101
|
Han JH, Lee EJ, Park W, Ha KT, Chung HS. Natural compounds as lactate dehydrogenase inhibitors: potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol 2023; 14:1275000. [PMID: 37915411 PMCID: PMC10616500 DOI: 10.3389/fphar.2023.1275000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism and present in various cells throughout the body. Its diverse physiological functions encompass glycolysis, and its abnormal activity is associated with numerous diseases. Targeting LDH has emerged as a vital approach in drug discovery, leading to the identification of LDH inhibitors among natural compounds, such as polyphenols, alkaloids, and terpenoids. These compounds demonstrate therapeutic potential against LDH-related diseases, including anti-cancer effects. However, challenges concerning limited bioavailability, poor solubility, and potential toxicity must be addressed. Combining natural compounds with LDH inhibitors has led to promising outcomes in preclinical studies. This review highlights the promise of natural compounds as LDH inhibitors for treating cancer, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Wonyoung Park
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Ki-Tae Ha
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
102
|
Wang J, Song JG, Zhong DL, Duan ZZ, Peng ZJ, Tang W, Song QY, Huang XJ, Hu LJ, Wang Y, Ye WC. Biomimetic Synthesis of an Antiviral Cinnamoylphloroglucinol Collection from Cleistocalyx operculatus: A Synthetic Strategy Based on Biogenetic Building Blocks. Angew Chem Int Ed Engl 2023:e202312568. [PMID: 37848394 DOI: 10.1002/anie.202312568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
A synthetic strategy based on biogenetic building blocks for the collective and divergent biomimetic synthesis of cleistoperlones A-F, a cinnamoylphloroglucinol collection discovered from Cleistocalyx operculatus, has been developed. These syntheses proceeded successfully in only six to seven steps starting from commercially available 1,3,5-benzenetriol and involving oxidative activation of stable biogenetic building blocks as a crucial step. Key features of the syntheses include a unique Michael addition/ketalization/1,6-addition/enol-keto tautomerism cascade reaction for the construction of the dihydropyrano[3,2-d]xanthene tetracyclic core of cleistoperlones A and B, and a rare inverse-electron-demand hetero-Diels-Alder cycloaddition for the establishment of benzopyran ring in cleistoperlones D-F. Moreover, cleistoperlone A exhibited significant antiviral activity against acyclovir-resistant strains of herpes simplex virus type 1 (HSV-1/Blue and HSV-1/153).
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dong-Lin Zhong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhi-Zhang Duan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qiao-Yun Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Li-Jun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
103
|
Eskander RN, Moore KN, Monk BJ, Herzog TJ, Annunziata CM, O’Malley DM, Coleman RL. Overcoming the challenges of drug development in platinum-resistant ovarian cancer. Front Oncol 2023; 13:1258228. [PMID: 37916177 PMCID: PMC10616588 DOI: 10.3389/fonc.2023.1258228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 11/03/2023] Open
Abstract
The definition of "platinum-resistant ovarian cancer" has evolved; it now also reflects cancers for which platinum treatment is no longer an option. Standard of care for platinum-resistant ovarian cancer is single-agent, non-platinum chemotherapy with or without bevacizumab, which produces modest response rates, with the greatest benefits achieved using weekly paclitaxel. Several recent phase 3 trials of pretreated patients with prior bevacizumab exposure failed to meet their primary efficacy endpoints, highlighting the challenge in improving clinical outcomes among these patients. Combination treatment with antiangiogenics has improved outcomes, whereas combination strategies with immune checkpoint inhibitors have yielded modest results. Despite extensive translational research, there has been a lack of reliable and established biomarkers that predict treatment response in platinum-resistant ovarian cancer. Additionally, in the platinum-resistant setting, implications for the time between the penultimate dose of platinum therapy and platinum retreatment remain an area of debate. Addressing the unmet need for an effective treatment in the platinum-resistant setting requires thoughtful clinical trial design based on a growing understanding of the disease. Recent cancer drug approvals highlight the value of incorporating molecular phenotypes to better define patients who are more likely to respond to novel therapies. Clinical trials designed per the Gynecologic Cancer InterGroup recommendations-which advocate against relying solely upon the platinum-free interval-will help advance our understanding of recurrent ovarian cancer response where platinum rechallenge in the platinum-resistant setting may be considered. The inclusion of biomarkers in clinical trials will improve patient stratification and potentially demonstrate correlations with biomarker expression and duration of response. With the efficacy of antibody-drug conjugates shown for the treatment of some solid and hematologic cancers, current trials are evaluating the use of various novel conjugates in the setting of platinum-resistant ovarian cancer. Emerging novel treatments coupled with combination trials and biomarker explorations offer encouraging results for potential strategies to improve response rates and prolong progression-free survival in this population with high unmet need. This review outlines existing data from contemporary clinical trials of patients with platinum-resistant ovarian cancer and suggests historical synthetic benchmarks for non-randomized trials.
