99951
|
Hillman EBM, Rijpkema S, Carson D, Arasaradnam RP, Wellington EMH, Amos GCA. Manipulating the Microbiome: An Alternative Treatment for Bile Acid Diarrhoea. Microbiology Research 2021; 12:335-53. [DOI: 10.3390/microbiolres12020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bile acid diarrhoea (BAD) is a widespread gastrointestinal disease that is often misdiagnosed as irritable bowel syndrome and is estimated to affect 1% of the United Kingdom (UK) population alone. BAD is associated with excessive bile acid synthesis secondary to a gastrointestinal or idiopathic disorder (also known as primary BAD). Current licensed treatment in the UK has undesirable effects and has been the same since BAD was first discovered in the 1960s. Bacteria are essential in transforming primary bile acids into secondary bile acids. The profile of an individual’s bile acid pool is central in bile acid homeostasis as bile acids regulate their own synthesis. Therefore, microbiome dysbiosis incurred through changes in diet, stress levels and the introduction of antibiotics may contribute to or be the cause of primary BAD. This literature review focuses on primary BAD, providing an overview of bile acid metabolism, the role of the human gut microbiome in BAD and the potential options for therapeutic intervention in primary BAD through manipulation of the microbiome.
Collapse
|
99952
|
Granato DC, Neves LX, Trino LD, Carnielli CM, Lopes AFB, Yokoo S, Pauletti BA, Domingues RR, Sá JO, Persinoti G, Paixão DAA, Rivera C, de Sá Patroni FM, Tommazetto G, Santos-Silva AR, Lopes MA, de Castro G, Brandão TB, Prado-Ribeiro AC, Squina FM, Telles GP, Paes Leme AF. Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients. Biochim Biophys Acta Proteins Proteom 2021; 1869:140659. [PMID: 33839314 DOI: 10.1016/j.bbapap.2021.140659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Saliva is a biofluid that maintains the health of oral tissues and the homeostasis of oral microbiota. Studies have demonstrated that Oral squamous cell carcinoma (OSCC) patients have different salivary microbiota than healthy individuals. However, the relationship between these microbial differences and clinicopathological outcomes is still far from conclusive. Herein, we investigate the capability of using metagenomic and metaproteomic saliva profiles to distinguish between Control (C), OSCC without active lesion (L0), and OSCC with active lesion (L1) patients. The results show that there are significantly distinct taxonomies and functional changes in L1 patients compared to C and L0 patients, suggesting compositional modulation of the oral microbiome, as the relative abundances of Centipeda, Veillonella, and Gemella suggested by metagenomics are correlated with tumor size, clinical stage, and active lesion. Metagenomics results also demonstrated that poor overall patient survival is associated with a higher relative abundance of Stenophotromonas, Staphylococcus, Centipeda, Selenomonas, Alloscordovia, and Acitenobacter. Finally, compositional and functional differences in the saliva content by metaproteomics analysis can distinguish healthy individuals from OSCC patients. In summary, our study suggests that oral microbiota and their protein abundance have potential diagnosis and prognosis value for oral cancer patients. Further studies are necessary to understand the role of uniquely detected metaproteins in the microbiota of healthy and OSCC patients as well as the crosstalk between saliva host proteins and the oral microbiome present in OSCC.
Collapse
Affiliation(s)
- Daniela C Granato
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Leandro X Neves
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Luciana D Trino
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | | | - Ariane F B Lopes
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Sami Yokoo
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Bianca A Pauletti
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Romênia R Domingues
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Jamile O Sá
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Gabriella Persinoti
- Laboratório Nacional de Biorrenováveis, LNBr, CNPEM, Campinas, São Paulo, Brazil
| | - Douglas A A Paixão
- Laboratório Nacional de Biorrenováveis, LNBr, CNPEM, Campinas, São Paulo, Brazil
| | - César Rivera
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Fabio M de Sá Patroni
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Geizecler Tommazetto
- Department of Biological and Chemical Engineering (BCE), Aarhus University, 82000 Aarhus, Denmark
| | - Alan R Santos-Silva
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Márcio A Lopes
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Gilberto de Castro
- Oncologia Clínica, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thaís B Brandão
- Instituto do Câncer do Estado de São Paulo, Octavio Frias de Oliveira, São Paulo, Brazil
| | | | - Fabio M Squina
- Universidade de Sorocaba, Departamento de Processos Tecnológicos e Ambientais, São Paulo, Brazil
| | - Guilherme P Telles
- Universidade de Campinas, Instituto de Computação, Campinas, São Paulo, Brazil
| | - Adriana F Paes Leme
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil.
| |
Collapse
|
99953
|
Karle W, Becker S, Stenzel P, Knosalla C, Siegel G, Baum O, Zakrzewicz A, Berkholz J. Promyelocytic leukemia protein promotes the phenotypic switch of smooth muscle cells in atherosclerotic plaques of human coronary arteries. Clin Sci (Lond) 2021; 135:887-905. [PMID: 33764440 DOI: 10.1042/CS20201399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
Promyelocytic leukemia protein (PML) is a constitutive component of PML nuclear bodies (PML-NBs), which function as stress-regulated SUMOylation factories. Since PML can also act as a regulator of the inflammatory and fibroproliferative responses characteristic of atherosclerosis, we investigated whether PML is implicated in this disease. Immunoblotting, ELISA and immunohistochemistry showed a stronger expression of PML in segments of human atherosclerotic coronary arteries and sections compared with non-atherosclerotic ones. In particular, PML was concentrated in PML-NBs from α-smooth muscle actin (α-SMA)-immunoreactive cells in plaque areas. To identify possible functional consequences of PML-accumulation in this cell type, differentiated human coronary artery smooth muscle cells (dHCASMCs) were transfected with a vector containing the intact PML-gene. These PML-transfected dHCASMCs showed higher levels of small ubiquitin-like modifier (SUMO)-1-dependent SUMOylated proteins, but lower levels of markers for smooth muscle cell (SMC) differentiation and revealed more proliferation and migration activities than dHCASMCs transfected with the vector lacking a specific gene insert or with the vector containing a mutated PML-gene coding for a PML-form without SUMOylation activity. When dHCASMCs were incubated with different cytokines, higher PML-levels were observed only after interferon γ (IFN-γ) stimulation, while the expression of differentiation markers was lower. However, these phenotypic changes were not observed in dHCASMCs treated with small interfering RNA (siRNA) suppressing PML-expression prior to IFN-γ stimulation. Taken together, our results imply that PML is a previously unknown functional factor in the molecular cascades associated with the pathogenesis of atherosclerosis and is positioned in vascular SMCs (VSMCs) between upstream IFN-γ activation and downstream SUMOylation.
