101
|
Vahav I, van den Broek LJ, Thon M, Monsuur HN, Spiekstra SW, Atac B, Scheper RJ, Lauster R, Lindner G, Marx U, Gibbs S. Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro. J Tissue Eng Regen Med 2020; 14:761-773. [PMID: 32293116 PMCID: PMC7317351 DOI: 10.1002/term.3039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 03/02/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023]
Abstract
Application of reconstructed human Skin (RhS) is a promising approach for the treatment of extensive wounds and for drug efficacy and safety testing. However, incorporating appendages, such as hair follicles, into RhS still remains a challenge. The hair follicle plays a critical role in thermal regulation, dispersion of sweat and sebum, sensory and tactile functions, skin regeneration, and repigmentation. The aim of this study was to determine whether human neopapilla could be incorporated into RhS (differentiated epidermis on fibroblast and endothelial cell populated dermis) and whether the neopapillae maintain their inductive follicular properties in vitro. Neopapillae spheroids, constructed from expanded and self‐aggregating dermal papilla cells, synthesized extracellular matrix typically found in follicular papillae. Compared with dermal fibroblasts, neopapillae showed increased expression of multiple genes (Wnt5a, Wnt10b, and LEF1) known to regulate hair development and also increased secretion of CXCL1, which is a strong keratinocyte chemoattractant. When neopapillae were incorporated into the dermis of RhS, they stimulated epidermal down‐growth resulting in engulfment of the neopapillae sphere. Similar to the native hair follicle, the differentiated invaginating epidermis inner side was keratin 10 positive and the undifferentiated outer side keratin 10 negative. The outer side was keratin 15 positive confirming the undifferentiated nature of these keratinocytes aligning a newly formed collagen IV, laminin V positive basement membrane within the hydrogel. In conclusion, we describe a RhS model containing neopapillae with hair follicle‐inductive properties. Importantly, epidermal invagination occurred to engulf the neopapillae, thus demonstrating in vitro the first steps towards hair follicle morphogenesis in RhS.
Collapse
Affiliation(s)
- Irit Vahav
- TissUse GmbH, Berlin, Germany.,Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lenie J van den Broek
- Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands.,A-Skin BV, Amsterdam, The Netherlands
| | - Maria Thon
- Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hanneke N Monsuur
- Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands
| | - Beren Atac
- TissUse GmbH, Berlin, Germany.,Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Roland Lauster
- Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Gerd Lindner
- TissUse GmbH, Berlin, Germany.,Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
102
|
He N, Su R, Wang Z, Zhang Y, Li J. Exploring differentially expressed genes between anagen and telogen secondary hair follicle stem cells from the Cashmere goat (Capra hircus) by RNA-Seq. PLoS One 2020; 15:e0231376. [PMID: 32298297 PMCID: PMC7162518 DOI: 10.1371/journal.pone.0231376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Hair follicle stem cells (HFSCs) have been shown to be essential in the development and regeneration of hair follicles (HFs). The Inner Mongolia Cashmere goat (Capra hircus) has two types of HFs, primary and secondary, with cashmere being produced from the secondary hair follicle. To identify the genes associated with cashmere growth, transcriptome profiling of anagen and telogen secondary HFSCs was performed by RNA-Seq. The RNA-Seq analysis generated over 58 million clean reads from each group, with 2717 differentially expressed genes (DEGs) detected between anagen and telogen, including 1500 upregulated and 1217 downregulated DEGs. A large number of DEGs were predominantly associated with cell part, cellular process, binding, biological regulation and organelle. In addition, the PI3K-Akt, MAPK, Ras and Rap1 signaling pathways may be involved in the growth of HFSCs cultured in vitro. The RNA-Seq results showed that the well-defined HFSC signature genes and cell cycle-associated genes showed no significant differences between anagen and telogen HFSCs, indicating a relatively quiescent cellular state of the HFSCs cultured in vitro. These results are useful for future studies of complex molecular mechanisms of hair follicle cycling in cashmere goats.
Collapse
Affiliation(s)
- Nimantana He
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Agriculture Research Center, Chifeng University, Chifeng, Inner Mongolia, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
- * E-mail:
| |
Collapse
|
103
|
Integrative Analysis of Methylome and Transcriptome Reveals the Regulatory Mechanisms of Hair Follicle Morphogenesis in Cashmere Goat. Cells 2020; 9:cells9040969. [PMID: 32295263 PMCID: PMC7226977 DOI: 10.3390/cells9040969] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/22/2020] [Accepted: 04/05/2020] [Indexed: 12/31/2022] Open
Abstract
Studies in humans and mice have revealed that hair follicle morphogenesis relies on tightly coordinated ectodermal–mesodermal interactions, involving multiple signals and regulatory factors. DNA methylation and long non-coding RNA (lncRNA) play a critical role in early embryonic skin development by controlling gene expression. Acting as an indirect regulator, lncRNA could recruit DNA methyltransferases to specific genomic sites to methylate DNA. However, the molecular regulation mechanisms underlying hair follicle morphogenesis is unclear in cashmere goat. In this study, RNA-seq and whole-genome bisulfite sequencing (WGBS) in embryonic day 65 (E 65) and E 120 skin tissues of cashmere goat were used to reveal this complex regulatory process. The RNA-seq, qRT-PCR, and immunohistochemistry results showed that Wnt signaling played an important role in both hair follicle induction and differentiation stage; transcriptional factors (TFs), including HOXC13, SOX9, SOX21, JUNB, LHX2, VDR, and GATA3, participated in hair follicle differentiation via specific expression at E 120. Subsequently, the combination of WGBS and RNA-seq analysis showed that the expression of some hair follicle differentiation genes and TF genes were negatively correlated with the DNA methylation level generally. A portion of hair follicle differentiation genes were methylated and repressed in the hair follicle induction stage but were subsequently demethylated and expressed during the hair follicle differentiation stage, suggesting that DNA methylation plays an important role in hair morphogenesis by regulating associated gene expression. Furthermore, 45 upregulated and 147 downregulated lncRNAs in E 120 compared with E 65 were identified by lncRNA mapping, and then the potential differentially expressed lncRNAs associated with DNA methylation on the target gene were revealed. In conclusion, critical signals and genes were revealed during hair follicle morphogenesis in the cashmere goat. In this process, DNA methylation was lower in the hair follicle differentiation compared with the hair follicle induction stage and may play an important role in hair morphogenesis by regulating associated gene expression. Furthermore, potential lncRNAs associated with DNA methylation on target genes were delineated. This study enriches the regulatory network and molecular mechanisms on hair morphogenesis.
Collapse
|
104
|
Chen Y, Fan Z, Wang X, Mo M, Zeng SB, Xu RH, Wang X, Wu Y. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Res Ther 2020; 11:144. [PMID: 32245516 PMCID: PMC7118821 DOI: 10.1186/s13287-020-01650-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cultured epidermal stem cells (Epi-SCs) and skin-derived precursors (SKPs) were capable of reconstituting functional hair follicles after implantation, while the signaling pathways that regulate neogenic hair follicle formation are poorly investigated. In this study, we aimed to understand the interactions between Epi-SCs and SKPs during skin organoid formation and to uncover key signal pathways crucial for de novo hair follicle regeneration. Methods To track their fate after transplantation, Epi-SCs derived from neonatal C57BL/6 mice were labeled with tdTomato, and SKPs were isolated from neonatal C57BL/6/GFP mice. A mixture of Epi-SCs-tdTomato and SKPs-EGFP in Matrigel was observed under two-photon microscope in culture and after implantation into excisional wounds in nude mice, to observe dynamic migrations of the cells during hair follicle morphogenesis. Signaling communications between the two cell populations were examined by RNA-Seq analysis. Potential signaling pathways revealed by the analysis were validated by targeting the pathways using specific inhibitors to observe a functional loss in de novo hair follicle formation. Results Two-photon microscopy analysis indicated that when Epi-SCs and SKPs were mixed in Matrigel and cultured, they underwent dynamic migrations resulting in the formation of a bilayer skin-like structure (skin organoid), where Epi-SCs positioned themselves in the outer layer; when the mixture of Epi-SCs and SKPs was grafted into excisional wounds in nude mice, a bilayer structure resembling the epidermis and the dermis formed at the 5th day, and de novo hair follicles generated subsequently. RNA-Seq analysis of the two cell types after incubation in mixture revealed dramatic alterations in gene transcriptome, where PI3K-Akt signaling pathway in Epi-SCs was significantly upregulated; meanwhile, elevated expressions of several growth factors and cytokine potentially activating PI3K were found in SKPs, suggesting active reciprocal communications between them. In addition, inhibition of PI3K or Akt by specific inhibitors markedly suppressed the hair follicle regeneration mediated by Epi-SCs and SKPs. Conclusions Our data indicate that the PI3K-Akt signaling pathway plays a crucial role in de novo hair follicle regeneration, and the finding may suggest potential therapeutic applications in enhancing hair regeneration.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhimeng Fan
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoxiao Wang
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Miaohua Mo
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Shu Bin Zeng
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Xusheng Wang
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. .,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. .,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China.
| |
Collapse
|
105
|
Bukhari S, Mertz AF, Naik S. Eavesdropping on the conversation between immune cells and the skin epithelium. Int Immunol 2020; 31:415-422. [PMID: 30721971 DOI: 10.1093/intimm/dxy088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 11/12/2022] Open
Abstract
The skin epithelium covers our body and serves as a vital interface with the external environment. Here, we review the context-specific interactions between immune cells and the epithelium that underlie barrier fitness and function. We highlight the mechanisms by which these two systems engage each other and how immune-epithelial interactions are tuned by microbial and inflammatory stimuli. Epithelial homeostasis relies on a delicate balance of immune surveillance and tolerance, breakdown of which results in disease. In addition to their canonical immune functions, resident and recruited immune cells also supply the epithelium with instructive signals to promote repair. Decoding the dialogue between immunity and the epithelium therefore has great potential for boosting barrier function or mitigating inflammatory epithelial diseases.
