51
|
Lima PF, Ormond CM, Caixeta ES, Barros RG, Price CA, Buratini J. Effect of kit ligand on natriuretic peptide precursor C and oocyte maturation in cattle. Reproduction 2016; 152:481-9. [DOI: 10.1530/rep-16-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/04/2016] [Indexed: 01/03/2023]
Abstract
In vitro maturation (IVM) of oocytes in cattle is inefficient, and there is great interest in the development of approaches to improve maturation and fertilization rates. Intraovarian signalling molecules are being explored as potential additives to IVM media. One such factor is kit ligand (KITL), which stimulates the growth of oocytes. We determined if KITL enhances oocyte maturation in cattle. The two main isoforms of KITL (KITL1 and KITL2) were expressed in bovine cumulus–oocyte complexes (COC), and levels of mRNA increased during FSH-stimulated IVM. The addition of KITL to the culture medium increased the percentage of oocytes that reached meiosis II but did not affect cumulus expansion after 22 h of IVM. Addition of KITL reduced the levels of mRNA encoding natriuretic peptide precursor C (NPPC), a protein that holds oocytes in meiotic arrest, and increased the levels of mRNA encoding YBX2, an oocyte-specific factor involved in meiosis. Removal of the oocyte from the COC resulted in increased KITL mRNA levels and decreased NPPC mRNA levels in cumulus cells, and addition of denuded oocytes reversed these effects. Taken together, our results suggest that KITL enhances bovine oocyte nuclear maturation through a mechanism that involves NPPC, and that the oocyte regulates cumulus expression of KITL mRNA.
Collapse
|
52
|
Pourret E, Hamamah S, Aït-Ahmed O. [Biomarkers of the cumulus cells in medically assisted procreation: State-of-the-art]. ACTA ACUST UNITED AC 2016; 44:647-658. [PMID: 27450380 DOI: 10.1016/j.gyobfe.2016.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023]
Abstract
The oocyte grows within a follicle composed of layers of somatic cells. It undergoes with the cumulus cells that form the innermost layer a dialogue that is critical for its maturation. Based on the assumption that the transcriptome of the cumulus cells reflects the physiology of the oocyte, it may prove a useful non-invasive tool in embryo selection to improve assisted reproduction outcomes. During the past decade, various studies have been conducted with the objective of identifying cumulus biomarker genes as prognosis tools for oocyte quality and competence. Remarkably no common biomarkers stand out among all these studies. In this review we perform a critical analysis of the literature in order to reveal some of the parameters that may account for these discrepancies, such as patients' inclusion criteria (maternal age, stimulation protocols), day of embryo transfer (day 3 or 5), outcome criteria (oocyte potential, embryo competence, pregnancy). Moreover there is a lack of standardization in the experimental designs used for RNA extraction and gene expression assessment (microarrays, RT-qPCR) and for the statistical analyses. In conclusion, critical analyses such as the present one are indispensable to pave the way for future searches of predictive biomarkers of pregnancy.
Collapse
Affiliation(s)
- E Pourret
- Inserm UMR 1203 « développement embryonnaire précoce humain et pluripotence », IRMB, 34295 Montpellier, France; Université de Montpellier (UM), UMR 1203 « développement embryonnaire précoce humain et pluripotence », IRMB, 34295 Montpellier, France
| | - S Hamamah
- Inserm UMR 1203 « développement embryonnaire précoce humain et pluripotence », IRMB, 34295 Montpellier, France; Université de Montpellier (UM), UMR 1203 « développement embryonnaire précoce humain et pluripotence », IRMB, 34295 Montpellier, France; Département de biologie de la reproduction, hôpital Arnaud-de-Villeneuve, CHRU, 34295 Montpellier, France
| | - O Aït-Ahmed
- Inserm UMR 1203 « développement embryonnaire précoce humain et pluripotence », IRMB, 34295 Montpellier, France; Université de Montpellier (UM), UMR 1203 « développement embryonnaire précoce humain et pluripotence », IRMB, 34295 Montpellier, France.