Collapse
|
99954
|
Dwaib HS, AlZaim I, Eid AH, Obeid O, El-Yazbi AF. Modulatory Effect of Intermittent Fasting on Adipose Tissue Inflammation: Amelioration of Cardiovascular Dysfunction in Early Metabolic Impairment. Front Pharmacol 2021; 12:626313. [PMID: 33897419 PMCID: PMC8062864 DOI: 10.3389/fphar.2021.626313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiometabolic syndrome (CMS) is a cluster of maladaptive cardiovascular, renal, thrombotic, inflammatory, and metabolic disorders. It confers a high risk of cardiovascular mortality and morbidity. CMS is triggered by major shifts in lifestyle and dietary habits with increased consumption of refined, calorie-dense diets. Evidence indicates that diet-induced CMS is linked to Adipose tissue (AT) inflammation. This led to the proposal that adipose inflammation may be involved in metabolic derangements, such as insulin resistance and poor glycemic control, as well as the contribution to the inflammatory process predisposing patients to increased cardiovascular risk. Therefore, in the absence of direct pharmacological interventions for the subclinical phase of CMS, time restricted feeding regimens were anticipated to alleviate early metabolic damage and subsequent comorbidities. These regimens, referred to as intermittent fasting (IF), showed a strong positive impact on the metabolic state of obese and non-obese human subjects and animal models, positive AT remodeling in face of overnutrition and high fat diet (HFD) consumption, and improved CV outcomes. Here, we summarize the available evidence on the role of adipose inflammation in triggering cardiovascular impairment in the context of diet induced CMS with an emphasis on the involvement of perivascular adipose tissue. As well, we propose some possible molecular pathways linking intermittent fasting to the ameliorative effect on adipose inflammation and cardiovascular dysfunction under such circumstances. We highlight a number of targets, whose function changes in perivascular adipose tissue inflammation and could be modified by intermittent fasting acting as a novel approach to ameliorate the inflammatory status.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Omar Obeid
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Faculty of Pharmacy, Al-Alamein International University, Alamein, Egypt
| |
Collapse
|
99955
|
Abstract
The ongoing pandemic caused by the novel coronavirus SARS-CoV-2 has disrupted the global economy and strained healthcare systems to their limits. After the virus first emerged in late 2019, the first intervention that demonstrated significant reductions in mortality for severe COVID-19 in large-scale trials was corticosteroids. Additional options that may reduce the burden on the healthcare system by reducing the number of patients requiring intensive care unit support are desperately needed, yet no therapy has conclusively established benefit in randomized studies for the management of moderate or mild cases of disease. Severe COVID-19 disease is characterized by a respiratory distress syndrome accompanied by elevated levels of several systemic cytokines, in a profile that shares several features with known inflammatory pathologies such as hemophagocytic lymphohistiocytosis and cytokine release syndrome secondary to chimeric antigen receptor (CAR) T cell therapy. Based on these observations, modulation of inflammatory cytokines, particularly interleukin (IL)-6, was proposed as a strategy to mitigate severe disease. Despite encouraging recoveries with anti-IL-6 agents, especially tocilizumab from single-arm studies, early randomized trials returned mixed results in terms of clinical benefit with these interventions. Later, larger trials such as RECOVERY and REMAP-CAP, however, are establishing anti-IL-6 in combination with steroids as a potential option for hypoxic patients with evidence of hyperinflammation. We propose that a positive feedback loop primarily mediated by macrophages and monocytes initiates the inflammatory cascade in severe COVID-19, and thus optimal benefit with anti-IL-6 therapies may require intervention during a finite window of opportunity at the outset of hyperinflammation but before fulminant disease causes irreversible tissue damage-as defined clinically by C reactive protein levels higher than 75 mg/L.
Collapse
Affiliation(s)
- Paolo Antonio Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Binqing Fu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center; Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center; Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
99956
|
Yoshida N, Miyoshi H, Ohshima K. Clinical Applications of Genomic Alterations in ATLL: Predictive Markers and Therapeutic Targets. Cancers (Basel) 2021; 13:1801. [PMID: 33918793 DOI: 10.3390/cancers13081801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary In this review paper, we aim to summarize recent findings of genomic alterations found in adult T-cell leukemia/lymphoma (ATLL), which is an incurable disease induced by a virus; human T-cell leukemia virus type 1 (HTLV-1). Genomic alterations of ATLL have been comprehensively analyzed and the identified alterations and HTLV-1 infection synergistically act for ATLL development. As HTLV-1 is an endemic disease, ATLL frequently occurs in the endemic areas. Current clinicogenomic analyses suggest the existence of regional difference in ATLL pathophysiology. From a clinical perspective, several studies identified alterations that act as predictive markers and that a part of the alterations can be targetable in ATLL. The alterations can be leveraged to improve ATLL prognosis. Abstract Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell lymphoma (PTCL) caused by human T-cell leukemia virus type 1 (HTLV-1). Recent comprehensive genomic analyses have revealed the genomic landscape. One of the important findings of genomic alterations in ATLL is that almost all alterations are subclonal, suggesting that therapeutic strategies targeting a genomic alteration will result in partial effects. Among the identified alterations, genes involved in T-cell receptor signaling and immune escape mechanisms, such as PLCG1, CARD11, and PD-L1 (also known as CD274), are characteristic of ATLL alterations. From a geographic perspective, ATLL patients in Caribbean islands tend to be younger than those in Japan and the landscape differs between the two areas. Additionally, young Japanese ATLL patients frequently have CD28 fusions, compared with unselected Japanese cases. From a clinical perspective, PD-L1 amplification is an independent prognostic factor among every subtype of ATLL case. Recently, genomic analysis using deep sequencing identified a pre-ATLL clone with ATLL-common mutations in HTLV-1 carriers before development, indicating that genomic analysis can stratify cases based on the risks of development and mortality. In addition to genomic alterations, targetable super-enhancers have been identified in ATLL. These data can be leveraged to improve the prognosis of ATLL.
