to diagnosis of 1.5 (0.25-8) years. Limb onset was more prevalent (82.14%, n = 23) with upper limbs initially involved (79.1%, n = 18). Split hand syndrome was found in almost half (53.6%) of the patients. The median ALS functional rating score-revised (ALSFRS-R) and medical research council (MRC) scores were 34 (8-47) and 42(16-60) respectively while the median King's clinical stage was 3 (1-4). Only half of the patients were able to undergo magnetic resonance imaging (MRI) and only one had neuromuscular ultrasound. Only one of the 28 patients was able to take riluzole, and only one was on oxygen support. None had gastrostomy and none used non-invasive ventilation. CONCLUSION This study showed that the management of MND in the Philippines is largely inadequate and further improvement in the health care system in handling rare neurologic cases must be implemented to enhance their quality of life.
Collapse
Affiliation(s)
- Mario B Prado
- Department of Physiology, College of Medicine, University of the Philippines-Manila, Manila, Philippines; Department of Epidemiology and Biostatistics, College of Public Health, University of the Philippines-Manila, Manila, Philippines; Section of Adult Neurology, Department of the Neurosciences, Philippine General Hospital, University of the Philippines-Manila, Manila, Philippines.
| | | | - Karen Joy Adiao
- Section of Adult Neurology, Department of the Neurosciences, Philippine General Hospital, University of the Philippines-Manila, Manila, Philippines.
| |
Collapse
|
53
|
Gianferrari G, Martinelli I, Simonini C, Zucchi E, Fini N, Caputo M, Ghezzi A, Gessani A, Canali E, Casmiro M, De Massis P, Curro' Dossi M, De Pasqua S, Liguori R, Longoni M, Medici D, Morresi S, Patuelli A, Pugliatti M, Santangelo M, Sette E, Stragliati F, Terlizzi E, Vacchiano V, Zinno L, Ferro S, Amedei A, Filippini T, Vinceti M, Mandrioli J. Insight into Elderly ALS Patients in the Emilia Romagna Region: Epidemiological and Clinical Features of Late-Onset ALS in a Prospective, Population-Based Study. Life (Basel) 2023; 13:life13040942. [PMID: 37109471 PMCID: PMC10144747 DOI: 10.3390/life13040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Few studies have focused on elderly (>80 years) amyotrophic lateral sclerosis (ALS) patients, who represent a fragile subgroup generally not included in clinical trials and often neglected because they are more difficult to diagnose and manage. We analyzed the clinical and genetic features of very late-onset ALS patients through a prospective, population-based study in the Emilia Romagna Region of Italy. From 2009 to 2019, 222 (13.76%) out of 1613 patients in incident cases were over 80 years old at diagnosis, with a female predominance (F:M = 1.18). Elderly ALS patients represented 12.02% of patients before 2015 and 15.91% from 2015 onwards (p = 0.024). This group presented with bulbar onset in 38.29% of cases and had worse clinical conditions at diagnosis compared to younger patients, with a lower average BMI (23.12 vs. 24.57 Kg/m2), a higher progression rate (1.43 vs. 0.95 points/month), and a shorter length of survival (a median of 20.77 vs. 36 months). For this subgroup, genetic analyses have seldom been carried out (25% vs. 39.11%) and are generally negative. Finally, elderly patients underwent less frequent nutritional- and respiratory-supporting procedures, and multidisciplinary teams were less involved at follow-up, except for specialist palliative care. The genotypic and phenotypic features of elderly ALS patients could help identify the different environmental and genetic risk factors that determine the age at which disease onset occurs. Since multidisciplinary management can improve a patient's prognosis, it should be more extensively applied to this fragile group of patients.
Collapse
Affiliation(s)
- Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
- Neuroscience Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Maria Caputo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Annalisa Gessani
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Elena Canali
- Department of Neurology, IRCCS Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy
| | - Mario Casmiro
- Department of Neurology, Faenza and Ravenna Hospital, 48100 Ravenna, Italy
| | | | | | | | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40126 Bologna, Italy
| | - Marco Longoni
- Department of Neurology, Infermi Hospital, 48018 Rimini, Italy
- Department of Neurology, Bufalini Hospital, 47521 Cesena, Italy
| | - Doriana Medici
- Department of Neurology, Fidenza Hospital, 43036 Parma, Italy
| | | | | | - Maura Pugliatti
- Department of Neurosciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Neurology, St. Anna Hospital, 44124 Ferrara, Italy
| | | | - Elisabetta Sette
- Department of Neurology, St. Anna Hospital, 44124 Ferrara, Italy
| | - Filippo Stragliati
- Department of General and Specialized Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Emilio Terlizzi
- Department of Neurology, G. Da Saliceto Hospital, 29121 Piacenza, Italy
| | - Veria Vacchiano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40126 Bologna, Italy
| | - Lucia Zinno
- Department of General and Specialized Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Salvatore Ferro
- Department of Hospital Services, Emilia Romagna Regional Health Authority, 40127 Bologna, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Tommaso Filippini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Research Centre in Environmental, Genetic and Nutritional Epidemiology-CREAGEN, University of Modena and Reggio Emilia, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Research Centre in Environmental, Genetic and Nutritional Epidemiology-CREAGEN, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston University, Boston, MA 02118, USA
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| |
Collapse
|
54
|
Mueller S, Decker L, Menge S, Ludolph AC, Freischmidt A. The Fragile X Protein Family in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2023; 60:3898-3910. [PMID: 36991279 DOI: 10.1007/s12035-023-03330-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
The fragile X protein (FXP) family comprises the multifunctional RNA-binding proteins FMR1, FXR1, and FXR2 that play an important role in RNA metabolism and regulation of translation, but also in DNA damage and cellular stress responses, mitochondrial organization, and more. FMR1 is well known for its implication in neurodevelopmental diseases. Recent evidence suggests substantial contribution of this protein family to amyotrophic lateral sclerosis (ALS) pathogenesis. ALS is a highly heterogeneous neurodegenerative disease with multiple genetic and unclear environmental causes and very limited treatment options. The loss of motoneurons in ALS is still poorly understood, especially because pathogenic mechanisms are often restricted to patients with mutations in specific causative genes. Identification of converging disease mechanisms evident in most patients and suitable for therapeutic intervention is therefore of high importance. Recently, deregulation of the FXPs has been linked to pathogenic processes in different types of ALS. Strikingly, in many cases, available data points towards loss of expression and/or function of the FXPs early in the disease, or even at the presymptomatic state. In this review, we briefly introduce the FXPs and summarize available data about these proteins in ALS. This includes their relation to TDP-43, FUS, and ALS-related miRNAs, as well as their possible contribution to pathogenic protein aggregation and defective RNA editing. Furthermore, open questions that need to be addressed before definitively judging suitability of these proteins as novel therapeutic targets are discussed.
Collapse
Affiliation(s)
- Sarah Mueller
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lorena Decker
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sonja Menge
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- German Center For Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
55
|
Gulino R. Synaptic Dysfunction and Plasticity in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:ijms24054613. [PMID: 36902042 PMCID: PMC10003601 DOI: 10.3390/ijms24054613] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent evidence has supported the hypothesis that amyotrophic lateral sclerosis (ALS) is a multi-step disease, as the onset of symptoms occurs after sequential exposure to a defined number of risk factors. Despite the lack of precise identification of these disease determinants, it is known that genetic mutations may contribute to one or more of the steps leading to ALS onset, the remaining being linked to environmental factors and lifestyle. It also appears evident that compensatory plastic changes taking place at all levels of the nervous system during ALS etiopathogenesis may likely counteract the functional effects of neurodegeneration and affect the timing of disease onset and progression. Functional and structural events of synaptic plasticity probably represent the main mechanisms underlying this adaptive capability, causing a significant, although partial and transient, resiliency of the nervous system affected by a neurodegenerative disease. On the other hand, the failure of synaptic functions and plasticity may be part of the pathological process. The aim of this review was to summarize what it is known today about the controversial involvement of synapses in ALS etiopathogenesis, and an analysis of the literature, although not exhaustive, confirmed that synaptic dysfunction is an early pathogenetic process in ALS. Moreover, it appears that adequate modulation of structural and functional synaptic plasticity may likely support function sparing and delay disease progression.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| |
Collapse
|
56
|
TDP-43 Proteinopathy Specific Biomarker Development. Cells 2023; 12:cells12040597. [PMID: 36831264 PMCID: PMC9954136 DOI: 10.3390/cells12040597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
TDP-43 is the primary or secondary pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis, half of frontotemporal dementia cases, and limbic age-related TDP-43 encephalopathy, which clinically resembles Alzheimer's dementia. In such diseases, a biomarker that can detect TDP-43 proteinopathy in life would help to stratify patients according to their definite diagnosis of pathology, rather than in clinical subgroups of uncertain pathology. For therapies developed to target pathological proteins that cause the disease a biomarker to detect and track the underlying pathology would greatly enhance such undertakings. This article reviews the latest developments and outlooks of deriving TDP-43-specific biomarkers from the pathophysiological processes involved in the development of TDP-43 proteinopathy and studies using biosamples from clinical entities associated with TDP-43 pathology to investigate biomarker candidates.
Collapse
|
57
|
Tazelaar GHP, Hop PJ, Seelen M, van Vugt JJFA, van Rheenen W, Kool L, van Eijk KR, Gijzen M, Dooijes D, Moisse M, Calvo A, Moglia C, Brunetti M, Canosa A, Nordin A, Pardina JSM, Ravits J, Al-Chalabi A, Chio A, McLaughlin RL, Hardiman O, Van Damme P, de Carvalho M, Neuwirth C, Weber M, Andersen PM, van den Berg LH, Veldink JH, van Es MA. Whole genome sequencing analysis reveals post-zygotic mutation variability in monozygotic twins discordant for amyotrophic lateral sclerosis. Neurobiol Aging 2023; 122:76-87. [PMID: 36521271 DOI: 10.1016/j.neurobiolaging.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis is a heterogeneous, fatal neurodegenerative disease, characterized by motor neuron loss and in 50% of cases also by cognitive and/or behavioral changes. Mendelian forms of ALS comprise approximately 10-15% of cases. The majority is however considered sporadic, but also with a high contribution of genetic risk factors. To explore the contribution of somatic mutations and/or epigenetic changes to disease risk, we performed whole genome sequencing and methylation analyses using samples from multiple tissues on a cohort of 26 monozygotic twins discordant for ALS, followed by in-depth validation and replication experiments. The results of these analyses implicate several mechanisms in ALS pathophysiology, which include a role for de novo mutations, defects in DNA damage repair and accelerated aging.
