51
|
Brüning F, Noya SB, Bange T, Koutsouli S, Rudolph JD, Tyagarajan SK, Cox J, Mann M, Brown SA, Robles MS. Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 2020; 366:366/6462/eaav3617. [PMID: 31601740 DOI: 10.1126/science.aav3617] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The circadian clock drives daily changes of physiology, including sleep-wake cycles, through regulation of transcription, protein abundance, and function. Circadian phosphorylation controls cellular processes in peripheral organs, but little is known about its role in brain function and synaptic activity. We applied advanced quantitative phosphoproteomics to mouse forebrain synaptoneurosomes isolated across 24 hours, accurately quantifying almost 8000 phosphopeptides. Half of the synaptic phosphoproteins, including numerous kinases, had large-amplitude rhythms peaking at rest-activity and activity-rest transitions. Bioinformatic analyses revealed global temporal control of synaptic function through phosphorylation, including synaptic transmission, cytoskeleton reorganization, and excitatory/inhibitory balance. Sleep deprivation abolished 98% of all phosphorylation cycles in synaptoneurosomes, indicating that sleep-wake cycles rather than circadian signals are main drivers of synaptic phosphorylation, responding to both sleep and wake pressures.
Collapse
Affiliation(s)
- Franziska Brüning
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Germany.,Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sara B Noya
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tanja Bange
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Germany
| | - Stella Koutsouli
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Germany
| | - Jan D Rudolph
- Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jürgen Cox
- Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| | - Maria S Robles
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Germany.
| |
Collapse
|
52
|
Chronic mild stress alters synaptic plasticity in the nucleus accumbens through GSK3β-dependent modulation of Kv4.2 channels. Proc Natl Acad Sci U S A 2020; 117:8143-8153. [PMID: 32209671 DOI: 10.1073/pnas.1917423117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although major depressive disorder (MDD) is highly prevalent, its pathophysiology is poorly understood. Recent evidence suggests that glycogen-synthase kinase 3β (GSK3β) plays a key role in memory formation, yet its role in mood regulation remains controversial. Here, we investigated whether GSK3β activity in the nucleus accumbens (NAc) is associated with depression-like behaviors and synaptic plasticity. We performed whole-cell patch-clamp recordings of medium spiny neurons (MSNs) in the NAc and determined the role of GSK3β in spike timing-dependent long-term potentiation (tLTP) in the chronic unpredictable mild stress (CUMS) mouse model of depression. To assess the specific role of GSK3β in tLTP, we used in vivo genetic silencing by an adeno-associated viral vector (AAV2) short hairpin RNA against GSK3β. In addition, we examined the role of the voltage-gated potassium Kv4.2 subunit, a molecular determinant of A-type K+ currents, as a potential downstream target of GSK3β. We found increased levels of active GSK3β and augmented tLTP in CUMS mice, a phenotype that was prevented by selective GSK3β knockdown. Furthermore, knockdown of GSK3β in the NAc ameliorated depressive-like behavior in CUMS mice. Electrophysiological, immunohistochemical, biochemical, and pharmacological experiments revealed that inhibition of the Kv4.2 channel through direct phosphorylation at Ser-616 mediated the GSK3β-dependent tLTP changes in CUMS mice. Our results identify GSK3β regulation of Kv4.2 channels as a molecular mechanism of MSN maladaptive plasticity underlying depression-like behaviors and suggest that the GSK3β-Kv4.2 axis may be an attractive therapeutic target for MDD.
Collapse
|
53
|
Gavín R, Lidón L, Ferrer I, del Río JA. The Quest for Cellular Prion Protein Functions in the Aged and Neurodegenerating Brain. Cells 2020; 9:cells9030591. [PMID: 32131451 PMCID: PMC7140396 DOI: 10.3390/cells9030591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular (also termed ‘natural’) prion protein has been extensively studied for many years for its pathogenic role in prionopathies after misfolding. However, neuroprotective properties of the protein have been demonstrated under various scenarios. In this line, the involvement of the cellular prion protein in neurodegenerative diseases other than prionopathies continues to be widely debated by the scientific community. In fact, studies on knock-out mice show a vast range of physiological functions for the protein that can be supported by its ability as a cell surface scaffold protein. In this review, we first summarize the most commonly described roles of cellular prion protein in neuroprotection, including antioxidant and antiapoptotic activities and modulation of glutamate receptors. Second, in light of recently described interaction between cellular prion protein and some amyloid misfolded proteins, we will also discuss the molecular mechanisms potentially involved in protection against neurodegeneration in pathologies such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Collapse
Affiliation(s)
- Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4031185
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 Barcelona, Spain
- Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
54
|
The Relationship Between Glutamate Dynamics and Activity-Dependent Synaptic Plasticity. J Neurosci 2020; 40:2793-2807. [PMID: 32102922 DOI: 10.1523/jneurosci.1655-19.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The spatiotemporal dynamics of excitatory neurotransmission must be tightly regulated to achieve efficient synaptic communication. By limiting spillover, glutamate transporters are believed to prevent excessive activation of extrasynaptically located receptors that can impair synaptic plasticity. While glutamate transporter expression is reduced in numerous neurodegenerative diseases, the contributions of transporter dysfunction to disease pathophysiology remain ambiguous as the fundamental relationship between glutamate dynamics and plasticity, and the mechanisms linking these two phenomena, remain poorly understood. Here, we combined electrophysiology and real-time high-speed imaging of extracellular glutamate transients during LTP induction and characterized the sensitivity of the relationship between glutamate dynamics during theta burst stimulation (TBS) and the resulting magnitude of LTP consolidation, both in control conditions and following selective and nonselective glutamate transporter blockade. Glutamate clearance times were negatively correlated with LTP magnitude following nonselective glutamate transporter inhibition but not following selective blockade of a majority of GLT-1, the brain's most abundant glutamate transporter. Although glutamate transporter inhibition reduced the postsynaptic population response to TBS, calcium responses to TBS were greatly exaggerated. The source of excess calcium was dependent on NMDARs, L-type VGCCs, GluA2-lacking AMPARs, and internal calcium stores. Surprisingly, inhibition of L-type VGCCs, but not GluA2-lacking AMPARs or ryanodine receptors, was required to restore robust LTP. In all, these data provide a detailed understanding of the relationship between glutamate dynamics and plasticity and uncover important mechanisms by which poor glutamate uptake can negatively impact LTP consolidation.SIGNIFICANCE STATEMENT Specific patterns of neural activity can promote long-term changes in the strength of synaptic connections through a phenomenon known as synaptic plasticity. Synaptic plasticity is well accepted to represent the cellular mechanisms underlying learning and memory, and many forms of plasticity are initiated by the excitatory neurotransmitter glutamate. While essential for rapid cellular communication in the brain, excessive levels of extracellular glutamate can negatively impact brain function. In this study, we demonstrate that pharmacological manipulations that increase the availability of extracellular glutamate during neural activity can have profoundly negative consequences on synaptic plasticity. We identify mechanisms through which excess glutamate can negatively influence synaptic plasticity, and we discuss the relevance of these findings to neurodegenerative diseases and in the aging brain.
Collapse
|
55
|
Effects of a Tripeptide on Mitogen-Activated Protein Kinase and Glycogen Synthase Kinase Activation in a Cell Line Derived from the Foetal Hippocampus of a Trisomy 16 Mouse: an Animal Model of Down Syndrome. Neurotox Res 2019; 37:714-723. [PMID: 31802378 DOI: 10.1007/s12640-019-00130-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 01/22/2023]
Abstract
Down syndrome (DS) is a developmental disorder that results from the trisomy of chromosome 21. DS patients show several abnormalities including cognitive deficits. Here, we show enhanced activation of the extracellular signal-regulated kinase (ERK), a kinase that critically regulates synaptic plasticity and memory, in a hippocampal cell line derived from trisomy 16 mouse foetus. In addition, these cells show enhanced activation of p38 mitogen-activated protein kinase (p38 MAPK). The hyper-activation of ERK and p38 MAPK is significantly reduced by a small peptide, Gly-Pro-Glu (GPE), derived from insulin-like growth factor-1. In addition, the trisomic cells show reduced level of inhibitory phosphorylation of glycogen synthase kinase-3β (GSK-3β), which is enhanced by GPE. Furthermore, the trisomic cells do not show ERK activation in response to KCl depolarization or forskolin treatment. Importantly, ERK activation by these stimuli is observed after GPE treatment of the cells. These results suggest that GPE may help reduce aberrant signalling in the trisomic neurons by affecting MAPK and GSK-3β activation.
Collapse
|
56
|
Ju IG, Kim N, Choi JG, Lee JK, Oh MS. Cuscutae Japonicae Semen Ameliorates Memory Dysfunction by Rescuing Synaptic Damage in Alzheimer's Disease Models. Nutrients 2019; 11:nu11112591. [PMID: 31661844 PMCID: PMC6893468 DOI: 10.3390/nu11112591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. It is characterized by the accumulation of amyloid-beta (Aβ) and progressive cognitive impairment. To alleviate the symptoms of AD, functional foods and nutrients have been used for centuries. In this study, we investigated whether Cuscutae Japonicae Semen (CJS), a medicinal food traditionally used in East Asia, has effects on memory improvement and synapse protection in AD. We orally administered CJS to 5x familiar AD (5xFAD) transgenic mice and performed the Morris water maze test. The results showed that CJS treatment ameliorated the decline of memory function. Then, we demonstrated that CJS attenuated the degeneration of pre- and post-synaptic proteins in the hippocampi of 5xFAD mice. To demonstrate the effects of CJS in vitro, we treated Aβ in primary neuronal culture with CJS and observed that CJS rescued the loss of functional synapses. The protective effects of CJS on the synapse were due to the inhibition of activated caspase-3 expression. Additionally, CJS inhibited the phosphorylation of glycogen synthase kinase-3β and tau proteins, which contribute to synaptic dysfunction. Taken together, our results suggest that CJS is efficient in alleviating memory loss by rescuing caspase-3-mediated synaptic damage in AD treatment.