Collapse
Affiliation(s)
- Ramez N. Eskander
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Rebecca and John Moores Cancer Center, University of California San Diego Health, San Diego, CA, United States
| | - Kathleen N. Moore
- Gynecologic Oncology, Stephenson Cancer Center, The University of Oklahoma College of Medicine, Oklahoma, OK, United States
| | - Bradley J. Monk
- Gynecologic Oncology, HonorHealth Research Institute, University of Arizona College of Medicine, Creighton University School of Medicine, Phoenix, AZ, United States
| | - Thomas J. Herzog
- Obstetrics and Gynecology, University of Cincinnati Cancer Center, Cincinnati, OH, United States
| | | | - David M. O’Malley
- Division of Gynecologic Oncology, The Ohio State University and The James Comprehensive Cancer Center, Columbus, OH, United States
| | - Robert L. Coleman
- Gynecologic Oncology, US Oncology Research, Texas Oncology, The Woodlands, TX, United States
| |
Collapse
|
104
|
Zhang C, Sui Y, Liu S, Yang M. Anti-Viral Activity of Bioactive Molecules of Silymarin against COVID-19 via In Silico Studies. Pharmaceuticals (Basel) 2023; 16:1479. [PMID: 37895950 PMCID: PMC10610370 DOI: 10.3390/ph16101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection drove the global coronavirus disease 2019 (COVID-19) pandemic, causing a huge loss of human life and a negative impact on economic development. It is an urgent necessity to explore potential drugs against viruses, such as SARS-CoV-2. Silymarin, a mixture of herb-derived polyphenolic flavonoids extracted from the milk thistle, possesses potent antioxidative, anti-apoptotic, and anti-inflammatory properties. Accumulating research studies have demonstrated the killing activity of silymarin against viruses, such as dengue virus, chikungunya virus, and hepatitis C virus. However, the anti-COVID-19 mechanisms of silymarin remain unclear. In this study, multiple disciplinary approaches and methodologies were applied to evaluate the potential mechanisms of silymarin as an anti-viral agent against SARS-CoV-2 infection. In silico approaches such as molecular docking, network pharmacology, and bioinformatic methods were incorporated to assess the ligand-protein binding properties and analyze the protein-protein interaction network. The DAVID database was used to analyze gene functions, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment. TCMSP and GeneCards were used to identify drug target genes and COVID-19-related genes. Our results revealed that silymarin compounds, such as silybin A/B and silymonin, displayed triplicate functions against SARS-CoV-2 infection, including directly binding with human angiotensin-converting enzyme 2 (ACE2) to inhibit SARS-CoV-2 entry into the host cells, directly binding with viral proteins RdRp and helicase to inhibit viral replication and proliferation, and regulating host immune response to indirectly inhibit viral infection. Specifically, the targets of silymarin molecules in immune regulation were screened out, such as proinflammatory cytokines TNF and IL-6 and cell growth factors VEGFA and EGF. In addition, the molecular mechanism of drug-target protein interaction was investigated, including the binding pockets of drug molecules in human ACE2 and viral proteins, the formation of hydrogen bonds, hydrophobic interactions, and other drug-protein ligand interactions. Finally, the drug-likeness results of candidate molecules passed the criteria for drug screening. Overall, this study demonstrates the molecular mechanism of silymarin molecules against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China;
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
105
|