Collapse
Affiliation(s)
- Gijs H P Tazelaar
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J Hop
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Meinie Seelen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joke J F A van Vugt
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lindy Kool
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristel R van Eijk
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marleen Gijzen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthieu Moisse
- Neurology Department University Hospitals Leuven, Department of Neurosciences and Leuven Brain Institute (LBI) KU Leuven-University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Leuven, Belgium
| | - Andrea Calvo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Cristina Moglia
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Maura Brunetti
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Antonio Canosa
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Angelica Nordin
- Department of Clinical Science, Neurosciences, Umeå University Umeå, Sweden
| | | | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, King's College London, London, UK; Department of Neurology, King's College Hospital, London, UK
| | - Adriano Chio
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Russell L McLaughlin
- Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Republic of Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Republic of Ireland; Department of Neurology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Philip Van Damme
- Neurology Department University Hospitals Leuven, Department of Neurosciences and Leuven Brain Institute (LBI) KU Leuven-University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Leuven, Belgium
| | - Mamede de Carvalho
- Department of Neurosciences, Hospital de Santa Maria-CHLN, Lisbon, Portugal; Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University Umeå, Sweden
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael A van Es
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
58
|
Benatar M, Goutman SA, Staats KA, Feldman EL, Weisskopf M, Talbott E, Dave KD, Thakur NM, Al-Chalabi A. A roadmap to ALS prevention: strategies and priorities. J Neurol Neurosurg Psychiatry 2023; 94:399-402. [PMID: 36690429 PMCID: PMC10176353 DOI: 10.1136/jnnp-2022-330473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/28/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023]
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Kim A Staats
- Staats Life Sciences Consulting, Los Angeles, California, USA
| | - Eva L Feldman
- Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Evelyn Talbott
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Kuldip D Dave
- ALS Association, Washington, District of Columbia, USA
| | - Neil M Thakur
- ALS Association, Washington, District of Columbia, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| |
Collapse
|
59
|
McCann EP, Grima N, Fifita JA, Chan Moi Fat S, Lehnert K, Henden L, Blair IP, Williams KL. Characterising the Genetic Landscape of Amyotrophic Lateral Sclerosis: A Catalogue and Assessment of Over 1,000 Published Genetic Variants. J Neuromuscul Dis 2023; 10:1127-1141. [PMID: 37638449 PMCID: PMC10657717 DOI: 10.3233/jnd-230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with genetic and phenotypic heterogeneity. Pathogenic genetic variants remain the only validated cause of disease, the majority of which were discovered in familial ALS patients. While causal gene variants are a lesser contributor to sporadic ALS, an increasing number of risk alleles (low penetrance genetic variants associated with a small increase in disease risk) and variants of uncertain significance have been reported. OBJECTIVE To examine the pathogenic potential of genetic variation in ALS, we sought to characterise variant- and gene-level attributes of previously reported ALS-implicated variants. METHODS A list of 1,087 genetic variants reported in ALS to March 2021 was compiled through comprehensive literature review. Individual variants were annotated using in silico tools and databases across variant features including pathogenicity scores, localisation to protein domains, evolutionary conservation, and minor allele frequencies. Gene level attributes of genic tolerance, gene expression in ALS-relevant tissues and gene ontology terms were assessed for 33 ALS genes. Statistical analysis was performed for each characteristic, and we compared the most penetrant variants found in familial cases with risk alleles exclusive to sporadic cases, to explore genetic variant features that associate with disease penetrance. RESULTS We provide spreadsheet (hg19 and GRCh38) and variant call format (GRCh38) resources for all 1,087 reported ALS-implicated variants, including detailed summaries for each attribute. We demonstrate that the characteristics of variants found exclusively in sporadic ALS cases are less severe than those observed in familial ALS. CONCLUSIONS We provide a comprehensive, literature-derived catalogue of genetic variation in ALS thus far and reveal crucial attributes that contribute to ALS pathogenicity. Our variant- and gene-level observations highlight the complexity of genetic variation in ALS, and we discuss important implications and considerations for novel variant interpretation.
Collapse
Affiliation(s)
- Emily P. McCann
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Natalie Grima
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer A. Fifita
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sandrine Chan Moi Fat
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Klaus Lehnert
- School of Biological Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Lyndal Henden
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ian P. Blair
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kelly L. Williams
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
60
|
Ciuro M, Sangiorgio M, Leanza G, Gulino R. A Meta-Analysis Study of SOD1-Mutant Mouse Models of ALS to Analyse the Determinants of Disease Onset and Progression. Int J Mol Sci 2022; 24:ijms24010216. [PMID: 36613659 PMCID: PMC9820332 DOI: 10.3390/ijms24010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
A complex interaction between genetic and external factors determines the development of amyotrophic lateral sclerosis (ALS). Epidemiological studies on large patient cohorts have suggested that ALS is a multi-step disease, as symptom onset occurs only after exposure to a sequence of risk factors. Although the exact nature of these determinants remains to be clarified, it seems clear that: (i) genetic mutations may be responsible for one or more of these steps; (ii) other risk factors are probably linked to environment and/or to lifestyle, and (iii) compensatory plastic changes taking place during the ALS etiopathogenesis probably affect the timing of onset and progression of disease. Current knowledge on ALS mechanisms and therapeutic targets, derives mainly from studies involving superoxide dismutase 1 (SOD1) transgenic mice; therefore, it would be fundamental to verify whether a multi-step disease concept can also be applied to these animal models. With this aim, a meta-analysis study has been performed using a collection of primary studies (n = 137), selected according to the following criteria: (1) the studies should employ SOD1 transgenic mice; (2) the studies should entail the presence of a disease-modifying experimental manipulation; (3) the studies should make use of Kaplan-Meier plots showing the distribution of symptom onset and lifespan. Then, using a subset of this study collection (n = 94), the effects of treatments on key molecular mechanisms, as well as on the onset and progression of disease have been analysed in a large population of mice. The results are consistent with a multi-step etiopathogenesis of disease in ALS mice (including two to six steps, depending on the particular SOD1 mutation), closely resembling that observed in patient cohorts, and revealed an interesting relationship between molecular mechanisms and disease manifestation. Thus, SOD1 mouse models may be considered of high predictive value to understand the determinants of disease onset and progression, as well as to identify targets for therapeutic interventions.
Collapse
Affiliation(s)
- Maria Ciuro
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Maria Sangiorgio
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
61
|
Al Khleifat A, Iacoangeli A, Jones AR, van Vugt JJFA, Moisse M, Shatunov A, Zwamborn RAJ, van der Spek RAA, Cooper-Knock J, Topp S, van Rheenen W, Kenna B, Van Eijk KR, Kenna K, Byrne R, López V, Opie-Martin S, Vural A, Campos Y, Weber M, Smith B, Fogh I, Silani V, Morrison KE, Dobson R, van Es MA, McLaughlin RL, Vourc’h P, Chio A, Corcia P, de Carvalho M, Gotkine M, Panades MP, Mora JS, Shaw PJ, Landers JE, Glass JD, Shaw CE, Basak N, Hardiman O, Robberecht W, Van Damme P, van den Berg LH, Veldink JH, Al-Chalabi A. Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data. Front Cell Neurosci 2022; 16:1050596. [PMID: 36589292 PMCID: PMC9799999 DOI: 10.3389/fncel.2022.1050596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more, a family history of ALS or frontotemporal dementia is obtained, and the Mendelian genes responsible for ALS in such families have now been identified in about 50% of cases. Only about 14% of apparently sporadic ALS is explained by known genetic variation, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication, differ between sexes, and shorten naturally with age. Sex and age are risk factors for ALS and we therefore investigated telomere length in ALS. Methods Samples were from Project MinE, an international ALS whole genome sequencing consortium that includes phenotype data. For validation we used donated brain samples from motor cortex from people with ALS and controls. Ancestry and relatedness were evaluated by principal components analysis and relationship matrices of DNA microarray data. Whole genome sequence data were from Illumina HiSeq platforms and aligned using the Isaac pipeline. TelSeq was used to quantify telomere length using whole genome sequence data. We tested the association of telomere length with ALS and ALS survival using Cox regression. Results There were 6,580 whole genome sequences, reducing to 6,195 samples (4,315 from people with ALS and 1,880 controls) after quality control, and 159 brain samples (106 ALS, 53 controls). Accounting for age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere length in people with ALS compared to controls (p = 1.1 × 10-12), validated in the brain samples (p = 0.03). Those with shorter telomeres had a 10% increase in median survival (p = 5.0×10-7). Although there was no difference in telomere length between sporadic ALS and familial ALS (p=0.64), telomere length in 334 people with ALS due to expanded C9orf72 repeats was shorter than in those without expanded C9orf72 repeats (p = 5.0×10-4). Discussion Although telomeres shorten with age, longer telomeres are a risk factor for ALS and worsen prognosis. Longer telomeres are associated with ALS.
Collapse
Affiliation(s)
- Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ashley R. Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Joke J. F. A. van Vugt
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Aleksey Shatunov
- Institute of Medicine, North-Eastern Federal University, Yakutsk, Russia
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Ramona A. J. Zwamborn
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Rick A. A. van der Spek
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Simon Topp
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Wouter van Rheenen
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Brendan Kenna
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Kristel R. Van Eijk
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Kevin Kenna
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Ross Byrne
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Victoria López
- Computational Biology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Atay Vural
- School of Medicine, Translational Medicine Research Center-NDAL, Koc University, Istanbul, Turkey
| | - Yolanda Campos
- Computational Biology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Markus Weber
- School of Medicine, Translational Medicine Research Center-NDAL, Koc University, Istanbul, Turkey
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Bradley Smith
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Isabella Fogh
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Karen E. Morrison
- Faculty of Medicine, Health and Life Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
| | - Michael A. van Es
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Russell L. McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Adriano Chio
- Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
- Azienda Ospedaliera Citta della Salute e della Scienza, Turin, Italy
| | - Philippe Corcia
- Centre SLA, CHRU de Tours, Tours, France
- Federation des Centres SLA Tours and Limoges, LITORALS, Tours, France
| | - Mamede de Carvalho
- Physiology Institute, Faculty of Medicine, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | - Marc Gotkine
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jonathan D. Glass
- Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, United States
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- King’s College Hospital, London, United Kingdom
| | - Nazli Basak
- School of Medicine, Translational Medicine Research Center-NDAL, Koc University, Istanbul, Turkey
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Leonard H. van den Berg
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Jan H. Veldink
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- King’s College Hospital, London, United Kingdom
| |
Collapse
|
62
|
Spargo TP, Opie-Martin S, Bowles H, Lewis CM, Iacoangeli A, Al-Chalabi A. Calculating variant penetrance from family history of disease and average family size in population-scale data. Genome Med 2022; 14:141. [PMID: 36522764 PMCID: PMC9753373 DOI: 10.1186/s13073-022-01142-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genetic penetrance is the probability of a phenotype when harbouring a particular pathogenic variant. Accurate penetrance estimates are important across biomedical fields including genetic counselling, disease research, and gene therapy. However, existing approaches for penetrance estimation require, for instance, large family pedigrees or availability of large databases of people affected and not affected by a disease. METHODS We present a method for penetrance estimation in autosomal dominant phenotypes. It examines the distribution of a variant among people affected (cases) and unaffected (controls) by a phenotype within population-scale data and can be operated using cases only by considering family disease history. It is validated through simulation studies and candidate variant-disease case studies. RESULTS Our method yields penetrance estimates which align with those obtained via existing approaches in the Parkinson's disease LRRK2 gene and pulmonary arterial hypertension BMPR2 gene case studies. In the amyotrophic lateral sclerosis case studies, examining penetrance for variants in the SOD1 and C9orf72 genes, we make novel penetrance estimates which correspond closely to understanding of the disease. CONCLUSIONS The present approach broadens the spectrum of traits for which reliable penetrance estimates can be obtained. It has substantial utility for facilitating the characterisation of disease risks associated with rare variants with an autosomal dominant inheritance pattern. The yielded estimates avoid any kinship-specific effects and can circumvent ascertainment biases common when sampling rare variants among control populations.
Collapse
Affiliation(s)
- Thomas P Spargo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RX, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RX, UK
| | - Harry Bowles
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RX, UK
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, de Crespigny Park, London, SE5 8AF, UK
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RX, UK.
- Department of Biostatistics and Health Informatics, King's College London, London, UK.
- NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RX, UK.
- King's College Hospital, Bessemer Road, London, SE5 9RS, UK.
| |
Collapse
|
63
|
Mahoney CJ, Sleeman R, Errington W. Assessment of suspected motor neuron disease. BMJ 2022; 379:e073857. [PMID: 36418041 DOI: 10.1136/bmj-2022-073857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
Affiliation(s)
- Colin J Mahoney
- Forefront Motor Neuron Disease Clinic, Brain and Mind Centre, University of Sydney, Australia
| | | | | |
Collapse
|
64
|
Opie-Martin S, Iacoangeli A, Topp SD, Abel O, Mayl K, Mehta PR, Shatunov A, Fogh I, Bowles H, Limbachiya N, Spargo TP, Al-Khleifat A, Williams KL, Jockel-Balsarotti J, Bali T, Self W, Henden L, Nicholson GA, Ticozzi N, McKenna-Yasek D, Tang L, Shaw PJ, Chio A, Ludolph A, Weishaupt JH, Landers JE, Glass JD, Mora JS, Robberecht W, Damme PV, McLaughlin R, Hardiman O, van den Berg L, Veldink JH, Corcia P, Stevic Z, Siddique N, Silani V, Blair IP, Fan DS, Esselin F, de la Cruz E, Camu W, Basak NA, Siddique T, Miller T, Brown RH, Al-Chalabi A, Shaw CE. The SOD1-mediated ALS phenotype shows a decoupling between age of symptom onset and disease duration. Nat Commun 2022; 13:6901. [PMID: 36371497 PMCID: PMC9653399 DOI: 10.1038/s41467-022-34620-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Superoxide dismutase (SOD1) gene variants may cause amyotrophic lateral sclerosis, some of which are associated with a distinct phenotype. Most studies assess limited variants or sample sizes. In this international, retrospective observational study, we compare phenotypic and demographic characteristics between people with SOD1-ALS and people with ALS and no recorded SOD1 variant. We investigate which variants are associated with age at symptom onset and time from onset to death or censoring using Cox proportional-hazards regression. The SOD1-ALS dataset reports age of onset for 1122 and disease duration for 883 people; the comparator population includes 10,214 and 9010 people respectively. Eight variants are associated with younger age of onset and distinct survival trajectories; a further eight associated with younger onset only and one with distinct survival only. Here we show that onset and survival are decoupled in SOD1-ALS. Future research should characterise rarer variants and molecular mechanisms causing the observed variability.
