101
|
Extension of Drosophila lifespan by Rhodiola rosea through a mechanism independent from dietary restriction. PLoS One 2013; 8:e63886. [PMID: 23704949 PMCID: PMC3660385 DOI: 10.1371/journal.pone.0063886] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/08/2013] [Indexed: 11/19/2022] Open
Abstract
Rhodiola rosea has been extensively used to improve physical and mental performance and to protect against stress. We, and others, have reported that R. rosea can extend lifespan in flies, worms, and yeast. However, its molecular mechanism is currently unknown. Here, we tested whether R. rosea might act through a pathway related to dietary restriction (DR) that can extend lifespan in a range of model organisms. While the mechanism of DR itself is also unknown, three molecular pathways have been associated with it: the silent information regulator 2 (SIR2) proteins, insulin and insulin-like growth factor signaling (IIS), and the target of rapamycin (TOR). In flies, DR is implemented through a reduction in dietary yeast content. We found that R. rosea extract extended lifespan in both sexes independent of the yeast content in the diet. We also found that the extract extended lifespan when the SIR2, IIS, or TOR pathways were genetically perturbed. Upon examination of water and fat content, we found that R. rosea decreased water content and elevated fat content in both sexes, but did not sensitize flies to desiccation or protect them against starvation. There were some sex-specific differences in response to R. rosea. In female flies, the expression levels of glycolytic genes and dSir2 were down-regulated, and NADH levels were decreased. In males however, R. rosea provided no protection against heat stress and had no effect on the major heat shock protein HSP70 and actually down-regulated the mitochondrial HSP22. Our findings largely rule out an elevated general resistance to stress and DR-related pathways as mechanistic candidates. The latter conclusion is especially relevant given the limited potential for DR to improve human health and lifespan, and presents R. rosea as a potential viable candidate to treat aging and age-related diseases in humans.
Collapse
|
102
|
Reddy AK, Hartley CJ, Pham TT, Darlington G, Entman ML, Taffet GE. Young little mice express a premature cardiovascular aging phenotype. J Gerontol A Biol Sci Med Sci 2013; 69:152-9. [PMID: 23682160 DOI: 10.1093/gerona/glt055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the effect of growth hormone and insulin-like growth factor 1 deficiency on the aging mouse arterial system, we compared the hemodynamics in young (4 months) and old (30 months) growth hormone-releasing hormone receptor null dwarf (Little) mice and their wild-type littermates. Young Little mice had significantly lower peak and mean aortic velocity and significantly higher aortic impedance than young wild-type mice. However, unlike the wild-type mice, there were no significant changes in arterial function with age in the Little mice. Aortic pulse wave velocity estimated using characteristic impedance increased with age in the wild-type mice, but it changed minimally in the Little mouse. We therefore conclude that arterial function in Little mice expresses a premature aging phenotype at young age and may neither enhance nor reduce their longevity.
Collapse
Affiliation(s)
- Anilkumar K Reddy
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS BCM620, Houston, TX 77030.
| | | | | | | | | | | |
Collapse
|
103
|
Piotrowska K, Borkowska SJ, Wiszniewska B, Laszczyńska M, Słuczanowska-Głabowska S, Havens AM, Kopchick JJ, Bartke A, Taichman RS, Kucia M, Ratajczak MZ. The effect of low and high plasma levels of insulin-like growth factor-1 (IGF-1) on the morphology of major organs: studies of Laron dwarf and bovine growth hormone transgenic (bGHTg) mice. Histol Histopathol 2013; 28:1325-36. [PMID: 23613169 DOI: 10.14670/hh-28.1325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It is well known that somatotrophic/insulin signaling affects lifespan in experimental animals. To study the effects of insulin-like growth factor-1 (IGF-1) plasma level on the morphology of major organs, we analyzed lung, heart, liver, kidney, bone marrow, and spleen isolated from 2-year-old growth hormone receptor knockout (GHR-KO) Laron dwarf mice (with low circulating plasma levels of IGF-1) and 6-month-old bovine growth hormone transgenic (bGHTg) mice (with high circulating plasma levels of IGF-1). The ages of the two mutant strains employed in our studies were selected based on their overall ~50% survival (Laron dwarf mice live up to ~4 years and bGHTg mice up to ~1 year). Morphological analysis of the organs of long-living 2-year-old Laron dwarf mice revealed a lower biological age for their organs compared with normal littermates, with more brown adipose tissue (BAT) surrounding the main body organs, lower levels of steatosis in liver, and a lower incidence of leukocyte infiltration in different organs. By contrast, the organs of 6-month-old, short-living bGHTg mice displayed several abnormalities in liver and kidney and a reduced content of BAT around vital organs.