| |
Collapse
|
53
|
Santos JD, Batista RI, Magalhães LC, Paula Jr. AR, Souza SS, Salamone DF, Bhat MH, Teixeira DI, Freitas VJ, Melo LM. Overexpression of hyaluronan synthase 2 and gonadotropin receptors in cumulus cells of goats subjected to one-shot eCG/FSH hormonal treatment for ovarian stimulation. Anim Reprod Sci 2016; 170:15-24. [DOI: 10.1016/j.anireprosci.2016.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/06/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
|
54
|
Zhang H, Tian S, Klausen C, Zhu H, Liu R, Leung PCK. Differential activation of noncanonical SMAD2/SMAD3 signaling by bone morphogenetic proteins causes disproportionate induction of hyaluronan production in immortalized human granulosa cells. Mol Cell Endocrinol 2016; 428:17-27. [PMID: 26992562 DOI: 10.1016/j.mce.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/12/2016] [Accepted: 03/12/2016] [Indexed: 02/06/2023]
Abstract
Successful fertilization depends upon proper cumulus-oocyte complex (COC) expansion. Synthesized by hyaluronan synthases (HASs), hyaluronan forms the backbone of the COC matrix and plays a critical role in COC expansion. This study investigated the effects and mechanisms of ovarian BMPs on HAS expression and hyaluronan production in human granulosa cells. Treatment with BMP4, BMP6, BMP7 or BMP15 induced differing levels of noncanonical SMAD2/3, but equal levels of canonical SMAD1/5/8, phosphorylation which were mirrored by differing levels of HAS2 up-regulation and hyaluronan production. The effects of BMP4 and BMP15 on HAS2 mRNA were partially reversed by knockdown of SMAD3, and blocked by knockdown of SMAD2+SMAD3 or SMAD4. BMP4-induced SMAD2/3 phosphorylation and HAS2 mRNA up-regulation were mediated by both BMP and activin/transforming growth factor-β type I receptors. Our results suggest differential activation of noncanonical SMAD2/SMAD3 signaling by BMPs causes disproportionate induction of HAS2 expression and hyaluronan production in immortalized human granulosa cells.
Collapse
Affiliation(s)
- Han Zhang
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada; Center for Reproductive Medicine, The First Bethune Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Shen Tian
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada; Department of Reproductive Medicine, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Ruizhi Liu
- Center for Reproductive Medicine, The First Bethune Hospital, Jilin University, Changchun, Jilin, 130021, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
55
|
Abstract
SummaryGene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein–protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein–protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence.
Collapse
|
56
|
Abstract
Fibroblast growth factors (FGFs) have been shown to alter growth and differentiation of reproductive tissues in a variety of species. Within the female reproductive tract, the effects of FGFs have been focused on the ovary, and the most studied one is FGF2, which stimulates granulosa cell proliferation and decreases differentiation (decreased steroidogenesis). Other FGFs have also been implicated in ovarian function, and this review summarizes the effects of members of two subfamilies on ovarian function; the FGF7 subfamily that also contains FGF10, and the FGF8 subfamily that also contains FGF18. There are data to suggest that FGF8 and FGF18 have distinct actions on granulosa cells, despite their apparent similar receptor binding properties. Studies of non-reproductive developmental biology also indicate that FGF8 is distinct from FGF18, and that FGF7 is also distinct from FGF10 despite similar receptor binding properties. In this review, the potential mechanisms of differential action of FGF7/FGF10 and FGF8/FGF18 during organogenesis will be reviewed and placed in the context of follicle development. A model is proposed in which FGF8 and FGF18 differentially activate receptors depending on the properties of the extracellular matrix in the follicle.
Collapse
Affiliation(s)
- Christopher A Price
- Faculty of Veterinary MedicineCentre de recherche en reproduction animale, University of Montreal, 3200 rue Sicotte, St-Hyacinthe, Quebec, Canada J2S 7C6
| |
Collapse
|
57
|
Swegen A, Aitken RJ. Prospects for immunocontraception in feral horse population control: exploring novel targets for an equine fertility vaccine. Reprod Fertil Dev 2016; 28:853-863. [DOI: 10.1071/rd14280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/11/2014] [Indexed: 12/12/2022] Open
Abstract
Feral horses populate vast land areas and often induce significant ecological and economic damage throughout the landscape. Non-lethal population control methods are considered favourable in light of animal welfare, social and ethical considerations; however, no single effective, safe and species-specific contraceptive agent is currently available for use in free-ranging wild and feral horses. This review explores aspects of equine reproductive physiology that may provide avenues for the development of specific and long-lasting immunocontraceptive vaccines and some of the novel strategies that may be employed to facilitate appropriate antigen discovery in future research. Potential antigen targets pertaining to spermatozoa, the ovary and oocyte, as well as the early conceptus and its associated factors, are reviewed in the context of their suitability for immunocontraceptive vaccine development.