Collapse
|
99957
|
Thiel BA, Worodria W, Nalukwago S, Nsereko M, Sanyu I, Rejani L, Zawedde J, Canaday DH, Stein CM, Chervenak KA, Malone LL, Kiyemba R, Silver RF, Johnson JL, Mayanja-Kizza H, Boom WH. Immune cells in bronchoalveolar lavage fluid of Ugandan adults who resist versus those who develop latent Mycobacterium tuberculosis infection. PLoS One 2021; 16:e0249477. [PMID: 33836031 PMCID: PMC8034721 DOI: 10.1371/journal.pone.0249477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022] Open
Abstract
Background The search for immune correlates of protection against Mycobacterium tuberculosis (MTB) infection in humans is limited by the focus on peripheral blood measures. Bronchoalveolar lavage (BAL) can safely be done and provides insight into cellular function in the lung where infection is first established. In this study, blood and lung samples were assayed to determine if heavily MTB exposed persons who resist development of latent MTB infection (RSTR) vs those who develop latent MTB infection (LTBI), differ in the make-up of resident BAL innate and adaptive immune cells. Methods Bronchoscopy was performed on 21 healthy long-term Ugandan RSTR and 25 LTBI participants. Immune cell distributions in BAL and peripheral blood were compared by differential cell counting and flow cytometry. Results The bronchoscopy procedure was well tolerated with few adverse reactions. Differential macrophage and lymphocyte frequencies in BAL differed between RSTR and LTBI. When corrected for age, this difference lost statistical significance. BAL CD4+ and CD8+ T cells were almost entirely composed of effector memory T cells in contrast to PBMC, and did not differ between RSTR and LTBI. BAL NKT, γδ T cells and NK cells also did not differ between RTSR and LTBI participants. There was a marginally significant increase (p = 0.034) in CD8 T effector memory cells re-expressing CD45RA (TEMRA) in PBMC of LTBI vs RSTR participants. Conclusion This observational case-control study comparing unstimulated BAL from RSTR vs LTBI, did not find evidence of large differences in the distribution of baseline BAL immune cells. PBMC TEMRA cell percentage was higher in LTBI relative to RSTR suggesting a role in the maintenance of latent MTB infection. Functional immune studies are required to determine if and how RSTR and LTBI BAL immune cells differ in response to MTB.
Collapse
Affiliation(s)
- Bonnie A. Thiel
- Tuberculosis Research Unit and Division of Infectious Diseases, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
- * E-mail:
| | - William Worodria
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - Sophie Nalukwago
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - Mary Nsereko
- Tuberculosis Research Unit and Division of Infectious Diseases, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - Ingvar Sanyu
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - Lalitha Rejani
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - Josephine Zawedde
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - David H. Canaday
- Tuberculosis Research Unit and Division of Infectious Diseases, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Catherine M. Stein
- Tuberculosis Research Unit and Division of Infectious Diseases, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - Keith A. Chervenak
- Tuberculosis Research Unit and Division of Infectious Diseases, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - LaShaunda L. Malone
- Tuberculosis Research Unit and Division of Infectious Diseases, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - Ronald Kiyemba
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - Richard F. Silver
- Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center and Case Western Reserve University, Cleveland, Ohio, United States of America
| | - John L. Johnson
- Tuberculosis Research Unit and Division of Infectious Diseases, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Tuberculosis Research Unit and Division of Infectious Diseases, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| | - W. Henry Boom
- Tuberculosis Research Unit and Division of Infectious Diseases, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Uganda-Case Western Reserve University Research Collaboration, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda
| |
Collapse
|
99958
|
Wei J, Montalvo-Ortiz W, Yu L, Krasco A, Ebstein S, Cortez C, Lowy I, Murphy AJ, Sleeman MA, Skokos D. Sequence of αPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci Immunol 2021; 6:6/58/eabg0117. [PMID: 33837124 DOI: 10.1126/sciimmunol.abg0117] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Although radiotherapy has been used for over a century to locally control tumor growth, alone it rarely induces an abscopal response or systemic antitumor immunity capable of inhibiting distal tumors outside of the irradiation field. Results from recent studies suggest that combining immune checkpoint blockades to radiotherapy may enhance abscopal activity. However, the treatment conditions and underlying immune mechanisms that consistently drive an abscopal response during radiation therapy combinations remain unknown. Here, we analyzed the antitumor responses at primary and distal tumor sites, demonstrating that the timing of αPD-1 antibody administration relative to radiotherapy determined the potency of the induced abscopal response. Blockade of the PD-1 pathway after local tumor irradiation resulted in the expansion of polyfunctional intratumoral CD8+ T cells, a decrease in intratumoral dysfunctional CD8+ T cells, expansion of reprogrammable CD8+ T cells, and induction of potent abscopal responses. However, administration of αPD-1 before irradiation almost completely abrogated systemic immunity, which associated with increased radiosensitivity and death of CD8+ T cells. The subsequent reduction of polyfunctional effector CD8+ T cells at the irradiated tumor site generated a suboptimal systemic antitumor response and the loss of abscopal responses. Therefore, this report maximizes the potential synergy between radiotherapy and αPD-1 immunotherapy, information that will benefit clinical combinations of radiotherapy and immune checkpoint blockade.