Collapse
|
104
|
Ratajczak MZ, Shin DM, Schneider G, Ratajczak J, Kucia M. Parental imprinting regulates insulin-like growth factor signaling: a Rosetta Stone for understanding the biology of pluripotent stem cells, aging and cancerogenesis. Leukemia 2013; 27:773-779. [PMID: 23135355 PMCID: PMC5538807 DOI: 10.1038/leu.2012.322] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 12/25/2022]
Abstract
In recent years, solid evidence has accumulated that insulin-like growth factor-1 (IGF-1) and 2 (IGF-2) regulate many biological processes in normal and malignant cells. Recently, more light has been shed on the epigenetic mechanisms regulating expression of genes involved in IGF signaling (IFS) and it has become evident that these mechanisms are crucial for initiation of embryogenesis, maintaining the quiescence of pluripotent stem cells deposited in adult tissues (for example, very-small embryonic-like stem cells), the aging process, and the malignant transformation of cells. The expression of several genes involved in IFS is regulated at the epigenetic level by imprinting/methylation within differentially methylated regions (DMRs), which regulate their expression from paternal or maternal chromosomes. The most important role in the regulation of IFS gene expression is played by the Igf-2-H19 locus, which encodes the autocrine/paracrine mitogen IGF-2 and the H19 gene, which gives rise to a non-coding RNA precursor of several microRNAs that negatively affect cell proliferation. Among these, miR-675 has recently been demonstrated to downregulate expression of the IGF-1 receptor. The proper imprinting of DMRs at the Igf-2-H19 locus, with methylation of the paternal chromosome and a lack of methylation on the maternal chromosome, regulates expression of these genes so that Igf-2 is transcribed only from the paternal chromosome and H19 (including miR-675) only from the maternal chromosome. In this review, we will discuss the relevance of (i) proper somatic imprinting, (ii) erasure of imprinting and (iii) loss of imprinting within the DMRs at the Igf-2-H19 locus to the expression of genes involved in IFS, and the consequences of these alternative patterns of imprinting for stem cell biology.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Dong-Myung Shin
- Department of Medicine, Graduate School, University of Ulsan, Seoul, Korea
| | - Gabriela Schneider
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Janina Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Magda Kucia
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
105
|
Kucia M, Masternak M, Liu R, Shin DM, Ratajczak J, Mierzejewska K, Spong A, Kopchick JJ, Bartke A, Ratajczak MZ. The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). AGE (DORDRECHT, NETHERLANDS) 2013; 35:315-330. [PMID: 22218782 PMCID: PMC3592960 DOI: 10.1007/s11357-011-9364-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
It is well known that attenuated insulin/insulin-like growth factor signaling (IIS) has a positive effect on longevity in several animal species, including mice. Here, we demonstrate that a population of murine pluripotent very small embryonic-like stem cells (VSELs) that reside in bone marrow (BM) is protected from premature depletion during aging by intrinsic parental gene imprinting mechanisms and the level of circulating insulin-like growth factor-I (IGF-I). Accordingly, an increase in the circulating level of IGF-I, as seen in short-lived bovine growth hormone (bGH)-expressing transgenic mice, which age prematurely, as well as in wild-type animals injected for 2 months with bGH, leads to accelerated depletion of VSELs from bone marrow (BM). In contrast, long-living GHR-null or Ames dwarf mice, which have very low levels of circulating IGF-I, exhibit a significantly higher number of VSELs in BM than their littermates at the same age. However, the number of VSELs in these animals decreases after GH or IGF-I treatment. These changes in the level of plasma-circulating IGF-I corroborate with changes in the genomic imprinting status of crucial genes involved in IIS, such as Igf-2-H19, RasGRF1, and Ig2R. Thus, we propose that a chronic increase in IIS contributes to aging by premature depletion of pluripotent VSELs in adult tissues.