Collapse
Affiliation(s)
- In Gyoung Ju
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jin Gyu Choi
- BK21 PLUS Integrated Education and Research Center for Nature-inspired Drug Development Targeting Healthy Aging, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
57
|
Wang L, Zhang Z, Hou L, Wang Y, Zuo J, Xue M, Li X, Liu Y, Song J, Pan F, Pu T. Phytic acid attenuates upregulation of GSK-3β and disturbance of synaptic vesicle recycling in MPTP-induced Parkinson's disease models. Neurochem Int 2019; 129:104507. [DOI: 10.1016/j.neuint.2019.104507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 01/11/2023]
|
58
|
Guo S, Xu JJ, Wei N, Han JY, Xue R, Xu PS, Gao CY. Honokiol Attenuates the Memory Impairments, Oxidative Stress, Neuroinflammation, and GSK-3β Activation in Vascular Dementia Rats. J Alzheimers Dis 2019; 71:97-108. [PMID: 31322570 DOI: 10.3233/jad-190324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Si Guo
- Department of Medical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Medical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, People’s Republic of China
| | - Jing-Jing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou, People’s Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou, People’s Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jun-Ya Han
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Po-Shi Xu
- Department of Medical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Medical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, People’s Republic of China
| | - Chuan-Yu Gao
- Department of Cardiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, People’s Republic of China
| |
Collapse
|
59
|
Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim YK. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109668. [PMID: 31207274 DOI: 10.1016/j.pnpbp.2019.109668] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence demonstrating that dysfunction of glutamatergic neurotransmission, particularly via N-methyl-d-aspartate (NMDA) receptors, is involved in the pathophysiology of major depressive disorder (MDD). Several studies have revealed an altered expression of NMDA receptor subtypes and impaired NMDA receptor-mediated intracellular signaling pathways in brain circuits of patients with MDD. Clinical studies have demonstrated that NMDA receptor antagonists, particularly ketamine, have rapid antidepressant effects in treatment-resistant depression, however, neurobiological mechanisms are not completely understood. Growing body of evidence suggest that signal transduction pathways involved in synaptic plasticity play critical role in molecular mechanisms underlying rapidly acting antidepressant properties of ketamine and other NMDAR antagonists in MDD. Discovering the molecular mechanisms underlying the unique antidepressant actions of ketamine will facilitate the development of novel fast acting antidepressants which lack undesirable effects of ketamine. This review provides a critical examination of the NMDA receptor involvement in the neurobiology of MDD including analyses of alterations in NMDA receptor subtypes and their interactive signaling cascades revealed by postmortem studies. Furthermore, to elucidate mechanisms underlying rapid-acting antidepressant properties of NMDA receptor antagonists we discussed their effects on the neuroplasticity, mostly based on signaling systems involved in synaptic plasticity of mood-related neurocircuitries.
Collapse
Affiliation(s)
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; New Jersey Institute of Technology, Newark, NJ, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; Department of Psychiatry, University Tuebingen, Germany
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
60
|
Microglial clearance of focal apoptotic synapses. Neurosci Lett 2019; 707:134317. [DOI: 10.1016/j.neulet.2019.134317] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/13/2019] [Accepted: 06/02/2019] [Indexed: 01/23/2023]
|
61
|
França MER, Ramos RKLG, Oliveira WH, Duarte-Silva E, Araújo SMR, Lós DB, Peixoto CA. Tadalafil restores long-term memory and synaptic plasticity in mice with hepatic encephalopathy. Toxicol Appl Pharmacol 2019; 379:114673. [PMID: 31323263 DOI: 10.1016/j.taap.2019.114673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Tadalafil displays important neuroprotective effects in experimental models of neurodegenerative diseases, however its mechanisms of action remain poorly understood. The aim of the present study was to investigate the action of Tadalafil on learning and memory, neuroinflammation, glial cell activation and neuroprotection in the experimental model of hepatic encephalopathy (HE) induced by Thioacetamide (TAA) in mice. METHODS Mice received intraperitoneal injections of TAA, for 3 consecutive days, reaching the final dose of 600 mg/kg. Tadalafil 15 mg/kg body weight was administered by gavage during 15 days after TAA induction. Mice underwent a Barnes maze for learning and memory evaluation. RESULTS Animals with hepatic encephalopathy showed reduced learning and spatial memory in the Barnes Maze, presented astrocyte and microglia activation and increased neuroinflammatory markers such as TNF-α, IL-1β, IL-6, p-p38, p-ERK and p-NF-kB. In addition, the signaling pathway PKA/PKG/CREB/BDNF/NeuN/synaptophysin and glutamate receptors were deregulated by TAA. Tadalafil treatment regulated the inflammation signaling pathways restoring learning and spatial memory. CONCLUSION Tadalafil significantly reduced neuroinflammation, promoted neuroprotection and plasticity, regulated the expression of hippocampal glutamate receptor and restored spatial learning ability and memory.
Collapse
Affiliation(s)
- Maria Eduarda Rocha França
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Pernambuco, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco Recife, Pernambuco, Brazil.
| | | | - Wilma Helena Oliveira
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Pernambuco, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco Recife, Pernambuco, Brazil
| | - Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Pernambuco, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/ Aggeu Magalhães Institute (IAM), Recife, Pernambuco, Brazil
| | - Shyrlene Meyre Rocha Araújo
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Pernambuco, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco Recife, Pernambuco, Brazil
| | - Deniele Bezerra Lós
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Pernambuco, Brazil; Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Pernambuco, Brazil; Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
62
|
Dietz RM, Cruz-Torres I, Orfila JE, Patsos OP, Shimizu K, Chalmers N, Deng G, Tiemeier E, Quillinan N, Herson PS. Reversal of Global Ischemia-Induced Cognitive Dysfunction by Delayed Inhibition of TRPM2 Ion Channels. Transl Stroke Res 2019; 11:254-266. [PMID: 31250378 DOI: 10.1007/s12975-019-00712-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022]
Abstract
Hippocampal injury and cognitive impairments are common after cardiac arrest and stroke and do not have an effective intervention despite much effort. Therefore, we developed a new approach aimed at reversing synaptic dysfunction by targeting TRPM2 channels. Cardiac arrest/cardiopulmonary resuscitation (CA/CPR) in mice was used to investigate cognitive deficits and the role of the calcium-permeable ion channel transient receptor potential-M2 (TRPM2) in ischemia-induced synaptic dysfunction. Our data indicates that absence (TRPM2-/-) or acute inhibition of TRPM2 channels with tatM2NX reduced hippocampal cell death in males only, but prevented synaptic plasticity deficits in both sexes. Remarkably, administration of tatM2NX weeks after injury reversed hippocampal plasticity and memory deficits. Finally, TRPM2-dependent activation of calcineurin-GSK3β pathway contributes to synaptic plasticity impairments. These data suggest persistent TRPM2 activity following ischemia contributes to impairments of the surviving hippocampal network and that inhibition of TRPM2 channels at chronic time points may represent a novel strategy to improve functional recovery following cerebral ischemia that is independent of neuroprotection.
Collapse
Affiliation(s)
- Robert M Dietz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.,Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ivelisse Cruz-Torres
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - James E Orfila
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Olivia P Patsos
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaori Shimizu
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicholas Chalmers
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Guiying Deng
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erika Tiemeier
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nidia Quillinan
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paco S Herson
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA. .,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA. .,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
63
|
Lee H, Shin W, Kim K, Lee S, Lee EJ, Kim J, Kweon H, Lee E, Park H, Kang M, Yang E, Kim H, Kim E. NGL-3 in the regulation of brain development, Akt/GSK3b signaling, long-term depression, and locomotive and cognitive behaviors. PLoS Biol 2019; 17:e2005326. [PMID: 31166939 PMCID: PMC6550391 DOI: 10.1371/journal.pbio.2005326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/13/2019] [Indexed: 01/04/2023] Open
Abstract
Netrin-G ligand-3 (NGL-3) is a postsynaptic adhesion molecule known to directly interact with the excitatory postsynaptic scaffolding protein postsynaptic density-95 (PSD-95) and trans-synaptically with leukocyte common antigen-related (LAR) family receptor tyrosine phosphatases to regulate presynaptic differentiation. Although NGL-3 has been implicated in the regulation of excitatory synapse development by in vitro studies, whether it regulates synapse development or function, or any other features of brain development and function, is not known. Here, we report that mice lacking NGL-3 (Ngl3−/− mice) show markedly suppressed normal brain development and postnatal survival and growth. A change of the genetic background of mice from pure to hybrid minimized these developmental effects but modestly suppressed N-methyl-D-aspartate (NMDA) receptor (NMDAR)-mediated synaptic transmission in the hippocampus without affecting synapse development, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated basal transmission, and presynaptic release. Intriguingly, long-term depression (LTD) was near-completely abolished in Ngl3−/− mice, and the Akt/glycogen synthase kinase 3β (GSK3β) signaling pathway, known to suppress LTD, was abnormally enhanced. In addition, pharmacological inhibition of Akt, but not activation of NMDARs, normalized the suppressed LTD in Ngl3−/− mice, suggesting that Akt hyperactivity suppresses LTD. Ngl3−/− mice displayed several behavioral abnormalities, including hyperactivity, anxiolytic-like behavior, impaired spatial memory, and enhanced seizure susceptibility. Among them, the hyperactivity was rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-3 regulates brain development, Akt/GSK3β signaling, LTD, and locomotive and cognitive behaviors.