Collapse
Affiliation(s)
- Joyce Wei
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Welby Montalvo-Ortiz
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lola Yu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Amanda Krasco
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Sarah Ebstein
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Czrina Cortez
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dimitris Skokos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| |
Collapse
|
99959
|
Ma J, Ma L, Yang M, Wu W, Feng W, Chen Z. The Function of the PRRSV-Host Interactions and Their Effects on Viral Replication and Propagation in Antiviral Strategies. Vaccines (Basel) 2021; 9:364. [PMID: 33918746 DOI: 10.3390/vaccines9040364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) affects the global swine industry and causes disastrous economic losses each year. The genome of PRRSV is an enveloped single-stranded positive-sense RNA of approximately 15 kb. The PRRSV replicates primarily in alveolar macrophages of pig lungs and lymphatic organs and causes reproductive problems in sows and respiratory symptoms in piglets. To date, studies on how PRRSV survives in the host, the host immune response against viral infections, and pathogenesis, have been reported. PRRSV vaccines have been developed, including inactive virus, modified live virus, attenuated live vaccine, DNA vaccine, and immune adjuvant vaccines. However, there are certain problems with the durability and effectiveness of the licensed vaccines. Moreover, the high variability and fast-evolving populations of this RNA virus challenge the design of PRRSV vaccines, and thus effective vaccines against PRRSV have not been developed successfully. As is well known, viruses interact with the host to escape the host’s immune response and then replicate and propagate in the host, which is the key to virus survival. Here, we review the complex network and the mechanism of PRRSV–host interactions in the processes of virus infection. It is critical to develop novel antiviral strategies against PRRSV by studying these host–virus interactions and structures to better understand the molecular mechanisms of PRRSV immune escape.
Collapse
|
99960
|
Gu Y, Wu X, Zhang J, Fang Y, Pan Y, Shu Y, Ma P. The evolving landscape of N 6-methyladenosine modification in the tumor microenvironment. Mol Ther 2021; 29:1703-1715. [PMID: 33839323 DOI: 10.1016/j.ymthe.2021.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME), controlled by intrinsic mechanisms of carcinogenesis and epigenetic modifications, has, in recent years, become a heavily researched topic. The TME can be described in terms of hypoxia, metabolic dysregulation, immune escape, and chronic inflammation. RNA methylation, an epigenetic modification, has recently been found to have a pivotal role in shaping the TME. The N6-methylation of adenosine (m6A) modification is the most common type of RNA methylation that occurs in the N6-position of adenosine, which is the primary internal modification of eukaryotic mRNA. Compelling evidence has demonstrated that m6A regulates transcriptional and protein expression through splicing, translation, degradation, and export, thereby mediating the biological processes of cancer cells and/or stromal cells and characterizing the TME. The TME also has a crucial role in the complicated regulatory network of m6A modifications and, subsequently, influences tumor initiation, progression, and therapy responses. In this review, we describe the features of the TME and how the m6A modification modulates and interacts with it. We also focus on various factors and pathways involved in m6A methylation. Finally, we discuss potential therapeutic strategies and prognostic biomarkers with respect to the TME and m6A modification.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xi Wu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jingxin Zhang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Clinic School of Nanjing Medical University, Zhenjiang 212002, People's Republic of China
| | - Yuan Fang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yutian Pan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China.
| | - Pei Ma
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.
| |
Collapse
|
99961
|
Simkins TJ, Duncan GJ, Bourdette D. Chronic Demyelination and Axonal Degeneration in Multiple Sclerosis: Pathogenesis and Therapeutic Implications. Curr Neurol Neurosci Rep 2021; 21:26. [PMID: 33835275 DOI: 10.1007/s11910-021-01110-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system (CNS). Inflammatory attacks in MS lead to both demyelination and axonal damage. However, due to incomplete remyelination most MS lesions remain chronically demyelinated. In parallel, there is axonal degeneration in the CNS of MS patients, contributing to progressive disability. There are currently no approved therapies that adequately restore myelin or protect axons from degeneration. In this review, we will discuss the pathophysiology of axonal loss and chronic demyelination in MS and how understanding this pathophysiology is leading to the development of new MS therapeutics. RECENT FINDINGS Ongoing research into the function of oligodendrocytes and myelin has revealed the importance of their relationship with neuronal health. Demyelination in MS leads to a number of pathophysiologic changes contributing to axonal generation. Among these are mitochondrial dysfunction, persistent neuroinflammation, and the effects of reactive oxygen and nitrogen species. With this information, we review currently approved and investigational therapies designed to restore lost or damaged myelin and protect against neuronal degeneration. The development of therapies to restore lost myelin and protect neurons is a promising avenue of investigation for the benefit of patients with MS.