Collapse
Affiliation(s)
- Magda Kucia
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
- />Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Michal Masternak
- />Burnett School of Biomedical Sciences College of Medicine, Institute of Human Genetics, University of Central Florida, Orlando, FL USA
- />Department of Internal Medicine, School of Medicine, Southern Illinois University, Springfield, IL USA
- />Institute for Human Genetics Polish Academy of Sciences, Poznan, Poland
| | - Riu Liu
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
| | - Dong-Myung Shin
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
| | - Janina Ratajczak
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
- />Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Mierzejewska
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
| | - Adam Spong
- />Department of Internal Medicine, School of Medicine, Southern Illinois University, Springfield, IL USA
- />Institute for Human Genetics Polish Academy of Sciences, Poznan, Poland
| | - John J. Kopchick
- />Edison Biotechnology Institute and Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH USA
| | - Andrzej Bartke
- />Department of Internal Medicine, School of Medicine, Southern Illinois University, Springfield, IL USA
- />Institute for Human Genetics Polish Academy of Sciences, Poznan, Poland
| | - Mariusz Z. Ratajczak
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
- />Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
106
|
Yu SL, An YJ, Yang HJ, Kang MS, Kim HY, Wen H, Jin X, Kwon HN, Min KJ, Lee SK, Park S. Alanine-Metabolizing Enzyme Alt1 Is Critical in Determining Yeast Life Span, As Revealed by Combined Metabolomic and Genetic Studies. J Proteome Res 2013; 12:1619-27. [DOI: 10.1021/pr300979r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sung-Lim Yu
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Yong Jin An
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Hey-ji Yang
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Mi-Sun Kang
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Ho-Yeol Kim
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - He Wen
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Xing Jin
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Hyuk Nam Kwon
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Kyung-Jin Min
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Sung-Keun Lee
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Sunghyouk Park
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| |
Collapse
|
107
|
Stenesen D, Suh JM, Seo J, Yu K, Lee KS, Kim JS, Min KJ, Graff JM. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 2013; 17:101-12. [PMID: 23312286 PMCID: PMC3614013 DOI: 10.1016/j.cmet.2012.12.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/08/2012] [Accepted: 12/11/2012] [Indexed: 12/31/2022]
Abstract
A common thread among conserved life span regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of AMP biosynthetic enzymes extend Drosophila life span. The life span benefit of these mutations depends upon increased AMP:ATP and ADP:ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended life span, while AMPK RNAi reduced life span. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed life span extension. Remarkably, this simple change in diet also blocked the prolongevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult life span; provide a mechanistic link between cellular anabolism and energy sensing pathways; and indicate that dietary adenine manipulations might alter metabolism to influence animal life span.
Collapse
Affiliation(s)
- Drew Stenesen
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jae Myoung Suh
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Jin Seo
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kweon Yu
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - Kyu-Sun Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - Jong-Seok Kim
- Department of Biological Sciences, Inha University, Incheon, 402-751, Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, 402-751, Korea
| | - Jonathan M. Graff
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- To whom correspondence should be addressed: NB5.118, 6000 Harry Hines Blvd., Dallas, TX 75390-9133. Tel: 214-648-1481; Fax: 214-648-1960;
| |
Collapse
|
108
|
Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, Römisch‐Margl W, Lattka E, Gieger C, Soranzo N, Heinrich J, Standl M, Thiering E, Mittelstraß K, Wichmann H, Peters A, Suhre K, Li Y, Adamski J, Spector TD, Illig T, Wang‐Sattler R. Human serum metabolic profiles are age dependent. Aging Cell 2012; 11:960-7. [PMID: 22834969 PMCID: PMC3533791 DOI: 10.1111/j.1474-9726.2012.00865.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Understanding the complexity of aging is of utmost importance. This can now be addressed by the novel and powerful approach of metabolomics. However, to date, only a few metabolic studies based on large samples are available. Here, we provide novel and specific information on age-related metabolite concentration changes in human homeostasis. We report results from two population-based studies: the KORA F4 study from Germany as a discovery cohort, with 1038 female and 1124 male participants (32–81 years), and the TwinsUK study as replication, with 724 female participants. Targeted metabolomics of fasting serum samples quantified 131 metabolites by FIA-MS/MS. Among these, 71/34 metabolites were significantly associated with age in women/men (BMI adjusted). We further identified a set of 13 independent metabolites in women (with P values ranging from 4.6 × 10−04 to 7.8 × 10−42, αcorr = 0.004). Eleven of these 13 metabolites were replicated in the TwinsUK study, including seven metabolite concentrations that increased with age (C0, C10:1, C12:1, C18:1, SM C16:1, SM C18:1, and PC aa C28:1), while histidine decreased. These results indicate that metabolic profiles are age dependent and might reflect different aging processes, such as incomplete mitochondrial fatty acid oxidation. The use of metabolomics will increase our understanding of aging networks and may lead to discoveries that help enhance healthy aging.