Samy MVG, Perumal S. Systems pharmacology and multi-scale mechanism of Enicostema axillare bioactives in treating Alzheimer disease. Inflammopharmacology 2023:10.1007/s10787-023-01348-0. [PMID: 37845599 DOI: 10.1007/s10787-023-01348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
As a progressive neurological disease with increased morbidity and mortality, Alzheimer Disease (AD) is characterized by neuron damage that controls memory and mental functions. Enicostema axillare (EA), an herb with a history of combativeness and effectiveness in treating Rheumatoid Arthritis, Cancer, and Diabetes, is used in Indian folk medicine from a holistic point of view. Though the herb is used for many illnesses, the molecular mechanism of its bioactive on AD has not been deciphered by intricate research. A unique pharmacology approach based on ADME drug screening and targeting, pathway enrichment (GO and KEGG), and network pharmacology, was established to explore the molecular mechanisms of E. axillare (EA) bioactive compounds for the treatment of AD. In brief, we bring to light the three active compounds of EA and seven potential molecular targets of AD, which are mainly implicated in four signaling pathways, i.e., MAPK, Apoptosis, neurodegeneration, and the TNF pathway. Moreover, the network analysis of the active compounds, molecular targets, and their pathways reveals the pharmacological nature of the compounds. Further, molecular docking studies were carried out to explore the interactions between the EA bioactive compounds and the targets and examine the binding affinity. The outcome of the work reflects the potential therapeutic effects of the compounds for treating AD through the modulation of the key proteins, which further corroborates the reliability of our network pharmacology analysis. This study not only helps in understanding the molecular mechanism of the drugs but also helps in finding and sorting new drugs for the treatment of AD, and other complex diseases through modern medicine.
Collapse
Affiliation(s)
| | - Sasidharan Perumal
- Cell and Molecular Biology Division, Biome Live Analytical Center, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
106
|
Guo A, Lin J, Zhong P, Chen J, Wang L, Lin X, Feng M. Phellopterin attenuates ovarian cancer proliferation and chemoresistance by inhibiting the PU.1/CLEC5A/PI3K-AKT feedback loop. Toxicol Appl Pharmacol 2023; 477:116691. [PMID: 37708916 DOI: 10.1016/j.taap.2023.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Ovarian cancer is known as the second leading cause of gynecologic cancer-associated deaths in women worldwide. Developing new and effective compounds to alleviate chemoresistance is an urgent priority in ovarian cancer. Here, we aimed to reveal the biological function and underlying mechanisms of phellopterin, a naturally sourced ingredient of Angelica dahurica, in ovarian cancer progression as well as evaluate the therapeutic potential of phellopterin in ovarian cancer patients. In this investigation, we found that phellopterin mitigated DNA replication and induced cell cycle arrest, apoptosis, and DNA damage, attenuating cell proliferation and chemoresistance of ovarian cancer. Interestingly, bioinformatics analyses of data from our RNA sequencing and The Cancer Genome Atlas ovarian cancer dataset suggested that phellopterin presented anti-cancer activities in ovarian cancer cells by modulating signals affecting ovarian cancer progression and identified phellopterin as a potential compound in improving ovarian cancer patients' prognosis. In addition, the C-Type Lectin Domain Containing 5A (CLEC5A) was demonstrated as a downstream effector of phellopterin and involved in a positive PU.1/CLEC5A/PI3K-AKT feedback loop. Interestingly, phellopterin might inactivate the positive feedback circuit to suppress ovarian cancer progression. Collectively, our investigation revealed that phellopterin mitigated ovarian cancer proliferation and chemoresistance through suppressing the PU.1/CLEC5A/PI3K-AKT feedback loop, and predicted phellopterin as a new and effective cytotoxic drug and CLEC5A as a potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Aihua Guo