Collapse
Affiliation(s)
- Shoiab Bukhari
- Department of Pathology, Department of Medicine and Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, USA
| | - Aaron F Mertz
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Shruti Naik
- Department of Pathology, Department of Medicine and Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
106
|
Sun X, Are A, Annusver K, Sivan U, Jacob T, Dalessandri T, Joost S, Füllgrabe A, Gerling M, Kasper M. Coordinated hedgehog signaling induces new hair follicles in adult skin. eLife 2020; 9:46756. [PMID: 32178760 PMCID: PMC7077985 DOI: 10.7554/elife.46756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 02/07/2020] [Indexed: 01/06/2023] Open
Abstract
Hair follicle (HF) development is orchestrated by coordinated signals from adjacent epithelial and mesenchymal cells. In humans this process only occurs during embryogenesis and viable strategies to induce new HFs in adult skin are lacking. Here, we reveal that activation of Hedgehog (Hh) signaling in adjacent epithelial and stromal cells induces new HFs in adult, unwounded dorsal mouse skin. Formation of de novo HFs recapitulated embryonic HF development, and mature follicles produced hair co-occurring with epithelial tumors. In contrast, Hh-pathway activation in epithelial or stromal cells alone resulted in tumor formation or stromal cell condensation respectively, without induction of new HFs. Provocatively, adjacent epithelial-stromal Hh-pathway activation induced de novo HFs also in hairless paw skin, divorced from confounding effects of pre-existing niche signals in haired skin. Altogether, cell-type-specific modulation of a single pathway is sufficient to reactivate embryonic programs in adult tissues, thereby inducing complex epithelial structures even without wounding. We are born with all the hair follicles that we will ever have in our life. These structures are maintained by different types of cells (such as keratinocytes and fibroblasts) that work together to create hair. Follicles form in the embryo thanks to complex molecular signals, which include a molecular cascade known as the Hedgehog signaling pathway. After birth however, these molecular signals are shut down to avoid conflicting messages – inappropriate activation of Hedgehog signaling in adult skin, for instance, leads to tumors. This means that our skin loses the ability to make new hair follicles, and if skin is severely damaged it cannot regrow hair or produce the associated sebaceous glands that keep skin moisturized. Being able to create new hair follicles in adult skin would be both functionally and aesthetically beneficial for patients in need, for example, burn victims. Overall, it would also help to understand if and how it is possible to reactivate developmental programs after birth. To investigate this question, Sun, Are et al. triggered Hedgehog signaling in the skin cells of genetically modified mice; this was done either in keratinocytes, in fibroblasts, or in both types of cells. The experiments showed that Hedgehog signaling could produce new hair follicles, but only when activated in keratinocytes and fibroblasts together. The process took several weeks, mirrored normal hair follicle development and resulted in new hair shafts. The follicles grew on both the back of mice, where hair normally occurs, and even in paw areas that are usually hairless. Not unexpectedly the new hair follicles were accompanied with skin tumors. But, promisingly, treatment with Hedgehog-pathway inhibitor Vismodegib restricted tumor growth while keeping the new follicles intact. This suggests that future work on improving “when and where” Hedgehog signaling is activated may allow the formation of new follicles in adult skin with fewer adverse effects.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alexandra Are
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Unnikrishnan Sivan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tina Jacob
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tim Dalessandri
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Simon Joost
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anja Füllgrabe
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Marco Gerling
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
107
|
Altstätter J, Hess MW, Costell M, Montanez E. α-parvin is required for epidermal morphogenesis, hair follicle development and basal keratinocyte polarity. PLoS One 2020; 15:e0230380. [PMID: 32163511 PMCID: PMC7067437 DOI: 10.1371/journal.pone.0230380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/27/2020] [Indexed: 11/19/2022] Open
Abstract
Epidermal morphogenesis and hair follicle (HF) development depend on the ability of keratinocytes to adhere to the basement membrane (BM) and migrate along the extracellular matrix. Integrins are cell-matrix receptors that control keratinocyte adhesion and migration, and are recognized as major regulators of epidermal homeostasis. How integrins regulate the behavior of keratinocytes during epidermal morphogenesis remains insufficiently understood. Here, we show that α-parvin (α-pv), a focal adhesion protein that couples integrins to actin cytoskeleton, is indispensable for epidermal morphogenesis and HF development. Inactivation of the murine α-pv gene in basal keratinocytes results in keratinocyte-BM detachment, epidermal thickening, ectopic keratinocyte proliferation and altered actin cytoskeleton polarization. In vitro, α-pv-null keratinocytes display reduced adhesion to BM matrix components, aberrant spreading and stress fibers formation, and impaired directed migration. Together, our data demonstrate that α-pv controls epidermal homeostasis by facilitating integrin-mediated adhesion and actin cytoskeleton organization in keratinocytes.
Collapse
Affiliation(s)
- Johannes Altstätter
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael W. Hess
- Institute of Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | - Mercedes Costell
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Spain
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
108
|
Houschyar KS, Borrelli MR, Tapking C, Popp D, Puladi B, Ooms M, Chelliah MP, Rein S, Pförringer D, Thor D, Reumuth G, Wallner C, Branski LK, Siemers F, Grieb G, Lehnhardt M, Yazdi AS, Maan ZN, Duscher D. Molecular Mechanisms of Hair Growth and Regeneration: Current Understanding and Novel Paradigms. Dermatology 2020; 236:271-280. [PMID: 32163945 DOI: 10.1159/000506155] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022] Open
Abstract
Hair is a defining feature of mammals and has critical functions, including protection, production of sebum, apocrine sweat and pheromones, social and sexual interactions, thermoregulation, and provision of stem cells for skin homeostasis, regeneration, and repair. The hair follicle (HF) is considered a "mini-organ," consisting of intricate and well-organized structures which originate from HF stem and progenitor cells. Dermal papilla cells are the main components of the mesenchymal compartments in the hair bulb and are instrumental in generating signals to regulate the behavior of neighboring epithelial cells during the hair cycle. Mesenchymal-epithelial interactions within the dermal papilla niche drive HF embryonic development as well as the postnatal hair growth and regeneration cycle. This review summarizes the current understanding of HF development, repair, and regeneration, with special focus on cell signaling pathways governing these processes. In particular, we discuss emerging paradigms of molecular signaling governing the dermal papilla-epithelial cellular interactions during hair growth and maintenance and the recent progress made towards tissue engineering of human hair follicles.
Collapse
Affiliation(s)
- Khosrow Siamak Houschyar
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, USA
| | - Christian Tapking
- Department of Surgery, Shriners Hospitals for Children-Galveston, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Hand, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Daniel Popp
- Department of Surgery, Shriners Hospitals for Children-Galveston, University of Texas Medical Branch, Galveston, Texas, USA.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Behrus Puladi
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH, Aachen, Germany
| | - Mark Ooms
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH, Aachen, Germany
| | - Malcolm P Chelliah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, USA
| | - Susanne Rein
- Department of Plastic and Hand Surgery, Burn Center, Clinic St. Georg, Leipzig, Germany
| | - Dominik Pförringer
- Clinic and Policlinic of Trauma Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Dominik Thor
- College of Pharmacy, University of Florida Gainesville, Gainesville, Florida, USA
| | - Georg Reumuth
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ludwik K Branski
- Department of Surgery, Shriners Hospitals for Children-Galveston, University of Texas Medical Branch, Galveston, Texas, USA
| | - Frank Siemers
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Teaching Hospital of the Charité Berlin, Berlin, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, University Hospital Aachen, Aachen, Germany
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, USA
| | - Dominik Duscher
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany,
| |
Collapse
|
109
|
Joost S, Annusver K, Jacob T, Sun X, Dalessandri T, Sivan U, Sequeira I, Sandberg R, Kasper M. The Molecular Anatomy of Mouse Skin during Hair Growth and Rest. Cell Stem Cell 2020; 26:441-457.e7. [PMID: 32109378 DOI: 10.1016/j.stem.2020.01.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/07/2019] [Accepted: 01/17/2020] [Indexed: 10/24/2022]
Abstract
Skin homeostasis is orchestrated by dozens of cell types that together direct stem cell renewal, lineage commitment, and differentiation. Here, we use single-cell RNA sequencing and single-molecule RNA FISH to provide a systematic molecular atlas of full-thickness skin, determining gene expression profiles and spatial locations that define 56 cell types and states during hair growth and rest. These findings reveal how the outer root sheath (ORS) and inner hair follicle layers coordinate hair production. We found that the ORS is composed of two intermingling but transcriptionally distinct cell types with differing capacities for interactions with stromal cell types. Inner layer cells branch from transcriptionally uncommitted progenitors, and each lineage differentiation passes through an intermediate state. We also provide an online tool to explore this comprehensive skin cell atlas, including epithelial and stromal cells such as fibroblasts, vascular, and immune cells, to spur further discoveries in skin biology.
Collapse
Affiliation(s)
- Simon Joost
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tina Jacob
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Xiaoyan Sun
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tim Dalessandri
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Unnikrishnan Sivan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Inês Sequeira
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
110
|
Lévy J, Capri Y, Rachid M, Dupont C, Vermeesch JR, Devriendt K, Verloes A, Tabet AC, Bailleul-Forestier I. LEF1 haploinsufficiency causes ectodermal dysplasia. Clin Genet 2020; 97:595-600. [PMID: 32022899 DOI: 10.1111/cge.13714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/30/2022]
Abstract
Ectodermal dysplasias are a family of genodermatoses commonly associated with variants in the ectodysplasin/NF-κB or the Wnt/β-catenin pathways. Both pathways are involved in signal transduction from ectoderm to mesenchyme during the development of ectoderm-derived structures. Wnt/β-catenin pathway requires the lymphoid enhancer-binding factor 1 (LEF1), a nuclear mediator, to activate target gene expression. In mice, targeted inactivation of the LEF1 gene results in a complete block of development of multiple ectodermal appendages. We report two unrelated patients with 4q25 de novo deletion encompassing LEF1, associated with severe oligodontia of primary and permanent dentition, hypotrichosis and hypohidrosis compatible with hypohidrotic ectodermal dysplasia. Taurodontism and a particular alveolar bone defect were also observed in both patients. So far, no pathogenic variants or variations involving the LEF1 gene have been reported in human. We provide further evidence for LEF1 haploinsufficiency role in ectodermal dysplasia and delineate its clinical phenotype.