Collapse
Affiliation(s)
- Hyejin Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Wangyong Shin
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center University of Ulsan, College of Medicine, Seoul, South Korea
| | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
- * E-mail:
| |
Collapse
|
64
|
Glycogen synthase kinase-3 inhibition as a potential pharmacological target for vascular dementia: In silico and in vivo evidence. Comput Biol Med 2019; 108:305-316. [PMID: 31022582 DOI: 10.1016/j.compbiomed.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/13/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
Vascular dementia is a serious problem as it creates significant disability and dependency in the affected person. Lives of these patients can be improved through the advent of novel drug targets which can be targeted by pharmacological therapies. However, finding a precise and druggable target for vascular dementia is experimentally impossible and challenging task owing to a complex and mostly unknown interplay between the cognitive abilities of the brain with a diversity of vascular diseases. To address this issue, we have systematically analyzed the literature reports by using well-known methods and approaches of bioinformatics (viz. network pharmacology, reverse pharmacology, enrichment analysis of KEGG pathways, biological processes of Gene Ontology and DIAMOnD algorithm). Because glycogen synthase kinase-3 (GSK-3) seems to be one of the most promising targets, therefore, we have tested the capacity of lithium carbonate, a classical inhibitor of GSK-3, for treatment of dementia resulting from mild chronic cerebral hypoperfusion in mice. To this end, our study shows in-vivo validation of predicted target, i.e., pharmacological deactivation of GSK-3 enzyme and its impact on cognitive abilities employing a behavioral test battery, i.e., object recognition task, step-through passive avoidance task, elevated plus maze task and water maze task. In this framework, we observed that lithium carbonate attenuates recognition, emotion, spatial and fear-motivated learning and memory impairments along with attenuation of oxidative stress, cholinergic dysfunction and glutamate-induced excitotoxicity in cerebral cortex and hippocampus. In conclusion, we propose GSK-3 as a promising drug target for vascular dementia in light of experimental results and in-silico predictions.
Collapse
|
65
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
66
|
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer's Disease Originate in the Periphery and If So How So? Mol Neurobiol 2019; 56:406-434. [PMID: 29705945 PMCID: PMC6372984 DOI: 10.1007/s12035-018-1092-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
The classical amyloid cascade model for Alzheimer's disease (AD) has been challenged by several findings. Here, an alternative molecular neurobiological model is proposed. It is shown that the presence of the APOE ε4 allele, altered miRNA expression and epigenetic dysregulation in the promoter region and exon 1 of TREM2, as well as ANK1 hypermethylation and altered levels of histone post-translational methylation leading to increased transcription of TNFA, could variously explain increased levels of peripheral and central inflammation found in AD. In particular, as a result of increased activity of triggering receptor expressed on myeloid cells 2 (TREM-2), the presence of the apolipoprotein E4 (ApoE4) isoform, and changes in ANK1 expression, with subsequent changes in miR-486 leading to altered levels of protein kinase B (Akt), mechanistic (previously mammalian) target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3), all of which play major roles in microglial activation, proliferation and survival, there is activation of microglia, leading to the subsequent (further) production of cytokines, chemokines, nitric oxide, prostaglandins, reactive oxygen species, inducible nitric oxide synthase and cyclooxygenase-2, and other mediators of inflammation and neurotoxicity. These changes are associated with the development of amyloid and tau pathology, mitochondrial dysfunction (including impaired activity of the electron transport chain, depleted basal mitochondrial potential and oxidative damage to key tricarboxylic acid enzymes), synaptic dysfunction, altered glycogen synthase kinase-3 (GSK-3) activity, mTOR activation, impairment of autophagy, compromised ubiquitin-proteasome system, iron dyshomeostasis, changes in APP translation, amyloid plaque formation, tau hyperphosphorylation and neurofibrillary tangle formation.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
67
|
Llorens-Martín M. Exercising New Neurons to Vanquish Alzheimer Disease. Brain Plast 2018; 4:111-126. [PMID: 30564550 PMCID: PMC6296267 DOI: 10.3233/bpl-180065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia in individuals over 65 years of age. The neuropathological hallmarks of the condition are Tau neurofibrillary tangles and Amyloid-β senile plaques. Moreover, certain susceptible regions of the brain experience a generalized lack of neural plasticity and marked synaptic alterations during the progression of this as yet incurable disease. One of these regions, the hippocampus, is characterized by the continuous addition of new neurons throughout life. This phenomenon, named adult hippocampal neurogenesis (AHN), provides a potentially endless source of new synaptic elements that increase the complexity and plasticity of the hippocampal circuitry. Numerous lines of evidence show that physical activity and environmental enrichment (EE) are among the most potent positive regulators of AHN. Given that neural plasticity is markedly decreased in many neurodegenerative diseases, the therapeutic potential of making certain lifestyle changes, such as increasing physical activity, is being recognised in several non-pharmacologic strategies seeking to slow down or prevent the progression of these diseases. This review article summarizes current evidence supporting the putative therapeutic potential of EE and physical exercise to increase AHN and hippocampal plasticity both under physiological and pathological circumstances, with a special emphasis on neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSIC-UAM, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
68
|
Urbanska M, Kazmierska-Grebowska P, Kowalczyk T, Caban B, Nader K, Pijet B, Kalita K, Gozdz A, Devijver H, Lechat B, Jaworski T, Grajkowska W, Sadowski K, Jozwiak S, Kotulska K, Konopacki J, Van Leuven F, van Vliet EA, Aronica E, Jaworski J. GSK3β activity alleviates epileptogenesis and limits GluA1 phosphorylation. EBioMedicine 2018; 39:377-387. [PMID: 30502054 PMCID: PMC6355642 DOI: 10.1016/j.ebiom.2018.11.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Glycogen synthase kinase-3β (GSK3β) is a key regulator of cellular homeostasis. In neurons, GSK3β contributes to the control of neuronal transmission and plasticity, but its role in epilepsy remains to be defined. METHODS Biochemical and electrophysiological methods were used to assess the role of GSK3β in regulating neuronal transmission and epileptogenesis. GSK3β activity was increased genetically in GSK3β[S9A] mice. Its effects on neuronal transmission and epileptogenesis induced by kainic acid were assessed by field potential recordings in mice brain slices and video electroencephalography in vivo. The ion channel expression was measured in brain samples from mice and followed by analysis in samples from patients with temporal lobe epilepsy or focal cortical dysplasia in correlation to GSK3β phosphorylation. FINDINGS Higher GSK3β activity decreased the progression of kainic acid induced epileptogenesis. At the biochemical level, higher GSK3β activity increased the expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel 4 under basal conditions and in the epileptic mouse brain and decreased phosphorylation of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 at Serine 831 under basal conditions. Moreover, we found a significant correlation between higher inhibitory GSK3β phosphorylation at Serine 9 and higher activating GluA1 phosphorylation at Serine 845 in brain samples from epileptic patients. INTERPRETATION Our data imply GSK3β activity in the protection of neuronal networks from hyper-activation in response to epileptogenic stimuli and indicate that the anti-epileptogenic function of GSK3β involves modulation of HCN4 level and the synaptic AMPA receptors pool.
Collapse
Affiliation(s)
- Malgorzata Urbanska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland; Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw 04-730, Poland.
| | - Paulina Kazmierska-Grebowska
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Tomasz Kowalczyk
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Bartosz Caban
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Karolina Nader
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| | - Barbara Pijet
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| | - Katarzyna Kalita
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| | - Agata Gozdz
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Herman Devijver
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven 3000, Belgium
| | - Benoit Lechat
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven 3000, Belgium
| | - Tomasz Jaworski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw 04-730, Poland
| | - Krzysztof Sadowski
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw 04-730, Poland
| | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw 04-730, Poland; Department of Child Neurology, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw 04-730, Poland
| | - Jan Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven 3000, Belgium
| | - Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland.
| |
Collapse
|
69
|
The effects of donepezil on phencyclidine-induced cognitive deficits in a mouse model of schizophrenia. Pharmacol Biochem Behav 2018; 175:69-76. [PMID: 30218672 DOI: 10.1016/j.pbb.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023]
Abstract
Donepezil is the first-line of treatment for Alzheimer's disease (AD), which improves cognitive impairment effectively, but whether it has an impact on cognitive impairment in schizophrenia remains unknown. In this study, we evaluated the effects and mechanisms of donepezil on schizophrenia-like cognitive deficits induced by phencyclidine (PCP). The cognitive deficits model of schizophrenia was established by injecting PCP into mice. Risperidone, an atypical antipsychotic drug, served as positive control drug. Three behavioral tests including novel object recognition (NOR) test, Morris Water Maze (MWM) and passive avoidance (PA) test were performed to evaluate the effect of donepezil on PCP-induced cognitive deficits. Furthermore, the content of BDNF and NGF in the hippocampus and cortex of mice was determined using ELISA. Expressions of p-GSK-3β/GSK-3β, p-Akt/Akt, Bcl-2/Bax and Caspase-3 in the hippocampus and cortex were detected by Western blot. Results revealed that donepezil has a protective effect on PCP-induced cognitive dysfunction. Moreover, donepezil can also improve PCP-induced schizophrenia-like cognitive deficits by inhibiting neuronal apoptosis and regulating synaptic plasticity, which was possible through the up-regulation of p-Akt, p-GSK-3β, Bcl-2 and the down-regulation of Bax, Caspase-3. The results indicated that donepezil might exhibit a beneficial effect on the treatment of cognitive dysfunction in schizophrenia.