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Peilin Zhong
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Jiyun Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Linghua Wang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Xiurong Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Mei Feng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| |
Collapse
|
107
|
Adeosun IJ, Baloyi IT, Cosa S. Extracts of Selected South African Medicinal Plants Mitigate Virulence Factors in Multidrug-Resistant Strains of Klebsiella pneumoniae. Evid Based Complement Alternat Med 2023; 2023:3146588. [PMID: 37868201 PMCID: PMC10590271 DOI: 10.1155/2023/3146588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
The emergence of multidrug-resistant (MDR) Klebsiella pneumoniae remains a global health threat due to its alarming rates of becoming resistant to antibiotics. Therefore, identifying plant-based treatment options to target this pathogen's virulence factors is a priority. This study examined the antivirulence activities of twelve plant extracts obtained from three South African medicinal plants (Lippia javanica, Carpobrotus dimidiatus, and Helichrysum populifolium) against carbapenem-resistant (CBR) and extended-spectrum beta-lactamase (ESBL) positive K. pneumoniae strains. The plant extracts (ethyl acetate, dichloromethane, methanol, and water) were validated for their inhibitory activities against bacterial growth and virulence factors such as biofilm formation, exopolysaccharide (EPS) production, curli expression, and hypermucoviscosity. The potent extract on K. pneumoniae biofilm was observed with a scanning electron microscope (SEM), while exopolysaccharide topography and surface parameters were observed using atomic force microscopy (AFM). Chemical profiling of the potent extract in vitro was analysed using liquid chromatography-mass spectrometry (LC-MS). Results revealed a noteworthy minimum inhibitory concentration (MIC) value for the C. dimidiatus dichloromethane extract at 0.78 mg/mL on CBR- K. pneumoniae. L. javanica (ethyl acetate) showed the highest cell attachment inhibition (67.25%) for CBR- K. pneumoniae. SEM correlated the in-vitro findings, evidenced by a significant alteration of the biofilm architecture. The highest EPS reduction of 34.18% was also noted for L. javanica (ethyl acetate) and correlated by noticeable changes observed using AFM. L. javanica (ethyl acetate) further reduced hypermucoviscosity to the least length mucoid string (1 mm-2 mm) at 1.00 mg/mL on both strains. C. dimidiatus (aqueous) showed biofilm inhibition of 45.91% for the ESBL-positive K. pneumoniae and inhibited curli expression at 0.50 mg/mL in both K. pneumoniae strains as observed for H. populifolium (aqueous) extract. Chemical profiling of L. javanica (ethyl acetate), C. dimidiatus (aqueous), and H. populifolium (aqueous) identified diterpene (10.29%), hydroxy-dimethoxyflavone (10.24%), and 4,5-dicaffeoylquinic acid (13.41%), respectively, as dominant compounds. Overall, the ethyl acetate extract of L. javanica revealed potent antivirulence properties against the studied MDR K. pneumoniae strains. Hence, it is a promising medicinal plant that can be investigated further to develop alternative therapy for managing K. pneumoniae-associated infections.