Collapse
Affiliation(s)
- Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry Psychology & Neuroscience, King's College London, SE5 8AF, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Simon D Topp
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Olubunmi Abel
- Homerton University Hospital, Homerton Row, London, E9 6SR, UK
| | - Keith Mayl
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Puja R Mehta
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Blue Block 1.09, Sherrington Building, Crown St, Liverpool, L693BX, UK
- Institute of Medicine, North-Eastern Federal University, 58 Belinsky str, Yakutsk, 677000, Russia
| | - Isabella Fogh
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Harry Bowles
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Naomi Limbachiya
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Thomas P Spargo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Ahmad Al-Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Kelly L Williams
- Macquarie University Centre for MND Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Taha Bali
- Department of Neurology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Wade Self
- Department of Neurology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Lyndal Henden
- Macquarie University Centre for MND Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Garth A Nicholson
- Macquarie University Centre for MND Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Concord Clinical School, ANZAC Research Institute, Concord Repatriation Hospital, Sydney, NSW, 2139, Australia
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, MiIan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Center for Neurotechnology and Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Diane McKenna-Yasek
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 02125, USA
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, PR China
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Adriano Chio
- Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza of Torino, Turin, 10124, Torino, Italy
| | - Albert Ludolph
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases, DZNE, Ulm, Germany
| | - Jochen H Weishaupt
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
- Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 02125, USA
| | - Jonathan D Glass
- Department Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jesus S Mora
- ALS Unit, Department of Neurology, Hospital San Rafael, 28016, Madrid, Spain
| | - Wim Robberecht
- Neurology Department, Univeristy Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Philip Van Damme
- Neurology Department, Univeristy Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Neuroscience Department, KU Leuven and Center for Brain & Disease Research VIB Leuven, Leuven, Belgium
| | - Russell McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Leonard van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Phillippe Corcia
- Centre de Référence pour la SLA et les Autres Maladies du Motoneurone (FILSLAN), 2 Avenue Martin Luther King, 87042, Limoges Cedex, France
- Centre de Compétences Neuropathies Amyloïdes Familiales et Autres Neuropathies Périphériques Rares (NNERF), Poitiers, France
| | - Zorica Stevic
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Studentski trg 1, Belgrade, Serbia
| | - Nailah Siddique
- Neuromuscular Disorders Program, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60208, USA
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, MiIan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Center for Neurotechnology and Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Ian P Blair
- Macquarie University Centre for MND Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Dong-Sheng Fan
- Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, PR China
| | - Florence Esselin
- Reference Center for ALS and Other Rare Motoneuron Disorders, University Hospital Gui de Chauliac, 34295, Montpellier, France
| | - Elisa de la Cruz
- Reference Center for ALS and Other Rare Motoneuron Disorders, University Hospital Gui de Chauliac, 34295, Montpellier, France
| | - William Camu
- Reference Center for ALS and Other Rare Motoneuron Disorders, University Hospital Gui de Chauliac, 34295, Montpellier, France
| | - Nazli A Basak
- Koç University, School of Medicine Translational Medicine Research Center KUTTAM-NDAL, 34450, Sarıyer, Istanbul, Turkey
| | - Teepu Siddique
- Neuromuscular Disorders Program, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60208, USA
| | - Timothy Miller
- Department of Neurology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 02125, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Christopher E Shaw
- UK Dementia Research Institute Centre at King's College London, School of Neuroscience, King's College London, Strand, London, WC2R 2LS, UK.
- Centre for Brain Research, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|
65
|
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet 2022; 400:1363-1380. [PMID: 36116464 PMCID: PMC10089700 DOI: 10.1016/s0140-6736(22)01272-7] [Citation(s) in RCA: 381] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis is a fatal CNS neurodegenerative disease. Despite intensive research, current management of amyotrophic lateral sclerosis remains suboptimal from diagnosis to prognosis. Recognition of the phenotypic heterogeneity of amyotrophic lateral sclerosis, global CNS dysfunction, genetic architecture, and development of novel diagnostic criteria is clarifying the spectrum of clinical presentation and facilitating diagnosis. Insights into the pathophysiology of amyotrophic lateral sclerosis, identification of disease biomarkers and modifiable risks, along with new predictive models, scales, and scoring systems, and a clinical trial pipeline of mechanism-based therapies, are changing the prognostic landscape. Although most recent advances have yet to translate into patient benefit, the idea of amyotrophic lateral sclerosis as a complex syndrome is already having tangible effects in the clinic. This Seminar will outline these insights and discuss the status of the management of amyotrophic lateral sclerosis for the general neurologist, along with future prospects that could improve care and outcomes for patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Letizia Mazzini
- ALS Centre, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy; Department of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Masha G Savelieff
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Gen Sobue
- Department of Neurology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
66
|
Marshall JNG, Fröhlich A, Li L, Pfaff AL, Middlehurst B, Spargo TP, Iacoangeli A, Lang B, Al-Chalabi A, Koks S, Bubb VJ, Quinn JP. A polymorphic transcriptional regulatory domain in the amyotrophic lateral sclerosis risk gene CFAP410 correlates with differential isoform expression. Front Mol Neurosci 2022; 15:954928. [PMID: 36131690 PMCID: PMC9484465 DOI: 10.3389/fnmol.2022.954928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
We describe the characterisation of a variable number tandem repeat (VNTR) domain within intron 1 of the amyotrophic lateral sclerosis (ALS) risk gene CFAP410 (Cilia and flagella associated protein 410) (previously known as C21orf2), providing insight into how this domain could support differential gene expression and thus be a modulator of ALS progression or risk. We demonstrated the VNTR was functional in a reporter gene assay in the HEK293 cell line, exhibiting both the properties of an activator domain and a transcriptional start site, and that the differential expression was directed by distinct repeat number in the VNTR. These properties embedded in the VNTR demonstrated the potential for this VNTR to modulate CFAP410 expression. We extrapolated these findings in silico by utilisation of tagging SNPs for the two most common VNTR alleles to establish a correlation with endogenous gene expression. Consistent with in vitro data, CFAP410 isoform expression was found to be variable in the brain. Furthermore, although the number of matched controls was low, there was evidence for one specific isoform being correlated with lower expression in those with ALS. To address if the genotype of the VNTR was associated with ALS risk, we characterised the variation of the CFAP410 VNTR in ALS cases and matched controls by PCR analysis of the VNTR length, defining eight alleles of the VNTR. No significant difference was observed between cases and controls, we noted, however, the cohort was unlikely to contain sufficient power to enable any firm conclusion to be drawn from this analysis. This data demonstrated that the VNTR domain has the potential to modulate CFAP410 expression as a regulatory element that could play a role in its tissue-specific and stimulus-inducible regulation that could impact the mechanism by which CFAP410 is involved in ALS.
Collapse
Affiliation(s)
- Jack N. G. Marshall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Alexander Fröhlich
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Li Li
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Abigail L. Pfaff
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Ben Middlehurst
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Thomas P. Spargo
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, King's College Hospital, London, United Kingdom
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Vivien J. Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
67
|
Chaytow H, Carroll E, Gordon D, Huang YT, van der Hoorn D, Smith HL, Becker T, Becker CG, Faller KME, Talbot K, Gillingwater TH. Targeting phosphoglycerate kinase 1 with terazosin improves motor neuron phenotypes in multiple models of amyotrophic lateral sclerosis. EBioMedicine 2022; 83:104202. [PMID: 35963713 PMCID: PMC9482929 DOI: 10.1016/j.ebiom.2022.104202] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with heterogeneous aetiology and a complex genetic background. Effective therapies are therefore likely to act on convergent pathways such as dysregulated energy metabolism, linked to multiple neurodegenerative diseases including ALS. METHODS Activity of the glycolysis enzyme phosphoglycerate kinase 1 (PGK1) was increased genetically or pharmacologically using terazosin in zebrafish, mouse and ESC-derived motor neuron models of ALS. Multiple disease phenotypes were assessed to determine the therapeutic potential of this approach, including axon growth and motor behaviour, survival and cell death following oxidative stress. FINDINGS We have found that targeting a single bioenergetic protein, PGK1, modulates motor neuron vulnerability in vivo. In zebrafish models of ALS, overexpression of PGK1 rescued motor axon phenotypes and improved motor behaviour. Treatment with terazosin, an FDA-approved compound with a known non-canonical action of increasing PGK1 activity, also improved these phenotypes. Terazosin treatment extended survival, improved motor phenotypes and increased motor neuron number in Thy1-hTDP-43 mice. In ESC-derived motor neurons expressing TDP-43M337V, terazosin protected against oxidative stress-induced cell death and increased basal glycolysis rates, while rescuing stress granule assembly. INTERPRETATION Our data demonstrate that terazosin protects motor neurons via multiple pathways, including upregulating glycolysis and rescuing stress granule formation. Repurposing terazosin therefore has the potential to increase the limited therapeutic options across all forms of ALS, irrespective of disease cause. FUNDING This work was supported by project grant funding from MND Scotland, the My Name'5 Doddie Foundation, Medical Research Council Doctoral Student Training Fellowship [Ref: BST0010Z] and Academy of Medical Sciences grant [SGL023\1100].
Collapse
Affiliation(s)
- Helena Chaytow
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK
| | - Emily Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford, UK
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford, UK
| | - Yu-Ting Huang
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK
| | - Dinja van der Hoorn
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK
| | - Hannah Louise Smith
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK
| | - Thomas Becker
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK; Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, Dresden, Germany
| | - Catherina Gwynne Becker
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK; Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford, UK
| | - Thomas Henry Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh; Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research; Edinburgh, UK.
| |
Collapse
|
68
|
Amorós MA, Choi ES, Cofré AR, Dokholyan NV, Duzzioni M. Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Front Cell Dev Biol 2022; 10:962881. [PMID: 36105357 PMCID: PMC9467621 DOI: 10.3389/fcell.2022.962881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell culture models that recapitulate the etiology and features of nervous system diseases is central to the discovery of new drugs and their translation onto therapies. Neuronal tissues are inaccessible due to skeletal constraints and the invasiveness of the procedure to obtain them. Thus, the emergence of induced pluripotent stem cell (iPSC) technology offers the opportunity to model different neuronal pathologies. Our focus centers on iPSCs derived from amyotrophic lateral sclerosis (ALS) patients, whose pathology remains in urgent need of new drugs and treatment. In this sense, we aim to revise the process to obtain motor neurons derived iPSCs (iPSC-MNs) from patients with ALS as a drug screening model, review current 3D-models and offer a perspective on bioinformatics as a powerful tool that can aid in the progress of finding new pharmacological treatments.
Collapse
Affiliation(s)
- Mariana A. Amorós
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Esther S. Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Axel R. Cofré
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Marcelo Duzzioni
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
69
|
Raghunathan R, Turajane K, Wong LC. Biomarkers in Neurodegenerative Diseases: Proteomics Spotlight on ALS and Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23169299. [PMID: 36012563 PMCID: PMC9409485 DOI: 10.3390/ijms23169299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are both characterized by pathogenic protein aggregates that correlate with the progressive degeneration of neurons and the loss of behavioral functions. Both diseases lack biomarkers for diagnosis and treatment efficacy. Proteomics is an unbiased quantitative tool capable of the high throughput quantitation of thousands of proteins from minimal sample volumes. We review recent proteomic studies in human tissues, plasma, cerebrospinal fluid (CSF), and exosomes in ALS and PD that identify proteins with potential utility as biomarkers. Further, we review disease-related post-translational modifications in key proteins TDP43 in ALS and α-synuclein in PD studies, which may serve as biomarkers. We compare relative and absolute quantitative proteomic approaches in key biomarker studies in ALS and PD and discuss recent technological advancements which may identify suitable biomarkers for the early-diagnosis treatment efficacy of these diseases.