Collapse
|
70
|
NMDA receptors inhibit axonal outgrowth by inactivating Akt and activating GSK-3β via calcineurin in cultured immature hippocampal neurons. Exp Cell Res 2018; 371:389-398. [PMID: 30176218 DOI: 10.1016/j.yexcr.2018.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/10/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells with an axon and dendritic arbors. It is still not well studied that how formation and elaboration of axon and dendrites is controlled by diffusible signaling factors such as glutamate via specific receptors. We found that N-methyl-D-aspartate (NMDA) receptors were enriched (stage 2-3) but decreased expression (stage 4-5) at tip of axon of cultured hippocampal neurons during distinct development stages. Inhibition of NMDA receptor activity by competitive antagonist DL-2-amino-5-phosphonovalerate (APV) or channel blocker MK801 promoted axonal outgrowth at the early stages, whereas inhibited dendritic development in later stages. Meanwhile, knockdown of NMDA receptors also promoted axonal outgrowth and branch in immature neurons. Furthermore, GluN2B but not GluN2A subunit inhibited axonal outgrowth in immature hippocampal neurons. Finally, we found that NMDA receptors inhibited axonal outgrowth by inactivating Akt and activating GSK-3β signaling in a calcineurin-dependent manner. Taken together, our results demonstrate that stabilization GSK-3β activation in the axon growth cone by Ca2+ influx through NMDA receptors may be involved in regulation of axon formation in immature neurons at early stages.
Collapse
|
71
|
Dal-Pont GC, Resende WR, Varela RB, Menegas S, Trajano KS, Peterle BR, Quevedo J, Valvassori SS. Inhibition of GSK-3β on Behavioral Changes and Oxidative Stress in an Animal Model of Mania. Mol Neurobiol 2018; 56:2379-2393. [DOI: 10.1007/s12035-018-1226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022]
|
72
|
Swart PC, Russell VA, Dimatelis JJ. Maternal separation stress reduced prenatal-ethanol-induced increase in exploratory behaviour and extracellular signal-regulated kinase activity. Behav Brain Res 2018; 356:470-482. [PMID: 29908221 DOI: 10.1016/j.bbr.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/22/2018] [Accepted: 06/06/2018] [Indexed: 01/26/2023]
Abstract
In an attempt to better represent the aetiology of fetal alcohol spectrum disorder (FASD) and the associated psychological deficits, prenatal-ethanol exposure was followed by maternal separation in a rat model in order to account for the effects of early-life adversities in addition to in utero alcohol exposure. Extracellular signal-regulated kinase 1/2 (ERK1/2) and glycogen synthase kinase 3-β (GSK3β) are converging points for many signalling cascades and have been implicated in models of FASD and models of early-life stress. Therefore, these kinases may also contribute to the behavioural changes observed after the combination of both developmental insults. In this study, ethanol-dams voluntarily consumed a 0.066% saccharin-sweetened 10% ethanol (EtOH) solution for 10 days prior to pregnancy and throughout gestation while control-dams had ad libitumaccess to a 0.066% saccharin (sacc) solution. Whole litters were randomly assigned to undergo maternal separation (MS) for 3 h/day from P2 to P14 while the remaining litters were left undisturbed (nMS). This resulted in 4 experimental groups: control (sacc + nMS), MS (sacc + MS), EtOH (EtOH + nMS) and EtOH + MS. Throughout development, EtOH-rats weighed less than control rats. However, subsequent maternal separation stress caused EtOH + MS-rats to weigh more than EtOH-rats. In adulthood both MS- and EtOH-rats were hyperactive but the combination produced activity levels similar to that of control rats. All treated animals (MS-, EtOH- and EtOH + MS-rats) demonstrated a negative affective state shown by increased number and duration of 22 kHz ultrasonic vocalizations compared to control rats. Prenatal-ethanol exposure increased the P-GSK3β/GSK3β ratio in the prefrontal cortex (PFC) and maternal separation decreased the P-GSK3β/GSK3β ratio in the dorsal hippocampus (DH) of adult rats. However, maternal separation stress decreased the effect of prenatal-ethanol exposure on the P-ERK/ERK ratio in the PFC and DH and reduced prenatal-ethanol-induced hyperactivity. Therefore, indicating a significant interaction between prenatal-ethanol exposure and early-life stress on behaviour and the brain and may implicate P-ERK1/2 signalling in exploratory behaviour.
Collapse
Affiliation(s)
- Patricia C Swart
- University of Cape Town, Faculty of Health Sciences, Department of Human Biology, Observatory, 7925 South Africa.
| | - Vivienne A Russell
- University of Cape Town, Faculty of Health Sciences, Department of Human Biology, Observatory, 7925 South Africa.
| | - Jacqueline J Dimatelis
- University of Cape Town, Faculty of Health Sciences, Department of Human Biology, Observatory, 7925 South Africa.
| |
Collapse
|
73
|
Chatterjee S, Mudher A. Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits. Front Neurosci 2018; 12:383. [PMID: 29950970 PMCID: PMC6008657 DOI: 10.3389/fnins.2018.00383] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM) are two of the most prevalent diseases in the elderly population worldwide. A growing body of epidemiological studies suggest that people with T2DM are at a higher risk of developing AD. Likewise, AD brains are less capable of glucose uptake from the surroundings resembling a condition of brain insulin resistance. Pathologically AD is characterized by extracellular plaques of Aβ and intracellular neurofibrillary tangles of hyperphosphorylated tau. T2DM, on the other hand is a metabolic disorder characterized by hyperglycemia and insulin resistance. In this review we have discussed how Insulin resistance in T2DM directly exacerbates Aβ and tau pathologies and elucidated the pathophysiological traits of synaptic dysfunction, inflammation, and autophagic impairments that are common to both diseases and indirectly impact Aβ and tau functions in the neurons. Elucidation of the underlying pathways that connect these two diseases will be immensely valuable for designing novel drug targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Chatterjee
- Centre of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Amritpal Mudher
- Centre of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
74
|
Fluoxetine Inhibits Natural Decay of Long-Term Memory via Akt/GSK-3β Signaling. Mol Neurobiol 2018; 55:7453-7462. [DOI: 10.1007/s12035-018-0919-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/21/2018] [Indexed: 01/23/2023]
|
75
|
Monaco SA, Ferguson BR, Gao WJ. Lithium Inhibits GSK3β and Augments GluN2A Receptor Expression in the Prefrontal Cortex. Front Cell Neurosci 2018; 12:16. [PMID: 29449801 PMCID: PMC5799274 DOI: 10.3389/fncel.2018.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) is a highly conserved serine/threonine kinase that has been implicated in both psychiatric and neurodegenerative diseases including schizophrenia, bipolar disorder, and Alzheimer's disease; therefore regulating its activity has become an important strategy for treatment of cognitive impairments in these disorders. This study examines the effects of lithium on GSK3β and its interaction with β-catenin and NMDA receptors within the prefrontal cortex. Lithium, a clinically relevant drug commonly prescribed as a mood stabilizer for psychiatric disorders, significantly increased levels of phosphorylated GSK3β serine 9, an inhibitory phosphorylation site, and decreased β-catenin ser33/37/thr41 phosphorylation in vitro, indicating GSK3β inhibition and reduced β-catenin degradation. GluN2A subunit levels were concurrently increased following lithium treatment. Similar alterations were also demonstrated in vivo; lithium administration increased GSK3β serine 9 phosphorylation and GluN2A levels, suggesting a reduced GSK3β activity and augmented GluN2A expression. Correspondingly, we observed that the amplitudes of evoked GluN2A-mediated excitatory postsynaptic currents in mPFC pyramidal neurons were significantly increased following lithium administration. Our data suggest that GSK3β activity negatively regulates GluN2A expression, likely by mediating upstream β-catenin phosphorylation, in prefrontal cortical neurons. Furthermore, our biochemical and electrophysiological experiments demonstrate that lithium mediates a specific increase in GluN2A subunit expression, ultimately augmenting GluN2A-mediated currents in the prefrontal cortex.
Collapse
Affiliation(s)
| | | | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
76
|
Nguyen T, Fan T, George SR, Perreault ML. Disparate Effects of Lithium and a GSK-3 Inhibitor on Neuronal Oscillatory Activity in Prefrontal Cortex and Hippocampus. Front Aging Neurosci 2018; 9:434. [PMID: 29375364 PMCID: PMC5770585 DOI: 10.3389/fnagi.2017.00434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) plays a critical role in cognitive dysfunction associated with Alzheimer’s disease (AD), yet the mechanism by which GSK-3 alters cognitive processes in other disorders, such as schizophrenia, remains unknown. In the present study, we demonstrated a role for GSK-3 in the direct regulation of neuronal oscillations in hippocampus (HIP) and prelimbic cortex (PL). A comparison of the GSK-3 inhibitors SB 216763 and lithium demonstrated disparate effects of the drugs on spatial memory and neural oscillatory activity in HIP and PL. SB 216763 administration improved spatial memory whereas lithium treatment had no effect. Analysis of neuronal local field potentials in anesthetized animals revealed that whereas both repeated SB 216763 (2.5 mg/kg) and lithium (100 mg/kg) induced a theta frequency spike in HIP at approximately 10 Hz, only SB 216763 treatment induced an overall increase in theta power (4–12 Hz) compared to vehicle. Acute administration of either drug suppressed slow (32–59 Hz) and fast (61–100 Hz) gamma power. In PL, both drugs induced an increase in theta power. Repeated SB 216763 increased HIP–PL coherence across all frequencies except delta, whereas lithium selectively suppressed delta coherence. These findings demonstrate that GSK-3 plays a direct role in the regulation of theta oscillations in regions critically involved in cognition, and highlight a potential mechanism by which GSK-3 may contribute to cognitive decline in disorders of cognitive dysfunction.