Collapse
Affiliation(s)
- Tyrell J Simkins
- Department of Neurology, Oregon Health and Science University, 3181S W Sam Jackson Rd L226, Portland, OR, 97239, USA. .,Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA. .,Department of Neurology, Portland VA Medical Center, Portland, OR, USA.
| | - Greg J Duncan
- Department of Neurology, Oregon Health and Science University, 3181S W Sam Jackson Rd L226, Portland, OR, 97239, USA.,Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Dennis Bourdette
- Department of Neurology, Oregon Health and Science University, 3181S W Sam Jackson Rd L226, Portland, OR, 97239, USA.,Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
99962
|
Versey Z, da Cruz Nizer WS, Russell E, Zigic S, DeZeeuw KG, Marek JE, Overhage J, Cassol E. Biofilm-Innate Immune Interface: Contribution to Chronic Wound Formation. Front Immunol 2021; 12:648554. [PMID: 33897696 PMCID: PMC8062706 DOI: 10.3389/fimmu.2021.648554] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Delayed wound healing can cause significant issues for immobile and ageing individuals as well as those living with co-morbid conditions such as diabetes, cardiovascular disease, and cancer. These delays increase a patient’s risk for infection and, in severe cases, can result in the formation of chronic, non-healing ulcers (e.g., diabetic foot ulcers, surgical site infections, pressure ulcers and venous leg ulcers). Chronic wounds are very difficult and expensive to treat and there is an urgent need to develop more effective therapeutics that restore healing processes. Sustained innate immune activation and inflammation are common features observed across most chronic wound types. However, the factors driving this activation remain incompletely understood. Emerging evidence suggests that the composition and structure of the wound microbiome may play a central role in driving this dysregulated activation but the cellular and molecular mechanisms underlying these processes require further investigation. In this review, we will discuss the current literature on: 1) how bacterial populations and biofilms contribute to chronic wound formation, 2) the role of bacteria and biofilms in driving dysfunctional innate immune responses in chronic wounds, and 3) therapeutics currently available (or underdevelopment) that target bacteria-innate immune interactions to improve healing. We will also discuss potential issues in studying the complexity of immune-biofilm interactions in chronic wounds and explore future areas of investigation for the field.
Collapse
Affiliation(s)
- Zoya Versey
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | | | - Emily Russell
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Sandra Zigic
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Katrina G DeZeeuw
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, ON, Canada
| | - Jonah E Marek
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, ON, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
99963
|
Duan X, Iwanowycz S, Ngoi S, Hill M, Zhao Q, Liu B. Molecular Chaperone GRP94/GP96 in Cancers: Oncogenesis and Therapeutic Target. Front Oncol 2021; 11:629846. [PMID: 33898309 PMCID: PMC8062746 DOI: 10.3389/fonc.2021.629846] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
During tumor development and progression, intrinsic and extrinsic factors trigger endoplasmic reticulum (ER) stress and the unfolded protein response, resulting in the increased expression of molecular chaperones to cope with the stress and maintain tumor cell survival. Heat shock protein (HSP) GRP94, also known as GP96, is an ER paralog of HSP90 and has been shown to promote survival signaling during tumor-induced stress and modulate the immune response through its multiple clients, including TLRs, integrins, LRP6, GARP, IGF, and HER2. Clinically, elevated expression of GRP94 correlates with an aggressive phenotype and poor clinical outcome in a variety of cancers. Thus, GRP94 is a potential molecular marker and therapeutic target in malignancies. In this review, we will undergo deep molecular profiling of GRP94 in tumor development and summarize the individual roles of GRP94 in common cancers, including breast cancer, colon cancer, lung cancer, liver cancer, multiple myeloma, and others. Finally, we will briefly review the therapeutic potential of selectively targeting GRP94 for the treatment of cancers.
Collapse
Affiliation(s)
- Xiaofeng Duan
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Iwanowycz
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Soo Ngoi
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Megan Hill
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Bei Liu
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,The Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
99964
|
Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology - Current perspectives. Pulmonology 2021; 27:423-437. [PMID: 33867315 PMCID: PMC8040543 DOI: 10.1016/j.pulmoe.2021.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a new beta coronavirus, similar to SARS-CoV-1, that emerged at the end of 2019 in the Hubei province of China. It is responsible for coronavirus disease 2019 (COVID-19), which was declared a pandemic by the World Health Organization on March 11, 2020. The ability to gain quick control of the pandemic has been hampered by a lack of detailed knowledge about SARS-CoV-2-host interactions, mainly in relation to viral biology and host immune response. The rapid clinical course seen in COVID-19 indicates that infection control in asymptomatic patients or patients with mild disease is probably due to the innate immune response, as, considering that SARS-CoV-2 is new to humans, an effective adaptive response would not be expected to occur until approximately 2–3 weeks after contact with the virus. Antiviral innate immunity has humoral components (complement and coagulation-fibrinolysis systems, soluble proteins that recognize glycans on cell surface, interferons, chemokines, and naturally occurring antibodies) and cellular components (natural killer cells and other innate lymphocytes). Failure of this system would pave the way for uncontrolled viral replication in the airways and the mounting of an adaptive immune response, potentially amplified by an inflammatory cascade. Severe COVID-19 appears to be due not only to viral infection but also to a dysregulated immune and inflammatory response. In this paper, the authors review the most recent publications on the immunobiology of SARS-CoV-2, virus interactions with target cells, and host immune responses, and highlight possible associations between deficient innate and acquired immune responses and disease progression and mortality. Immunotherapeutic strategies targeting both the virus and dysfunctional immune responses are also addressed.
