101
|
Padua RA, Yamamoto T, Fyda D, Sawchuk MA, Geiger JD, Nagy JI. Autoradiographic analysis of [3H]Ryanodine binding sites in rat brain: regional distribution and the effects of lesions on sites in the hippocampus. J Chem Neuroanat 1992; 5:63-73. [PMID: 1605914 DOI: 10.1016/0891-0618(92)90034-n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantitative and qualitative autoradiographic methods together with lesion approaches were used to determine the distribution of [3H]ryanodine binding sites in rat brain and the neuronal localization of these sites in the hippocampus. In normal animals, levels of [3H]ryanodine binding sites ranged from a low of about 1 fmol/mg tissue in subcortical structures to a high of 12-18 fmol/mg tissue in subregions of the hippocampus and the olfactory bulb. Relatively high densities of sites (5-9 fmol/mg tissue) were also seen in the olfactory tubercle, most areas of the cerebral cortex, accumbens nucleus, striatum, lateral septal nuclei, pontine nucleus, superior colliculus and granule cell layer of the cerebellum. Specific binding was undetectable in white matter. In experimental animals, intracerebral injections of kainic acid caused neuronal degeneration and a near total depletion of [3H]ryanodine binding sites in the dentate gyrus and in fields CA1, CA2 and CA3 of the hippocampus. Injections of kainic acid that left dentate granule cells largely intact while destroying all neurons in field CA3 had no effect on binding sites in the dentate gyrus. However, these lesions substantially reduced the density of binding in field CA3, leaving a narrow band of sites outlining the position of the degenerated CA3 pyramidal cells. Mechanical knife-cut lesions that severed the granule cell mossy fiber input to field CA3 reduced the density of binding sites in the CA3 region. The results indicate that [3H]ryanodine binding sites in brain are heterogeneously distributed and suggest that a proportion of these sites in the hippocampus may be contained in mossy fiber terminals where a presumptive calcium channel/ryanodine receptor complex may be involved in the regulation of calcium mobilization and/or neurotransmitter release.
Collapse
Affiliation(s)
- R A Padua
- Departments of Physiology, University of Manitoba, Faculty of Medicine, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
102
|
Henzi V, MacDermott AB. Characteristics and function of Ca(2+)- and inositol 1,4,5-trisphosphate-releasable stores of Ca2+ in neurons. Neuroscience 1992; 46:251-73. [PMID: 1311812 DOI: 10.1016/0306-4522(92)90049-8] [Citation(s) in RCA: 210] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular, biochemical and physiological evidence for the existence of releasable Ca2+ stores in neurons is strong. There are two separate molecules that function as release channels from those Ca2+ stores, the RyanR and InsP3R, and both have multiple regulatory sites for positive and negative control. Perhaps most intriguing is the biphasic, concentration-dependent action of cytosolic Ca2+ on both channels, first to stimulate release then, at higher concentration, to depress release. Whether the InsP3R and RyanR channels regulate Ca2+ release from different or identical functional compartments will need to be defined for each neuron type and perhaps even for each intracellular region within neurons since the evidence for functional separation of stores is mixed. The identification of Ca2+ storage and releasing capacity throughout all subcellular regions of neurons and the increasing evidence for a role for Ca2+ stores in neuronal plasticity suggests that the further characterization of the functional properties of Ca2+ stores will be an increasingly important and expanding area of interest in neurobiology.
Collapse
Affiliation(s)
- V Henzi
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | | |
Collapse
|
103
|
Mészáros LG, Volpe P. Caffeine- and ryanodine-sensitive Ca2+ stores of canine cerebrum and cerebellum neurons. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 261:C1048-54. [PMID: 1722642 DOI: 10.1152/ajpcell.1991.261.6.c1048] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[3H]ryanodine binding to and Ca2+ release from microsomal fractions derived from canine cerebrum (CBR) and cerebellum (CBL) were investigated. High-affinity ryanodine binding sites were detected in both cerebrum and cerebellum microsomes [CBR: maximal binding capacity (Bmax) = 446 fmol/mg protein, dissociation constant (Kd) = 9 nM, Hill coefficient (n) = 0.95; CBL: Bmax = 650, Kd = 12, n = 1.8]. Ryanodine binding in both fractions was increased by millimolar concentrations of ATP [or its nonhydrolyzable analogue beta, gamma-methyleneadenosine 5'-triphosphate (AMP-PCP)] and micromolar concentrations of Ca2+ but was decreased by micromolar concentrations of ruthenium red, similar to that found in sarcoplasmic reticulum (SR) of striated muscle. The addition of caffeine or the sudden elevation of extravesicular Ca2+ induced a rapid La(3+)-sensitive Ca2+ release from both CBR and CBL microsomal fractions with rate constants of approximately 100 s-1, as determined by stopped-flow photometry of the Ca2+ indicator arsenazo III. The release of Ca2+ was activated by either millimolar ATP or AMP-PCP, blocked by micromolar concentrations of La3+, and significantly inhibited by 50 microM ryanodine. Mg2+ and ruthenium red in millimolar and micromolar concentrations, respectively, caused only a slight inhibition of Ca2+ release. These results indicate that rapid Ca2+ release occurs from caffeine-, Ca2+- and ryanodine-sensitive Ca2+ stores in both CBR and CBL microsomal fractions.