Collapse
|
70
|
Altered TDP-43 Structure and Function: Key Insights into Aberrant RNA, Mitochondrial, and Cellular and Systemic Metabolism in Amyotrophic Lateral Sclerosis. Metabolites 2022; 12:metabo12080709. [PMID: 36005581 PMCID: PMC9415507 DOI: 10.3390/metabo12080709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disorder with no cure available and limited treatment options. ALS is a highly heterogeneous disease, whereby patients present with vastly different phenotypes. Despite this heterogeneity, over 97% of patients will exhibit pathological TAR-DNA binding protein-43 (TDP-43) cytoplasmic inclusions. TDP-43 is a ubiquitously expressed RNA binding protein with the capacity to bind over 6000 RNA and DNA targets—particularly those involved in RNA, mitochondrial, and lipid metabolism. Here, we review the unique structure and function of TDP-43 and its role in affecting the aforementioned metabolic processes in ALS. Considering evidence published specifically in TDP-43-relevant in vitro, in vivo, and ex vivo models we posit that TDP-43 acts in a positive feedback loop with mRNA transcription/translation, stress granules, cytoplasmic aggregates, and mitochondrial proteins causing a relentless cycle of disease-like pathology eventuating in neuronal toxicity. Given its undeniable presence in ALS pathology, TDP-43 presents as a promising target for mechanistic disease modelling and future therapeutic investigations.
Collapse
|
71
|
Webster AJ, Clarke R. Sporadic, late-onset, and multistage diseases. PNAS NEXUS 2022; 1:pgac095. [PMID: 35899071 PMCID: PMC9308562 DOI: 10.1093/pnasnexus/pgac095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/16/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023]
Abstract
Multistage disease processes are often characterized by a linear relationship between the log of incidence rates and the log of age. Examples include sequences of somatic mutations, that can cause cancer, and have recently been linked with a range of non-malignant diseases. Using a Weibull distribution to model diseases that occur through an ordered sequence of stages, and another model where stages can occur in any order, we characterized the age-related onset of disease in UK Biobank data. Despite their different underlying assumptions, both models accurately described the incidence of over 450 diseases, demonstrating that multistage disease processes cannot be inferred from this data alone. The parametric models provided unique insights into age-related disease, that conventional studies of relative risks cannot. The rate at which disease risk increases with age was used to distinguish between "sporadic" diseases, with an initially low and slowly increasing risk, and "late-onset" diseases whose negligible risk when young rapidly increases with age. "Relative aging rates" were introduced to quantify how risk factors modify age-related risk, finding the effective age-at-risk of sporadic diseases is strongly modified by common risk factors. Relative aging rates are ideal for risk-stratification, allowing the identification of ages with equivalent-risk in groups with different exposures. Most importantly, our results suggest that a substantial burden of sporadic diseases can be substantially delayed or avoided by early lifestyle interventions.
Collapse
Affiliation(s)
- Anthony J Webster
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Robert Clarke
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| |
Collapse
|
72
|
Tan HY, Yong YK, Xue YC, Liu H, Furihata T, Shankar EM, Ng CS. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience 2022; 25:104404. [PMID: 35712074 PMCID: PMC9194172 DOI: 10.1016/j.isci.2022.104404] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Neuroinflammation exacerbates the progression of SOD1-driven amyotrophic lateral sclerosis (ALS), although the underlying mechanisms remain largely unknown. Herein, we demonstrate that misfolded SOD1 (SOD1Mut)-causing ALS results in mitochondrial damage, thus triggering the release of mtDNA and an RNA:DNA hybrid into the cytosol in an mPTP-independent manner to activate IRF3- and IFNAR-dependent type I interferon (IFN-I) and interferon-stimulating genes. The neuronal hyper-IFN-I and pro-inflammatory responses triggered in ALS-SOD1Mut were sufficiently robust to cause a strong physiological outcome in vitro and in vivo. cGAS/DDX41-STING-signaling is amplified in bystander cells through inter-neuronal gap junctions. Our results highlight the importance of a common DNA-sensing pathway between SOD1 and TDP-43 in influencing the progression of ALS. Constitutive basal activation of IFN-I was found in the SOD1-ALS animal model SOD1-ALS damaged mitochondria to release mtDNA and RNA:DNA to activate the STING-pathway Blocking cGAS and STING diminishes neurodegeneration in vivo in the SOD1-ALS model Connexin and pannexin channels are required to propagate neuroinflammation in SOD1-ALS
Collapse
Affiliation(s)
- Hong Yien Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia.,School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Yuan Chao Xue
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Huitao Liu
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Esaki Muthu Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Chen Seng Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
73
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
74
|
Goutman SA, Hardiman O, Al-Chalabi A, Chió A, Savelieff MG, Kiernan MC, Feldman EL. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 2022; 21:465-479. [PMID: 35334234 PMCID: PMC9513754 DOI: 10.1016/s1474-4422(21)00414-2] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease. The discovery of genes associated with amyotrophic lateral sclerosis, commencing with SOD1 in 1993, started fairly gradually. Recent advances in genetic technology have led to the rapid identification of multiple new genes associated with the disease, and to a new understanding of oligogenic and polygenic disease risk. The overlap of genes associated with amyotrophic lateral sclerosis with those of other neurodegenerative diseases is shedding light on the phenotypic spectrum of neurodegeneration, leading to a better understanding of genotype-phenotype correlations. A deepening knowledge of the genetic architecture is allowing the characterisation of the molecular steps caused by various mutations that converge on recurrent dysregulated pathways. Of crucial relevance, mutations associated with amyotrophic lateral sclerosis are amenable to novel gene-based therapeutic options, an approach in use for other neurological illnesses. Lastly, the exposome-the summation of lifetime environmental exposures-has emerged as an influential component for amyotrophic lateral sclerosis through the gene-time-environment hypothesis. Our improved understanding of all these aspects will lead to long-awaited therapies and the identification of modifiable risks factors.
Collapse
Affiliation(s)
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, and Department of Neurology, King's College London, London, UK
| | - Adriano Chió
- Rita Levi Montalcini Department of Neurosciences, University of Turin, Turin, Italy
| | | | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
75
|
SARS-CoV-2 and neurodegenerative diseases: what we know and what we don’t. J Neural Transm (Vienna) 2022; 129:1155-1167. [PMID: 35434769 PMCID: PMC9013492 DOI: 10.1007/s00702-022-02500-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022]
Abstract
Infection of the CNS with the SARS-CoV-2 can occur via different routes and results in para- or post-infectious manifestations with a variety of neurological symptoms. In patients with neurodegenerative diseases, SARS-CoV-2 is often associated with a higher fatality rate, which is a relevant problem in increasingly older populations. Apart from the direct consequences of an infection in patients with neurodegenerative diseases, indirect consequences of the pandemic such as limited access to care facilities and treatment have negative effects on the course of these chronic disorders. The occurrence of long-lasting neurological symptoms after infection with SARS-CoV-2 indicates a prolonged impact on the CNS. However, while it is known that SARS-CoV-2 affects neuronal populations that are relevant in the pathogenesis of neurodegenerative diseases, it is yet unclear whether an infection with SARS-CoV-2 is sufficient to trigger neurodegeneration. Reflecting on the impact of SARS-CoV-2 on neurodegeneration, we provide a concise overview on the current knowledge of SARS-CoV-2-induced pathology in the CNS and discuss yet open questions in the field.
Collapse
|
76
|
Tavazzi E, Daberdaku S, Zandonà A, Vasta R, Nefussy B, Lunetta C, Mora G, Mandrioli J, Grisan E, Tarlarini C, Calvo A, Moglia C, Drory V, Gotkine M, Chiò A, Di Camillo B. Predicting functional impairment trajectories in amyotrophic lateral sclerosis: a probabilistic, multifactorial model of disease progression. J Neurol 2022; 269:3858-3878. [PMID: 35266043 PMCID: PMC9217910 DOI: 10.1007/s00415-022-11022-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 12/02/2022]
Abstract
Objective To employ Artificial Intelligence to model, predict and simulate the amyotrophic lateral sclerosis (ALS) progression over time in terms of variable interactions, functional impairments, and survival. Methods We employed demographic and clinical variables, including functional scores and the utilisation of support interventions, of 3940 ALS patients from four Italian and two Israeli registers to develop a new approach based on Dynamic Bayesian Networks (DBNs) that models the ALS evolution over time, in two distinct scenarios of variable availability. The method allows to simulate patients’ disease trajectories and predict the probability of functional impairment and survival at different time points. Results DBNs explicitly represent the relationships between the variables and the pathways along which they influence the disease progression. Several notable inter-dependencies were identified and validated by comparison with literature. Moreover, the implemented tool allows the assessment of the effect of different markers on the disease course, reproducing the probabilistically expected clinical progressions. The tool shows high concordance in terms of predicted and real prognosis, assessed as time to functional impairments and survival (integral of the AU-ROC in the first 36 months between 0.80–0.93 and 0.84–0.89 for the two scenarios, respectively). Conclusions Provided only with measurements commonly collected during the first visit, our models can predict time to the loss of independence in walking, breathing, swallowing, communicating, and survival and it can be used to generate in silico patient cohorts with specific characteristics. Our tool provides a comprehensive framework to support physicians in treatment planning and clinical decision-making. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11022-0.
Collapse
Affiliation(s)
- Erica Tavazzi
- Department of Information Engineering, University of Padova, Padua, Italy
| | | | - Alessandro Zandonà
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Rosario Vasta
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | | | | | - Gabriele Mora
- Istituti Clinici Scientifici Maugeri IRCCS, Milan, Italy
| | | | - Enrico Grisan
- Department of Information Engineering, University of Padova, Padua, Italy
- School of Engineering, London South Bank University, London, UK
| | | | - Andrea Calvo
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Cristina Moglia
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Vivian Drory
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Marc Gotkine
- Hadassah University Hospital Medical Center, Jerusalem, Israel
| | - Adriano Chiò
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padua, Italy.
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Gradenigo 6/B, 35131, Padua, Italy.
| |
Collapse
|
77
|
Kliest T, Van Eijk RPA, Al-Chalabi A, Albanese A, Andersen PM, Amador MDM, BrÅthen G, Brunaud-Danel V, Brylev L, Camu W, De Carvalho M, Cereda C, Cetin H, Chaverri D, Chiò A, Corcia P, Couratier P, De Marchi F, Desnuelle C, Van Es MA, Esteban J, Filosto M, GarcÍa Redondo A, Grosskreutz J, Hanemann CO, HolmØy T, HØyer H, Ingre C, Koritnik B, Kuzma-Kozakiewicz M, Lambert T, Leigh PN, Lunetta C, Mandrioli J, Mcdermott CJ, Meyer T, Mora JS, Petri S, Povedano MÓ, Reviers E, Riva N, Roes KCB, Rubio MÁ, Salachas F, Sarafov S, SorarÙ G, Stevic Z, Svenstrup K, MØller AT, Turner MR, Van Damme P, Van Leeuwen LAG, Varona L, VÁzquez Costa JF, Weber M, Hardiman O, Van Den Berg LH. Clinical trials in pediatric ALS: a TRICALS feasibility study. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:481-488. [PMID: 35172656 PMCID: PMC9662181 DOI: 10.1080/21678421.2021.2024856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Abstract
Background: Pediatric investigation plans (PIPs) describe how adult drugs can be studied in children. In 2015, PIPs for Amyotrophic Lateral Sclerosis (ALS) became mandatory for European marketing-authorization of adult treatments, unless a waiver is granted by the European Medicines Agency (EMA). Objective: To assess the feasibility of clinical studies on the effect of therapy in children (<18 years) with ALS in Europe. Methods: The EMA database was searched for submitted PIPs in ALS. A questionnaire was sent to 58 European ALS centers to collect the prevalence of pediatric ALS during the past ten years, the recruitment potential for future pediatric trials, and opinions of ALS experts concerning a waiver for ALS. Results: Four PIPs were identified; two were waived and two are planned for the future. In total, 49 (84.5%) centers responded to the questionnaire. The diagnosis of 44,858 patients with ALS was reported by 46 sites; 39 of the patients had an onset < 18 years (prevalence of 0.008 cases per 100,000 or 0.087% of all diagnosed patients). The estimated recruitment potential (47 sites) was 26 pediatric patients within five years. A majority of ALS experts (75.5%) recommend a waiver should apply for ALS due to the low prevalence of pediatric ALS. Conclusions: ALS with an onset before 18 years is extremely rare and may be a distinct entity from adult ALS. Conducting studies on the effect of disease-modifying therapy in pediatric ALS may involve lengthy recruitment periods, high costs, ethical/legal implications, challenges in trial design and limited information.