Collapse
Affiliation(s)
- Zhonghao Yu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Guangju Zhai
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St John’s, NL, Canada
| | - Paula Singmann
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ying He
- Shanghai Center for Bioinformation Technology, 200235 Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Tao Xu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Cornelia Prehn
- Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Werner Römisch‐Margl
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Eva Lattka
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Nicole Soranzo
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- Wellcome Trust Sanger Institute Genome Campus, Hinxton, UK
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Kirstin Mittelstraß
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heinz‐Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig‐Maximilians‐Universität, Munich, Germany
- Klinikum Grosshadern, Munich, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Environmental Health, Harvard School of Public Health Adjunct Associate Professor of Environmental Epidemiology, Boston, MA, USA
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Faculty of Biology, Ludwig‐Maximilians‐Universität, 82152 Planegg‐Martinsried, Germany
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, 24144 Education City–Qatar Foundation, Doha, Qatar
| | - Yixue Li
- Shanghai Center for Bioinformation Technology, 200235 Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Jerzy Adamski
- Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Experimental Genetics, Life and Food Science Center Weihenstephan, Technische Universität München, 85354 Freising‐Weihenstephan, Germany
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, 30625 Hannover, Germany
| | - Rui Wang‐Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
109
|
Libert S, Guarente L. Metabolic and neuropsychiatric effects of calorie restriction and sirtuins. Annu Rev Physiol 2012; 75:669-84. [PMID: 23043250 DOI: 10.1146/annurev-physiol-030212-183800] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most living organisms, including humans, age. Over time the ability to do physical and intellectual work deteriorates, and susceptibility to infectious, metabolic, and neurodegenerative diseases increases, which leads to general fitness decline and ultimately to death. Work in model organisms has demonstrated that genetic and environmental manipulations can prevent numerous age-associated diseases, improve health at advanced age, and increase life span. Calorie restriction (CR) (consumption of a diet with fewer calories but containing all the essential nutrients) is the most robust manipulation, genetic or environmental, to extend longevity and improve health parameters in laboratory animals. However, outside of the protected laboratory environment, the effects of CR are much less certain. Understanding the molecular mechanisms of CR may lead to the development of novel therapies to combat diseases of aging and to improve the quality of life. Sirtuins, a family of NAD(+)-dependent enzymes, mediate a number of metabolic and behavioral responses to CR and are intriguing targets for pharmaceutical interventions. We review the molecular understanding of CR; the role of sirtuins in CR; and the effects of sirtuins on physiology, mood, and behavior.
Collapse
Affiliation(s)
- Sergiy Libert
- Glenn Laboratory for the Science of Aging, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
110
|
Overexpression of fatty-acid-β-oxidation-related genes extends the lifespan of Drosophila melanogaster. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:854502. [PMID: 22997544 PMCID: PMC3446750 DOI: 10.1155/2012/854502] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/23/2012] [Accepted: 08/03/2012] [Indexed: 11/21/2022]
Abstract
A better understanding of the aging process is necessary to ensure that the healthcare needs of an aging population are met. With the trend toward increased human life expectancies, identification of candidate genes affecting the regulation of lifespan and its relationship to environmental factors is essential. Through misexpression screening of EP mutant lines, we previously isolated several genes extending lifespan when ubiquitously overexpressed, including the two genes encoding the fatty-acid-binding protein and dodecenoyl-CoA delta-isomerase involved in fatty-acid β-oxidation, which is the main energy resource pathway in eukaryotic cells. In this study, we analyzed flies overexpressing the two main components of fatty-acid β-oxidation, and found that overexpression of fatty-acid-β-oxidation-related genes extended the Drosophila lifespan. Furthermore, we found that the ability of dietary restriction to extend lifespan was reduced by the overexpression of fatty-acid-β-oxidation-related genes. Moreover, the overexpression of fatty-acid-β-oxidation-related genes enhanced stress tolerance to oxidative and starvation stresses and activated the dFOXO signal, indicating translocation to the nucleus and transcriptional activation of the dFOXO target genes. Overall, the results of this study suggest that overexpression of fatty-acid-β-oxidation-related genes extends lifespan in a dietary-restriction-related manner, and that the mechanism of this process may be related to FOXO activation.
Collapse
|
111
|
Nutraceutical interventions for promoting healthy aging in invertebrate models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:718491. [PMID: 22991584 PMCID: PMC3444043 DOI: 10.1155/2012/718491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/11/2023]
Abstract
Aging is a complex and inevitable biological process that is associated with numerous chronically debilitating health effects. Development of effective interventions for promoting healthy aging is an active but challenging area of research. Mechanistic studies in various model organisms, noticeably two invertebrates, Caenorhabditis elegans and Drosophila melanogaster, have identified many genes and pathways as well as dietary interventions that modulate lifespan and healthspan. These studies have shed light on some of the mechanisms involved in aging processes and provide valuable guidance for developing efficacious aging interventions. Nutraceuticals made from various plants contain a significant amount of phytochemicals with diverse biological activities. Phytochemicals can modulate many signaling pathways that exert numerous health benefits, such as reducing cancer incidence and inflammation, and promoting healthy aging. In this paper, we outline the current progress in aging intervention studies using nutraceuticals from an evolutionary perspective in invertebrate models.