Collapse
Affiliation(s)
- L G Mészáros
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
104
|
Zimanyi I, Pessah IN. Pharmacological characterization of the specific binding of [3H]ryanodine to rat brain microsomal membranes. Brain Res 1991; 561:181-91. [PMID: 1666327 DOI: 10.1016/0006-8993(91)91594-q] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-affinity binding of [3H]ryanodine has been characterized in rat brain microsomal fractions. Membrane fractions from 4 brain regions (cerebral cortex, cerebellum, hippocampus and brainstem) have been isolated using sucrose density gradient purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed the presence of a high-molecular weight protein (Mr approximately 320 kDa), similar to that of ryanodine receptor from muscle sarcoplasmic reticulum (SR). In the presence of high salt (1 M KCl), [3H]ryanodine binds to low density (0.8 M sucrose) cortical microsomal fraction with high affinity (Kd 1.5 nM), and with the highest capacity (Bmax 330 fmol/mg protein). Kinetic analysis of the binding suggests multiple available binding sites for ryanodine. Binding of ryanodine is Ca2+ dependent (ED50 1 microM) and inhibited by Mg2+ and Ruthenium red. Adenine nucleotides have a biphasic effect on the binding of [3H]ryanodine. At low Ca2+ concentration caffeine and daunorubicin enhance the binding of [3H]ryanodine. The inositol 1,4,5-trisphosphate (IP3) binding inhibitor, heparin, has no effect on ryanodine binding, and ryanodine and caffeine do not influence the binding of [3H]IP3, which is enriched in the cerebellar fractions. These data demonstrate significant quantitative differences in the pharmacology of brain and muscle receptors and raise the question as to the physiological role of ryanodine binding proteins in the central nervous system and whether it is coupled to an endoplasmatic reticulum (ER) Ca2+ release channel.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Animals
- Brain/metabolism
- Calcium/pharmacology
- Calcium Channels
- Cell Fractionation
- Centrifugation, Density Gradient
- Electrophoresis, Polyacrylamide Gel
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Intracellular Membranes/metabolism
- Kinetics
- Magnesium/pharmacology
- Microsomes/metabolism
- Molecular Weight
- Organ Specificity
- Rats
- Rats, Inbred Strains
- Receptors, Cell Surface/metabolism
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/isolation & purification
- Receptors, Cholinergic/metabolism
- Receptors, Cytoplasmic and Nuclear
- Ryanodine/metabolism
- Ryanodine Receptor Calcium Release Channel
Collapse
Affiliation(s)
- I Zimanyi
- Department of Veterinary Pharmacology and Toxicology, University of California, Davis 95616
| | | |
Collapse
|
105
|
Zacchetti D, Clementi E, Fasolato C, Lorenzon P, Zottini M, Grohovaz F, Fumagalli G, Pozzan T, Meldolesi J. Intracellular Ca2+ pools in PC12 cells. A unique, rapidly exchanging pool is sensitive to both inositol 1,4,5-trisphosphate and caffeine-ryanodine. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54903-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
106
|
Galione A, Lee HC, Busa WB. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 1991; 253:1143-6. [PMID: 1909457 DOI: 10.1126/science.1909457] [Citation(s) in RCA: 479] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium-induced calcium release (CICR) may function widely in calcium-mediated cell signaling, but has been most thoroughly characterized in muscle cells. In a homogenate of sea urchin eggs, which display transients in the intracellular free calcium concentration ([Ca2+]i) during fertilization and anaphase, addition of Ca2+ triggered CICR. Ca2+ release was also induced by the CICR modulators ryanodine and caffeine. Responses to both Ca2+ and CICR modulators (but not Ca2+ release mediated by inositol 1,4,5-trisphosphate) were inhibited by procaine and ruthenium red, inhibitors of CICR. Intact eggs also displayed transients of [Ca2+]i when microinjected with ryanodine. Cyclic ADP-ribose, a metabolite with potent Ca(2+)-releasing properties, appears to act by way of the CICR mechanism and may thus be an endogenous modulator of CICR. A CICR mechanism is present in these nonmuscle cells as is assumed in various models of intracellular Ca2+ wave propagation.