Collapse
Affiliation(s)
- Tessa Kliest
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ruben P A Van Eijk
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands.,Biostatistics & Research Support, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.,Department of Neurology, King's College Hospital, London, UK
| | | | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Maria Del Mar Amador
- Département de Neurologie, Centre de référence SLA Ile de France.,Hôpital de la Pitié Salpêtrière, AP-HP, Paris, France
| | - Geir BrÅthen
- Department of Neurology, University Hospital of Trondheim, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Lev Brylev
- Bujanov Moscow City Clinical Hospital, Moscow, Russian Federation.,Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russian Federation
| | - William Camu
- ALS Centre CHU Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Mamede De Carvalho
- Institute of Physiology-Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Department of Neurosciences and Mental Health, H Santa Maria-CHLN, Lisbon, Portugal
| | - Cristina Cereda
- Regional Newborn Screening Laboratory, Vittore Buzzi Children's Hospital-University of Milan, Italy
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Delia Chaverri
- Neurology Service, Hospital Universitario La Paz, Madrid, Spain
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy.,Azienda Ospedaliera Città della Salute e della Scienza, Turin, Italy
| | - Philippe Corcia
- Centre Constitutif SLA, CHRU de Tours - Fédération des centres SLA Tours-Limoges, LitORALS, Tours, France
| | - Philippe Couratier
- Centre Constitutif de reference SLA-Fédération Tours-Limoges, CHU de Limoges, Limoges, France
| | | | | | - Michael A Van Es
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - JesÚs Esteban
- ALS Research Lab - ALS Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre "i + 12", CIBERER, Madrid, Spain
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia; NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Alberto GarcÍa Redondo
- ALS Research Lab - ALS Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre "i + 12", CIBERER, Madrid, Spain
| | - Julian Grosskreutz
- Precision Neurology, Dept. of Neurology, Lübeck University Hospital, Lübeck, Germany
| | - Clemens O Hanemann
- University of Plymouth, Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Trygve HolmØy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Helle HØyer
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Caroline Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Blaz Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Thomas Lambert
- Department of Neurology, Royal Stoke University Hospital, Stoke, United Kingdom
| | - Peter N Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, Trafford Centre for Biomedical Research, University of Sussex, Brighton, UK
| | - Christian Lunetta
- NEMO Clinical Center, Serena Onlus Foundation, Milan, Italy.,NEMO LAB, Milan, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neuroscience, St. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Christopher J Mcdermott
- Department of Neuroscience, University of Sheffield, Sheffield Institute for Translational Neuroscience, Sheffield, United Kingdom
| | - Thomas Meyer
- ALS Outpatient Department, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Jesus S Mora
- ALS Unit/Neurology, Hospital San Rafael, Madrid, Spain
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - MÓnica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Evy Reviers
- European Organization for Professionals and Patients with ALS (EUpALS) & ALS Liga Belgium, Leuven, Belgium
| | - Nilo Riva
- Department of Neurology, Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboud University Medical Centre Nijmegen, Nijmegen, the Netherlands
| | - Miguel Á Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, Barcelona, Spain.,Instituto Hospital del Mar de Investivaciones Médicas (IMIM), Barcelona, Spain
| | - FranÇois Salachas
- Département de Neurologie, Centre de référence SLA Ile de France.,Hôpital de la Pitié Salpêtrière, AP-HP, Paris, France
| | - Stayko Sarafov
- Clinic of General Neurology, Medical University Sofia, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Gianni SorarÙ
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Zorica Stevic
- Clinic of Neurology, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Kirsten Svenstrup
- Department of Neurology, Bispebjerg-Frederiksberg Hospital and Rigshospitalet, University Hospital of Copenhagen, Denmark
| | | | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Philip Van Damme
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven and Centre for Brain & Disease Research, VIB, Leuven Brain Institute, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Lucie A G Van Leeuwen
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Luis Varona
- Department of Neurology, Basurto University Hospital, Vizcaya, Spain
| | - Juan F VÁzquez Costa
- ALS Unit and Neuromuscular Disease Unit, Department of Neurology, Hospital La Fe, Valencia, Spain
| | - Markus Weber
- Neuromoscular Disease Unit/ALS Clinic, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Orla Hardiman
- Academic Unit of Neurology Trinity College Dublin Ireland, Dublin, Ireland
| | - Leonard H Van Den Berg
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
78
|
Choi SJ, Park CHK, Hong YH, Sung JJ. Previous psychiatric disorders in the multistep hypothesis of amyotrophic lateral sclerosis: a South Korean population study. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:601-607. [PMID: 35164606 DOI: 10.1080/21678421.2022.2035765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/01/2022]
Abstract
Objective: There is accumulating evidence about an association between amyotrophic lateral sclerosis (ALS) and psychiatric disorders. We aimed to investigate the prevalence of previous psychiatric disorders before ALS onset and evaluate the contribution of psychiatric disorders to the number of steps toward developing ALS.Methods: We analyzed the National Health Insurance claims data from 2011 to 2017 and calculated the incidence of ALS. We created a multistep model using the linear least squares method with regression of the log incidence against the log age.Results: The mean annual incidence of ALS was 0.95/100,000 and frequency of familial ALS (fALS) was 5.89%. The proportions of patients who had psychiatric disorders before ALS diagnosis were 36.8% and 47.0% in fALS and sporadic ALS (sALS), respectively (p = 0.009). In both fALS and sALS, depressive disorders and anxiety and stress disorders were relatively frequent, whereas psychotic disorders and bipolar disorders were rare. Further, the slope estimates for regression analyses were 3.50 (R2 = 0.94) and 3.56 (R2 = 0.99) for fALS and sALS, respectively, suggesting a 4-5-step process to ALS onset. However, slope estimates did not differ between sALS patients with pre-symptomatic psychiatric disorders and those without.Conclusions: The incidence of ALS is relatively low in Korea and fewer steps are required to develop ALS compared to Western populations (all 6 steps). Although the prevalence of previous depression or anxiety is seemingly high, the multistep model provides no evidence that these conditions modify the risk of developing ALS in our cohort.
Collapse
Affiliation(s)
- Seok-Jin Choi
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Inha University Hospital, Incheon, Republic of Korea
| | - C Hyung Keun Park
- Department of Psychiatry, Asan Medical Center, Seoul, Republic of Korea
| | - Yoon-Ho Hong
- Department of Neurology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
79
|
Gerovska D, Araúzo-Bravo MJ. The common incidence-age multistep model of neurodegenerative diseases revisited: wider general age range of incidence corresponds to fewer disease steps. Cell Biosci 2022; 12:11. [PMID: 35093175 PMCID: PMC8801114 DOI: 10.1186/s13578-021-00737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Background Previously, we collected age-stratified incidence data of 404 epidemiological datasets of 10 neurodegenerative diseases (NDs), namely Amyotrophic Lateral Sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Fronto Temporal Dementia (FTD), Dementia with Lewy Bodies (DLB), Parkinsonism (PDM), Parkinson’s disease with Dementia (PDD), Creutzfeldt–Jakob disease (CJD), and Multiple Sclerosis (MS). We tested whether each ND follows a multistep model, found the number of steps necessary for the onset of each ND, found the number of common steps with other NDs and the number of specific steps of each ND, and built a parsimony tree of the genealogy of the NDs. The tree disclosed three groups of NDs: the stem NDs with less than 3 steps; the trunk NDs with 5–7 steps; and the crown NDs with more than 7 steps. Methods We made a multidimensional reduction of the previously collected age-stratified incidence epidemiological data of the 10 NDs. We studied the general range of incidence of the 10 NDs using the age- and sex-stratified incidence data. First, we calculated the log of the incidence versus the log of the age for each ND. Next, we calculated the age intervals of the spread of the incidence of each ND. We calculated the regression of the steps obtained with the multistep model versus the age of incidence of the NDs. Results We found that the number of steps of the NDs is inversely correlated with the age of incidence of the NDs, and calculated the number of years required for a single step for each ND. Based on these results, we extended the genealogy tree model of the NDs to account for the time needed for a ND step to occur. Conclusion The extended genealogy tree disclosed three groups of NDs according to the estimated time needed for a step to occur: the stem ND, HD, with 32.5 years/step, the trunk NDs ALS, FTD, PD and CJD, with 6.7–13.7 years/step; and the crown NDs PDM, PDD, AD and DLB, with 2.3–3.8 years/step. Thus, the NDs cluster into three groups according to both the number of steps and the number of years for a step to occur.
Collapse
|
80
|
Al Khleifat A, Iacoangeli A, van Vugt JJFA, Bowles H, Moisse M, Zwamborn RAJ, van der Spek RAA, Shatunov A, Cooper-Knock J, Topp S, Byrne R, Gellera C, López V, Jones AR, Opie-Martin S, Vural A, Campos Y, van Rheenen W, Kenna B, Van Eijk KR, Kenna K, Weber M, Smith B, Fogh I, Silani V, Morrison KE, Dobson R, van Es MA, McLaughlin RL, Vourc'h P, Chio A, Corcia P, de Carvalho M, Gotkine M, Panades MP, Mora JS, Shaw PJ, Landers JE, Glass JD, Shaw CE, Basak N, Hardiman O, Robberecht W, Van Damme P, van den Berg LH, Veldink JH, Al-Chalabi A. Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis. NPJ Genom Med 2022; 7:8. [PMID: 35091648 PMCID: PMC8799638 DOI: 10.1038/s41525-021-00267-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2020] [Accepted: 10/21/2021] [Indexed: 02/01/2023] Open
Abstract
There is a strong genetic contribution to Amyotrophic lateral sclerosis (ALS) risk, with heritability estimates of up to 60%. Both Mendelian and small effect variants have been identified, but in common with other conditions, such variants only explain a little of the heritability. Genomic structural variation might account for some of this otherwise unexplained heritability. We therefore investigated association between structural variation in a set of 25 ALS genes, and ALS risk and phenotype. As expected, the repeat expansion in the C9orf72 gene was identified as associated with ALS. Two other ALS-associated structural variants were identified: inversion in the VCP gene and insertion in the ERBB4 gene. All three variants were associated both with increased risk of ALS and specific phenotypic patterns of disease expression. More than 70% of people with respiratory onset ALS harboured ERBB4 insertion compared with 25% of the general population, suggesting respiratory onset ALS may be a distinct genetic subtype.
Collapse
Affiliation(s)
- Ahmad Al Khleifat
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Alfredo Iacoangeli
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joke J F A van Vugt
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Harry Bowles
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ramona A J Zwamborn
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Rick A A van der Spek
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Aleksey Shatunov
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Simon Topp
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Ross Byrne
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Cinzia Gellera
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano and Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Victoria López
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano and Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Ashley R Jones
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Sarah Opie-Martin
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Atay Vural
- Koc University, School of Medicine, Translational Medicine Research Center- NDAL, Istanbul, Turkey
| | - Yolanda Campos
- Mitochondrial pathology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Brendan Kenna
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Kristel R Van Eijk
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Kevin Kenna
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Bradley Smith
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Isabella Fogh
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano and Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Karen E Morrison
- Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Adriano Chio
- Rita Levi Montalcini, Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
- Azienda Ospedaliera Citta della Salute e della Scienza, Torino, Italy
| | - Philippe Corcia
- Centre SLA, CHRU de Tours, Tours, France
- Federation des Centres SLA Tours and Limoges, LITORALS, Tours, France
| | - Mamede de Carvalho
- Physiology Institute, Faculty of Medicine, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | | | - Monica P Panades
- Neurology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jonathan D Glass
- Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, USA
| | - Christopher E Shaw
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
- King's College Hospital, Denmark Hill, London, UK
| | - Nazli Basak
- Koc University, School of Medicine, Translational Medicine Research Center- NDAL, Istanbul, Turkey
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Republic of Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK.