Collapse
Affiliation(s)
- Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Yline Capri
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Myriam Rachid
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Céline Dupont
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Joris R Vermeesch
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Center of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Koen Devriendt
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Center of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Alain Verloes
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Anne-Claude Tabet
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France.,Neuroscience Department, Génétique Humaine et Fonction Cognitive Unit, Pasteur Institute, Paris, France
| | - Isabelle Bailleul-Forestier
- Department of Paediatric Dentistry, Rare Oral and Dental Competence Center, CHU Toulouse, Paul Sabatier University, Toulouse, France
| |
Collapse
|
111
|
Ding H, Cheng G, Leng J, Yang Y, Zhao X, Wang X, Qi Y, Huang D, Zhao H. Analysis of histological and microRNA profiles changes in rabbit skin development. Sci Rep 2020; 10:454. [PMID: 31949201 PMCID: PMC6965608 DOI: 10.1038/s41598-019-57327-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023] Open
Abstract
The periodic regrowth of rabbit fur is economically important. Here, we aimed to characterise the histological traits and microRNA (miRNA) expression profiles in the skin tissue of Wan Strain Angora rabbits at different weeks after plucking. Haematoxylin-eosin staining showed that hair follicles were in the telogen phase in the first week, while they were in the anagen phase from the fourth to twenty-fourth weeks. In addition, two small RNA libraries derived from skin samples of Wan Strain Angora rabbits at telogen and anagen stages yielded over 24 million high-quality reads. Specifically, 185 miRNAs were differentially expressed between the telogen and anagen phases. The function of the differentially expressed miRNAs was explored by comparing them with known mammalian miRNAs and by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of their predicted targets. Five new functional miRNAs were validated using quantitative real-time PCR. Moreover, the fibroblast growth factor 5 (FGF5) gene was verified to be a target of conservative_NC_013672.1_9290 and conservative_NC_013675.1_10734. We investigated differential miRNA profiles between the telogen and anagen phases of the hair cycle and our findings provide a basis for future studies focusing on the mechanisms of miRNA-mediated regulation of rabbit hair follicle cycling.
Collapse
Affiliation(s)
- Haisheng Ding
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Guanglong Cheng
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Jianjian Leng
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Yongxin Yang
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Xiaowei Zhao
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Xiaofei Wang
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Yunxia Qi
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Dongwei Huang
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China.
| | - Huiling Zhao
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
112
|
Protective Role of Nutritional Plants Containing Flavonoids in Hair Follicle Disruption: A Review. Int J Mol Sci 2020; 21:ijms21020523. [PMID: 31947635 PMCID: PMC7013965 DOI: 10.3390/ijms21020523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/26/2022] Open
Abstract
Hair loss is a disorder in which the hair falls out from skin areas such as the scalp and the body. Several studies suggest the use of herbal medicine to treat related disorders, including alopecia. Dermal microcirculation is essential for hair maintenance, and an insufficient blood supply can lead to hair follicles (HF) diseases. This work aims to provide an insight into the ethnohistorical records of some nutritional compounds containing flavonoids for their potential beneficial features in repairing or recovering from hair follicle disruption. We started from a query for “alopecia” OR “hair loss” AND “Panaxginseng C.A. Mey.“ (or other six botanicals) terms included in Pubmed and Web of Sciences articles. The activities of seven common botanicals introduced with diet (Panaxginseng C.A. Mey., Malus pumila Mill cultivar Annurca, Coffea arabica, Allium sativum L., Camellia sinensis (L.) Kuntze, Rosmarinum officinalis L., Capsicum annum L.) are discussed, which are believed to reduce the rate of hair loss or stimulate new hair growth. In this review, we pay our attention on the molecular mechanisms underlying the bioactivity of the aforementioned nutritional compounds in vivo, ex vivo and in vitro studies. There is a need for systematic evaluation of the most commonly used plants to confirm their anti-hair loss power, identify possible mechanisms of action, and recommend their best adoption.
Collapse
|
113
|
27 TH Fondation René Touraine Annual SCIENTIFIC MEETING 2019: Skin Appendages - Developmental and Pathophysiological Aspects. Exp Dermatol 2019; 28:1353-1367. [PMID: 31854035 DOI: 10.1111/exd.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
114
|
Su Y, Wen J, Zhu J, Xie Z, Liu C, Ma C, Zhang Q, Xu X, Wu X. Pre-aggregation of scalp progenitor dermal and epidermal stem cells activates the WNT pathway and promotes hair follicle formation in in vitro and in vivo systems. Stem Cell Res Ther 2019; 10:403. [PMID: 31856904 PMCID: PMC6921573 DOI: 10.1186/s13287-019-1504-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Billions of dollars are invested annually by pharmaceutical companies in search of new options for treating hair loss conditions; nevertheless, the challenge remains. One major limitation to hair follicle research is the lack of effective and efficient drug screening systems using human cells. Organoids, three-dimensional in vitro structures derived from stem cells, provide new opportunities for studying organ development, tissue regeneration, and disease pathogenesis. The present study focuses on the formation of human hair follicle organoids. METHODS Scalp-derived dermal progenitor cells mixed with foreskin-derived epidermal stem cells at a 2:1 ratio aggregated in suspension to form hair follicle-like organoids, which were confirmed by immunostaining of hair follicle markers and by molecular dye labeling assays to analyze dermal and epidermal cell organization in those organoids. The hair-forming potential of organoids was examined using an in vivo transplantation assay. RESULTS Pre-aggregation of dermal and epidermal cells enhanced hair follicle formation in vivo. In vitro pre-aggregation initiated the interactions of epidermal and dermal progenitor cells resulting in activation of the WNT pathway and the formation of pear-shape structures, named type I aggregates. Cell-tracing analysis showed that the dermal and epidermal cells self-assembled into distinct epidermal and dermal compartments. Histologically, the type I aggregates expressed early hair follicle markers, suggesting the hair peg-like phase of hair follicle morphogenesis. The addition of recombinant WNT3a protein to the medium enhanced the formation of these aggregates, and the Wnt effect could be blocked by the WNT inhibitor, IWP2. CONCLUSIONS In summary, our system supports the rapid formation of a large number of hair follicle organoids (type I aggregates). This system provides a platform for studying epithelial-mesenchymal interactions, for assessing inductive hair stem cells and for screening compounds that support hair follicle regeneration.
Collapse
Affiliation(s)
- Yiqun Su
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Jinan, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Junrong Zhu
- Women and Children's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Zhiwei Xie
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chuan Ma
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Jinan, China.
- School of Stomatology, Shandong University, 44-1 Wenhua West Road, Jinan, 250014, Shandong, China.
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
- School of Stomatology, Shandong University, 44-1 Wenhua West Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
115
|
Martínez-Romero MC, Ballesta-Martínez MJ, López-González V, Sánchez-Soler MJ, Serrano-Antón AT, Barreda-Sánchez M, Rodriguez-Peña L, Martínez-Menchon MT, Frías-Iniesta J, Sánchez-Pedreño P, Carbonell-Meseguer P, Glover-López G, Guillén-Navarro E. EDA, EDAR, EDARADD and WNT10A allelic variants in patients with ectodermal derivative impairment in the Spanish population. Orphanet J Rare Dis 2019; 14:281. [PMID: 31796081 PMCID: PMC6892193 DOI: 10.1186/s13023-019-1251-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/05/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ectodermal dysplasias (ED) are a group of genetic conditions affecting the development and/or homeostasis of two or more ectodermal derivatives. An attenuated phenotype is considered a non-syndromic trait when the patient is affected by only one impaired ectodermal structure, such as in non-syndromic tooth agenesis (NSTA) disorder. Hypohidrotic ectodermal dysplasia (HED) is the most highly represented ED. X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common subtype, with an incidence of 1/50,000-100,000 males, and is associated with the EDA gene (Xq12-q13.1); the dominant and recessive subtypes involve the EDAR (2q13) and EDARADD (1q42.3) genes, respectively. The WNT10A gene (2q35) is associated more frequently with NSTA. Our goal was to determine the mutational spectrum in a cohort of 72 Spanish patients affected by one or more ectodermal derivative impairments referred to as HED (63/72) or NSTA (9 /72) to establish the prevalence of the allelic variants of the four most frequently associated genes. Sanger sequencing of the EDA, EDAR, EDARADD and WNT10A genes and multiplex ligation-dependent probe amplification (MLPA) were performed. RESULTS A total of 61 children and 11 adults, comprising 50 males and 22 females, were included. The average ages were 5.4 and 40.2 years for children and adults, respectively. A molecular basis was identified in 51/72 patients, including 47/63 HED patients, for whom EDA was the most frequently involved gene, and 4/9 NSTA patients, most of whom had variants of WNT10A. Among all the patients, 37/51 had variants of EDA, 8/51 had variants of the WNT10A gene, 4/51 had variants of EDAR and 5/51 had variants of EDARADD. In 42/51 of cases, the variants were inherited according to an X-linked pattern (27/42), with the remaining showing an autosomal dominant (10/42) or autosomal recessive (5/42) pattern. Among the NSTA patients, 3/9 carried pathogenic variants of WNT10A and 1/9 carried EDA variants. A total of 60 variants were detected in 51 patients, 46 of which were different, and out of these 46 variants, 12 were novel. CONCLUSIONS This is the only molecular study conducted to date in the Spanish population affected by ED. The EDA, EDAR, EDARADD and WNT10A genes constitute the molecular basis in 70.8% of patients with a 74.6% yield in HED and 44.4% in NSTA. Twelve novel variants were identified. The WNT10A gene has been confirmed as the second molecular candidate that has been identified and accounts for one-half of non-EDA patients and one-third of NSTA patients. Further studies using next generation sequencing (NGS) will help to identify other contributory genes in the remaining uncharacterized Spanish patients.