Collapse
Affiliation(s)
- A Galione
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|
107
|
Affiliation(s)
- R D Burgoyne
- Department of Physiology, University of Liverpool, UK
| | | |
Collapse
|
108
|
Sah P, McLachlan EM. Ca(2+)-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca(2+)-activated Ca2+ release. Neuron 1991; 7:257-64. [PMID: 1873029 DOI: 10.1016/0896-6273(91)90264-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We examined the possibility that Ca2+ released from intracellular stores could activate K+ currents underlying the afterhyperpolarization (AHP) in neurons. In neurons of the dorsal motor nucleus of the vagus, the current underlying the AHP had two components: a rapidly decaying component that was maximal following the action potential (GkCa,1) and a slower component that had a distinct rising phase (GkCa,2). Both components required influx of extracellular Ca2+ for their activation, and neither was blocked by extracellular TEA (10 mM). GkCa,1 was selectively blocked by apamin, whereas GkCa,2 was selectively reduced by noradrenaline. The time course of GkCa,2 was markedly temperature sensitive. GkCa,2 was selectively blocked by application of ryanodine or sodium dantrolene, or by loading cells with ruthenium red. These results suggest that influx of Ca2+ directly gates one class of K+ channels and leads to release of Ca2+ from intracellular stores, which activates a different class of K+ channel.
Collapse
Affiliation(s)
- P Sah
- Department of Physiology and Pharmacology, University of Queensland, Australia
| | | |
Collapse
|
109
|
McPherson PS, Kim YK, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronado R, Campbell KP. The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 1991; 7:17-25. [PMID: 1648939 DOI: 10.1016/0896-6273(91)90070-g] [Citation(s) in RCA: 317] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The release of stored Ca2+ from intracellular pools triggers a variety of important neuronal processes. Physiological and pharmacological evidence has indicated the presence of caffeine-sensitive intracellular pools that are distinct from the well-characterized inositol 1,4,5,-trisphosphate (IP3)-gated pools. Here we report that the brain ryanodine receptor functions as a caffeine- and ryanodine-sensitive Ca2+ release channel that is distinct from the brain IP3 receptor. The brain ryanodine receptor has been purified 6700-fold with no change in [3H]ryanodine binding affinity and shown to be a homotetramer composed of an approximately 500 kd protein subunit, which is identified by anti-peptide antibodies against the skeletal and cardiac muscle ryanodine receptors. Our results demonstrate that the brain ryanodine receptor functions as a caffeine-sensitive Ca2+ release channel and thus is the likely gating mechanism for intracellular caffeine-sensitive Ca2+ pools in neurons.
Collapse
Affiliation(s)
- P S McPherson
- Program in Neuroscience, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Bezprozvanny I, Watras J, Ehrlich BE. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991; 351:751-4. [PMID: 1648178 DOI: 10.1038/351751a0] [Citation(s) in RCA: 1367] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Release of calcium from intracellular stores occurs by two pathways, an inositol 1,4,5-trisphosphate (InsP3)-gated channel and a calcium-gated channel (ryanodine receptor). Using specific antibodies, both receptors were found in Purkinje cells of cerebellum. We have now compared the functional properties of the channels corresponding to the two receptors by incorporating endoplasmic reticulum vesicles from canine cerebellum into planar bilayers. InsP3-gated channels were observed most frequently. Another channel type was activated by adenine nucleotides or caffeine, inhibited by ruthenium red, and modified by ryanodine, characteristics of the ryanodine receptor/channel6. The open probability of both channel types displayed a bell-shaped curve for dependence on calcium. For the InsP3-gated channel, the maximum probability of opening occurred at 0.2 microM free calcium, with sharp decreases on either side of the maximum. Maximum activity for the ryanodine receptor/channel was maintained between 1 and 100 microM calcium. Thus, within the physiological range of cytoplasmic calcium, the InsP3-gated channel itself allows positive feedback and then negative feedback for calcium release, whereas the ryanodine receptor/channel behaves solely as a calcium-activated channel. The existence in the same cell of two channels with different responses to calcium and different ligand sensitivities provides a basis for complex patterns of intracellular calcium regulation.