Collapse
|
58
|
Sadr SZ, Ebrahimi B, Shahhoseini M, Fatehi R, Favaedi R. Mouse preantral follicle development in two-dimensional and three-dimensional culture systems after ovarian tissue vitrification. Eur J Obstet Gynecol Reprod Biol 2015; 194:206-11. [DOI: 10.1016/j.ejogrb.2015.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/27/2022]
|
59
|
Sayasith K, Sirois J. Molecular characterization of a disintegrin and metalloprotease-17 (ADAM17) in granulosa cells of bovine preovulatory follicles. Mol Cell Endocrinol 2015; 411:49-57. [PMID: 25917455 DOI: 10.1016/j.mce.2015.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 11/29/2022]
Abstract
A disintegrin and metalloprotease-17 (ADAM17) is thought to play a key role in the release of soluble and active epiregulin (EREG) and amphiregulin (AREG) in ovarian follicles but its transcriptional regulation in follicular cells remains largely unknown. The objectives of this study were to characterize the regulation of ADAM17 transcripts in bovine follicles prior to ovulation and to investigate its transcriptional control in bovine granulosa cells. To study the regulation of ADAM17 transcripts, RT-PCR analyses were performed using total RNA extracted from bovine follicles collected between 0 h and 24 h post-hCG. Results showed that levels of ADAM17 mRNA were low prior to hCG (0 h), markedly and transiently increased 6-12 h post-hCG (P <0.05), and returned to low baseline levels at 24 h post-hCG in granulosa and theca interna cells of preovulatory follicles. To determine the transcriptional control of ADAM17 expression, primary cultures of bovine granulosa cells were used. Forskolin (FSK) stimulation induced a pattern of ADAM17 mRNA up-regulation in vitro similar to that observed by hCG in vivo. 5'-Deletion mutagenesis studies identified a minimal region of the bovine ADAM17 promoter containing basal and FSK-inducible activities, which were dependent on the presence of a consensus AP1 cis-element. Electrophoretic mobility shift assays revealed an interaction between AP1 and the trans-acting factor Fra2. Chromatin immunoprecipitation assays confirmed an endogenous interaction between Fra2 and the ADAM17 promoter in granulosa cell cultures. FSK-inducible ADAM17 promoter activity and mRNA expression were suppressed by PKA and ERK1/2 inhibitors but not by a p38MAPK inhibitor, pointing to the importance of PKA and ERK1/2 signaling pathways in the up-regulation of bovine ADAM17 mRNA. Collectively, these findings describe the gonadotropin/FSK-dependent up-regulation of ADAM17 transcripts in bovine preovulatory follicles and unravel for the first time some of the molecular mechanisms involved in ADAM17 gene expression in granulosa cells of a monoovulatory species.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de Recherche en Reproduction Animale, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada.
| | - Jean Sirois
- Centre de Recherche en Reproduction Animale, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada
| |
Collapse
|
60
|
Fibroblast growth factor 17 and bone morphogenetic protein 15 enhance cumulus expansion and improve quality of in vitro –produced embryos in cattle. Theriogenology 2015; 84:390-8. [DOI: 10.1016/j.theriogenology.2015.03.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/31/2022]
|
61
|
Mishra S, Bharati J, Bharti M, Singh G, Sarkar M. Expression and Localization of Fibroblast Growth Factor 10 (FGF10) in Ovarian Follicle During Different Stages Development in Buffalo. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.433.442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
62
|
Moussa M, Shu J, Zhang X, Zeng F. Maternal control of oocyte quality in cattle “a review”. Anim Reprod Sci 2015; 155:11-27. [DOI: 10.1016/j.anireprosci.2015.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/20/2014] [Accepted: 01/15/2015] [Indexed: 02/09/2023]
|
63
|
Lopes T, Costa J, Ribeiro R, Passos J, Soares M, Alves Filho J, Cunha E, van den Hurk R, Pinheiro A, Silva J. Influence of caprine arthritis encephalitis on expression of ovulation related genes and activation of primordial follicles cultured in presence of phytohemagglutinin, epidermal growth factor or both. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2014.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
64
|
Abstract
The bone morphogenetic protein (BMP) family consists of several growth factor proteins that belong to the transforming growth factor-β (TGF-β) superfamily. BMPs bind to type I and type II serine-threonine kinase receptors, and transduce signals through the Smad signalling pathway. BMPs have been identified in mammalian ovaries, and functional studies have shown that they are involved in the regulation of oogenesis and folliculogenesis. This review summarizes the role of the BMP system during formation, growth and maturation of ovarian follicles in mammals.