Collapse
Affiliation(s)
- María Carmen Martínez-Romero
- Centro de Bioquímica y Genética Clínica, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB- Arrixaca. Murcia. CIBERER-ISCIII, Madrid, Spain.,Programa de doctorado en Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - María Juliana Ballesta-Martínez
- Sección Genética Médica. Servicio de Pediatría. Hospital Clínico Universitario Virgen de la Arrixaca. IMIB- Arrixaca, Universidad de Murcia. CIBERER-ISCIII, Madrid, Spain.,Cátedra de Genética. Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Vanesa López-González
- Sección Genética Médica. Servicio de Pediatría. Hospital Clínico Universitario Virgen de la Arrixaca. IMIB- Arrixaca, Universidad de Murcia. CIBERER-ISCIII, Madrid, Spain.,Cátedra de Genética. Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - María José Sánchez-Soler
- Sección Genética Médica. Servicio de Pediatría. Hospital Clínico Universitario Virgen de la Arrixaca. IMIB- Arrixaca, Universidad de Murcia. CIBERER-ISCIII, Madrid, Spain.,Cátedra de Genética. Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Ana Teresa Serrano-Antón
- Sección Genética Médica. Servicio de Pediatría. Hospital Clínico Universitario Virgen de la Arrixaca. IMIB- Arrixaca, Universidad de Murcia. CIBERER-ISCIII, Madrid, Spain
| | - María Barreda-Sánchez
- Cátedra de Genética. Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Lidya Rodriguez-Peña
- Sección Genética Médica. Servicio de Pediatría. Hospital Clínico Universitario Virgen de la Arrixaca. IMIB- Arrixaca, Universidad de Murcia. CIBERER-ISCIII, Madrid, Spain
| | - María Teresa Martínez-Menchon
- Servicio de Dermatología. Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - José Frías-Iniesta
- Servicio de Dermatología. Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Paloma Sánchez-Pedreño
- Servicio de Dermatología. Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Pablo Carbonell-Meseguer
- Centro de Bioquímica y Genética Clínica, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB- Arrixaca. Murcia. CIBERER-ISCIII, Madrid, Spain
| | - Guillermo Glover-López
- Centro de Bioquímica y Genética Clínica, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB- Arrixaca. Murcia. CIBERER-ISCIII, Madrid, Spain
| | - Encarna Guillén-Navarro
- Departamento de Cirugía, Pediatría, Obstetricia y Ginecología. Facultad de Medicina, Universidad de Murcia, Murcia, Spain. .,Sección Genética Médica (Hospital Materno-Infantil. Planta 0), Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena s/n, El Palmar, CP 30120, Murcia, Spain.
| | | |
Collapse
|
116
|
Zhang Y, Wang L, Li Z, Chen D, Han W, Wu Z, Shang F, Hai E, Wei Y, Su R, Liu Z, Wang R, Wang Z, Zhao Y, Wang Z, Zhang Y, Li J. Transcriptome profiling reveals transcriptional and alternative splicing regulation in the early embryonic development of hair follicles in the cashmere goat. Sci Rep 2019; 9:17735. [PMID: 31780728 PMCID: PMC6882815 DOI: 10.1038/s41598-019-54315-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 01/30/2023] Open
Abstract
The undercoat fiber of the cashmere goat, from the secondary hair follicle (HF), possesses commercial value. However, very few studies have focused on the molecular details of primary and secondary HF initiation and development in goat embryos. In this study, skin samples at embryonic day 45, 55, and 65 (E45, E55, and E65) were collected and prepared for RNA sequencing (RNA-seq). We found that the HF probably initiated from E55 to E65 by analyzing the functional pathways of differentially expressed genes (DEGs). Most key genes in canonical signaling pathways, including WNT, TGF-β, FGF, Hedgehog, NOTCH, and other factors showed clear expression changes from E55 to E65. We, for the first time, explored alternative splicing (AS) alterations, which showed distinct patterns among these three stages. Functional pathways of AS-regulated genes showed connections to HF development. By comparing the published RNA-seq samples from the E60, E120, and newborn (NB) stages, we found the majority of WNT/β-catenin signaling genes were important in the initiation of HF development, while other factors including FOXN1, GATA3, and DLX3 may have a consistent influence on HF development. Our investigation supported the time points of embryonic HF initiation and identified genes that have potential functions of embryonic HF initiation and development. We further explored the potential regulatory roles of AS in HF initiation, which extended our knowledge about the molecular mechanisms of HF development.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Lele Wang
- Ulanqab Medical College, 010020, Ulanqab, Inner Mongolia Autonomous Region, China
| | - Zhen Li
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, 430072, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, 430072, China
| | - Wenjing Han
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhihong Wu
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Erhan Hai
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, 430072, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, 430072, China.
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, Inner Mongolia Autonomous Region, China.
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, 010018, Hohhot, Inner Mongolia Autonomous Region, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, 010018, Hohhot, Inner Mongolia Autonomous Region, China.
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, 010018, Hohhot, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
117
|
Zhu Y, Wu Z, Liu H, Liu G, Li F. Methionine promotes the development of hair follicles via the Wnt/β-catenin signalling pathway in Rex rabbits. J Anim Physiol Anim Nutr (Berl) 2019; 104:379-384. [PMID: 31732998 DOI: 10.1111/jpn.13238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
To investigate the effect and molecular mechanism of methionine (Met) on the growth of hair follicles (HFs) in Rex rabbits. A total of 200 weaning Rex rabbits were divided into four groups and fed varying levels of Met-supplemented diets. We measured the HF density on dorsal skin and the Wnt/β-catenin pathway protein expression level. Meanwhile, whole HFs were isolated from Rex rabbit skins and cultured with Met in vitro to measure hair shaft growth. The relationship between Met and the Wnt/β-catenin signalling pathway was also characterized by using the Wnt/β-catenin signalling inhibitor, XAV-939. The results showed that the addition of dietary Met could significantly increase the HF density on dorsal skin (p < .05) and enhance the protein expression level of Wnt10b (p < .05), β-catenin (p < .05) and DSH (p < .05). Methionine stimulation could also prolong the hair shafts growth in vitro (p < .05). And inhibition of Wnt/β-catenin signalling using XAV-939 could eliminate this phenomenon. In summary, Met can increase the density of HFs on dorsal skin in vitro and prolong the hair shaft growth of HFs in vivo via the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yanli Zhu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Zhenyu Wu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China.,Department of Teachers and Education, Taishan University, Taian, China
| | - Hongli Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Gongyan Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Fuchang Li
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| |
Collapse
|
118
|
Seifert AW, Cook AB, Shaw D. Inhibiting fibroblast aggregation in skin wounds unlocks developmental pathway to regeneration. Dev Biol 2019; 455:60-72. [DOI: 10.1016/j.ydbio.2019.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
|
119
|
Ahmed A, Almohanna H, Griggs J, Tosti A. Genetic Hair Disorders: A Review. Dermatol Ther (Heidelb) 2019; 9:421-448. [PMID: 31332722 PMCID: PMC6704196 DOI: 10.1007/s13555-019-0313-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 12/23/2022] Open
Abstract
Hair loss in early childhood represents a broad differential diagnosis which can be a diagnostic and therapeutic challenge for a physician. It is important to consider the diagnosis of a genetic hair disorder. Genetic hair disorders are a large group of inherited disorders, many of which are rare. Genetic hair abnormalities in children can be an isolated phenomenon or part of genetic syndromes. Hair changes may be a significant finding or even the initial presentation of a syndrome giving a clue to the diagnosis, such as Netherton syndrome and trichothiodystrophy. Detailed history including family history and physical examination of hair and other ectodermal structures such as nails, sweat glands, and sebaceous glands with the use of dermoscopic devices and biopsy all provide important clues to establish the correct diagnosis. Understanding the pathophysiology of genetic hair defects will allow for better comprehension of their treatment and prognosis. For example, in patients with an isolated hair defect, the main problem is aesthetic. In contrast, when the hair defect is associated with a syndrome, the prognosis will depend mainly on the associated condition. Treatment of many genetic hair disorders is focused on treating the primary cause and minimizing trauma to the hair.
Collapse
Affiliation(s)
- Azhar Ahmed
- Department of Dermatology, King Fahad General Hospital, Medina, Saudi Arabia.
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, University of Miami Hospital, Miami, FL, USA.
| | - Hind Almohanna
- Department of Dermatology and Dermatologic Surgery, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Jacob Griggs
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, University of Miami Hospital, Miami, FL, USA
| | - Antonella Tosti
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, University of Miami Hospital, Miami, FL, USA
| |
Collapse
|
120
|
Relationship between working hours and probability to take alopecia medicine among Korean male workers: a 4-year follow-up study. Ann Occup Environ Med 2019; 31:e12. [PMID: 31583103 PMCID: PMC6761478 DOI: 10.35371/aoem.2019.31.e12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022] Open
Abstract
Background Many studies have reported the negative effects of long working hours on various health problems. However, whether hair loss is associated with working hours has been rarely investigated so far. The main purpose of this study is to explore the relationship between long working hours and the development of alopecia among Korean male workers. Methods A total of 13,391 male workers not to take alopecia medicine in 2013 were followed up to see if they have alopecia medicine after 4 years, and that was used to confirm the alopecia development. Weekly working hours were categorized into three groups: reference working hours (RWH; < 40 hours/week), long working hours (LWH, 40–52 hours/week), and much longer working hours (MLWH; > 52 hours/week). Multiple logistic regression analyses were conducted to investigate the relationship between long working hours and the development of alopecia after adjusting age, marital status, education, monthly household income, smoking, and work schedule within strata of the covariates. Results Long working hours was significantly related to the development of alopecia. The adjusted odds ratios (ORs) for the development of alopecia were 1.57 (95% confidence interval [CI]: 1.21–2.05) for LWH group and 1.74 (95% CI: 1.23–2.47) for MLWH group relative to RWH group. Conclusions Our findings suggest that unintentional development of alopecia is another potential health consequence of long working hours among Korean male workers. Preventive interventions to promote appropriate and reasonable working hours are required in our society.