Collapse
Affiliation(s)
- J L Boechat
- Clinical Immunology Service, Internal Medicine Department, Faculty of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil; Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Portugal
| | - I Chora
- Internal Medicine Service, Department of Medicine, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, Senhora da Hora, Portugal; Department of Medicine, Faculty of Medicine, University of Porto, Portugal
| | - A Morais
- Department of Medicine, Faculty of Medicine, University of Porto, Portugal; Pulmonology Department, Centro Hospitalar e Universitario de Sao Joao, Porto, Portugal
| | - L Delgado
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
99965
|
Du T, Gao Q, Zhao Y, Gao J, Li J, Wang L, Li P, Wang Y, Du L, Wang C. Long Non-coding RNA LINC02474 Affects Metastasis and Apoptosis of Colorectal Cancer by Inhibiting the Expression of GZMB. Front Oncol 2021; 11:651796. [PMID: 33898319 PMCID: PMC8063044 DOI: 10.3389/fonc.2021.651796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies. Metastasis is the main event that impedes the therapeutic effect on CRC, and its underlying mechanisms remain largely unclear. LINC02474 is a novel long noncoding RNA (lncRNA) associated with metastasis of CRC, while little is known about how LINC02474 regulates these malignant characteristics. Methods Expressions of LINC02474 and granzyme B (GZMB) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or Western blotting analysis. Cell metastasis was detected by transwell assay and metastatic nude mouse model, and apoptosis was determined by Western blotting analysis and flow cytometry. Besides, the interaction between LINC02474 and GZMB was detected by dual-luciferase reporter assays. Results The expression of LINC02474 was significantly up-regulated in CRC tissues. Moreover, depletion of LINC02474 damaged the metastatic abilities of CRC cells in vivo and in vitro while boosting apoptosis. Besides, up-regulation of LINC02474 could promote migration and invasion, while apoptosis was inhibited in CRC cells. Besides, down-regulation of LINC02474 promoted the expression of GZMB, and interference of GZMB could increase the metastatic abilities of CRC cells while reducing apoptosis. Furthermore, LINC02474 was related to the transcriptional repression of GZMB in CRC cells determined by the dual-luciferase reporter assay. Conclusions The findings revealed that a novel lncRNA, LINC02474, as an oncogene, could promote metastasis, but limit apoptosis partly by impeding GZMB expression in CRC. Besides, LINC02474 had the potential to be used as a biomarker in the prognosis of CRC.
Collapse
Affiliation(s)
- Tiantian Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qinglun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection, The Second Hospital of Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection, The Second Hospital of Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
99966
|
Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021; 13:cancers13081792. [PMID: 33918653 PMCID: PMC8069505 DOI: 10.3390/cancers13081792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy is a major mode of treatment for cancers. However, cancer cells adapt to survive in stressful conditions and in many cases, they are inherently resistant to chemotherapy. Additionally, after initial response to chemotherapy, the surviving cancer cells acquire new alterations making them chemoresistant. Genes that help adapt the cancer cells to cope with stress often contribute to chemoresistance and one such gene is Astrocyte elevated gene-1 (AEG-1). AEG-1 levels are increased in all cancers studied to date and AEG-1 contributes to the development of highly aggressive, metastatic cancers. In this review, we provide a comprehensive description of the mechanism by which AEG-1 augments tumor development with special focus on its ability to regulate chemoresistance. We also discuss potential ways to inhibit AEG-1 to overcome chemoresistance. Abstract Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.
Collapse
|
99967
|
Liu B, Wang J, Ren Z. SKP2-Promoted Ubiquitination of FOXO3 Promotes the Development of Asthma. J Immunol 2021; 206:2366-2375. [PMID: 33837090 DOI: 10.4049/jimmunol.2000387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/20/2020] [Indexed: 11/19/2022]
Abstract
Asthma is a respiratory disease with a dramatically increasing incidence globally. The present study explored the roles of S-phase kinase-associated protein 2 (SKP2) and forkhead box O3 (FOXO3) in asthma and their involvement in the Krüppel-like factor 15-lipoprotein receptor-related protein 5 (KLF15-LRP5) axis. SKP2 expression in patients with asthma and OVA-induced asthmatic Sprague Dawley rats was detected by reverse transcription quantitative PCR and Western blot assays. Alterations in SKP2 and LRP5 expression were evaluated in OVA-induced asthmatic rats, followed by measurement of inflammatory cytokines using ELISA and airway resistance using a methacholine challenge test. We applied TGF-β1 to establish the airway smooth muscle cell (ASMC) proliferation model of asthma. The FOXO3 ubiquitination and changes in cell biological behaviors were detected using immunoprecipitation, MTT, and Annexin V/propidium iodide assays. Flow cytometry was adopted to detect cell cycle, and ELISA was used to measure the concentrations of IL-4, IL-5, IL-13, and IgE in rat bronchoalveolar lavage fluid. SKP2 was highly expressed and FOXO3 was poorly expressed in patients with asthma and in OVA-induced asthmatic rats. SKP2 silencing decreased IL-4, IL-5, IL-13, and IgE expression in rat bronchoalveolar lavage fluid, whereas SKP2 enhanced FOXO3 ubiquitination to upregulate KLF15, which bound to the LRP5 promoter in TGF-β1-induced ASMCs and increased LRP5 expression. SKP2 enhanced airway hyperresponsiveness and inflammation in the OVA-induced rat model and augmented TGF-β1-induced ASMC proliferation by inhibiting the FOXO3/KLF15/LRP5 axis. Additionally, overexpressed SKP2 resulted in reduced numbers of ASMCs in the G1 phase but increased numbers in the G2/M phase. Collectively, we show that SKP2 promotes FOXO3 ubiquitination to suppress the KLF15-LRP5 axis, thereby exacerbating asthma.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Linyi People's Hospital, Linyi 276000, People's Republic of China
| | - Junxia Wang
- The First Ward, Department of Pediatrics, Huantai People's Hospital, Zibo 256400, People's Republic of China; and
| | - Zhijuan Ren
- The 6th Department of Pediatrics, Linyi People's Hospital, Linyi 276000, People's Republic of China
| |
Collapse
|
99968
|
Manzhalii EG, Falalyeyeva TM, Moyseyenko VO, Weiskirchen R, Stremmel W. Elevation of Autoantibodies to Cerebral Proteins in Hepatic Encephalopathy: Another Pathogenic Factor? Dig Dis 2021; 40:232-238. [PMID: 33839722 DOI: 10.1159/000516412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The pathophysiology of hepatic encephalopathy (HE) is incompletely understood. It remains elusive how the contributing factors of neuronal ammonia accumulation, cell swelling, and inflammation interact. OBJECTIVE The objective of this study was to find the correlation between neuronal autoantibody levels and the degree of HE as first indication of immune-mediated pathogenesis. METHODS We investigated serum autoantibody levels of representative brain proteins in patients with HE as well as in an experimental rat model with cirrhosis and HE after carbon tetrachloride exposure. They were examined in relation to presence of HE and the degree of neurological impairment evaluated by quantitative scores. RESULTS In HE, an increase in all of the examined antibodies was observed in serum. The grade of antibody elevation correlated to the degree of encephalopathy registered by quantitative evaluation of brain dysfunction. CONCLUSION The degree of HE parallels neuronal autoantibody elevation. In case a causal relationship could finally be established, it adds to the understanding of HE and may open a new perspective for treatment of this handicapping condition by immunosuppressive strategies.