Collapse
Affiliation(s)
- Tuan Nguyen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Susan R George
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Melissa L Perreault
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
77
|
Yi JH, Baek SJ, Heo S, Park HJ, Kwon H, Lee S, Jung J, Park SJ, Kim BC, Lee YC, Ryu JH, Kim DH. Direct pharmacological Akt activation rescues Alzheimer's disease like memory impairments and aberrant synaptic plasticity. Neuropharmacology 2017; 128:282-292. [PMID: 29079294 DOI: 10.1016/j.neuropharm.2017.10.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/23/2017] [Accepted: 10/21/2017] [Indexed: 12/21/2022]
Abstract
Amyloid β (Aβ) is a key mediator for synaptic dysfunction and cognitive impairment implicated in Alzheimer's disease (AD). However, the precise mechanism of the toxic effect of Aβ is still not completely understood. Moreover, there is currently no treatment for AD. Protein kinase B (PKB, also termed Akt) is known to be aberrantly regulated in the AD brain. However, its potential function as a therapeutic target for AD-associated memory impairment has not been studied. Here, we examined the role of a direct Akt activator, SC79, in hippocampus-dependent memory impairments using Aβ-injected as well as 5XFAD AD model mice. Oligomeric Aβ injections into the 3rd ventricle caused concentration-dependent and time-dependent impairments in learning/memory and synaptic plasticity. Moreover, Aβ aberrantly regulated caspase-3, GSK-3β, and Akt signaling, which interact with each other in the hippocampus. Caspase-3 and GSK-3β inhibitor ameliorated memory impairments and synaptic deficits in Aβ-injected AD model mice. We also found that pharmacological activation of Akt rescued memory impairments and aberrant synaptic plasticity in both Aβ-treated and 5XFAD mice. These results suggest that Akt could be a therapeutic target for memory impairment observed in AD.
Collapse
Affiliation(s)
- Jee Hyun Yi
- School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Soo Ji Baek
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sunghoo Heo
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hye Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Seungheon Lee
- Department of Aquatic Biomedical Sciences, School of Marine Biomedical Science, College of Ocean Science, Jeju National University, Jeju, Republic of Korea
| | - Jiwook Jung
- Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University, Kyungsan, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Science, Kangwon National University, ChoonCheon, Republic of Korea
| | - Byung C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 1 Hoeki-dong, Dongdaemoon-Gu, Seoul, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoeki-dong, Dongdaemoon-Gu, Seoul, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
78
|
Cunningham LA, Newville J, Li L, Tapia P, Allan AM, Valenzuela CF. Prenatal Alcohol Exposure Leads to Enhanced Serine 9 Phosphorylation of Glycogen Synthase Kinase-3β (GSK-3β) in the Hippocampal Dentate Gyrus of Adult Mouse. Alcohol Clin Exp Res 2017; 41:1907-1916. [PMID: 28865114 DOI: 10.1111/acer.13489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/25/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of this study was to evaluate the expression and serine 9 phosphorylation of glycogen synthase kinase (GSK-3β) within the adult hippocampal dentate gyrus (DG) in a preclinical mouse model of fetal alcohol spectrum disorders. GSK-3β is a multifunctional kinase that modulates many hippocampal processes affected by gestational alcohol, including synaptic plasticity and adult neurogenesis. GSK-3β is a constitutively active kinase that is negatively regulated by phosphorylation at the serine 9 residue. METHODS We utilized a well-characterized limited access "drinking-in-the-dark" paradigm of prenatal alcohol exposure (PAE) and measured p(Ser9)GSK-3β and total GSK-3β within adult DG by Western blot analysis. In addition, we evaluated the expression pattern of both p(Ser9)GSK-3β and total GSK-3β within the adult hippocampal dentate of PAE and control mice using high-resolution confocal microscopy. RESULTS Our findings demonstrate a marked 2.0-fold elevation of p(Ser9)GSK-3β in PAE mice, concomitant with a more moderate 36% increase in total GSK-3β. This resulted in an approximate 63% increase in the p(Ser9)GSK-3β/GSK-3β ratio. Immunostaining revealed robust GSK-3β expression within Cornu Ammonis (CA) pyramidal neurons, hilar mossy cells, and a subset of GABAergic interneurons, with low levels of expression within hippocampal progenitors and dentate granule cells. CONCLUSIONS These findings suggest that PAE may lead to a long-term disruption of GSK-3β signaling within the DG, and implicate mossy cells, GABAergic interneurons, and CA primary neurons as major targets of this dysregulation.
Collapse
Affiliation(s)
- Lee Anna Cunningham
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jessie Newville
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Lu Li
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Phillip Tapia
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Andrea M Allan
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| | - C Fernando Valenzuela
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
79
|
Cortical Up states induce the selective weakening of subthreshold synaptic inputs. Nat Commun 2017; 8:665. [PMID: 28939859 PMCID: PMC5610171 DOI: 10.1038/s41467-017-00748-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 07/25/2017] [Indexed: 01/25/2023] Open
Abstract
Slow-wave sleep is thought to be important for retuning cortical synapses, but the cellular mechanisms remain unresolved. During slow-wave activity, cortical neurons display synchronized transitions between depolarized Up states and hyperpolarized Down states. Here, using recordings from LIII pyramidal neurons from acute slices of mouse medial entorhinal cortex, we find that subthreshold inputs arriving during the Up state undergo synaptic weakening. This does not reflect a process of global synaptic downscaling, as it is dependent on presynaptic spiking, with network state encoded in the synaptically evoked spine Ca2+ responses. Our data indicate that the induction of synaptic weakening is under postsynaptic control, as it can be prevented by correlated postsynaptic spiking activity, and depends on postsynaptic NMDA receptors and GSK3β activity. This provides a mechanism by which slow-wave activity might bias synapses towards weakening, while preserving the synaptic connections within active neuronal assemblies. Slow oscillations between cortical Up and Down states are a defining feature of deep sleep, but their function is not well understood. Here the authors study Up/Down states in acute slices of entorhinal cortex, and find that Up states promote the weakening of subthreshold synaptic inputs, while suprathreshold inputs are preserved or strengthened.
Collapse
|
80
|
Kim DH, Kang M, Kim CH, Huh YH, Cho IH, Ryu HH, Chung KH, Park CS, Rhee S, Lee YS, Song WK. SPIN90 Modulates Long-Term Depression and Behavioral Flexibility in the Hippocampus. Front Mol Neurosci 2017; 10:295. [PMID: 28979184 PMCID: PMC5611360 DOI: 10.3389/fnmol.2017.00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/01/2017] [Indexed: 12/23/2022] Open
Abstract
The importance of actin-binding proteins (ABPs) in the regulation of synapse morphology and plasticity has been well established. SH3 protein interacting with Nck, 90 kDa (SPIN90), an Nck-interacting protein highly expressed in synapses, is essential for actin remodeling and dendritic spine morphology. Synaptic targeting of SPIN90 to spine heads or dendritic shafts depends on its phosphorylation state, leading to blockage of cofilin-mediated actin depolymerization and spine shrinkage. However, the physiological role of SPIN90 in long-term plasticity, learning and memory are largely unknown. In this study, we demonstrate that Spin90-knockout (KO) mice exhibit substantial deficits in synaptic plasticity and behavioral flexibility. We found that loss of SPIN90 disrupted dendritic spine density in CA1 neurons of the hippocampus and significantly impaired long-term depression (LTD), leaving basal synaptic transmission and long-term potentiation (LTP) intact. These impairments were due in part to deficits in AMPA receptor endocytosis and its pre-requisites, GluA1 dephosphorylation and postsynaptic density (PSD) 95 phosphorylation, but also by an intrinsic activation of Akt-GSK3β signaling as a result of Spin90-KO. In accordance with these defects, mice lacking SPIN90 were found to carry significant deficits in object-recognition and behavioral flexibility, while learning ability was largely unaffected. Collectively, these findings demonstrate a novel modulatory role for SPIN90 in hippocampal LTD and behavioral flexibility.