Collapse
Affiliation(s)
- Idowu J. Adeosun
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa
| | - Itumeleng T. Baloyi
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa
| | - Sekelwa Cosa
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa
| |
Collapse
|
108
|
Tian L, Wang M, Wang Y, Li W, Yang Y. Naringenin ameliorates atopic dermatitis by inhibiting inflammation and enhancing immunity through the JAK2/STAT3 pathway. Genes Genomics 2023:10.1007/s13258-023-01457-8. [PMID: 37837514 DOI: 10.1007/s13258-023-01457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE Atopic dermatitis (AD) is an inflammatory skin disease. Naringenin (Nar) possesses an anti-inflammatory property. This paper attempts to discuss the functional mechanism of Nar in AD mice through the Janus kinase 2 (JAK2)/signal transducer and activation of transcription 3 (STAT3) pathway. METHODS Mouse models of DNFB-induced AD were established and treated with Nar, followed by intraperitoneal injection with the JAK2/STAT3 pathway activator Coumermycin A1. Dermatitis severity was scored and the thickness of right ear was measured. The pathological changes in dorsal skin tissues were observed by HE staining. The number of infiltrated mast cells and eosinophilic granulocytes was counted by TB staining. The serum IgE level and levels of TNF-α, IL-6, IFN-γ, IL-12, and IL-5 in dorsal skin tissues were measured by ELISA. The levels of p-JAK2, JAK2, p-STAT3, and STAT3 were determined by Western blot. RESULTS Nar decreased dermatitis scores and right ear thickness, alleviated skin lesions, and reduced the number of infiltrated mast cells and eosinophilic granulocytes in AD mice. The serum IgE level and levels of TNF-α, IL-6, IFN-γ, IL-12, and IL-5 in dorsal skin tissues of AD mice were diminished after Nar treatment in a dose-dependent manner. Nar inhibited the activation of the JAK2/STAT3 pathway. The activation of the JAK2/STAT3 pathway partially nullified the therapeutic function of Nar on AD mice. CONCLUSION Nar protects mice from AD by inhibiting inflammation and promoting immune responses through the inhibition of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Limin Tian
- Dermatology Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kunqu District, Baotou City, 014040, Inner Mongolia Autonomous Region, China
| | - Mengjie Wang
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Yangxingyun Wang
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Wei Li
- Dermatology Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kunqu District, Baotou City, 014040, Inner Mongolia Autonomous Region, China
| | - Yuenan Yang
- Dermatology Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kunqu District, Baotou City, 014040, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
109
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
110
|
Majrashi TA, Wahab S, Almoyad MAA, Alkhathami AG, Alshahrani MY. Exploring natural compound, Panicutine as leucine-rich repeat kinase 2 inhibitor against Parkinson's disease: a structure-guided approach. J Biomol Struct Dyn 2023:1-10. [PMID: 37837424 DOI: 10.1080/07391102.2023.2268183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a promising drug target for the therapeutic management of Parkinson's disease (PD) and other neurodegenerative disorders. LRRK2 inhibitors have the potential to modulate neuroinflammation, reduce alpha-synuclein aggregation and improve motor symptoms in PD patients. Although LRRK2 inhibitors are still in the early stages of clinical development, the identification of potent and selective inhibitors through structure-guided approaches provides a promising avenue for the development of effective therapies for PD and other neurodegenerative disorders. In this study, natural compounds from the IMPPAT database were screened using a state-of-the-art computational virtual screening approach to identify potential inhibitors of LRRK2. We carried out a docking screening on a library of natural compounds and identified a few compounds with strong binding affinity, docking score and specificity towards LRRK2 as the top hits. These hits were then subjected to further analysis based on multiple parameters for the Pan-assay interference compounds and their physicochemical and pharmacokinetics evaluation followed by a detailed interaction analysis. After careful evaluation, one natural compound, Panicutine, was identified as a promising candidate for LRRK2 due to its significant affinity and specificity towards the LRRK2 binding pocket. Additionally, it exhibited drug-like properties with blood-brain barrier permeability as determined by ADMET properties. To gain a deeper understanding of the stability and conformational changes of the LRRK2-ligand complex, MD simulations were conducted for 100 nanoseconds under explicit solvent conditions followed by principal component analysis and free energy dynamics. The simulation results demonstrated that the LRRK2-Panicutine complex remained stable throughout the simulation trajectories. Based on these findings, it is concluded that Panicutine has the potential to act as a LRRK2 inhibitor against PD and other neurodegenerative disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Saudi Arabia
| | - Ali Gaithan Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
111
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
112
|