Collapse
|
121
|
le Riche A, Aberdam E, Marchand L, Frank E, Jahoda C, Petit I, Bordes S, Closs B, Aberdam D. Extracellular Vesicles from Activated Dermal Fibroblasts Stimulate Hair Follicle Growth Through Dermal Papilla-Secreted Norrin. Stem Cells 2019; 37:1166-1175. [DOI: 10.1002/stem.3043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Alizée le Riche
- INSERM U976; Paris France
- Université de Paris; Brive France
- SILAB R&D Department; Brive France
| | - Edith Aberdam
- INSERM U976; Paris France
- Université de Paris; Brive France
| | | | - Elie Frank
- INSERM U976; Paris France
- Université de Paris; Brive France
| | - Colin Jahoda
- Department of Biosciences; Durham University; Durham United Kingdom
| | - Isabelle Petit
- INSERM U976; Paris France
- Université de Paris; Brive France
| | | | | | - Daniel Aberdam
- INSERM U976; Paris France
- Université de Paris; Brive France
| |
Collapse
|
122
|
Ma S, Wang Y, Zhou G, Ding Y, Yang Y, Wang X, Zhang E, Chen Y. Synchronous profiling and analysis of mRNAs and ncRNAs in the dermal papilla cells from cashmere goats. BMC Genomics 2019; 20:512. [PMID: 31221080 PMCID: PMC6587304 DOI: 10.1186/s12864-019-5861-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Dermal papilla cells (DPCs), the “signaling center” of hair follicle (HF), delicately master continual growth of hair in mammals including cashmere, the fine fiber annually produced by secondary HF embedded in cashmere goat skins. Such unparalleled capacity bases on their exquisite character in instructing the cellular activity of hair-forming keratinocytes via secreting numerous molecular signals. Past studies suggested microRNA (miRNAs) and long non-coding RNAs (lncRNAs) play essential roles in a wide variety of biological process, including HF cycling. However, their roles and related molecular mechanisms in modulating DPCs secretory activities are still poorly understood. Results Here, we separately cultivated DPCs and their functionally and morphologically distinct dermal fibroblasts (DFs) from cashmere goat skins at anagen. With the advantage of high throughput RNA-seq, we synchronously identified 2540 lncRNAs and 536 miRNAs from two types of cellular samples at 4th passages. Compared with DFs, 1286 mRNAs, 18 lncRNAs, and 42 miRNAs were upregulated, while 1254 mRNAs, 53 lncRNAs and 44 miRNAs were downregulated in DPCs. Through overlapping with mice data, we ultimately defined 25 core signatures of DPCs, including HOXC8 and RSPO1, two crucial activators for hair follicle stem cells (HFSCs). Subsequently, we emphatically investigated the impacts of miRNAs and lncRNAs (cis- and trans- acting) on the genes, indicating that ncRNAs extensively exert negative and positive effects on their expressions. Furthermore, we screened lncRNAs acting as competing endogenous RNAs (ceRNAs) to sponge miRNAs and relief their repressive effects on targeted genes, and constructed related lncRNAs-miRNAs-HOXC8/RSPO1 interactive lines using bioinformatic tools. As a result, XR_310320.3-chi-miR-144-5p-HOXC8, XR_311077.2-novel_624-RSPO1 and others lines appeared, displaying that lncRNAs might serve as ceRNAs to indirectly adjust HFSCs status in hair growth. Conclusion The present study provides an unprecedented inventory of lncRNAs, miRNAs and mRNAs in goat DPCs and DFs. We also exhibit some miRNAs and lncRNAs potentially participate in the modulation of HFSCs activation via delicately adjusting core signatures of DPCs. Our report shines new light on the latent roles and underlying molecular mechanisms of ncRNAs on hair growth. Electronic supplementary material The online version of this article (10.1186/s12864-019-5861-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sen Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guangxian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Department of Animal Science, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Yi Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Enping Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
123
|
Zhao B, Chen Y, Yang N, Chen Q, Bao Z, Liu M, Hu S, Li J, Wu X. miR‐218‐5p regulates skin and hair follicle development through Wnt/β‐catenin signaling pathway by targeting SFRP2. J Cell Physiol 2019; 234:20329-20341. [DOI: 10.1002/jcp.28633] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Yang Chen
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
- Joint International Research Laboratory of Agriculture & Agri‐Product Safety Yangzhou University Yangzhou Jiangsu China
| | - Naisu Yang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Qiuran Chen
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Zhiyuan Bao
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Ming Liu
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Shuaishuai Hu
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Jiali Li
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Xinsheng Wu
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
- Joint International Research Laboratory of Agriculture & Agri‐Product Safety Yangzhou University Yangzhou Jiangsu China
| |
Collapse
|
124
|
An Integrated Analysis of Cashmere Fineness lncRNAs in Cashmere Goats. Genes (Basel) 2019; 10:genes10040266. [PMID: 30987022 PMCID: PMC6523453 DOI: 10.3390/genes10040266] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
Animal growth and development are regulated by long non-coding RNAs (lncRNAs). However, the functions of lncRNAs in regulating cashmere fineness are poorly understood. To identify the key lncRNAs that are related to cashmere fineness in skin, we have collected skin samples of Liaoning cashmere goats (LCG) and Inner Mongolia cashmere goats (MCG) in the anagen phase, and have performed RNA sequencing (RNA-seq) approach on these samples. The high-throughput sequencing and bioinformatics analyses identified 437 novel lncRNAs, including 93 differentially expressed lncRNAs. We also identified 3084 differentially expressed messenger RNAs (mRNAs) out of 27,947 mRNAs. Gene ontology (GO) analyses of lncRNAs and target genes in cis show a predominant enrichment of targets that are related to intermediate filament and intermediate filament cytoskeleton. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, sphingolipid metabolism is a significant pathway for lncRNA targets. In addition, this is the first report to reveal the possible lncRNA–mRNA regulatory network for cashmere fineness in cashmere goats. We also found that lncRNA XLOC_008679 and its target gene, KRT35, may be related to cashmere fineness in the anagen phase. The characterization and expression analyses of lncRNAs will facilitate future studies on the potential value of fiber development in LCG.
Collapse
|
125
|
Comparative study on seasonal hair follicle cycling by analysis of the transcriptomes from cashmere and milk goats. Genomics 2019; 112:332-345. [PMID: 30779940 DOI: 10.1016/j.ygeno.2019.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/06/2023]
Abstract
Guard hair and cashmere undercoat are developed from primary and secondary hair follicle, respectively. Little is known about the gene expression differences between primary and secondary hair follicle cycling. In this study, we obtained RNA-seq data from cashmere and milk goats grown at four different seasons. We studied the differentially expressed genes (DEGs) during the yearly hair follicle cycling, and between cashmere and milk goats. WNT, NOTCH, MAPK, BMP, TGFβ and Hedgehog signaling pathways were involved in hair follicle cycling in both cashmere and milk goat. However, Milk goat DEGs between different months were significantly more than cashmere goat DEGs, with the largest difference being identified in December. Some expression dynamics were confirmed by quantitative PCR and western blot, and immunohistochemistry. This study offers new information sources related to hair follicle cycling in milk and cashmere goats, which could be applicable to improve the wool production and quality.
Collapse
|
126
|
Sasaki GH. Review of Human Hair Follicle Biology: Dynamics of Niches and Stem Cell Regulation for Possible Therapeutic Hair Stimulation for Plastic Surgeons. Aesthetic Plast Surg 2019; 43:253-266. [PMID: 30324295 DOI: 10.1007/s00266-018-1248-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Plastic surgeons are frequently asked to manage male- and female-pattern hair loss in their practice. This article discusses the epidemiology, pathophysiology, and current management of androgenetic alopecia and emphasizes more recent knowledge of stem cell niches in hair follicles that drive hair cycling, alopecia, and its treatment. The many treatment programs available for hair loss include newer strategies that involve the usage of growth factors, platelet-rich plasma, and fat to stimulate follicle growth. Future research may clarify novel biomolecular mechanisms that target specific cells that promote hair regeneration.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
127
|
Gao Q, Zhou G, Lin SJ, Paus R, Yue Z. How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models. Exp Dermatol 2018; 28:413-418. [PMID: 30457678 DOI: 10.1111/exd.13846] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Chemotherapy and radiotherapy are common modalities for cancer treatment. While targeting rapidly growing cancer cells, they also damage normal tissues and cause adverse effects. From the initial insult such as DNA double-strand break, production of reactive oxygen species (ROS) and a general stress response, there are complex regulatory mechanisms that control the actual tissue damage process. Besides apoptosis, a range of outcomes for the damaged cells are possible including cell cycle arrest, senescence, mitotic catastrophe, and inflammatory responses and fibrosis at the tissue level. Feather and hair are among the most actively proliferating (mini-)organs and are highly susceptible to both chemotherapy and radiotherapy damage, thus provide excellent, experimentally tractable model systems for dissecting how normal tissues respond to such injuries. Taking a comparative biology approach to investigate this has turned out to be particularly productive. Started in chicken feather and then extended to murine hair follicles, it was revealed that in addition to p53-mediated apoptosis, several other previously overlooked mechanisms are involved. Specifically, Shh, Wnt, mTOR, cytokine signalling and ROS-mediated degradation of adherens junctions have been implicated in the damage and/or reparative regeneration process. Moreover, we show here that inflammatory responses, which can be prominent upon histological examination of chemo- or radiotherapy-damaged hair follicle, may not be essential for the hair loss phenotype. These studies point to fundamental, evolutionarily conserved mechanisms in controlling tissue responses in vivo, and suggest novel strategies for the prevention and management of adverse effects that arise from chemo- or radiotherapy.