Collapse
Affiliation(s)
- Elina G Manzhalii
- Bogomolets National Medical University, Ministry of Health of Ukraine, Kiev, Ukraine
| | - Tetyana M Falalyeyeva
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kiev, Ukraine
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | | |
Collapse
|
99969
|
Abstract
The complement system is an essential component of the innate immune system. Its excessive activation during COVID-19 contributes to cytokine storm, disease-specific endothelial inflammation (endotheliitis) and thrombosis that comes with the disease. Targeted therapies of complement inhibition in COVID-19, in particular blocking the C5a-C5aR1 axis have to be taken into account in the establishment of potential biomarkers and development of therapeutic strategies in the most severe forms of the disease.
Collapse
Affiliation(s)
- Nassima Chouaki Benmansour
- Assistance Publique des Hôpitaux de Marseille, 80 rue Brochier, 13005 Marseille, France - Département universitaire de médecine générale, Aix-Marseille Université, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France - Institut Paoli Calmettes, 232 boulevard de Sainte-Marguerite, 13009 Marseille, France
| | - Julien Carvelli
- Assistance Publique des Hôpitaux de Marseille, Hôpital de la Timone, Réanimation des urgences, 264 rue Saint-Pierre, 13005 Marseille, France - Aix-Marseille Université, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Éric Vivier
- Innate Pharma, 117 avenue de Luminy, BP 30191, 13276 Marseille Cedex 9, France - Aix Marseille Université, CNRS, Inserm, CIML, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille Cedex 09, France - Assistance Publique des Hôpitaux de Marseille, Marseille Immunopole, Hôpital de la Timone, 264 rue Saint Pierre, 13385 Marseille Cedex 5, France
| |
Collapse
|
99970
|
Banerjee A, Lu Y, Do K, Mize T, Wu X, Chen X, Chen J. Validation of Induced Microglia-Like Cells (iMG Cells) for Future Studies of Brain Diseases. Front Cell Neurosci 2021; 15:629279. [PMID: 33897370 PMCID: PMC8063054 DOI: 10.3389/fncel.2021.629279] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are the primary resident immune cells of the central nervous system that maintain physiological homeostasis in the brain and contribute to the pathogenesis of many psychiatric disorders and neurodegenerative diseases. Due to the lack of appropriate human cellular models, it is difficult to study the basic pathophysiological processes linking microglia to brain diseases. In this study, we adopted a microglia-like cellular model derived from peripheral blood monocytes with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-34 (IL-34). We characterized and validated this in vitro cellular model by morphology, immunocytochemistry, gene expression profiles, and functional study. Our results indicated that the iMG cells developed typical microglial ramified morphology, expressed microglial specific surface markers (P2RY12 and TMEM119), and possessed phagocytic activity. Principal component analyses and multidimensional scaling analyses of RNA-seq data showed that iMG cells were distinct from monocytes and induced macrophages (iMacs) but clustered closer to human microglia and hiPSC-induced microglia. Heatmap analyses also found that iMG cells, but not monocytes, were closely clustered with human primary microglia. Further pathway and relative expression analysis indicated that unique genes from iMG cells were involved in the regulation of the complement system, especially in the synapse and ion transport. Overall, our data demonstrated that the iMG model mimicked many features of the brain resident microglia, highlighting its utility in the study of microglial function in many brain diseases, such as schizophrenia and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Atoshi Banerjee
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Yimei Lu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Kenny Do
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Travis Mize
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States.,Department of Psychology, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Xiaogang Wu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
99971
|
Dosta P, Cryer AM, Prado M, Dion MZ, Ferber S, Kalash S, Artzi N. Delivery of Stimulator of Interferon Genes (STING) Agonist Using Polypeptide‐Modified Dendrimer Nanoparticles in the Treatment of Melanoma. Adv NanoBio Res 2021. [DOI: 10.1002/anbr.202100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Pere Dosta
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Alexander M. Cryer
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Michaela Prado
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Michelle Z. Dion
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Shiran Ferber
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Santhosh Kalash
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Natalie Artzi
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
99972
|
Kargarpour Z, Nasirzade J, Panahipour L, Miron RJ, Gruber R. Liquid PRF Reduces the Inflammatory Response and Osteoclastogenesis in Murine Macrophages. Front Immunol 2021; 12:636427. [PMID: 33897689 PMCID: PMC8062717 DOI: 10.3389/fimmu.2021.636427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Macrophage activation and osteoclastogenesis are hallmarks of inflammatory osteolysis and may be targeted by the local application of liquid platelet-rich fibrin (PRF). Liquid PRF is produced by a hard spin of blood in the absence of clot activators and anticoagulants, thereby generating an upper platelet-poor plasma (PPP) layer, a cell-rich buffy coat layer (BC; termed concentrated-PRF or C-PRF), and the remaining red clot (RC) layer. Heating PPP has been shown to generate an albumin gel (Alb-gel) that when mixed back with C-PRF generates Alb-PRF having extended working properties when implanted in vivo. Evidence has demonstrated that traditional solid PRF holds a potent anti-inflammatory capacity and reduces osteoclastogenesis. Whether liquid PRF is capable of also suppressing an inflammatory response and the formation of osteoclasts remains open. In the present study, RAW 264.7 and primary macrophages were exposed to lipopolysaccharides (LPS), lactoferrin, and agonists of Toll-like receptors (TLR3 and TLR7) in the presence or absence of lysates prepared by freeze-thawing of liquid PPP, BC, Alb-gel, and RC. For osteoclastogenesis, primary macrophages were exposed to receptor activator of nuclear factor kappa B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and human transforming growth factor-β1 (TGF-β1) in the presence or absence of PPP, BC, Alb-gel, RC lysates and hemoglobin. We show here that it is mainly the lysates prepared from PPP and BC that consistently reduced the agonist-induced expression of interleukin 6 (IL6) and cyclooxygenase-2 (COX2) in macrophages, as determined by RT-PCR and immunoassay. With respect to osteoclastogenesis, lysates from PPP and BC but also from RC, similar to hemoglobin, reduced the expression of osteoclast marker genes tartrate-resistant acid phosphatase (TRAP) and cathepsin K, as well as TRAP histochemical staining. These findings suggest that liquid PRF holds a potent in vitro heat-sensitive anti-inflammatory activity in macrophages that goes along with an inhibition of osteoclastogenesis.