Collapse
|
65
|
Rajput SK, Lee K, Zhenhua G, Di L, Folger JK, Smith GW. Embryotropic actions of follistatin: paracrine and autocrine mediators of oocyte competence and embryo developmental progression. Reprod Fertil Dev 2014; 26:37-47. [PMID: 24305175 DOI: 10.1071/rd13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite several decades since the birth of the first test tube baby and the first calf derived from an in vitro-fertilised embryo, the efficiency of assisted reproductive technologies remains less than ideal. Poor oocyte competence is a major factor limiting the efficiency of in vitro embryo production. Developmental competence obtained during oocyte growth and maturation establishes the foundation for successful fertilisation and preimplantation embryonic development. Regulation of molecular and cellular events during fertilisation and embryo development is mediated, in part, by oocyte-derived factors acquired during oocyte growth and maturation and programmed by factors of follicular somatic cell origin. The available evidence supports an important intrinsic role for oocyte-derived follistatin and JY-1 proteins in mediating embryo developmental progression after fertilisation, and suggests that the paracrine and autocrine actions of oocyte-derived growth differentiation factor 9, bone morphogenetic protein 15 and follicular somatic cell-derived members of the fibroblast growth factor family impact oocyte competence and subsequent embryo developmental progression after fertilisation. An increased understanding of the molecular mechanisms mediating oocyte competence and stage-specific developmental events during early embryogenesis is crucial for further improvements in assisted reproductive technologies.
Collapse
Affiliation(s)
- Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
66
|
Sudiman J, Sutton-McDowall ML, Ritter LJ, White MA, Mottershead DG, Thompson JG, Gilchrist RB. Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence. PLoS One 2014; 9:e103563. [PMID: 25058588 PMCID: PMC4110049 DOI: 10.1371/journal.pone.0103563] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/− FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/− FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies.
Collapse
Affiliation(s)
- Jaqueline Sudiman
- Robinson Research Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Melanie L. Sutton-McDowall
- Robinson Research Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Lesley J. Ritter
- Robinson Research Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Melissa A. White
- Robinson Research Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David G. Mottershead
- Robinson Research Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Jeremy G. Thompson
- Robinson Research Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert B. Gilchrist
- Robinson Research Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Obstetrics & Gynaecology, School of Women's & Children's Health, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
67
|
Persani L, Rossetti R, Di Pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update 2014; 20:869-83. [PMID: 24980253 DOI: 10.1093/humupd/dmu036] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A large number of studies have contributed to understanding the general mechanisms driving ovarian folliculogenesis in humans and show a complex endocrine dialog between the central nervous system, the pituitary and the ovary, integrated by various intraovarian paracrine messages. The role of intraovarian paracrine regulation has acquired more relevance in the recent years owing to the discovery of previously unknown factors, such as the oocyte-derived bone morphogenetic protein (BMP)15. METHODS A thorough literature search was carried out in order to summarize what has been reported so far on the role of BMP15, and the BMP15 paralog, growth and differentiation factor 9 (GDF9), in ovarian function and female fertility. Research articles published in English until March 2014 were included. RESULTS The biological actions of BMP15 include: (i) the promotion of follicle growth and maturation starting from the primary gonadotrophin-independent phases of folliculogenesis; (ii) the regulation of follicular granulosa cell (GC) sensitivity to FSH action and the determination of ovulation quota; (iii) the prevention of GC apoptosis and (iv) the promotion of oocyte developmental competence. The existence of biologically active heterodimers with GDF9, and/or the synergistic co-operation of BMP15 and GDF9 homodimers are indeed relevant in this context. Experimental disruption of the bmp15 gene in mice resulted in a mild fertility defect limited to females, whereas natural missense mutations in ewes cause variable phenotypes (ranging from hyperprolificacy to complete sterility) depending on a fine gene dosage mechanism also involving GDF9. Strong evidence supports the concept that such a mechanism plays an important role in the regulation of ovulation rate across mammalian and non-mammalian species. Following the discovery of sheep fecundity genes, several research groups have focused on alterations in human BMP15 associated with primary ovarian insufficiency (POI) or polycystic ovary syndrome. Several variants of BMP15 are significantly associated with POI supporting their pathogenic role, but the underlying biological mechanism is still under investigation and of great interest in medicine. BMP15 maps to the Xp locus involved in the determination of the ovarian defect in Turner syndrome and significantly contributes to the determination of ovarian reserve. Pioneering studies in women undergoing controlled ovarian stimulation indicate that BMP15 may represent a marker of ovarian response or oocyte quality. CONCLUSIONS BMP15, an oocyte-derived growth and differentiation factor, is a critical regulator of folliculogenesis and GC activities. Variations in BMP15 gene dosage have a relevant influence on ovarian function and can account for several defects of female fertility. The modulation of BMP15 action may have interesting pharmacological perspectives and the analysis of BMP15 may become a useful marker in IVF procedures. Recent outcomes indicate that the close interactions of BMP15/GDF9 have a critical biological impact that should be taken into account in future studies.