Collapse
Affiliation(s)
- QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - GuiXuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Centre for Dermatology Research, University of Manchester, Manchester, UK
| | - ZhiCao Yue
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
128
|
Feather follicles transcriptome profiles in Bashang long-tailed chickens with different plumage colors. Genes Genomics 2018; 41:1357-1367. [PMID: 30229509 DOI: 10.1007/s13258-018-0740-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/01/2018] [Indexed: 01/05/2023]
Abstract
Despite the rich variety in plumage color found in nature, genetic studies on how feather follicles affect pigmentation are often limited to animals that have black and white pigment. To test how gene expression influences plumage color, transcriptomes of chicken feather follicles with white, black, hemp, reed catkins, silvery grey, and landscape plumage colors were generated using Illumina sequencing. We generated six RNA-Seq libraries with over 25 million paired-end clean reads per library with percentage of paired-end clean reads ranging from 96.73 to 96.98%. 78% of the reads mapped to the chicken genome, and approximately 70% of the reads were mapped to exons and 6% mapped to introns. Transcriptomes of feather follicles producing hemp and land plumage were similar, but these two showed moderate differences compared with gray and reed colored plumage. The black and white follicle transcriptomes were most divergent from the other colors. We identified several candidate genes, including GPNMB, PMEL, TYRP1, GPR143, OCA2, SOX10, SLC45A2, KRT75, and TYR. All of these genes are known to induce pigment formation in mice. White feathers result from the lack of pigment formation, and our results suggest that the white chickens due to the recessive insertion mutation of TYR. The formation of black area size and color depth may be due to the expression levels of GPNMB, PMEL, TYRP1, GPR143, OCA2, SOX10, SLC45A2, KRT75, and TYR. The GO analysis of the differentially expressed genes (DEGs) revealed that DEGs in our transcriptome analysis were enriched in cytoskeleton and cell structure related pathways. The black plumage transcriptome showed significant differences in melanogenesis, tyrosine metabolism, and riboflavin metabolism compared with transcriptomes of other plumage colors. The transcriptome profiles of the different chicken plumage colors provide a valuable resource to understand how gene expression influences plumage color, and will be an important resource for identifying candidate genes in breeding programs.
Collapse
|
129
|
Choi YM, Choi SY, Kim H, Kim J, Ki MS, An IS, Jung J. TGFβ family mimetic peptide promotes proliferation of human hair follicle dermal papilla cells and hair growth in C57BL/6 mice. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-018-0033-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
130
|
Tripurani SK, Wang Y, Fan YX, Rahimi M, Wong L, Lee MH, Starost MF, Rubin JS, Johnson GR. Suppression of Wnt/β-catenin signaling by EGF receptor is required for hair follicle development. Mol Biol Cell 2018; 29:2784-2799. [PMID: 30188763 PMCID: PMC6249831 DOI: 10.1091/mbc.e18-08-0488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mice that lack the epidermal growth factor receptor (EGFR) fail to develop a hair coat, but the mechanism responsible for this deficit is not completely understood. Here, we show that EGFR plays a critical role to attenuate wingless-type MMTV integration site family member (Wnt)/β-catenin signaling during postnatal hair follicle development. Genetic ablation of EGFR in mice resulted in increased mitotic activity in matrix cells, apoptosis in hair follicles, and impaired differentiation of epithelial lineages that form hair. EGFR is activated in wild-type hair follicle stem cells marked with SOX9 or NFATc1 and is essential to restrain proliferation and support stem cell numbers and their quiescence. We observed elevated levels of Wnt4, 6, 7b, 10a, 10b, and 16 transcripts and hyperactivation of the β-catenin pathway in EGFR knockout follicles. Using primary keratinocytes, we linked ligand-induced EGFR activation to suppression of nascent mRNA synthesis of Wnt genes. Overexpression of the Wnt antagonist sFRP1 in mice lacking EGFR demonstrated that elevated Wnts are a major cause for the hair follicle defects. Colocalization of transforming growth factor α and Wnts regulated by EGFR in stem cells and progeny indicates that EGFR autocrine loops control Wnts. Our findings define a novel mechanism that integrates EGFR and Wnt/β-catenin pathways to coordinate the delicate balance between proliferation and differentiation during development.
Collapse
Affiliation(s)
- Swamy K Tripurani
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Yan Wang
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Ying-Xin Fan
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Massod Rahimi
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Lily Wong
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Min-Hyung Lee
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Matthew F Starost
- Diagnostic and Research Services Branch, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | - Jeffrey S Rubin
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892
| | - Gibbes R Johnson
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| |
Collapse
|
131
|
Zhao B, Chen Y, Hao Y, Yang N, Wang M, Mei M, Wang J, Qiu X, Wu X. Transcriptomic analysis reveals differentially expressed genes associated with wool length in rabbit. Anim Genet 2018; 49:428-437. [DOI: 10.1111/age.12701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
Affiliation(s)
- B. Zhao
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - Y. Chen
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - Y. Hao
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - N. Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - M. Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - M. Mei
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - J. Wang
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - X. Qiu
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - X. Wu
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| |
Collapse
|
132
|
Foxn1 in Skin Development, Homeostasis and Wound Healing. Int J Mol Sci 2018; 19:ijms19071956. [PMID: 29973508 PMCID: PMC6073674 DOI: 10.3390/ijms19071956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Intensive research effort has focused on cellular and molecular mechanisms that regulate skin biology, including the phenomenon of scar-free skin healing during foetal life. Transcription factors are the key molecules that tune gene expression and either promote or suppress gene transcription. The epidermis is the source of transcription factors that regulate many functions of epidermal cells such as proliferation, differentiation, apoptosis, and migration. Furthermore, the activation of epidermal transcription factors also causes changes in the dermal compartment of the skin. This review focuses on the transcription factor Foxn1 and its role in skin biology. The regulatory function of Foxn1 in the skin relates to physiological (development and homeostasis) and pathological (skin wound healing) conditions. In particular, the pivotal role of Foxn1 in skin development and the acquisition of the adult skin phenotype, which coincides with losing the ability of scar-free healing, is discussed. Thus, genetic manipulations with Foxn1 expression, specifically those introducing conditional Foxn1 silencing in a Foxn1+/+ organism or its knock-in in a Foxn1−/− model, may provide future perspectives for regenerative medicine.
Collapse
|
133
|
Pantelireis N, Higgins CA. A bald statement - Current approaches to manipulate miniaturisation focus only on promoting hair growth. Exp Dermatol 2018; 27:959-965. [PMID: 29787625 DOI: 10.1111/exd.13690] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2018] [Indexed: 12/17/2022]
Abstract
Hair plays a large part in communication and society with its role changing through time and across cultures. Most people do not leave the house before combing their hair or shaving their beard and for many hair loss or irregular hair growth can have a significant impact on their psychological health. Somewhat unsurprisingly, according to GMR Data, today's global hair care industry is worth an estimated $87 Billion, with hair loss estimated at $2.8 Billion. Considering that no current hair loss-related products can completely reverse hair loss, it is reasonable to believe this market could expand significantly with the discovery of a comprehensive therapy. As such, a great deal of research focuses on overcoming hair loss, and in particular, a common form of hair loss known as androgenetic alopecia (AGA) or male pattern baldness. In AGA, hair follicles miniaturise in a large step change from a terminal to a vellus state. Within this viewpoint article, we discuss how influx and efflux of cells into and out from the dermal papilla (DP) can modulate DP size during the hair cycle. As DP size is positively correlated with the size of the hair fibre produced by a follicle, we argue here that therapies for treating AGA should be developed which can alter DP size, rather than just promote hair growth. We also discuss current therapeutics for AGA and emphasise the importance of using the right model systems to analyse miniaturisation.
Collapse
Affiliation(s)
| | - Claire A Higgins
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
134
|
Nie Y, Li S, Zheng X, Chen W, Li X, Liu Z, Hu Y, Qiao H, Qi Q, Pei Q, Cai D, Yu M, Mou C. Transcriptome Reveals Long Non-coding RNAs and mRNAs Involved in Primary Wool Follicle Induction in Carpet Sheep Fetal Skin. Front Physiol 2018; 9:446. [PMID: 29867522 PMCID: PMC5968378 DOI: 10.3389/fphys.2018.00446] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/10/2018] [Indexed: 11/23/2022] Open
Abstract
Murine primary hair follicle induction is driven by the communication between the mesenchyme and epithelium and mostly governed by signaling pathways including wingless-related integration site (WNT), ectodysplasin A receptor (EDAR), bone morphogenetic protein (BMP), and fibroblast growth factor (FGF), as observed in genetically modified mouse models. Sheep skin may serve as a valuable system for hair research owing to the co-existence of sweat glands with wool follicles in trunk skin and asynchronized wool follicle growth pattern similar to that of human head hair follicles. However, the mechanisms underlying wool follicle development remain largely unknown. To understand how long non-coding RNAs (lncRNAs) and mRNAs function in primary wool follicle induction in carpet wool sheep, we conducted high-throughput RNA sequencing and revealed globally altered lncRNAs (36 upregulated and 26 downregulated), mRNAs (228 elevated and 225 decreased), and 80 differentially expressed novel transcripts. Several key signals in WNT (WNT2B and WNT16), BMP (BMP3, BMP4, and BMP7), EDAR (EDAR and EDARADD), and FGF (FGFR2 and FGF20) pathways, and a series of lncRNAs, including XLOC_539599, XLOC_556463, XLOC_015081, XLOC_1285606, XLOC_297809, and XLOC_764219, were shown to be potentially important for primary wool follicle induction. GO and KEGG analyses of differentially expressed mRNAs and potential targets of altered lncRNAs were both significantly enriched in morphogenesis biological processes and transforming growth factor-β, Hedgehog, and PI3K-Akt signaling, as well as focal adhesion and extracellular matrix-receptor interactions. The prediction of mRNA-mRNA and lncRNA-mRNA interaction networks further revealed transcripts potentially involved in primary wool follicle induction. The expression patterns of mRNAs and lncRNAs of interest were validated by qRT-PCR. The localization of XLOC_297809 and XLOC_764219 both in placodes and dermal condensations was detected by in situ hybridization, indicating important roles of lncRNAs in primary wool follicle induction and skin development. This is the first report elucidating the gene network of lncRNAs and mRNAs associated with primary wool follicle early development in carpet wool sheep and will shed new light on selective wool sheep breeding.