Collapse
Affiliation(s)
- I Bezprozvanny
- Department of Medicine, University of Connecticut, Health Center, Farmington 06032
| | | | | |
Collapse
|
111
|
Olivares EB, Tanksley SJ, Airey JA, Beck CF, Ouyang Y, Deerinck TJ, Ellisman MH, Sutko JL. Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms. Biophys J 1991; 59:1153-63. [PMID: 1873458 PMCID: PMC1281196 DOI: 10.1016/s0006-3495(91)82331-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian skeletal muscles express a single triad junctional foot protein, whereas avian muscles have two isoforms of this protein. We investigated whether either case is representative of muscles from other vertebrate classes. We identified two foot proteins in bullfrog and toadfish muscles on the basis of (a) copurification with [3H]epiryanodine binding; (b) similarity to avian muscle foot proteins in native and subunit molecular weights; (c) recognition by anti-foot protein antibodies. The bullfrog and toadfish proteins exist as homooligomers. The subunits of the bullfrog muscle foot protein isoforms are shown to be unique by peptide mapping. In addition, immunocytochemical localization established that the bullfrog muscle isoforms coexist in the same muscle cells. The isoforms in either bullfrog and chicken muscles have comparable [3H]epiryanodine binding capacities, whereas in toadfish muscle the isoforms differ in their levels of ligand binding. Additionally, chicken thigh and breast muscles differ in the relative amounts of the two isoforms they contain, the amounts being similar in breast muscle and markedly different in thigh muscle. In conclusion, in contrast to mammalian skeletal muscle, two foot protein isoforms are present in amphibian, avian, and piscine skeletal muscles. This may represent a general difference in the architecture and/or a functional specialization of the triad junction in mammalian and nonmammalian vertebrate muscles.
Collapse
Affiliation(s)
- E B Olivares
- Department of Pharmacology, University of Nevada, Reno 89557
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Walton PD, Airey JA, Sutko JL, Beck CF, Mignery GA, Südhof TC, Deerinck TJ, Ellisman MH. Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J Biophys Biochem Cytol 1991; 113:1145-57. [PMID: 1645737 PMCID: PMC2289007 DOI: 10.1083/jcb.113.5.1145] [Citation(s) in RCA: 209] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two intracellular calcium-release channel proteins, the inositol trisphosphate (InsP3), and ryanodine receptors, have been identified in mammalian and avian cerebellar Purkinje neurons. In the present study, biochemical and immunological techniques were used to demonstrate that these proteins coexist in the same avian Purkinje neurons, where they have different intracellular distributions. Western analyses demonstrate that antibodies produced against the InsP3 and the ryanodine receptors do not cross-react. Based on their relative rates of sedimentation in continuous sucrose gradients and SDS-PAGE, the avian cerebellar InsP3 receptor has apparent native and subunit molecular weights of approximately 1,000 and 260 kD, while those of the ryanodine receptors are approximately 2,000 and 500 kD. Specific [3H]InsP3- and [3H]ryanodine-binding activities were localized in the sucrose gradient fractions enriched in the 260-kD and the approximately 500-kD polypeptides, respectively. Under equilibrium conditions, cerebellar microsomes bound [3H]InsP3 with a Kd of 16.8 nM and Bmax of 3.8 pmol/mg protein; whereas, [3H]ryanodine was bound with a Kd of 1.5 nM and a capacity of 0.08 pmol/mg protein. Immunolocalization techniques, applied at both the light and electron microscopic levels, revealed that the InsP3 and ryanodine receptors have overlapping, yet distinctive intracellular distributions in avian Purkinje neurons. Most notably the InsP3 receptor is localized in endomembranes of the dendritic tree, in both the shafts and spines. In contrast, the ryanodine receptor is observed in dendritic shafts, but not in the spines. Both receptors appear to be more abundant at main branch points of the dendritic arbor. In Purkinje neuron cell bodies, both the InsP3 and ryanodine receptors are present in smooth and rough ER, subsurface