Collapse
Affiliation(s)
- Luca Persani
- Department of Clinical Sciences & Community Health, University of Milan, 20100 Milan, Italy Laboratory of Endocrine & Metabolic Research and Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Raffaella Rossetti
- Department of Clinical Sciences & Community Health, University of Milan, 20100 Milan, Italy
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research - UOS of Milan, National Research Council (CNR) and Istituto Clinico Humanitas, Via Manzoni 59, Rozzano, 20089 Milan, Italy
| | - Chiara Cacciatore
- Department of Clinical Sciences & Community Health, University of Milan, 20100 Milan, Italy Laboratory of Endocrine & Metabolic Research and Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Stéphane Fabre
- INRA, Université de Toulouse INPT, UMR1388, Génétique, Physiologie et Systèmes D'Elevage, F-31326 Castanet-Tolosan, France
| |
Collapse
|
68
|
Yamashita Y, Okamoto M, Ikeda M, Okamoto A, Sakai M, Gunji Y, Nishimura R, Hishinuma M, Shimada M. Protein kinase C (PKC) increases TACE/ADAM17 enzyme activity in porcine ovarian somatic cells, which is essential for granulosa cell luteinization and oocyte maturation. Endocrinology 2014; 155:1080-90. [PMID: 24424050 DOI: 10.1210/en.2013-1655] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During in vitro maturation of porcine cumulus cell-oocyte complexes and in vitro luteinization of porcine granulosa cells, FSH induces the expression of the protease TNFα-converting enzyme/A disintegrin and metalloproteinase domain 17 (TACE/ADAM17) and the epidermal growth factor (EGF)-like factors, which activate the EGF receptor (EGFR)-MAPK3/1 pathway in both cumulus and granulosa cells. FSH is known to activate not only protein kinase A and p38MAPK pathways in both cell types but also activates protein kinase C (PKC). Because PKC-induced association of cellular-Sarcoma (c-Src) and TACE/ADAM17 is required for TACE/ADAM17 enzyme activation in some cancer cells, we hypothesized that PKC and c-Src impact TACE/ADAM17-mediated activation of EGFR signaling pathway in porcine granulosa and cumulus cells. When granulosa cells or cumulus cell-oocyte complexes were cultured with FSH, PKC activity and c-Src phosphorylation increased and were associated with increased TACE/ADAM17 enzyme activity. The PKC inhibitor calphostin C (CalC) and the c-Src inhibitor (4 amino 5 (4 chlorophenyl) 7 (t butyl)pyrazolo[3,4 d]pyrimidine [PP2]) suppressed TACE/ADAM17 enzyme activity, whereas these inhibitors did not affect Tace/Adam17 mRNA expression. Immunoprecipitation analysis showed that FSH mediated the association of c-Src with TACE/ADAM17 via a PKC-dependent mechanism. Either CalC or PP2 suppressed EGFR downstream signaling pathway (MAPK3/1) in these ovarian cell types and reduced cumulus expansion, meiotic maturation of oocytes, and progesterone production. The negative effects were overcome by the addition of amphiregulin. Collectively, these results indicate that activation of TACE/ADAM17 via a PKC-induced c-Src-dependent manner mediates proteolytic activation of the EGF-like factors that are involved in the induction of granulosa cell differentiation, cumulus expansion, and meiotic maturation of porcine oocytes in vitro.