Chen C, Lu C, Viswanathan V, Maveal B, Maheshwari B, Willis J, Madabhushi A. Identifying primary tumor site of origin for liver metastases via a combination of handcrafted and deep learning features. J Pathol Clin Res 2023. [PMID: 37822044 DOI: 10.1002/cjp2.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023]
Abstract
Liver is one of the most common sites for metastases, which can occur on account of primary tumors from multiple sites of origin. Identifying the primary site of origin (PSO) of a metastasis can help in guiding therapeutic options for liver metastases. In this pilot study, we hypothesized that computer extracted handcrafted (HC) histomorphometric features can be utilized to identify the PSO of liver metastases. Cellular features, including tumor nuclei morphological and graph features as well as cytoplasm texture features, were extracted by computer algorithms from 175 slides (114 patients). The study comprised three experiments: (1) comparing and (2) fusing a machine learning (ML) model trained with HC pathomic features and deep learning (DL)-based classifiers to predict site of origin; (3) identifying the section of the primary tumor from which metastases were derived. For experiment 1, we divided the cohort into training sets composed of primary and matched liver metastases [60 patients, 121 whole slide images (WSIs)], and a hold-out validation set (54 patients, 54 WSIs) composed solely of liver metastases of known site of origin. Using the extracted HC features of the training set, a combination of supervised machine classifiers and unsupervised clustering was applied to identify the PSO. A random forest classifier achieved areas under the curve (AUCs) of 0.83, 0.64, 0.82, and 0.64 in classifying the metastatic tumor from colon, esophagus, breast, and pancreas on the validation set. The top features related to nuclear and peri-nuclear shape and textural attributes. We also trained a DL network to serve as a direct comparison to our method. The DL model achieved AUCs for colon: 0.94, esophagus: 0.66, breast: 0.79, and pancreas: 0.67 in identifying PSO. A decision fusion-based strategy was deployed to fuse the trained ML and DL classifiers and achieved slightly better results than ML or DL classifier alone (colon: 0.93, esophagus: 0.68, breast: 0.81, and pancreas: 0.69). For the third experiment, WSI-level attention maps were also generated using a trained DL network to generate a composite feature similarity heat map between paired primaries and their associated metastases. Our experiments revealed that epithelium-rich and moderately differentiated tumor regions of primary tumors were quantitatively similar to paired metastatic tumors. Our findings suggest that a combination of HC and DL features could potentially help identify the PSO for liver metastases while at the same time also potentially identify the spatial sites of origin for the metastases within primary tumors.
Collapse
Affiliation(s)
- Chuheng Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Cheng Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Vidya Viswanathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Brandon Maveal
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Bhunesh Maheshwari
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Joseph Willis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Radiology and Imaging Sciences, Biomedical Informatics (BMI) and Pathology, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Atlanta Veterans Administration Medical Center, Atlanta, GA, USA
| |
Collapse
|
113
|
Olim P, Pereira RB, Fernandes MJG, Natal CM, Coelho JRA, Fortes AG, Gonçalves MST, Pereira DM. Structural modification of naturally occurring phenolics as a strategy for developing cytotoxic molecules towards cancer cells. Arch Pharm (Weinheim) 2023:e2300294. [PMID: 37821361 DOI: 10.1002/ardp.202300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Natural products belonging to different chemical classes have been established as a promising source of novel anticancer drugs. Several low-molecular-weight compounds from the classes of monoterpenes, phenylpropanoids, and flavonoids were shown to possess anticancer activities in previous studies. In this work, over 20 semisynthetic derivatives of molecules belonging to these classes, namely thymol, eugenol, and 6-hydroxyflavanone were synthesized and tested for their cytotoxicity against two human cancer cell lines, namely AGS cells (gastric adenocarcinoma) and A549 cells (human lung carcinoma). An initial screening based on viability assessment was performed to identify the most cytotoxic compounds at 100 μM. The results evidenced that two 6-hydroxyflavanone derivatives were the most cytotoxic among the compounds tested, being selected for further studies. These derivatives displayed enhanced toxicity when compared with their natural counterparts. Moreover, the lactate dehydrogenase (LDH) assay showed that the loss of cell viability was not accompanied by a loss of membrane integrity, thus ruling out a necrotic process. Morphological studies with AGS cells demonstrated chromatin condensation compatible with apoptosis, confirmed by the activation of caspase 3/7. Furthermore, a viability assay on a noncancer human embryonic lung fibroblast cell line (MRC-5) confirmed that these two derivatives possess selective anticancer activity.