membrane cisternae and to a lesser extent in the nuclear envelope. In some cases the receptors coexist in the same membranes. Neither protein is observed at the plasma membrane, Golgi complex or mitochondrial membranes. Both the InsP3 and ryanodine receptors are associated with intracellular membrane systems in axonal processes, although they are less abundant there than in dendrites. These data demonstrate that InsP3 and ryanodine receptors exist as unique proteins in the same Purkinje neuron. These calcium-release channels appear to coexist in ER membranes in most regions of the Purkinje neurons, but importantly they are differentially distributed in dendritic processes, with the dendritic spines containing only InsP3 receptors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Blotting, Western
- Calcium Channels
- Cell Membrane/ultrastructure
- Chickens
- Electrophoresis, Polyacrylamide Gel
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/ultrastructure
- Fluorescent Antibody Technique
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Microscopy, Immunoelectron
- Microsomes/metabolism
- Microsomes/ultrastructure
- Molecular Weight
- Purkinje Cells/cytology
- Purkinje Cells/metabolism
- Purkinje Cells/ultrastructure
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/isolation & purification
- Receptors, Cell Surface/metabolism
- Receptors, Cholinergic/analysis
- Receptors, Cholinergic/isolation & purification
- Receptors, Cholinergic/metabolism
- Receptors, Cytoplasmic and Nuclear
- Ryanodine/metabolism
- Ryanodine Receptor Calcium Release Channel
- Tritium
Collapse
Affiliation(s)
- P D Walton
- Department of Pharmacology, University of Nevada, Reno 89557
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Villa A, Podini P, Clegg DO, Pozzan T, Meldolesi J. Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip. J Cell Biol 1991; 113:779-91. [PMID: 1827445 PMCID: PMC2288980 DOI: 10.1083/jcb.113.4.779] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To identify intracellular Ca2+ stores, we have mapped (by cryosection immunofluorescence and immunogold labeling) the distribution in the chicken cerebellar cortex of an essential component, the main low affinity-high capacity Ca2+ binding protein which in this tissue has been recently shown undistinguishable from muscle calsequestrin (Volpe, P., B. H. Alderson-Lang, L. Madeddu, E. Damiani, J. H. Collins, and A. Margreth. 1990. Neuron. 5:713-721). Appreciable levels of the protein were found exclusively within Purkinje neurons, distributed to the cell body, the axon, and the elaborate dendritic tree, with little labeling, however, of dendritic spines. At the EM level the protein displayed a dual localization: within the ER (rough- and smooth-surfaced cisternae, including the cisternal stacks recently shown [in the rat] to be highly enriched in receptors for inositol 1,4,5-triphosphate) and, over 10-fold more concentrated, within a population of moderately dense, membrane-bound small vacuoles and tubules, identified as calciosomes. These latter structures were widely distributed both in the cell body (approximately 1% of the cross-sectional area, particularly concentrated near the Golgi complex) and in the dendrites, up to the entrance of the spines. The distribution of calsequestrin was compared to those of another putative component of the Ca2+ stores, the membrane pump Ca2+ ATPase, and of the ER resident lumenal protein, Bip. Ca2+ ATPase was expressed by both calciosomes and regular ER cisternae, but excluded from cisternal stacks; Bip was abundant within the ER lumena (cisternae and stacks) and very low within calciosomes (average calsequestrin/Bip immunolabeling ratios were approximately 0.5 and 36.5 in the two types of structure, respectively). These results suggest that ER cisternal stacks do not represent independent Ca2+ stores, but operate coordinately with the adjacent, lumenally continuous ER cisternae. The ER and calciosomes could serve as rapidly exchanging Ca2+ stores, characterized however by different properties, in particular, by the greater Ca2+ accumulation potential of calciosomes. Hypotheses of calciosome biogenesis (directly from the ER or via the Golgi complex) are discussed.