- King's College Hospital, Denmark Hill, London, UK.
| |
Collapse
|
81
|
Hardiman O, Heverin M, Rooney J, Lillo P, Godoy G, Sáez D, Valenzuela D, Hughes R, Perna A, Ketzoian CN, Vazquez C, Gutierrez Gil J, Arias Morales A, Lara Fernandez G, Zaldivar T, Horton K, Mehta P, Logroscino G. The Latin American Epidemiology Network for ALS (Laenals). Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:372-377. [DOI: 10.1080/21678421.2022.2028168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Affiliation(s)
- Orla Hardiman
- Academic Unit of Neurology TBSI, Trinity College Dublin, Dublin, Ireland
| | - Mark Heverin
- Academic Unit of Neurology TBSI, Trinity College Dublin, Dublin, Ireland
| | - James Rooney
- Academic Unit of Neurology TBSI, Trinity College Dublin, Dublin, Ireland
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Patricia Lillo
- Neurology Department (South Division), Faculty of Medicine, Universidad de Chile, Santaigo, Chile
| | - Gladys Godoy
- Neurology Department (North division), Hospital Clínico Universidad de Chile, Santaigo, Chile
| | - David Sáez
- Neurology Department (North division), Hospital Clínico Universidad de Chile, Santaigo, Chile
| | - Daniel Valenzuela
- Neurology Department (North division), Hospital Clínico Universidad de Chile, Santaigo, Chile
| | - Ricardo Hughes
- Neurology Department (North division), Hospital Clínico Universidad de Chile, Santaigo, Chile
| | - Abayuba Perna
- Instituto de Neurología, Hospital de Clínicas Montevideo, Montevideo, Uruguay
| | - Carlos N. Ketzoian
- Instituto de Neurología, Hospital de Clínicas Montevideo, Montevideo, Uruguay
| | - Cristina Vazquez
- Instituto de Neurología, Hospital de Clínicas Montevideo, Montevideo, Uruguay
| | | | | | | | | | - Kevin Horton
- National ALS Registry, CDC/ATSDR, Atlanta, GA, USA, and
| | - Paul Mehta
- National ALS Registry, CDC/ATSDR, Atlanta, GA, USA, and
| | | |
Collapse
|
82
|
Xue YC, Liu H, Mohamud Y, Bahreyni A, Zhang J, Cashman NR, Luo H. Sublethal enteroviral infection exacerbates disease progression in an ALS mouse model. J Neuroinflammation 2022; 19:16. [PMID: 35022041 PMCID: PMC8753920 DOI: 10.1186/s12974-022-02380-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor neuron system associated with both genetic and environmental risk factors. Infection with enteroviruses, including poliovirus and coxsackievirus, such as coxsackievirus B3 (CVB3), has been proposed as a possible causal/risk factor for ALS due to the evidence that enteroviruses can target motor neurons and establish a persistent infection in the central nervous system (CNS), and recent findings that enteroviral infection-induced molecular and pathological phenotypes closely resemble ALS. However, a causal relationship has not yet been affirmed. Methods Wild-type C57BL/6J and G85R mutant superoxide dismutase 1 (SOD1G85R) ALS mice were intracerebroventricularly infected with a sublethal dose of CVB3 or sham-infected. For a subset of mice, ribavirin (a broad-spectrum anti-RNA viral drug) was given subcutaneously during the acute or chronic stage of infection. Following viral infection, general activity and survival were monitored daily for up to week 60. Starting at week 20 post-infection (PI), motor functions were measured weekly. Mouse brains and/or spinal cords were harvested at day 10, week 20 and week 60 PI for histopathological evaluation of neurotoxicity, immunohistochemical staining of viral protein, neuroinflammatory/immune and ALS pathology markers, and NanoString and RT-qPCR analysis of inflammatory gene expression. Results We found that sublethal infection (mimicking chronic infection) of SOD1G85R ALS mice with CVB3 resulted in early onset and progressive motor dysfunction, and shortened lifespan, while similar viral infection in C57BL/6J, the background strain of SOD1G85R mice, did not significantly affect motor function and mortality as compared to mock infection within the timeframe of the current study (60 weeks PI). Furthermore, we showed that CVB3 infection led to a significant increase in proinflammatory gene expression and immune cell infiltration and induced ALS-related pathologies (i.e., TAR DNA-binding protein 43 (TDP-43) pathology and neuronal damage) in the CNS of both SOD1G85R and C57BL/6J mice. Finally, we discovered that early (day 1) but not late (day 15) administration of ribavirin could rescue ALS-like neuropathology and symptoms induced by CVB3 infection. Conclusions Our study identifies a new risk factor that contributes to early onset and accelerated progression of ALS and offers opportunities for the development of novel targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02380-7.
Collapse
Affiliation(s)
- Yuan Chao Xue
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Huitao Liu
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amirhossein Bahreyni
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jingchun Zhang
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
83
|
Berdyński M, Miszta P, Safranow K, Andersen PM, Morita M, Filipek S, Żekanowski C, Kuźma-Kozakiewicz M. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci Rep 2022; 12:103. [PMID: 34996976 PMCID: PMC8742055 DOI: 10.1038/s41598-021-03891-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
Mutations in superoxide dismutase 1 gene (SOD1) are linked to amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder predominantly affecting upper and lower motor neurons. The clinical phenotype of ALS shows inter- and intrafamilial heterogeneity. The aim of the study was to analyze the relations between individual SOD1 mutations and the clinical presentation using in silico methods to assess the SOD1 mutations severity. We identified SOD1 causative variants in a group of 915 prospectively tested consecutive Polish ALS patients from a neuromuscular clinical center, performed molecular modeling of mutated SOD1 proteins and in silico analysis of mutation impact on clinical phenotype and survival analysis of associations between mutations and hazard of clinical end-points. Fifteen SOD1 mutations were identified in 21.1% familial and 2.3% sporadic ALS cases. Their effects on SOD1 protein structure and functioning inferred from molecular modeling and in silico analyses correlate well with the clinical data. Molecular modeling results support the hypothesis that folding intermediates rather than mature SOD1 protein give rise to the source of cytotoxic conformations in ALS. Significant associations between type of mutation and clinical end-points were found.
Collapse
Affiliation(s)
- Mariusz Berdyński
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland. .,Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden.
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 72 Powstańców Wlkp. Str., 70-111, Szczecin, Poland
| | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Cezary Żekanowski
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kuźma-Kozakiewicz
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland. .,Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
84
|
Vasta R, Chia R, Traynor BJ, Chiò A. Unraveling the complex interplay between genes, environment, and climate in ALS. EBioMedicine 2022; 75:103795. [PMID: 34974309 PMCID: PMC8728044 DOI: 10.1016/j.ebiom.2021.103795] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Various genetic and environmental risk factors have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Despite this, the cause of most ALS cases remains obscure. In this review, we describe the current evidence implicating genetic and environmental factors in motor neuron degeneration. While the risk exerted by many environmental factors may appear small, their effect could be magnified by the presence of a genetic predisposition. We postulate that gene-environment interactions account for at least a portion of the unknown etiology in ALS. Climate underlies multiple environmental factors, some of which have been implied in ALS etiology, and the impact of global temperature increase on the gene-environment interactions should be carefully monitored. We describe the main concepts underlying such interactions. Although a lack of large cohorts with detailed genetic and environmental information hampers the search for gene-environment interactions, newer algorithms and machine learning approaches offer an opportunity to break this stalemate. Understanding how genetic and environmental factors interact to cause ALS may ultimately pave the way towards precision medicine becoming an integral part of ALS care.
Collapse
Affiliation(s)
- Rosario Vasta
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, via Cherasco 15, Turin 1026, Italy; Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging (NIH), Bethesda, MD 20892, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging (NIH), Bethesda, MD 20892, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging (NIH), Bethesda, MD 20892, USA; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA; National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; ASO Rapid Development Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Adriano Chiò
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, via Cherasco 15, Turin 1026, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome 00185, Italy; Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| |
Collapse
|
85
|
Cooper-Knock J, Harvey C, Zhang S, Moll T, Timpanaro IS, Kenna KP, Iacoangeli A, Veldink JH. Advances in the genetic classification of amyotrophic lateral sclerosis. Curr Opin Neurol 2021; 34:756-764. [PMID: 34343141 PMCID: PMC7612116 DOI: 10.1097/wco.0000000000000986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) is an archetypal complex disease wherein disease risk and severity are, for the majority of patients, the product of interaction between multiple genetic and environmental factors. We are in a period of unprecedented discovery with new large-scale genome-wide association study (GWAS) and accelerating discovery of risk genes. However, much of the observed heritability of ALS is undiscovered and we are not yet approaching elucidation of the total genetic architecture, which will be necessary for comprehensive disease subclassification. RECENT FINDINGS We summarize recent developments and discuss the future. New machine learning models will help to address nonlinear genetic interactions. Statistical power for genetic discovery may be boosted by reducing the search-space using cell-specific epigenetic profiles and expanding our scope to include genetically correlated phenotypes. Structural variation, somatic heterogeneity and consideration of environmental modifiers represent significant challenges which will require integration of multiple technologies and a multidisciplinary approach, including clinicians, geneticists and pathologists. SUMMARY The move away from fully penetrant Mendelian risk genes necessitates new experimental designs and new standards for validation. The challenges are significant, but the potential reward for successful disease subclassification is large-scale and effective personalized medicine.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Genetics
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Ilia Sarah Timpanaro
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kevin P Kenna
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London
- National Institute for Health Research Biomedical Research Centre and Dementia Unit, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
86
|
Chen YP, Yu SH, Wei QQ, Cao B, Gu XJ, Chen XP, Song W, Zhao B, Wu Y, Sun MM, Liu FF, Hou YB, Ou RW, Zhang LY, Liu KC, Lin JY, Xu XR, Li CY, Yang J, Jiang Z, Liu J, Cheng YF, Xiao Y, Chen K, Feng F, Cai YY, Li SR, Hu T, Yuan XQ, Guo XY, Liu H, Han Q, Zhou QQ, Shao N, Li JP, Pan PL, Ma S, Shang HF. Role of genetics in amyotrophic lateral sclerosis: a large cohort study in Chinese mainland population. J Med Genet 2021; 59:840-849. [PMID: 34544842 PMCID: PMC9411893 DOI: 10.1136/jmedgenet-2021-107965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Background A large number of new causative and risk genes for amyotrophic lateral sclerosis (ALS) have been identified mostly in patients of European ancestry. In contrast, we know relatively little regarding the genetics of ALS in other ethnic populations. This study aims to provide a comprehensive analysis of the genetics of ALS in an unprecedented large cohort of Chinese mainland population and correlate with the clinical features of rare variants carriers. Methods A total of 1587 patients, including 64 familial ALS (FALS) and 1523 sporadic ALS (SALS), and 1866 in-house controls were analysed by whole-exome sequencing and/or testing for G4C2 repeats in C9orf72. Forty-one ALS-associated genes were analysed. Findings 155 patients, including 26 (40.6%) FALS and 129 (8.5%) SALS, carrying rare pathogenic/likely pathogenic (P/LP) variants of ALS causative genes were identified. SOD1 was the most common mutated gene, followed by C9orf72, FUS, NEK1, TARDBP and TBK1. By burden analysis, rare variants in SOD1, FUS and TARDBP contributed to the collective risk for ALS (p<2.5e-6) at the gene level, but at the allelic level TARDBP p.Gly294Val and FUS p.Arg521Cys and p.Arg521His were the most important single variants causing ALS. Clinically, P/LP variants in TARDBP and C9orf72 were associated with poor prognosis, in FUS linked with younger age of onset, and C9orf72 repeats tended to affect cognition. Conclusions Our data provide essential information for understanding the genetic and clinical features of ALS in China and for optimal design of genetic testing and evaluation of disease prognosis.