Collapse
Affiliation(s)
- Yangfan Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - XinTing Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenshuo Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueer Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai, China
| | - Haisheng Qiao
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai, China
| | - Quanqing Qi
- Sanjiaocheng Sheep Breeding Farm, Qinghai, China
| | - Quanbang Pei
- Sanjiaocheng Sheep Breeding Farm, Qinghai, China
| | - Danzhuoma Cai
- Animal Husbandry and Veterinary Station, Qinghai, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyan Mou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
135
|
Abstract
Although the major white adipose depots evolved primarily to store energy, secrete hormones and thermo-insulate the body, multiple secondary depots developed additional specialized and unconventional functions. Unlike any other fat tissue, dermal white adipose tissue (dWAT) evolved a large repertoire of novel features that are central to skin physiology, which we discuss in this Review. dWAT exists in close proximity to hair follicles, the principal appendages of the skin that periodically grow new hairs. Responding to multiple hair-derived signals, dWAT becomes closely connected to cycling hair follicles and periodically cycles itself. At the onset of new hair growth, hair follicles secrete activators of adipogenesis, while at the end of hair growth, a reduction in the secretion of activators or potentially, an increase in the secretion of inhibitors of adipogenesis, results in fat lipolysis. Hair-driven cycles of dWAT remodelling are uncoupled from size changes in other adipose depots that are controlled instead by systemic metabolic demands. Rich in growth factors, dWAT reciprocally signals to hair follicles, altering the activation state of their stem cells and modulating the pace of hair regrowth. dWAT cells also facilitate skin repair following injury and infection. In response to wounding, adipose progenitors secrete repair-inducing activators, while bacteria-sensing adipocytes produce antimicrobial peptides, thus aiding innate immune responses in the skin.
Collapse
Affiliation(s)
- Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, 2011 Biological Sciences III, University of California, Irvine, Irvine, California 92697, USA
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, 2620 Biological Sciences III, University of California, Irvine, Irvine, California 92697, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, 2011 Biological Sciences III, University of California, Irvine, Irvine, California 92697, USA
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, 2620 Biological Sciences III, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
136
|
Mesler AL, Veniaminova NA, Lull MV, Wong SY. Hair Follicle Terminal Differentiation Is Orchestrated by Distinct Early and Late Matrix Progenitors. Cell Rep 2018; 19:809-821. [PMID: 28445731 DOI: 10.1016/j.celrep.2017.03.077] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 11/25/2022] Open
Abstract
During development and regeneration, matrix progenitors undergo terminal differentiation to form the concentric layers of the hair follicle. These differentiation events are thought to require signals from the mesenchymal dermal papilla (DP); however, it remains unclear how DP-progenitor cell interactions govern specific cell fate decisions. Here, we show that the hair follicle differentiated layers are specified asynchronously, with early matrix progenitors initiating differentiation before surrounding the DP. Furthermore, these early matrix cells can undergo terminal differentiation in the absence of Shh, BMP signaling, and DP maturation. Whereas early matrix progenitors form the hair follicle companion layer, later matrix populations progressively form the inner root sheath and hair shaft. Altogether, our findings characterize some of the earliest terminal differentiation events in the hair follicle and reveal that the matrix progenitor pool can be divided into early and late phases based on distinct temporal, molecular, and functional characteristics.
Collapse
Affiliation(s)
- Arlee L Mesler
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A Veniaminova
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Madison V Lull
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sunny Y Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
137
|
Xing F, Yi WJ, Miao F, Su MY, Lei TC. Baicalin increases hair follicle development by increasing canonical Wnt/β‑catenin signaling and activating dermal papillar cells in mice. Int J Mol Med 2018; 41:2079-2085. [PMID: 29336472 PMCID: PMC5810219 DOI: 10.3892/ijmm.2018.3391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/10/2018] [Indexed: 11/05/2022] Open
Abstract
Baicalin is a traditional Chinese herbal medicine commonly used for hair loss, the precise molecular mechanism of which is unknown. In the present study, the mechanism of baicalin was investigated via the topical application of baicalin to reconstituted hair follicles on mice dorsa and evaluating the effect on canonical Wnt/β‑catenin signaling in the hair follicles and the activity of dermal papillar cells. The results indicate that baicalin stimulates the expression of Wnt3a, Wnt5a, frizzled 7 and disheveled 2 whilst inhibiting the Axin/casein kinase 1α/adenomatous polyposis coli/glycogen synthase kinase 3β degradation complex, leading to accumulation of β‑catenin and activation of Wnt/β‑catenin signaling. In addition, baicalin was observed to increase the alkaline phosphatase levels in dermal papillar cells, a process which was dependent on Wnt pathway activation. Given its non‑toxicity and ease of topical application, baicalin represents a promising treatment for alopecia and other forms of hair loss. Further studies of baicalin using human hair follicle transplants are warranted in preparation for future clinical use.
Collapse
Affiliation(s)
- Fei Xing
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Wen-Juan Yi
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Fang Miao
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Meng-Yun Su
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Tie-Chi Lei
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
138
|
Hu MS, Borrelli MR, Hong WX, Malhotra S, Cheung ATM, Ransom RC, Rennert RC, Morrison SD, Lorenz HP, Longaker MT. Embryonic skin development and repair. Organogenesis 2018; 14:46-63. [PMID: 29420124 PMCID: PMC6150059 DOI: 10.1080/15476278.2017.1421882] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
Fetal cutaneous wounds have the unique ability to completely regenerate wounded skin and heal without scarring. However, adult cutaneous wounds heal via a fibroproliferative response which results in the formation of a scar. Understanding the mechanism(s) of scarless wound healing leads to enormous clinical potential in facilitating an environment conducive to scarless healing in adult cutaneous wounds. This article reviews the embryonic development of the skin and outlines the structural and functional differences in adult and fetal wound healing phenotypes. A review of current developments made towards applying this clinical knowledge to promote scarless healing in adult wounds is addressed.
Collapse
Affiliation(s)
- Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Wan Xing Hong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Samir Malhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Alexander T. M. Cheung
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Ryan C. Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Robert C. Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Shane D. Morrison
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - H. Peter Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
139
|
Abstract
The growth of hairs occurs during the anagen phase of the follicle cycle. Hair growth begins with basement membrane-bound stem cells (mother cells) around the dermal papilla neck which continuously bud off daughter cells which further divide as a transient amplifying population. Division ceases as cell line differentiation begins, which entails changes in cell junctions, cell shape and position, and cell-line specific cytoplasmic expression of keratin and trichohyalin. As the differentiating cells migrate up the bulb, nuclear function ceases in cortex, cuticle and inner root sheath (IRS) layers. Past the top of the bulb, cell shape/position changes cease, and there is a period of keratin and keratin-associated protein (KAP) synthesis in fibre cell lines, with increases, in particular of KAP species. A gradual keratinization process begins in the cortex at this point and then non-keratin cell components are increasingly broken down. Terminal cornification, or hardening, is associated with water loss and precipitation of keratin. In the upper follicle, the hair, now in its mature form, detaches from the IRS, which is then extracted of material and becomes fragmented to release the fibre. Finally, the sebaceous and sudoriferous (if present) glands coat the fibre in lipid-rich material and the fibre emerges from the skin. This chapter follows the origin of the hair growth in the lower bulb and traces the development of the various cell lines.
Collapse
|
140
|
Thulabandu V, Chen D, Atit RP. Dermal fibroblast in cutaneous development and healing. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29244903 DOI: 10.1002/wdev.307] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ of the body and is composed of two layers: the overlying epidermis and the underlying dermis. The dermal fibroblasts originate from distinct locations of the embryo and contain the positional identity and patterning information in the skin. The dermal fibroblast progenitors differentiate into various cell types that are fated to perform specific functions such as hair follicle initiation and scar formation during wound healing. Recent studies have revealed the heterogeneity and plasticity of dermal fibroblasts within skin, which has implications for skin disease and tissue engineering. The objective of this review is to frame our current understanding and provide new insights on the origin and differentiation of dermal fibroblasts and their function during cutaneous development and healing. WIREs Dev Biol 2018, 7:e307. doi: 10.1002/wdev.307 This article is categorized under: Birth Defects > Organ Anomalies Signaling Pathways > Cell Fate Signaling Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Venkata Thulabandu
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Demeng Chen
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
141
|
Abstract
The sensation of touch is mediated by mechanosensory neurons that are embedded in skin and relay signals from the periphery to the central nervous system. During embryogenesis, axons elongate from these neurons to make contact with the developing skin. Concurrently, the epithelium of skin transforms from a homogeneous tissue into a heterogeneous organ that is made up of distinct layers and microdomains. Throughout this process, each neuronal terminal must form connections with an appropriate skin region to serve its function. This Review presents current knowledge of the development of the sensory microdomains in mammalian skin and the mechanosensory neurons that innervate them.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| | - Ellen A Lumpkin
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| |
Collapse
|
142
|
Roles of the Hedgehog Signaling Pathway in Epidermal and Hair Follicle Development, Homeostasis, and Cancer. J Dev Biol 2017; 5:jdb5040012. [PMID: 29615568 PMCID: PMC5831796 DOI: 10.3390/jdb5040012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 12/15/2022] Open
Abstract
The epidermis is the outermost layer of the skin and provides a protective barrier against environmental insults. It is a rapidly-renewing tissue undergoing constant regeneration, maintained by several types of stem cells. The Hedgehog (HH) signaling pathway is one of the fundamental signaling pathways that contributes to epidermal development, homeostasis, and repair, as well as to hair follicle development and follicle bulge stem cell maintenance. The HH pathway interacts with other signal transduction pathways, including those activated by Wnt, bone morphogenetic protein, platelet-derived growth factor, Notch, and ectodysplasin. Furthermore, aberrant activation of HH signaling is associated with various tumors, including basal cell carcinoma. Therefore, an understanding of the regulatory mechanisms of the HH signaling pathway is important for elucidating fundamental mechanisms underlying both organogenesis and carcinogenesis. In this review, we discuss the role of the HH signaling pathway in the development and homeostasis epidermis and hair follicles, and in basal cell carcinoma formation, providing an update of current knowledge in this field.