Collapse
Affiliation(s)
- Zahra Kargarpour
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Jila Nasirzade
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
99973
|
Caeser R, Gao J, Di Re M, Gong C, Hodson DJ. Genetic manipulation and immortalized culture of ex vivo primary human germinal center B cells. Nat Protoc 2021; 16:2499-2519. [PMID: 33837304 DOI: 10.1038/s41596-021-00506-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Next-generation sequencing has transformed our knowledge of the genetics of lymphoid malignancies. However, limited experimental systems are available to model the functional effects of these genetic changes and their implications for therapy. The majority of mature B-cell malignancies arise from the germinal center (GC) stage of B-cell differentiation. Here we describe a detailed protocol for the purification and ex vivo expansion of primary, nonmalignant human GC B cells. We present methodology for the high-efficiency transduction of these cells to enable combinatorial expression of putative oncogenes. We also describe alternative approaches for CRISPR-Cas9-mediated deletion of putative tumor suppressors. Mimicking genetic changes commonly found in lymphoid malignancies leads to immortalized growth in vitro, while engraftment into immunodeficient mice generates genetically customized, synthetic models of human lymphoma. The protocol is simple and inexpensive and can be implemented in any laboratory with access to standard cell culture and animal facilities. It can be easily scaled up to enable high-throughput screening and thus provides a versatile platform for the functional interrogation of lymphoma genomic data.
Collapse
Affiliation(s)
- Rebecca Caeser
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jie Gao
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Miriam Di Re
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Chun Gong
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
99974
|
Lechner J, Schulz T, Lejeune B, von Baehr V. Jawbone Cavitation Expressed RANTES/CCL5: Case Studies Linking Silent Inflammation in the Jawbone with Epistemology of Breast Cancer. Breast Cancer (Dove Med Press) 2021; 13:225-240. [PMID: 33859496 PMCID: PMC8044077 DOI: 10.2147/bctt.s295488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/09/2021] [Indexed: 12/04/2022]
Abstract
Background The role of signaling pathways as part of the cell-cell communication within cancer progression becomes a crucial area. Chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted), also known as the chemokine C-C motif ligand 5 (CCL5) (R/C), is a protein on which cancer research focus due to its link with aggressive cancer development. Objective Research on fatty-degenerative osteonecrosis in jawbone (FDOJ) shows striking overexpression of R/C in these areas. Here we try to elucidate a potential link between jawbone-derived R/C and breast cancer (BC) and compare these findings by immunohistochemical staining. Methods Thirty-nine FDOJ samples extracted from 39 BC patients and samples from 19 healthy control were analyzed for R/C expression using bead-based Luminex® analysis. R/C levels from 5 BC patients were measured in serum before and after FDOJ surgery. Bone density, histology, R/C expression, and immunohistochemistry were analysed in 4 clinical case studies. The R/C staining of two FDOJ BC patients is compared with the immunohistochemical staining of BC cell preparations. Results A high overexpression of R/C was seen in all FDOJ samples. R/C levels in serum were statistically downregulated after FDOJ surgery (p=0.0241). Discussion R/C induced “silent inflammation” in BC is widely discussed in scientific papers along with R/C triggering of different signaling pathways, which might be a key point in the development of BC. Conclusion Hypothesis that FDOJ may serve as a trigger of BC progression through R/C overexpression was set by the authors, who thus inspire clinicians to make aware of FDOJ throughout the dental and medical community in BC cases.
Collapse
|
99975
|
Lee JH, Shao S, Kim M, Fernandes SM, Brown JR, Kam LC. Multi-Factor Clustering Incorporating Cell Motility Predicts T Cell Expansion Potential. Front Cell Dev Biol 2021; 9:648925. [PMID: 33898440 PMCID: PMC8063612 DOI: 10.3389/fcell.2021.648925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Abstract
Expansion of an initial population of T cells is essential for cellular immunotherapy. In Chronic Lymphocytic Leukemia (CLL), expansion is often complicated by lack of T cell proliferation, as these cells frequently show signs of exhaustion. This report seeks to identify specific biomarkers or measures of cell function that capture the proliferative potential of a starting population of cells. Mixed CD4+/CD8+ T cells from healthy donors and individuals previously treated for CLL were characterized on the basis of proliferative potential and in vitro cellular functions. Single-factor analysis found little correlation between the number of populations doublings reached during expansion and either Rai stage (a clinical measure of CLL spread) or PD-1 expression. However, inclusion of in vitro IL-2 secretion and the propensity of cells to align onto micropatterned features of activating proteins as factors identified three distinct groups of donors. Notably, these group assignments provided an elegant separation of donors with regards to proliferative potential. Furthermore, these groups exhibited different motility characteristics, suggesting a mechanism that underlies changes in proliferative potential. This study describes a new set of functional readouts that augment surface marker panels to better predict expansion outcomes and clinical prognosis.
Collapse
|