Collapse
Affiliation(s)
- Yong-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Shi-Hui Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, China
| | - Qian-Qian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Jing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Ming Sun
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, China
| | - Fei-Fei Liu
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, China
| | - Yan-Bing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Ru-Wei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling-Yu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Kun-Cheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Yu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin-Ran Xu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Chun-Yu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang-Fan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Chen
- Department of Geriatrics, The Fourth Affiliated Hospital of Sichuan University, Chengdu, China
| | - Fei Feng
- Department of Neurology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ying-Ying Cai
- Department of Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Shi-Rong Li
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tao Hu
- Department of Neurology, The Affiliated Hospital of Sichuan Nursing Vocational College, Chengdu, China
| | - Xiao-Qin Yuan
- Department of Neurology, Mianyang Central Hospital, Mianyang, China
| | - Xiao-Yan Guo
- Department of Neurology, Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hui Liu
- Department of Neurodegenerative Disease, Hertie Institute for Clinical Brain Research, University of Tuebingen and DZNE, Tuebingen, Germany
| | - Qing Han
- Department of Neurology, Ningbo First Hospital & Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Qing-Qing Zhou
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Shao
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jian-Peng Li
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ping-Lei Pan
- Department of Neurology, The Affiliated Yancheng Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Sha Ma
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Hui-Fang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
87
|
Liu S, Ren Q, Gong G, Sun Y, Zhao B, Ma X, Zhang N, Zhong S, Lin Y, Wang W, Zheng R, Yu X, Yun Y, Zhang D, Shao K, Lin P, Yuan Y, Dai T, Zhang Y, Li L, Li W, Zhao Y, Shan P, Meng X, Yan C. Hippocampal subfield and anterior-posterior segment volumes in patients with sporadic amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2021; 32:102816. [PMID: 34655906 PMCID: PMC8523912 DOI: 10.1016/j.nicl.2021.102816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/24/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Neuroimaging studies of hippocampal volumes in patients with amyotrophic lateral sclerosis (ALS) have reported inconsistent results. Our aims were to demonstrate that such discrepancies are largely due to atrophy of different regions of the hippocampus that emerge in different disease stages of ALS and to explore the existence of co-pathology in ALS patients. We used the well-validated King’s clinical staging system for ALS to classify patients into different disease stages. We investigated in vivo hippocampal atrophy patterns across subfields and anterior-posterior segments in different King’s stages using structural MRI in 76 ALS patients and 94 health controls (HCs). The thalamus, corticostriatal tract and perforant path were used as structural controls to compare the sequence of alterations between these structures and the hippocampal subfields. Compared with HCs, ALS patients at King’s stage 1 had lower volumes in the bilateral posterior subiculum and presubiculum; ALS patients at King’s stage 2 exhibited lower volumes in the bilateral posterior subiculum, left anterior presubiculum and left global hippocampus; ALS patients at King’s stage 3 showed significantly lower volumes in the bilateral posterior subiculum, dentate gyrus and global hippocampus. Thalamic atrophy emerged at King’s stage 3. White matter tracts remained normal in a subset of ALS patients. Our study demonstrated that the pattern of hippocampal atrophy in ALS patients varies greatly across King’s stages. Future studies in ALS patients that focus on the hippocampus may help to further clarify possible co-pathologies in ALS.
Collapse
Affiliation(s)
- Shuangwu Liu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingguo Ren
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yuan Sun
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Bing Zhao
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaotian Ma
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Na Zhang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Suyu Zhong
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqing Wang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Zheng
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolin Yu
- Department of Gerontology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Zhang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kai Shao
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Pengfei Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Yuan
- Sleep Medicine Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Tingjun Dai
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongqing Zhang
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Ling Li
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peiyan Shan
- Department of Gerontology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangshui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
88
|
Trojsi F, Di Nardo F, Caiazzo G, Siciliano M, D’Alvano G, Passaniti C, Russo A, Bonavita S, Cirillo M, Esposito F, Tedeschi G. Between-sex variability of resting state functional brain networks in amyotrophic lateral sclerosis (ALS). J Neural Transm (Vienna) 2021; 128:1881-1897. [PMID: 34471976 PMCID: PMC8571222 DOI: 10.1007/s00702-021-02413-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
The organization of brain functional connectivity (FC) has been shown to differ between sexes. Amyotrophic lateral sclerosis (ALS) is characterized by sexual dimorphism, showing sex-specific trends in site of onset, phenotypes, and prognosis. Here, we explored resting state (RS) FC differences within major large-scale functional networks between women and men in a sample of ALS patients, in comparison to healthy controls (HCs). A group-level independent component analysis (ICA) was performed on RS-fMRI time-series enabling spatial and spectral analyses of large-scale RS FC networks in 45 patients with ALS (20 F; 25 M) and 31 HCs (15 F; 16 M) with a focus on sex-related differences. A whole-brain voxel-based morphometry (VBM) was also performed to highlight atrophy differences. Between-sex comparisons showed: decreased FC in the right middle frontal gyrus and in the precuneus within the default mode network (DMN), in affected men compared to affected women; decreased FC in the right post-central gyrus (sensorimotor network), in the right inferior parietal gyrus (right fronto-parietal network) and increased FC in the anterior cingulate cortex and right insula (salience network), in both affected and non-affected men compared to women. When comparing affected men to affected women, VBM analysis revealed atrophy in men in the right lateral occipital cortex. Our results suggest that in ALS sex-related trends of brain functional and structural changes are more heavily represented in DMN and in the occipital cortex, suggesting that sex is an additional dimension of functional and structural heterogeneity in ALS.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giulia D’Alvano
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Carla Passaniti
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
89
|
Le Heron C, MacAskill M, Mason D, Dalrymple-Alford J, Anderson T, Pitcher T, Myall D. A Multi-Step Model of Parkinson's Disease Pathogenesis. Mov Disord 2021; 36:2530-2538. [PMID: 34374460 PMCID: PMC9290013 DOI: 10.1002/mds.28719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) may result from the combined effect of multiple etiological factors. The relationship between disease incidence and age, as demonstrated in the cancer literature, can be used to model a multistep pathogenic process, potentially affording unique insights into disease development. OBJECTIVES We tested whether the observed incidence of PD is consistent with a multistep process, estimated the number of steps required and whether this varies with age, and examined drivers of sex differences in PD incidence. METHODS Our validated probabilistic modeling process, based on medication prescribing, generated nationwide age- and sex-adjusted PD incidence data spanning 2006-2017. Models of log(incidence) versus log(age) were compared using Bayes factors, to estimate (1) if a linear relationship was present (indicative of a multistep process); (2) the relationship's slope (one less than number of steps); (3) whether slope was lower at younger ages; and (4) whether slope or y-intercept varied with sex. RESULTS Across >15,000 incident cases of PD, there was a clear linear relationship between log(age) and log(incidence). Evidence was strongest for a model with an initial slope of 5.2 [3.8, 6.4], an inflexion point at age 45, and beyond this a slope of 6.8 [6.4, 7.2]. There was evidence for the intercept varying by sex, but no evidence for slope being sex-dependent. CONCLUSIONS The age-specific incidence of PD is consistent with a process that develops in multiple, discrete steps - on average six before age 45 and eight after. The model supports theories emphasizing the primacy of environmental factors in driving sex differences in PD incidence. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Campbell Le Heron
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Michael MacAskill
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Deborah Mason
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - John Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Daniel Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| |
Collapse
|
90
|
Violi F, Solovyev N, Vinceti M, Mandrioli J, Lucio M, Michalke B. The study of levels from redox-active elements in cerebrospinal fluid of amyotrophic lateral sclerosis patients carrying disease-related gene mutations shows potential copper dyshomeostasis. Metallomics 2021; 12:668-681. [PMID: 32373852 DOI: 10.1039/d0mt00051e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease characterized by a loss of function of motor neurons. The etiology of this disorder is still largely unknown. Gene-environment interaction arises as a possible key factor in the development of amyotrophic lateral sclerosis. We assessed the levels of trace metals, copper (Cu), iron (Fe), and manganese (Mn), of 9 amyotrophic lateral sclerosis cases and 40 controls by measuring their content in cerebrospinal fluid. The following trace element species were quantified using ion chromatography-inductively coupled plasma mass spectrometry: univalent copper (Cu-I), divalent Cu (Cu-II), divalent Fe (Fe-II), trivalent Fe (Fe-III), divalent Mn (Mn-II), trivalent Mn (Mn-III), and also unidentified Mn species (Mn-unknown) were present in some samples. When computing the relative risks for amyotrophic lateral sclerosis through an unconditional logistic regression model, we observed a weak and imprecise positive association for iron (Fe III, adjusted odds ratio 1.48, 95% CI 0.46-4.76) and manganese (total-Mn and Mn-II; adjusted odds ratio 1.11, 95% CI 0.74-1.67, and 1.13, 95% CI 0.79-1.61, respectively). Increased risk for copper was found both in the crude analysis (odds ratio 1.14, 95% CI 0.99-1.31) and in multivariable analysis after adjusting for sex, age, and year of storage (1.09, 95% CI 0.90-1.32). Our results suggest a possible positive association between Cu and genetic amyotrophic lateral sclerosis, while they give little indication of involvement of Fe and Mn in disease, though some correlations found also for these elements deserve further investigation.
Collapse
Affiliation(s)
- Federica Violi
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | |
Collapse
|
91
|
Fifita JA, Chan Moi Fat S, McCann EP, Williams KL, Twine NA, Bauer DC, Rowe DB, Pamphlett R, Kiernan MC, Tan VX, Blair IP, Guillemin GJ. Genetic Analysis of Tryptophan Metabolism Genes in Sporadic Amyotrophic Lateral Sclerosis. Front Immunol 2021; 12:701550. [PMID: 34194442 PMCID: PMC8236844 DOI: 10.3389/fimmu.2021.701550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
The essential amino acid tryptophan (TRP) is the initiating metabolite of the kynurenine pathway (KP), which can be upregulated by inflammatory conditions in cells. Neuroinflammation-triggered activation of the KP and excessive production of the KP metabolite quinolinic acid are common features of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In addition to its role in the KP, genes involved in TRP metabolism, including its incorporation into proteins, and synthesis of the neurotransmitter serotonin, have also been genetically and functionally linked to these diseases. ALS is a late onset neurodegenerative disease that is classified as familial or sporadic, depending on the presence or absence of a family history of the disease. Heritability estimates support a genetic basis for all ALS, including the sporadic form of the disease. However, the genetic basis of sporadic ALS (SALS) is complex, with the presence of multiple gene variants acting to increase disease susceptibility and is further complicated by interaction with potential environmental factors. We aimed to determine the genetic contribution of 18 genes involved in TRP metabolism, including protein synthesis, serotonin synthesis and the KP, by interrogating whole-genome sequencing data from 614 Australian sporadic ALS cases. Five genes in the KP (AFMID, CCBL1, GOT2, KYNU, HAAO) were found to have either novel protein-altering variants, and/or a burden of rare protein-altering variants in SALS cases compared to controls. Four genes involved in TRP metabolism for protein synthesis (WARS) and serotonin synthesis (TPH1, TPH2, MAOA) were also found to carry novel variants and/or gene burden. These variants may represent ALS risk factors that act to alter the KP and lead to neuroinflammation. These findings provide further evidence for the role of TRP metabolism, the KP and neuroinflammation in ALS disease pathobiology.