Collapse
|
143
|
Veltri A, Lang C, Lien WH. Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells. Stem Cells 2017; 36:22-35. [DOI: 10.1002/stem.2723] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/23/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Anthony Veltri
- de Duve Institute, Faculty of Medicine, Université Catholique de Louvain; Brussels Belgium
| | - Christopher Lang
- de Duve Institute, Faculty of Medicine, Université Catholique de Louvain; Brussels Belgium
| | - Wen-Hui Lien
- de Duve Institute, Faculty of Medicine, Université Catholique de Louvain; Brussels Belgium
| |
Collapse
|
144
|
Sardella C, Winkler C, Quignodon L, Hardman JA, Toffoli B, Giordano Attianese GMP, Hundt JE, Michalik L, Vinson CR, Paus R, Desvergne B, Gilardi F. Delayed Hair Follicle Morphogenesis and Hair Follicle Dystrophy in a Lipoatrophy Mouse Model of Pparg Total Deletion. J Invest Dermatol 2017; 138:500-510. [PMID: 28964716 DOI: 10.1016/j.jid.2017.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023]
Abstract
PPARγ regulates multiple aspects of skin physiology, including sebocyte differentiation, keratinocyte proliferation, epithelial stem cell survival, adipocyte biology, and inflammatory skin responses. However, the effects of its global deletion, namely of nonredundant key functions of PPARγ signaling in mammalian skin, are yet unknown because of embryonic lethality. Here, we describe the skin and hair phenotype of a whole-body PPARγ-null mouse (PpargΔ/Δ), obtained by preserving PPARγ expression in the placenta. PpargΔ/Δ mice exhibited total lipoatrophy and complete absence of sebaceous glands. Right after birth, hair follicle (HF) morphogenesis was transiently delayed, along with reduced expression of HF differentiation markers and of transcriptional regulators necessary for HF development. Later, adult PpargΔ/Δ mice developed scarring alopecia and severe perifollicular inflammation. Skin analyses in other models of lipodystrophy, AZIPtg/+ and Adipoq-Cretg/+Ppargfl/fl mice, coupled with skin graft experiments, showed that the early defects observed in hair morphogenesis were caused by the absence of adipose tissue. In contrast, the late alteration of HF cycle and appearance of inflammation were observed only in PpargΔ/Δ mice and likely were due to the lack sebaceous glands. Our findings underscore the increasing appreciation for the importance of adipose tissue-mediated signals in HF development and function.
Collapse
Affiliation(s)
- Chiara Sardella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carine Winkler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Laure Quignodon
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jonathan A Hardman
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Barbara Toffoli
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Jennifer E Hundt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Liliane Michalik
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Charles R Vinson
- Center for Cancer Research, National Cancer Institute, Laboratory of Metabolism, Bethesda, Maryland, USA
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Béatrice Desvergne
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federica Gilardi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
145
|
Kim JE, Woo YJ, Sohn KM, Jeong KH, Kang H. Wnt/β-catenin and ERK pathway activation: A possible mechanism of photobiomodulation therapy with light-emitting diodes that regulate the proliferation of human outer root sheath cells. Lasers Surg Med 2017; 49:940-947. [PMID: 28944964 DOI: 10.1002/lsm.22736] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Outer root sheath cells (ORSCs) play important roles in maintaining hair follicle structure and provide support for the bulge area. The hair growth promoting effects of photobiomodulation therapy (PBMT) have been reported, but the mechanisms for this in human ORCs (hORSCs) have rarely been studied. OBJECTIVE The aim of this study was to investigate the effect of various wavelengths of light-emitting diode (LED) irradiation on human ORSCs (hORSCs). METHODS LED irradiation effects on hORSC proliferation and migration were examined with MTT assay, BrdU incorporation assay and migration assays. hORSCs were irradiated using four LED wavelengths (415, 525, 660, and 830 nm) with different low energy levels. LED irradiation effects on the expression of molecules associated with the Wnt/β-catenin signaling and ERK pathway, hair stem cell markers, and various growth factors and cytokines in hORSCs were examined with real-time PCR and Western blot assay. The effect of the LED-irradiated hORSCs on cell proliferation of human dermal papilla cells (hDPCs) was examined with co-culture and MTT assay. RESULTS PBMT with LED light variably promoted hORSC proliferation and suppressed cell apoptosis depending on energy level. LED irradiation induced Wnt5a, Axin2, and Lef1 mRNA expression and β-catenin protein expression in hORSCs. Phosphorylation of ERK, c-Jun, and p38 in hORSCs was observed after LED light irradiation, and ERK inhibitor treatment before irradiation reduced ERK and c-Jun phosphorylation. Red light-treated hORSCs showed substantial increase in IL-6, IL-8, TNF-a, IGF-1, TGF-β1, and VEGF mRNA. Light irradiation at 660 and 830 nm projected onto hORSCs accelerated in vitro migration. LED-irradiated hORSCs increased hDPCs proliferation when they were co-cultured. The conditioned medium from LED-irradiated hORSCs was sufficient to stimulate hDPCs proliferation. CONCLUSION These results demonstrate that LED light irradiation induced hORSC proliferation and migration and inhibited apoptosis in vitro. The growth-promoting effects of LEDs on hORSCs appear to be associated with direct stimulation of the Wnt5a/β-catenin and ERK signaling pathway. Lasers Surg. Med. 49:940-947, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jung E Kim
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Young J Woo
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Ki M Sohn
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Kwan H Jeong
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Hoon Kang
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|
146
|
MAD2B acts as a negative regulatory partner of TCF4 on proliferation in human dermal papilla cells. Sci Rep 2017; 7:11687. [PMID: 28916740 PMCID: PMC5601462 DOI: 10.1038/s41598-017-10350-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Dermal papilla cells (DPCs) are important components of hair follicles and play a critical role in hair follicle development. However, the mechanisms by which DPCs induce hair follicle development remain unclear. In the present study, we identified the mitotic arrest deficient protein MAD2B as a modifier of DPCs. Overexpression of MAD2B inhibited DPC aggregative growth and proliferation induced by the Wnt signaling activator T cell factor 4 (TCF4), and decreased TCF4-induced expression and the release of hair growth-related cytokines, including hepatocyte growth factor, insulin-like growth factor-1, and vascular endothelial growth factor in DPCs. In contrast, knockdown of MAD2B promoted TCF4-induced DPC proliferation, but did not affect the expression and secretion of cytokines by TCF4-induced DPCs. These results suggest a functional antagonism between MAD2B and TCF4 in DPC-induced hair follicle development. Mechanistically, MAD2B physically interacted with TCF4 to repress TCF4 transcriptional activity via β-catenin mediation, leading to reduced β-catenin/TCF4-dependent transactivation and Wnt signaling activity. These results demonstrate, for the first time, that MAD2B plays a negative role in TCF4-induced DPC growth and proliferation.
Collapse
|
147
|
Hair Growth Cycle Is Arrested in SCD1 Deficiency by Impaired Wnt3a-Palmitoleoylation and Retrieved by the Artificial Lipid Barrier. J Invest Dermatol 2017; 137:1424-1433. [DOI: 10.1016/j.jid.2017.02.973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/09/2017] [Accepted: 02/07/2017] [Indexed: 12/31/2022]
|
148
|
Glover JD, Wells KL, Matthäus F, Painter KJ, Ho W, Riddell J, Johansson JA, Ford MJ, Jahoda CAB, Klika V, Mort RL, Headon DJ. Hierarchical patterning modes orchestrate hair follicle morphogenesis. PLoS Biol 2017; 15:e2002117. [PMID: 28700594 PMCID: PMC5507405 DOI: 10.1371/journal.pbio.2002117] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/07/2017] [Indexed: 12/19/2022] Open
Abstract
Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction-diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction-diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern's condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) β signalling, which serves to drive chemotactic mesenchymal patterning when reaction-diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis.
Collapse
Affiliation(s)
- James D. Glover
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsty L. Wells
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Franziska Matthäus
- FIAS and Faculty of Biological Sciences, University of Frankfurt, Germany
| | - Kevin J. Painter
- School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - William Ho
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jon Riddell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeanette A. Johansson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew J. Ford
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin A. B. Jahoda
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Vaclav Klika
- Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Richard L. Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, United Kingdom
| | - Denis J. Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
149
|
Han W, Li X, Wang L, Wang H, Yang K, Wang Z, Wang R, Su R, Liu Z, Zhao Y, Zhang Y, Li J. Expression of fox-related genes in the skin follicles of Inner Mongolia cashmere goat. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:316-326. [PMID: 28728371 PMCID: PMC5838336 DOI: 10.5713/ajas.17.0115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/10/2017] [Accepted: 06/05/2017] [Indexed: 11/27/2022]
Abstract
Objective This study investigated the expression of genes in cashmere goats at different periods of their fetal development. Methods Bioinformatics analysis was used to evaluate data obtained by transcriptome sequencing of fetus skin samples collected from Inner Mongolia cashmere goats on days 45, 55, and 65 of fetal age. Results We found that FoxN1, FoxE1, and FoxI3 genes of the Fox gene family were probably involved in the growth and development of the follicle and the formation of hair, which is consistent with previous findings. Real-time quantitative polymerase chain reaction detecting system and Western blot analysis were employed to study the relative differentially expressed genes FoxN1, FoxE1, and FoxI3 in the body skin of cashmere goat fetuses and adult individuals. Conclusion This study provided new fundamental information for further investigation of the genes related to follicle development and exploration of their roles in hair follicle initiation, growth, and development.
Collapse
Affiliation(s)
- Wenjing Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Xiaoyan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Lele Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Honghao Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Kun Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China.,Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, Inner Mongolia Autonomous Region 010018, China
| |
Collapse
|
150
|
Ahtiainen L, Uski I, Thesleff I, Mikkola ML. Early epithelial signaling center governs tooth budding morphogenesis. J Cell Biol 2017; 214:753-67. [PMID: 27621364 PMCID: PMC5021093 DOI: 10.1083/jcb.201512074] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/17/2016] [Indexed: 12/22/2022] Open
Abstract
During organogenesis, cell fate specification and patterning are regulated by signaling centers, specialized clusters of morphogen-expressing cells. In many organs, initiation of development is marked by bud formation, but the cellular mechanisms involved are ill defined. Here, we use the mouse incisor tooth as a model to study budding morphogenesis. We show that a group of nonproliferative epithelial cells emerges in the early tooth primordium and identify these cells as a signaling center. Confocal live imaging of tissue explants revealed that although these cells reorganize dynamically, they do not reenter the cell cycle or contribute to the growing tooth bud. Instead, budding is driven by proliferation of the neighboring cells. We demonstrate that the activity of the ectodysplasin/Edar/nuclear factor κB pathway is restricted to the signaling center, and its inactivation leads to fewer quiescent cells and a smaller bud. These data functionally link the signaling center size to organ size and imply that the early signaling center is a prerequisite for budding morphogenesis.
Collapse
Affiliation(s)
- Laura Ahtiainen
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Isa Uski
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|