Collapse
Affiliation(s)
- Dae Hwan Kim
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Minkyung Kang
- Department of Physiology, Department of Biomedical Sciences, Seoul National University College of MedicineSeoul, South Korea
| | - Chong-Hyun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and TechnologySeoul, South Korea
| | - Yun Hyun Huh
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - In Ha Cho
- Department of Biological Sciences, Dartmouth CollegeHanover, NH, United States
| | - Hyun-Hee Ryu
- Department of Physiology, Department of Biomedical Sciences, Seoul National University College of MedicineSeoul, South Korea.,Department of Life Science, Chung-Ang UniversitySeoul, South Korea
| | - Kyung Hwun Chung
- Electron Microscope Facility, Dental Research Institute, Seoul National UniversitySeoul, South Korea
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang UniversitySeoul, South Korea
| | - Yong-Seok Lee
- Department of Physiology, Department of Biomedical Sciences, Seoul National University College of MedicineSeoul, South Korea
| | - Woo Keun Song
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and TechnologyGwangju, South Korea
| |
Collapse
|
81
|
Zhao H, Liang B, Yu L, Xu Y. Anti-depressant-like effects of Jieyu chufan capsules in a mouse model of unpredictable chronic mild stress. Exp Ther Med 2017; 14:1086-1094. [PMID: 28810562 PMCID: PMC5525591 DOI: 10.3892/etm.2017.4601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Jieyu chufan (JYCF) is a well-known Chinese traditional medicine used for depression; however, the molecular mechanism underlying its anti-depressant action has remained elusive. In the present study, the anti-depressant effects of JYCF and the potential mechanisms were investigated in a mouse model. Five groups of 12 C57BL/6 mice each were used in the study, including a normal control group (NC group), a model control group (MC group) and three groups, which received different doses of JYCF (1.25, 2.5 and 5 g/kg) orally for 21 days (JYCF groups). The MC group and the three JYCF groups were subjected to 3 weeks of unpredictable chronic mild stress (UCMS) to induce depression-like behavior. All groups were subjected to a sucrose consumption test along with a forced swimming test to confirm depression-like behavior, an open-field test and an elevated plus maze test to confirm anxiety-like behavior, and a Morris water maze test to evaluate spatial learning and memory. In addition, synaptic density in the hippocampus was evaluated and western blot and immunostaining were used to analyze hippocampal expression of postsynaptic density protein-95 (PSD95), synaptophysin (Syn), cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), Akt and glycogen synthase kinase (GSK)-3β as well as their phosphorylated (p) versions. The results showed that JYCF (2.5 and 5 g/kg) alleviated depressive-like behaviors and increased synaptic density in UCMS mice. Moreover, JYCF upregulated the expression of PSD95, Syn and BDNF and increased phosphorylated Akt, CREB and GSK-3β in the hippocampus. These results suggested that JYCF exerts an anti-depressant-like activity in UCMS-induced mice, which is likely to be mediated by reversing the stress-induced disruption of BDNF and GSK-3β activity.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Nanjing Clinic Medicine Center for Neurological and Psychiatric Diseases, Nanjing, Jiangsu 210008, P.R. China
| | - Bingyu Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Nanjing Clinic Medicine Center for Neurological and Psychiatric Diseases, Nanjing, Jiangsu 210008, P.R. China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Nanjing Clinic Medicine Center for Neurological and Psychiatric Diseases, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
82
|
Inhibition of glycogen synthase kinase-3 by SB 216763 affects acquisition at lower doses than expression of amphetamine-conditioned place preference in rats. Behav Pharmacol 2017; 28:262-271. [DOI: 10.1097/fbp.0000000000000283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
83
|
Augustin H, McGourty K, Steinert JR, Cochemé HM, Adcott J, Cabecinha M, Vincent A, Halff EF, Kittler JT, Boucrot E, Partridge L. Myostatin-like proteins regulate synaptic function and neuronal morphology. Development 2017; 144:2445-2455. [PMID: 28533206 PMCID: PMC5536874 DOI: 10.1242/dev.152975] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022]
Abstract
Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. Summary: Myostatin-like proteins can modulate neuromuscular synapse strength as well as synaptogenesis beyond neuromuscular junctions, highlighting a key role for these proteins in synapse function and neuronal growth.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.,Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne D-50931, Germany
| | - Kieran McGourty
- Institute of Structural and Molecular Biology, University College London, Darwin Building Gower Street, London WC1E 6BT, UK
| | - Joern R Steinert
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Helena M Cochemé
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.,Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne D-50931, Germany.,MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, ICTEM Building, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Jennifer Adcott
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.,Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne D-50931, Germany
| | - Melissa Cabecinha
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Alec Vincent
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Els F Halff
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, Darwin Building Gower Street, London WC1E 6BT, UK
| | - Linda Partridge
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK .,Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne D-50931, Germany
| |
Collapse
|
84
|
Valvassori SS, Dal-Pont GC, Resende WR, Jornada LK, Peterle BR, Machado AG, Farias HR, de Souza CT, Carvalho AF, Quevedo J. Lithium and valproate act on the GSK-3β signaling pathway to reverse manic-like behavior in an animal model of mania induced by ouabain. Neuropharmacology 2017; 117:447-459. [DOI: 10.1016/j.neuropharm.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
|
85
|
Pardo M, Cheng Y, Velmeshev D, Magistri M, Eldar-Finkelman H, Martinez A, Faghihi MA, Jope RS, Beurel E. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice. JCI Insight 2017; 2:e91782. [PMID: 28352664 PMCID: PMC5358485 DOI: 10.1172/jci.insight.91782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA- or HDAC4 siRNA-induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1-/- mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets.
Collapse
Affiliation(s)
- Marta Pardo
- Department of Psychiatry and Behavioral Sciences.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yuyan Cheng
- Department of Psychiatry and Behavioral Sciences.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Martinez
- Centro de Investigaciones Biologicas-CSIC, Madrid, Spain
| | | | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
86
|
Onore C, Yang H, Van de Water J, Ashwood P. Dynamic Akt/mTOR Signaling in Children with Autism Spectrum Disorder. Front Pediatr 2017; 5:43. [PMID: 28361047 PMCID: PMC5350147 DOI: 10.3389/fped.2017.00043] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a behaviorally defined disorder affecting 1 in 68 children. Currently, there is no known cause for the majority of ASD cases nor are there physiological diagnostic tools or biomarkers to aid behavioral diagnosis. Whole-genome linkage studies, genome-wide association studies, copy number variation screening, and SNP analyses have identified several ASD candidate genes, but which vary greatly among individuals and family clusters, suggesting that a variety of genetic mutations may result in a common pathology or alter a common mechanistic pathway. The Akt/mammalian target of rapamycin (mTOR) pathway is involved in many cellular processes including synaptic plasticity and immune function that can alter neurodevelopment. In this study, we examined the activity of the Akt/mTOR pathway in cells isolated from children with ASD and typically developing controls. We observed higher activity of mTOR, extracellular receptor kinase, and p70S6 kinase and lower activity of glycogen synthase kinase 3 (GSK3)α and tuberin (TSC2) in cells from children with ASD. These data suggest a phosphorylation pattern indicative of higher activity in the Akt/mTOR pathway in children with general/idiopathic ASD and may suggest a common pathological pathway of interest for ASD.
Collapse
Affiliation(s)
- Charity Onore
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Houa Yang
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Judy Van de Water
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Paul Ashwood
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
87
|
Pallas-Bazarra N, Kastanauskaite A, Avila J, DeFelipe J, Llorens-Martín M. GSK-3β Overexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus. Front Neuroanat 2017; 11:18. [PMID: 28344548 PMCID: PMC5344922 DOI: 10.3389/fnana.2017.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased.
Collapse
Affiliation(s)
- Noemí Pallas-Bazarra
- Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de MadridMadrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasMadrid, Spain
| | - Asta Kastanauskaite
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasMadrid, Spain; Cajal Laboratory of Cortical Circuits, Centro de Tecnologá Biomédica, Universidad Politécnica de MadridMadrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de MadridMadrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasMadrid, Spain
| | - Javier DeFelipe
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasMadrid, Spain; Cajal Laboratory of Cortical Circuits, Centro de Tecnologá Biomédica, Universidad Politécnica de MadridMadrid, Spain; Cajal Institute - Consejo Superior de Investigaciones CientificasMadrid, Spain
| | - María Llorens-Martín
- Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de MadridMadrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasMadrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de MadridMadrid, Spain
| |
Collapse
|
88
|
Jope RS, Cheng Y, Lowell JA, Worthen RJ, Sitbon YH, Beurel E. Stressed and Inflamed, Can GSK3 Be Blamed? Trends Biochem Sci 2017; 42:180-192. [PMID: 27876551 PMCID: PMC5336482 DOI: 10.1016/j.tibs.2016.10.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
Psychological stress has a pervasive influence on our lives. In many cases adapting to stress strengthens organisms, but chronic or severe stress is usually harmful. One surprising outcome of psychological stress is the activation of an inflammatory response that resembles inflammation caused by infection or trauma. Excessive psychological stress and the consequential inflammation in the brain can increase susceptibility to psychiatric diseases, such as depression, and impair learning and memory, including in some patients with cognitive deficits. An emerging target to control detrimental outcomes of stress and inflammation is glycogen synthase kinase-3 (GSK3). GSK3 promotes inflammation, partly by regulating key transcription factors in the inflammation signaling pathway, and GSK3 can impair learning by promoting inflammation and by inhibiting long-term potentiation (LTP). Drugs inhibiting GSK3 may prove beneficial for controlling mood and cognitive impairments caused by excessive stress and the associated neuroinflammation.