Collapse
Affiliation(s)
- A Villa
- Department of Pharmacology, Consiglio Nazionale delle Ricerche Cytopharmacology, University of Milano, Italy
| | | | | | | | | |
Collapse
|
114
|
Michelangeli F, Di Virgilio F, Villa A, Podini P, Meldolesi J, Pozzan T. Identification, kinetic properties and intracellular localization of the (Ca(2+)-Mg2+)-ATPase from the intracellular stores of chicken cerebellum. Biochem J 1991; 275 ( Pt 3):555-61. [PMID: 1828146 PMCID: PMC1150202 DOI: 10.1042/bj2750555] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microsomal fraction of chicken cerebellum expresses a large amount of Ca(2+)-ATPase (105 kDa), which is phosphorylated by ATP in the presence of Ca2+. The Ca(2+)-ATPase activity is highly sensitive to temperature and to the presence of detergents. This ATPase has kinetic properties similar to those of chicken skeletal-muscle sarcoplasmic reticulum, as (i) it is activated by low (microM) and inhibited by high (mM) Ca2+ concentrations, (ii) it shows biphasic activation with ATP and (iii) it is inhibited by vanadate. However, the vanadate-sensitivity is at least 10 times greater than that observed in chicken skeletal or cardiac sarcoplasmic-reticulum Ca(2+)-ATPases. Thus, despite cross-reacting with antibodies against the cardiac and skeletal isoforms, the cerebellar microsomal Ca(2+)-ATPase appears to be distinct from both muscle enzymes. The Ca(2+)-ATPase is concentrated in, but not exclusive to, Purkinje neurons. In Purkinje neurons the Ca(2+)-ATPase appears to be expressed throughout the cell body, the dendritic tree (and the spines) and the axons. At the electron-microscope level the Ca(2+)-ATPase is found in smooth and rough endoplasmic-reticulum cisternae as well as in other, yet unidentified, smooth-surfaced structures.
Collapse
Affiliation(s)
- F Michelangeli
- Institute of General Pathology, University of padova, Italy
| | | | | | | | | | | |
Collapse
|
115
|
Damiani E, Tobaldin G, Volpe P, Margreth A. Quantitation of ryanodine receptor of rabbit skeletal muscle, heart and brain. Biochem Biophys Res Commun 1991; 175:858-65. [PMID: 2025259 DOI: 10.1016/0006-291x(91)91644-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The total number of high-affinity ryanodine receptor (RyR) binding sites present in skeletal and cardiac muscle and in brain tissue of the rabbit was determined by [3H]ryanodine binding to subfractions obtained by differential centrifugation of homogenates prepared in a low-ionic strength medium, containing 0.5% Chaps. In all three tissues at least 80% of [3H]ryanodine binding was recovered in the total membrane (TM) fraction obtained by centrifuging between 650 g for 10 min and 120,000 x g for 90 min. Skeletal muscle displayed higher contents of high-affinity RyR sites (about 49 pmol/g wet wt) than heart and brain (about 12 pmol and 3.5 pmol/g wet wt, respectively). The affinity for ryanodine, as well as the affinity for Ca2+, in the absence or presence of Ca2(+)-releasing drugs (caffeine and doxorubicin) of TM from skeletal muscle, were found to be identical to those of purified terminal cisternae. As low as 1 g of tissue was sufficient to perform several experiments.
Collapse
Affiliation(s)
- E Damiani
- Centro di Studio per la Biologia e la Fisiopatologia muscolare, Università di Padova, Italy
| | | | | | | |
Collapse
|
116
|
Padua RA, Wan WH, Nagy JI, Geiger JD. [3H]ryanodine binding sites in rat brain demonstrated by membrane binding and autoradiography. Brain Res 1991; 542:135-40. [PMID: 2054652 DOI: 10.1016/0006-8993(91)91007-n] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High affinity [3H]ryanodine binding sites were characterized in P1 (crude nuclear), P2 (mitochondrial/synaptosomal) and P3 (microsomal) subcellular fractions of rat brain. Binding in each of the fractions was highest at 37 degrees C and pH 8-9, optimal in the presence of 100 microM Ca2+, 550 microM ATP and 1.0 M KCl, and increased linearly as a function of protein. Saturation analyses revealed a single class of binding sites with mean KD values (nM) of 8.9, 1.6 and 5.7 and Bmax values (fmol/mg protein) of 122, 69 and 106 for the P1, P2 and P3 fractions, respectively. The levels of [3H]ryanodine binding in P1 and P2 fractions of 4 brain regions were fairly uniform while those in P3 fractions were 5-fold greater in cerebral cortex than in the other areas examined. By autoradiography, a high concentration of [3H]ryanodine binding sites was seen in the dentate gyrus and CA3 subregions of the hippocampus. The results suggest that [3H]ryanodine binding sites, perhaps similar to [3H]ryanodine receptors in muscle, are associated with various subcellular structures and are heterogeneously distributed in the CNS.
Collapse
Affiliation(s)
- R A Padua
- Department of Physiology, University of Manitoba, Faculty of Medicine, Winnipeg, Canada
| | | | | | | |
Collapse
|