Collapse
Grants
- European Regional Development Fund
- European Commission
- UIDB/50006/2020 FCT (Fundação para a Ciência e Tecnologia, Portugal)/MCTES (Ministério da Ciência, Tecnologia e Ensino Superior
- UIDP/50006/2020 FCT (Fundação para a Ciência e Tecnologia, Portugal)/MCTES (Ministério da Ciência, Tecnologia e Ensino Superior
- PTDC/ASP-AGR/30154/2017 FCT (Fundação para a Ciência e Tecnologia, Portugal)/MCTES (Ministério da Ciência, Tecnologia e Ensino Superior
- PO-CI-01-0145-FEDER-030154 FCT (Fundação para a Ciência e Tecnologia, Portugal)/MCTES (Ministério da Ciência, Tecnologia e Ensino Superior
- PTDC-QUI/2870/2020 FCT (Fundação para a Ciência e Tecnologia, Portugal)/MCTES (Ministério da Ciência, Tecnologia e Ensino Superior
- UID/QUI/00686/2021 FEDER-COMPETE-QREN-EU
- POCI 2010
Collapse
Affiliation(s)
- Pedro Olim
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Renato B Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria José G Fernandes
- Department of Chemistry, Centre of Chemistry (CQUM), University of Minho, Campus of Gualtar, Braga, Portugal
| | - Carolina M Natal
- Department of Chemistry, Centre of Chemistry (CQUM), University of Minho, Campus of Gualtar, Braga, Portugal
| | - José R A Coelho
- Department of Chemistry, Centre of Chemistry (CQUM), University of Minho, Campus of Gualtar, Braga, Portugal
| | - A Gil Fortes
- Department of Chemistry, Centre of Chemistry (CQUM), University of Minho, Campus of Gualtar, Braga, Portugal
| | - M Sameiro T Gonçalves
- Department of Chemistry, Centre of Chemistry (CQUM), University of Minho, Campus of Gualtar, Braga, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
114
|
Lee CH, Tsao YH, Weng YP, Wang IC, Chen YP, Hung PF. Therapeutic Effects of Perilla Phenols in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:14931. [PMID: 37834377 PMCID: PMC10573788 DOI: 10.3390/ijms241914931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The herbal medicine perilla leaf extract (PLE) exhibits various pharmacological properties. We showed that PLE inhibits the viability of oral squamous cell carcinoma (OSCC) cells. HPLC analysis revealed that caffeic acid (CA) and rosmarinic acid (RA) are the two main phenols in PLE, and reduced OSCC cell viability in a dose-dependent manner. The optimal CA/RA combination ratio was 1:2 at concentrations of 300-500 μM but had no synergistic inhibitory effect on the viability of OSCC cells. CA, RA, or their combination effectively suppressed interleukin (IL)-1β secretion by OSCC OC3 cells. Long-term treatment with CA and CA/RA mixtures, respectively, induced EGFR activation, which might cause OC3 cells to become EGFR-dependent and consequently increased the sensitivity of OC3 cells to a low dose (5 μM) of the EGFR tyrosine kinase inhibitor gefitinib. Chronic treatment with CA, RA, or their combination exhibited an inhibitory effect more potent than that of low-dose (1 μM) cisplatin on the colony formation ability of OSCC cells; this may be attributed to the induction of apoptosis by these treatments. These findings suggest that perilla phenols, particularly CA and RA, can be used as adjuvant therapies to improve the efficacy of chemotherapy and EGFR-targeted therapy in OSCC.
Collapse
|