Collapse
Affiliation(s)
- Richard S Jope
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Yuyan Cheng
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jeffrey A Lowell
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ryan J Worthen
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yoel H Sitbon
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
89
|
Gelfo F, Cutuli D, Nobili A, De Bartolo P, D’Amelio M, Petrosini L, Caltagirone C. Chronic Lithium Treatment in a Rat Model of Basal Forebrain Cholinergic Depletion: Effects on Memory Impairment and Neurodegeneration. J Alzheimers Dis 2017; 56:1505-1518. [DOI: 10.3233/jad-160892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systemic Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Annalisa Nobili
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Medicine, Medical School, Campus Bio-Medico University, Rome, Italy
| | - Paola De Bartolo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of TECOS, Guglielmo Marconi University, Rome, Italy
| | - Marcello D’Amelio
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Medicine, Medical School, Campus Bio-Medico University, Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Carlo Caltagirone
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systemic Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
90
|
Meunier CNJ, Chameau P, Fossier PM. Modulation of Synaptic Plasticity in the Cortex Needs to Understand All the Players. Front Synaptic Neurosci 2017; 9:2. [PMID: 28203201 PMCID: PMC5285384 DOI: 10.3389/fnsyn.2017.00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex (PFC) is involved in cognitive tasks such as working memory, decision making, risk assessment and regulation of attention. These functions performed by the PFC are supposed to rely on rhythmic electrical activity generated by neuronal network oscillations determined by a precise balance between excitation and inhibition balance (E/I balance) resulting from the coordinated activities of recurrent excitation and feedback and feedforward inhibition. Functional alterations in PFC functions have been associated with cognitive deficits in several pathologies such as major depression, anxiety and schizophrenia. These pathological situations are correlated with alterations of different neurotransmitter systems (i.e., serotonin (5-HT), dopamine (DA), acetylcholine…) that result in alterations of the E/I balance. The aim of this review article is to cover the basic aspects of the regulation of the E/I balance as well as to highlight the importance of the complementarity role of several neurotransmitters in the modulation of the plasticity of excitatory and inhibitory synapses. We illustrate our purpose by recent findings that demonstrate that 5-HT and DA cooperate to regulate the plasticity of excitatory and inhibitory synapses targeting layer 5 pyramidal neurons (L5PyNs) of the PFC and to fine tune the E/I balance. Using a method based on the decomposition of the synaptic conductance into its excitatory and inhibitory components, we show that concomitant activation of D1-like receptors (D1Rs) and 5-HT1ARs, through a modulation of NMDA receptors, favors long term potentiation (LTP) of both excitation and inhibition and consequently does not modify the E/I balance. We also demonstrate that activation of D2-receptors requires functional 5-HT1ARs to shift the E-I balance towards more inhibition and to favor long term depression (LTD) of excitatory synapses through the activation of glycogen synthase kinase 3β (GSK3β). This cooperation between different neurotransmitters is particularly relevant in view of pathological situations in which alterations of one neurotransmitter system will also have consequences on the regulation of synaptic efficacy by other neurotransmitters. This opens up new perspectives in the development of therapeutic strategies for the pharmacological treatment of neuronal disorders.
Collapse
Affiliation(s)
- Claire N J Meunier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| | - Pascal Chameau
- Swammerdam Institute for Life Sciences, Center for NeuroScience, University of Amsterdam Amsterdam, Netherlands
| | - Philippe M Fossier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| |
Collapse
|
91
|
Takamatsu G, Katagiri C, Tomoyuki T, Shimizu-Okabe C, Nakamura W, Nakamura-Higa M, Hayakawa T, Wakabayashi S, Kondo T, Takayama C, Matsushita M. Tescalcin is a potential target of class I histone deacetylase inhibitors in neurons. Biochem Biophys Res Commun 2016; 482:1327-1333. [PMID: 27939885 DOI: 10.1016/j.bbrc.2016.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
Class I histone deacetylase (HDAC) inhibitors are believed to have positive effects on neurite outgrowth, synaptic plasticity, and neurogenesis in adult brain. However, the downstream molecular targets of class I HDAC inhibitors in neurons are not clear. Although class I HDAC inhibitors are thought to broadly promote transcription of many neuronal genes through enhancement of histone acetylation, the affected gene set may include unidentified genes that are essential for neuronal survival and function. To identify novel genes that are targets of class I HDAC inhibitors, we used a microarray to screen transcripts from neuronal cultures and evaluated changes in protein and mRNA expression following treatment with four HDAC inhibitors. We identified tescalcin (Tesc) as the most strongly up-regulated gene following treatment with class I HDAC inhibitors in neurons. Moreover, hippocampal neurons overexpressing TESC showed a greater than 5-fold increase in the total length of neurites and number of branch points compared with controls. These findings highlight a potentially important role for TESC in mediating the neuroprotective effect of class I HDAC inhibitors. TESC may also be involved in the development of brain and neurodegenerative diseases through epigenetic mechanisms.
Collapse
Affiliation(s)
- Gakuya Takamatsu
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan; Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan; Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Tsumuraya Tomoyuki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Wakako Nakamura
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Mariko Nakamura-Higa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Tomoko Hayakawa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Shigeo Wakabayashi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, 569-8686 Osaka, Japan
| | - Tsuyoshi Kondo
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan.
| |
Collapse
|
92
|
Zarate CA, Machado-Vieira R. GSK-3: A key regulatory target for ketamine's rapid antidepressant effects mediated by enhanced AMPA to NMDA throughput. Bipolar Disord 2016; 18:702-705. [PMID: 27900801 PMCID: PMC5222739 DOI: 10.1111/bdi.12452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
93
|
Lack of GSK3β activation and modulation of synaptic plasticity by dopamine in 5-HT1A-receptor KO mice. Neuropharmacology 2016; 113:124-136. [PMID: 27678414 DOI: 10.1016/j.neuropharm.2016.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022]
Abstract
Psychiatric disorders are associated with excitation-inhibition (E-I) balance impairment in the prefrontal cortex. However, how the E-I balance is regulated is poorly known. The E-I balance of neuronal networks is linked to the action of numerous neuromodulators such as dopamine and 5-HT. We investigated the role of D2-receptors in tuning the E-I balance in a mouse model of anxiety, the 5-HT1A-receptor KO mice. We focused on synaptic plasticity of excitation and inhibition on layer 5 pyramidal neurons. We show that D2-receptor activation decreases the excitation and favors HFS-induced LTD of excitatory synapses via the activation of GSK3β. This effect is absent in 5-HT1A-receptor KO mice. Our data show that the fine control of excitatory transmission by GSK3β requires recruitment of D2-receptors and depends on the presence of 5-HT1A-receptors. In psychiatric disorders in which the number of 5-HT1A-receptors decreased, therapies should reconsider how serotonin and dopamine receptors interact and control neuronal network activity.
Collapse
|
94
|
Wu HF, Chen PS, Chen YJ, Lee CW, Chen IT, Lin HC. Alleviation of N-Methyl-D-Aspartate Receptor-Dependent Long-Term Depression via Regulation of the Glycogen Synthase Kinase-3β Pathway in the Amygdala of a Valproic Acid-Induced Animal Model of Autism. Mol Neurobiol 2016; 54:5264-5276. [PMID: 27578017 DOI: 10.1007/s12035-016-0074-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022]
Abstract
The amygdala plays crucial roles in socio-emotional behavior and cognition, both of which are abnormal in autism spectrum disorder (ASD). Valproic acid (VPA)-exposed rat offspring have demonstrated ASD phenotypes and amygdala excitatory/inhibitory imbalance. However, the role of glutamatergic synapses in this imbalance remains unclear. In this study, we used a VPA-induced ASD-like model to assess glutamatergic synapse-dependent long-term depression (LTD) and depotentiation (DPT) in the amygdala. We first confirmed that the VPA-exposed offspring exhibited sociability deficits, anxiety, depression-like behavior, and abnormal nociception thresholds. Then, electrophysiological examination showed a significantly decreased paired-pulse ratio in the amygdala. In addition, both NMDA-dependent LTD and DPT were absent from the amygdala. Furthermore, we found that the levels of glycogen synthase kinase3β (GSK-3β) phosphorylation and β-catenin were significantly higher in the amygdala of the experimental animals than in the controls. Local infusion of phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin into the amygdala reversed the increased phosphorylation level and impaired social behavior. Taken together, the results suggested that NMDA receptor-related synaptic plasticity is dysfunctional in VPA-exposed offspring. In addition, GSK-3β in the amygdala is critical for synaptic plasticity at the glutamatergic synapses and is related to social behavior. Its role in the underlying mechanism of ASD merits further investigation.
Collapse
Affiliation(s)
- Han-Fang Wu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chi-Wei Lee
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - I-Tuan Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
95
|
Whitehead G, Regan P, Whitcomb DJ, Cho K. Ca 2+-permeable AMPA receptor: A new perspective on amyloid-beta mediated pathophysiology of Alzheimer's disease. Neuropharmacology 2016; 112:221-227. [PMID: 27561971 DOI: 10.1016/j.neuropharm.2016.08.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 12/24/2022]
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the primary conduits of excitatory synaptic transmission. AMPARs are predominantly Ca2+-impermeable in the matured excitatory synapse, except under certain circumstances. Growing evidence implicates the Ca2+ permeability of AMPARs in the regulation of long-term synaptic plasticity and in the pathophysiology of several neurological disorders. Therefore, the Ca2+ conductance of AMPARs may have both physiological and pathological roles at synapses. However, our understanding of the role of Ca2+ permeable AMPARs (CP-AMPARs) in Alzheimer's disease is limited. Here we discuss insights into the potential CP-AMPAR mediated pathophysiology of Alzheimer's disease, including: 1. Ca2+-mediated aberrant regulation of synapse weakening mechanisms, and 2. neuronal network dysfunction in the brain. Consideration of CP-AMPARs as primary drivers of pathophysiology could help in understanding synaptopathologies, and highlights the potential of CP-AMPARs as therapeutic targets in Alzheimer's disease. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Garry Whitehead
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Philip Regan
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK; Centre for Synaptic Plasticity, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK; Centre for Synaptic Plasticity, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK.