Collapse
Affiliation(s)
- Jennifer A. Fifita
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sandrine Chan Moi Fat
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emily P. McCann
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kelly L. Williams
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Natalie A. Twine
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, Health & Biosecurity Flagship, Sydney, NSW, Australia
| | - Denis C. Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, Health & Biosecurity Flagship, Sydney, NSW, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Dominic B. Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roger Pamphlett
- Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Matthew C. Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Vanessa X. Tan
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian P. Blair
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
92
|
Vucic S, Pavey N, Haidar M, Turner BJ, Kiernan MC. Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neurosci Lett 2021; 759:136039. [PMID: 34118310 DOI: 10.1016/j.neulet.2021.136039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2020] [Revised: 03/04/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Cortical hyperexcitability is an early and intrinsic feature of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS).. Importantly, cortical hyperexcitability appears to be associated with motor neuron degeneration, possibly via an anterograde glutamate-mediated excitotoxic process, thereby forming a pathogenic basis for ALS. The presence of cortical hyperexcitability in ALS patients may be readily determined by transcranial magnetic stimulation (TMS), a neurophysiological tool that provides a non-invasive and painless method for assessing cortical function. Utilising the threshold tracking TMS technique, cortical hyperexcitability has been established as a robust diagnostic biomarker that distinguished ALS from mimicking disorders at early stages of the disease process. The present review discusses the pathophysiological and diagnostic utility of cortical hyperexcitability in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Western Clinical School, University of Sydney, Sydney, Australia.
| | - Nathan Pavey
- Western Clinical School, University of Sydney, Sydney, Australia
| | - Mouna Haidar
- Florey Institute of Neuroscieace and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscieace and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
93
|
Julian TH, Glascow N, Barry ADF, Moll T, Harvey C, Klimentidis YC, Newell M, Zhang S, Snyder MP, Cooper-Knock J, Shaw PJ. Physical exercise is a risk factor for amyotrophic lateral sclerosis: Convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine 2021; 68:103397. [PMID: 34051439 PMCID: PMC8170114 DOI: 10.1016/j.ebiom.2021.103397] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease. ALS is determined by gene-environment interactions and improved understanding of these interactions may lead to effective personalised medicine. The role of physical exercise in the development of ALS is currently controversial. Methods First, we dissected the exercise-ALS relationship in a series of two-sample Mendelian randomisation (MR) experiments. Next we tested for enrichment of ALS genetic risk within exercise-associated transcriptome changes. Finally, we applied a validated physical activity questionnaire in a small cohort of genetically selected ALS patients. Findings We present MR evidence supporting a causal relationship between genetic liability to frequent and strenuous leisure-time exercise and ALS using a liberal instrument (multiplicative random effects IVW, p=0.01). Transcriptomic analysis revealed that genes with altered expression in response to acute exercise are enriched with known ALS risk genes (permutation test, p=0.013) including C9ORF72, and with ALS-associated rare variants of uncertain significance. Questionnaire evidence revealed that age of onset is inversely proportional to historical physical activity for C9ORF72-ALS (Cox proportional hazards model, Wald test p=0.007, likelihood ratio test p=0.01, concordance=74%) but not for non-C9ORF72-ALS. Variability in average physical activity was lower in C9ORF72-ALS compared to both non-C9ORF72-ALS (F-test, p=0.002) and neurologically normal controls (F-test, p=0.049) which is consistent with a homogeneous effect of physical activity in all C9ORF72-ALS patients. Interpretation Our MR approach suggests a positive causal relationship between ALS and physical exercise. Exercise is likely to cause motor neuron injury only in patients with a risk-genotype. Consistent with this we have shown that ALS risk genes are activated in response to exercise. In particular, we propose that G4C2-repeat expansion of C9ORF72 predisposes to exercise-induced ALS. Funding We acknowledge support from the Wellcome Trust (JCK, 216596/Z/19/Z), NIHR (PJS, NF-SI-0617-10077; IS-BRC-1215-20017) and NIH (MPS, CEGS 5P50HG00773504, 1P50HL083800, 1R01HL101388, 1R01-HL122939, S10OD025212, P30DK116074, and UM1HG009442).
Collapse
Affiliation(s)
- Thomas H Julian
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Nicholas Glascow
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - A Dylan Fisher Barry
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Yann C Klimentidis
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Michelle Newell
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
94
|
Nature meets nurture in amyotrophic lateral sclerosis. Lancet Neurol 2021; 20:332-333. [PMID: 33894186 DOI: 10.1016/s1474-4422(21)00097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
|
95
|
Andrew AS, Pioro EP, Li M, Shi X, Gui J, Stommel EW, Butt TH, Peipert D, Henegan P, Tischbein M, Cazzolli P, Novak J, Quick A, Pugar KD, Sawlani K, Katirji B, Hayes TA, Horton DK, Mehta P, Bradley WG. The Incidence of Amyotrophic Lateral Sclerosis in Ohio 2016-2018: The Ohio Population-Based ALS Registry. Neuroepidemiology 2021; 55:196-205. [PMID: 33902051 DOI: 10.1159/000515103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Accepted: 02/05/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal, neuromuscular disease with no cure. ALS incidence rates have not been assessed specifically in Ohio, yet the state contains both metropolitan and rural areas with a variety of environmental factors that could contribute to disease etiology. We report the incidence of ALS in Ohio residents diagnosed from October 2016 through September 2018. METHODS We engaged practitioners from 9 Ohio sites to identify newly diagnosed ALS patients and to complete case report forms with demographic and clinical information. ALS was diagnosed according to the Awaji criteria and classified as either definite, probable, or possible. We developed a method to estimate missing cases using a Poisson regression model to impute cases in counties with evidence of undercounting. RESULTS We identified 333 newly diagnosed ALS patients residing in Ohio during the 2-year index period and found incidence rates varied in the 88 state counties. After incorporating the estimated 27% of missing cases, the corrected crude annual incidence was 1.96/100,000 person-years, and the age- and gender-standardized incidence was 1.71/100,000 person-years (standardized to the 2010 US census). DISCUSSION/CONCLUSION The estimated Ohio incidence of ALS is overall similar to that reported in other states in the USA. This study reveals a geospatial variation in incidence within the state, and areas with higher rates warrant future investigation.
Collapse
Affiliation(s)
- Angeline S Andrew
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Erik P Pioro
- Section of ALS and Related Disorders, Cleveland Clinic, Cleveland, Ohio, USA
| | - Meifang Li
- Department of Geography, Dartmouth College, Hanover, New Hampshire, USA
| | - Xun Shi
- Department of Geography, Dartmouth College, Hanover, New Hampshire, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Tanya H Butt
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Daniel Peipert
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Patricia Henegan
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | | | - John Novak
- Ohio Health Physician Group, Westerville, Ohio, USA
| | - Adam Quick
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - K Doug Pugar
- Dayton Center for Neurological Disorders, Dayton, Ohio, USA
| | - Komal Sawlani
- Department of Neurology, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Bashar Katirji
- Department of Neurology, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - D Kevin Horton
- Centers for Disease Control and Prevention (CDC), Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, Georgia, USA
| | - Paul Mehta
- Centers for Disease Control and Prevention (CDC), Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, Georgia, USA
| | - Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
96
|
Keon M, Musrie B, Dinger M, Brennan SE, Santos J, Saksena NK. Destination Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12:596006. [PMID: 33854469 PMCID: PMC8039771 DOI: 10.3389/fneur.2021.596006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a prototypical neurodegenerative disease characterized by progressive degeneration of motor neurons both in the brain and spinal cord. The constantly evolving nature of ALS represents a fundamental dimension of individual differences that underlie this disorder, yet it involves multiple levels of functional entities that alternate in different directions and finally converge functionally to define ALS disease progression. ALS may start from a single entity and gradually becomes multifactorial. However, the functional convergence of these diverse entities in eventually defining ALS progression is poorly understood. Various hypotheses have been proposed without any consensus between the for-and-against schools of thought. The present review aims to capture explanatory hierarchy both in terms of hypotheses and mechanisms to provide better insights on how they functionally connect. We can then integrate them within a common functional frame of reference for a better understanding of ALS and defining future treatments and possible therapeutic strategies. Here, we provide a philosophical understanding of how early leads are crucial to understanding the endpoints in ALS, because invariably, all early symptomatic leads are underpinned by neurodegeneration at the cellular, molecular and genomic levels. Consolidation of these ideas could be applied to other neurodegenerative diseases (NDs) and guide further critical thinking to unveil their roadmap of destination ALS.
Collapse
Affiliation(s)
- Matt Keon
- GenieUs Genomics Pty Ltd., Sydney, NSW, Australia
| | | | - Marcel Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Jerran Santos
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
97
|
Park S, Kim D, Song J, Joo JWJ. An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates. Int J Mol Sci 2021; 22:ijms22063216. [PMID: 33809961 PMCID: PMC8004271 DOI: 10.3390/ijms22063216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative neuromuscular disease. Although genome-wide association studies (GWAS) have successfully identified many variants significantly associated with ALS, it is still difficult to characterize the underlying biological mechanisms inducing ALS. In this study, we performed a transcriptome-wide association study (TWAS) to identify disease-specific genes in ALS. Using the largest ALS GWAS summary statistic (n = 80,610), we identified seven novel genes using 19 tissue reference panels. We conducted a conditional analysis to verify the genes’ independence and to confirm that they are driven by genetically regulated expressions. Furthermore, we performed a TWAS-based enrichment analysis to highlight the association of important biological pathways, one in each of the four tissue reference panels. Finally, utilizing a connectivity map, a database of human cell expression profiles cultured with bioactive small molecules, we discovered functional associations between genes and drugs to identify 15 bioactive small molecules as potential drug candidates for ALS. We believe that, by integrating the largest ALS GWAS summary statistic with gene expression to identify new risk loci and causal genes, our study provides strong candidates for molecular basis experiments in ALS.
Collapse
Affiliation(s)
- Sungmin Park
- Department of Computer Engineering, Dongguk University, Seoul 04620, Korea;
| | - Daeun Kim
- Department of Life Science, Dongguk University, Seoul 04620, Korea; (D.K.); (J.S.)
| | - Jaeseung Song
- Department of Life Science, Dongguk University, Seoul 04620, Korea; (D.K.); (J.S.)
| | - Jong Wha J. Joo
- Department of Computer Engineering, Dongguk University, Seoul 04620, Korea;
- Correspondence:
| |
Collapse
|
98
|
Sassani M, Alix JJ, McDermott CJ, Baster K, Hoggard N, Wild JM, Mortiboys HJ, Shaw PJ, Wilkinson ID, Jenkins TM. Magnetic resonance spectroscopy reveals mitochondrial dysfunction in amyotrophic lateral sclerosis. Brain 2021; 143:3603-3618. [PMID: 33439988 DOI: 10.1093/brain/awaa340] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is postulated to be central to amyotrophic lateral sclerosis (ALS) pathophysiology. Evidence comes primarily from disease models and conclusive data to support bioenergetic dysfunction in vivo in patients is currently lacking. This study is the first to assess mitochondrial dysfunction in brain and muscle in individuals living with ALS using 31P-magnetic resonance spectroscopy (MRS), the modality of choice to assess energy metabolism in vivo. We recruited 20 patients and 10 healthy age and gender-matched control subjects in this cross-sectional clinico-radiological study. 31P-MRS was acquired from cerebral motor regions and from tibialis anterior during rest and exercise. Bioenergetic parameter estimates were derived including: ATP, phosphocreatine, inorganic phosphate, adenosine diphosphate, Gibbs free energy of ATP hydrolysis (ΔGATP), phosphomonoesters, phosphodiesters, pH, free magnesium concentration, and muscle dynamic recovery constants. Linear regression was used to test for associations between brain data and clinical parameters (revised amyotrophic functional rating scale, slow vital capacity, and upper motor neuron score) and between muscle data and clinico-neurophysiological measures (motor unit number and size indices, force of contraction, and speed of walking). Evidence for primary dysfunction of mitochondrial oxidative phosphorylation was detected in the brainstem where ΔGATP and phosphocreatine were reduced. Alterations were also detected in skeletal muscle in patients where resting inorganic phosphate, pH, and phosphomonoesters were increased, whereas resting ΔGATP, magnesium, and dynamic phosphocreatine to inorganic phosphate recovery were decreased. Phosphocreatine in brainstem correlated with respiratory dysfunction and disability; in muscle, energy metabolites correlated with motor unit number index, muscle power, and speed of walking. This study provides in vivo evidence for bioenergetic dysfunction in ALS in brain and skeletal muscle, which appears clinically and electrophysiologically relevant. 31P-MRS represents a promising technique to assess the pathophysiology of mitochondrial function in vivo in ALS and a potential tool for future clinical trials targeting bioenergetic dysfunction.
Collapse
Affiliation(s)
- Matilde Sassani
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - James J Alix
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Kathleen Baster
- Statistical Service Unit, University of Sheffield, Sheffield, UK
| | - Nigel Hoggard
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Heather J Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Thomas M Jenkins
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
99
|
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor.,Program for Neurology Research and Discovery, University of Michigan, Ann Arbor
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor.,Program for Neurology Research and Discovery, University of Michigan, Ann Arbor
| |
Collapse
|
100
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|