Collapse
Affiliation(s)
- Yasuhisa Yamashita
- Laboratory of Animal Physiology (Y.Y., M.I., A.O., M.Sa.), Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara 727-0023, Japan; Laboratory of Theriogenology (M.O., Y.G., R.N., M.H.), School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; United Graduate School of Veterinary Medicine (Y.G.), Yamaguchi University, Yamaguchi 735-8515, Japan; and Laboratory of Reproductive Endocrinology (M.Sh.), Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Castilho ACS, da Silva RB, Price CA, Machado MF, Amorim RL, Buratini J. Expression of fibroblast growth factor 10 and cognate receptors in the developing bovine ovary. Theriogenology 2014; 81:1268-74. [PMID: 24650928 DOI: 10.1016/j.theriogenology.2014.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/29/2023]
Abstract
In the mammalian ovary, FGF10 is expressed in oocytes and theca cells and is a candidate for paracrine signaling to the developing granulosa cells. To gain insight into the participation of FGF10 in the regulation of fetal folliculogenesis, we assessed mRNA expression patterns of FGF10 and its receptors, FGFR1B and FGFR2B, in relation to fetal follicle dynamics and localized FGF10 protein in bovine fetal ovaries at different ages. Primordial, primary, secondary, and antral follicles were first observed on Days 75, 90, 150, and 210 of gestation, respectively. The levels of GDF9 and BMP15 mRNA, markers for primordial and primary follicles, respectively, increased during fetal ovary development in a consistent manner with fetal follicle dynamics. CYP17A1 mRNA abundance increased from Day 60 to Day 75 and then from Day 120 to Day 150, coinciding with the appearance of secondary follicles. FGF10 mRNA abundance increased from Day 90, and this increase was temporally associated with increases in FGFR1B mRNA abundance and in the population of primary follicles. In contrast, FGFR2B mRNA expression was highest on Day 60 and decreased thereafter. FGF10 protein was localized to oogonia and oocytes and surrounding granulosa cells at all fetal ages. The present data suggest a role for FGF10 in the control of fetal folliculogenesis in cattle.
Collapse
Affiliation(s)
- A C S Castilho
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - R Bueno da Silva
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - C A Price
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - M F Machado
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - R L Amorim
- Departamento de Clínica Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - J Buratini
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil.
| |
Collapse
|
70
|
Frank LA, Sutton-McDowall ML, Gilchrist RB, Thompson JG. The effect of peri-conception hyperglycaemia and the involvement of the hexosamine biosynthesis pathway in mediating oocyte and embryo developmental competence. Mol Reprod Dev 2014; 81:391-408. [DOI: 10.1002/mrd.22299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/31/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Laura A. Frank
- The Robinson Institute, The Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide; Adelaide South Australia Australia
| | - Melanie L. Sutton-McDowall
- The Robinson Institute, The Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide; Adelaide South Australia Australia
| | - Robert B. Gilchrist
- The Robinson Institute, The Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide; Adelaide South Australia Australia
| | - Jeremy G. Thompson
- The Robinson Institute, The Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
71
|
Sudiman J, Ritter LJ, Feil DK, Wang X, Chan K, Mottershead DG, Robertson DM, Thompson JG, Gilchrist RB. Effects of differing oocyte-secreted factors during mouse in vitro maturation on subsequent embryo and fetal development. J Assist Reprod Genet 2014; 31:295-306. [PMID: 24408183 DOI: 10.1007/s10815-013-0152-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We hypothesised that varying native oocyte-secreted factor (OSF) exposure or using different recombinant OSF peptides would have differential effects on post-in vitro maturation (IVM) embryo and fetal development. METHODS Mouse cumulus oocyte complexes (COCs) were treated with the purified mature domain of GDF9 and/or BMP15 or were co-cultured with denuded oocytes (DOs) from 0 h or 3 h of IVM. DOs were matured for 3 h as either intact COCs+/-FSH before denuding, or as DOs + FSH. COCs were fertilised and blastocyst development was assessed on days 5 and 6, and either differentially stained for ICM numbers or vitrified/warmed embryos were transferred to recipients to assess implantation and fetal rates. RESULTS No improvement in embryo development was observed with the addition of GDF9 and/or BMP15 to IVM. In contrast, embryos derived from COCs co-cultured with DOs had significantly improved blastocyst rates and ICM numbers compared to controls (P < 0.05). The highest response was obtained when DOs were first added to COCs at 3 h of IVM, after being pre-treated (0-3 h) as COCs + FSH. Compared to control, co-culture with DOs from 3 h did not affect implantation rates but more than doubled fetal yield (21% vs 48%; P < 0.05). GDF9 Western blot analysis was unable to detect any differences in quantity or form of GDF9 (17 and 65 kDa) in extracts of DO at 0 h or 3 h. CONCLUSIONS This study provides new knowledge on means to improve oocyte quality in vitro which has the potential to significantly aid human infertility treatment and animal embryo production technologies.
Collapse
Affiliation(s)
- J Sudiman
- Robinson Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|