| |
Collapse
|
96
|
Jeon SJ, Lee HJ, Lee HE, Park SJ, Gwon Y, Kim H, Zhang J, Shin CY, Kim DH, Ryu JH. Oleanolic acid ameliorates cognitive dysfunction caused by cholinergic blockade via TrkB-dependent BDNF signaling. Neuropharmacology 2016; 113:100-109. [PMID: 27470063 DOI: 10.1016/j.neuropharm.2016.07.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 12/13/2022]
Abstract
Oleanolic acid is a naturally occurring triterpenoid and is widely present in food and medicinal plants. To examine the effect of oleanolic acid on memory deficits, we employed a cholinergic blockade-induced cognitive deficit mouse model. A single administration of oleanolic acid significantly increased the latency on the passive avoidance task and affected the alternation behavior on the Y-maze task and the exploration time on the novel object recognition task, indicating that oleanolic acid reverses the cognitive impairment induced by scopolamine. In accordance with previous reports, oleanolic acid enhanced extracellular-signal-regulated kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB) phosphorylation and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Interestingly, ameliorating effect of oleanolic acid on scopolamine-induced memory impairment was abolished by N2-(2-{[(2-oxoazepan-3-yl)amino]carbonyl}phenyl)benzo[b]thiophene-2-carboxamide (ANA-12), a potent and specific inhibitor of tropomyosin receptor kinase B (TrkB), in the passive avoidance task. Similarly, oleanolic acid significantly evoked long-term potentiation in a dose-dependent manner, which was diminished by ANA-12 treatment as shown in the electrophysiology study. Together, these results imply that oleanolic acid ameliorates scopolamine-induced memory impairment by modulating the BDNF-ERK1/2-CREB pathway through TrkB activation in mice, suggesting that oleanolic acid would be a potential therapeutic agent for the treatment of cognitive deficits.
Collapse
Affiliation(s)
- Se Jin Jeon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hong Ju Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 604-714, Republic of Korea
| | - Hyung Eun Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Se Jin Park
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yubeen Gwon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Haneul Kim
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jiabao Zhang
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Chan Young Shin
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 143-701, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 604-714, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 604-714, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
97
|
Chami B, Steel AJ, De La Monte SM, Sutherland GT. The rise and fall of insulin signaling in Alzheimer's disease. Metab Brain Dis 2016; 31:497-515. [PMID: 26883429 DOI: 10.1007/s11011-016-9806-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/03/2016] [Indexed: 02/06/2023]
Abstract
The prevalence of both diabetes and Alzheimer's disease (AD) are reaching epidemic proportions worldwide. Alarmingly, diabetes is also a risk factor for Alzheimer's disease. The AD brain is characterised by the accumulation of peptides called Aβ as plaques in the neuropil and hyperphosphorylated tau protein in the form of neurofibrillary tangles within neurons. How diabetes confers risk is unknown but a simple linear relationship has been proposed whereby the hyperinsulinemia associated with type 2 diabetes leads to decreased insulin signaling in the brain, with downregulation of the PI3K/AKT signalling pathway and its inhibition of the major tau kinase, glycogen synthase kinase 3β. The earliest studies of post mortem AD brain tissue largely confirmed this cascade of events but subsequent studies have generally found either an upregulation of AKT activity, or that the relationship between insulin signaling and AD is independent of glycogen synthase kinase 3β altogether. Given the lack of success of beta-amyloid-reducing therapies in clinical trials, there is intense interest in finding alternative or adjunctive therapeutic targets for AD. Insulin signaling is a neuroprotective pathway and represents an attractive therapeutic option. However, this incredibly complex signaling pathway is not fully understood in the human brain and particularly in the context of AD. Here, we review the ups and downs of the research efforts aimed at understanding how diabetes modifies AD risk.
Collapse
Affiliation(s)
- B Chami
- Redox Biology, The University of Sydney, Sydney, NSW,, 2006, Australia
| | - A J Steel
- Neuropathology Group, Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - S M De La Monte
- Department of Neurology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
- Department of Neurosurgery, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pathology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Greg T Sutherland
- Neuropathology Group, Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
98
|
Pen Y, Borovok N, Reichenstein M, Sheinin A, Michaelevski I. Membrane-tethered AKT kinase regulates basal synaptic transmission and early phase LTP expression by modulation of post-synaptic AMPA receptor level. Hippocampus 2016; 26:1149-67. [PMID: 27068236 DOI: 10.1002/hipo.22597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 01/17/2023]
Abstract
The serine/threonine kinase AKT/PKB plays a fundamental role in a wide variety of neuronal functions, including neuronal cell development, axonal growth, and synaptic plasticity. Multiple evidence link AKT signaling pathways to regulation of late phase long-term synaptic plasticity, synaptogenesis, and spinogenesis, as well as long-term memory formation. Nevertheless, the downstream effectors mediating the effects of AKT on early phase long-term potentiation (eLTP) are currently unknown. Here we report that using different regimes of pharmacological activation and inhibition of AKT activity in acute hippocampal slices, we found that AKT regulates the post-synaptic expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) receptors affecting solely the expression of eLTP, with no effect on its induction and maintenance. We further show that both maintenance of basal synaptic activity and expression of eLTP require plasma membrane tethering by activated AKT and that basal synaptic activity may be regulated via the direct effects of AKT1 on the expression level of post-synaptic AMPA receptors bypassing the canonical AKT signaling. Finally, we establish that eLTP expression requires the involvement of both the canonical AKT signaling pathways and the direct effect of AKT1 on AMPA receptor activity/expression in the post-synaptic membrane. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Y Pen
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv, Israel
| | - N Borovok
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv, Israel
| | - M Reichenstein
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv, Israel
| | - A Sheinin
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - I Michaelevski
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
99
|
Costemale-Lacoste JF, Guilloux JP, Gaillard R. The role of GSK-3 in treatment-resistant depression and links with the pharmacological effects of lithium and ketamine: A review of the literature. Encephale 2016; 42:156-64. [PMID: 26995153 DOI: 10.1016/j.encep.2016.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/27/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Since the discovery of antidepressants, new treatments have emerged with fewer side effects but no greater efficacy. Glycogen synthase kinase 3 β (GSK-3β), a kinase known for its activity on glycogen synthesis, has in the last few years raised growing interest in biological psychiatry. Several efficient treatments in major depression have an inhibitory effect on this kinase, which could be targeted in new mood disorder treatments. METHODS The aim of this review is to summarize findings concerning the intracellular pharmacologic effects of GSK-3β inhibitors on mood. After a brief description of the intracellular transduction pathways implicated in both GSK-3β and mood disorders, we reviewed the results demonstrating GSK-3β involvement in the effects of lithium and ketamine. RESULTS GSK-3β can be inhibited through several mechanisms such as serine phosphorylation or binding in a proteic scaffold and others. Its inhibition is implicated in numerous cellular pathways of interest involved in neuronal growth and architecture, cell survival, neurogenesis or synaptic plasticity. This inhibition appears to be both efficient and sufficient in improving mood in animal models. In human beings, several levels of evidence show GSK-3β inhibition with antidepressant use. Crucially, strong inhibition has been shown with lithium via the proteic scaffold PP2A/β-arrestin/AKT, and with the rapid antidepressant effect of ketamine via p70S6K. CONCLUSION Our review focuses on mechanisms whereby the GSK-3β pathway has a part in the antidepressant effect of lithium and ketamine. This article highlights the importance of translational research from cell and animal models to the clinical setting in order to develop innovative therapeutic targets.
Collapse
Affiliation(s)
- J F Costemale-Lacoste
- Inserm U1178, équipe « Dépression et antidépresseurs », CESP, université Paris-Sud, 94275 Le Kremlin-Bicêtre, France; Service de psychiatrie de l'adulte, centre hospitalier universitaire Bicêtre, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre, France.
| | - J P Guilloux
- Inserm U1178, équipe « Dépression et antidépresseurs », CESP, université Paris-Sud, 94275 Le Kremlin-Bicêtre, France; EA3544, faculté de pharmacie, université Paris-Sud, 92296 Châtenay-Malabry, France
| | - R Gaillard
- Laboratoire de physiopathologie des maladies psychiatriques, centre de psychiatrie et neurosciences U894, université Paris Descartes, Sorbonne Paris Cité, Paris, France; Centre hospitalier Sainte-Anne, Paris, France
| |
Collapse
|
100
|
Dell'Osso L, Del Grande C, Gesi C, Carmassi C, Musetti L. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatr Dis Treat 2016; 12:1687-703. [PMID: 27468233 PMCID: PMC4946830 DOI: 10.2147/ndt.s106479] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence highlights bipolar disorder as being associated with impaired neurogenesis, cellular plasticity, and resiliency, as well as with cell atrophy or loss in specific brain regions. This has led most recent research to focus on the possible neuroprotective effects of medications, and particularly interesting findings have emerged for lithium. A growing body of evidence from preclinical in vitro and in vivo studies has in fact documented its neuroprotective effects from different insults acting on cellular signaling pathways, both preventing apoptosis and increasing neurotrophins and cell-survival molecules. Furthermore, positive effects of lithium on neurogenesis, brain remodeling, angiogenesis, mesenchymal stem cells functioning, and inflammation have been revealed, with a key role played through the inhibition of the glycogen synthase kinase-3, a serine/threonine kinase implicated in the pathogenesis of many neuropsychiatric disorders. These recent evidences suggest the potential utility of lithium in the treatment of neurodegenerative diseases, neurodevelopmental disorders, and hypoxic-ischemic/traumatic brain injury, with positive results at even lower lithium doses than those traditionally considered to be antimanic. The aim of this review is to briefly summarize the potential benefits of lithium salts on neuroprotection and neuroregeneration, emphasizing preclinical and clinical evidence suggesting new therapeutic potentials of this drug beyond its mood stabilizing properties.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Grande
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Camilla Gesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Musetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|