Collapse
|
112
|
Diet and aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:741468. [PMID: 22928085 PMCID: PMC3425961 DOI: 10.1155/2012/741468] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/17/2022]
Abstract
Nutrition has important long-term consequences for health that are not only limited to the individual but can be passed on to the next generation. It can contribute to the development and progression of chronic diseases thus effecting life span. Caloric restriction (CR) can extend the average and maximum life span and delay the onset of age-associated changes in many organisms. CR elicits coordinated and adaptive stress responses at the cellular and whole-organism level by modulating epigenetic mechanisms (e.g., DNA methylation, posttranslational histone modifications), signaling pathways that regulate cell growth and aging (e.g., TOR, AMPK, p53, and FOXO), and cell-to-cell signaling molecules (e.g., adiponectin). The overall effect of these adaptive stress responses is an increased resistance to subsequent stress, thus delaying age-related changes and promoting longevity. In human, CR could delay many diseases associated with aging including cancer, diabetes, atherosclerosis, cardiovascular disease, and neurodegenerative diseases. As an alternative to CR, several CR mimetics have been tested on animals and humans. At present, the most promising alternatives to the use of CR in humans seem to be exercise, alone or in combination with reduced calorie intake, and the use of plant-derived polyphenol resveratrol as a food supplement.
Collapse
|
113
|
Growth culture conditions and nutrient signaling modulating yeast chronological longevity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:680304. [PMID: 22928083 PMCID: PMC3425870 DOI: 10.1155/2012/680304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023]
Abstract
The manipulation of nutrient-signaling pathways in yeast has uncovered the impact of environmental growth conditions in longevity. Studies using calorie restriction show that reducing glucose concentration of the culture media is sufficient to increase replicative and chronological lifespan (CLS). Other components of the culture media and factors such as the products of fermentation have also been implicated in the regulation of CLS. Acidification of the culture media mainly due to acetic acid and other organic acids production negatively impacts CLS. Ethanol is another fermentative metabolite capable of inducing CLS reduction in aged cells by yet unknown mechanisms. Recently, ammonium was reported to induce cell death associated with shortening of CLS. This effect is correlated to the concentration of NH4+ added to the culture medium and is particularly evident in cells starved for auxotrophy-complementing amino acids. Studies on the nutrient-signaling pathways regulating yeast aging had a significant impact on aging-related research, providing key insights into mechanisms that modulate aging and establishing the yeast as a powerful system to extend knowledge on longevity regulation in multicellular organisms.
Collapse
|
114
|
Dietrich MO, Horvath TL. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nat Rev Drug Discov 2012; 11:675-91. [DOI: 10.1038/nrd3739] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
115
|
Caloric Restriction and the Nutrient-Sensing PGC-1α in Mitochondrial Homeostasis: New Perspectives in Neurodegeneration. Int J Cell Biol 2012; 2012:759583. [PMID: 22829833 PMCID: PMC3399559 DOI: 10.1155/2012/759583] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/08/2012] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial activity progressively declines during ageing and in many neurodegenerative diseases. Caloric restriction (CR) has been suggested as a dietary intervention that is able to postpone the detrimental aspects of aging as it ameliorates mitochondrial performance. This effect is partially due to increased mitochondrial biogenesis. The nutrient-sensing PGC-1α is a transcriptional coactivator that promotes the expression of mitochondrial genes and is induced by CR. It is believed that many of the mitochondrial and metabolic benefits of CR are due to increased PGC-1α activity. The increase of PGC-1α is also positively linked to neuroprotection and its decrement has been involved in the pathogenesis of many neurodegenerative diseases. This paper aims to summarize the current knowledge about the role of PGC-1α in neuronal homeostasis and the beneficial effects of CR on mitochondrial biogenesis and function. We also discuss how PGC-1α-governed pathways could be used as target for nutritional intervention to prevent neurodegeneration.
Collapse
|
116
|
|
117
|
Ørom UA, Lim MK, Savage JE, Jin L, Saleh AD, Lisanti MP, Simone NL. MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction. Cell Cycle 2012; 11:1291-5. [PMID: 22421148 DOI: 10.4161/cc.19704] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Caloric restriction has been shown to increase lifespan in several organisms and to delay onset of age-related diseases. The transcriptional response to caloric restriction has been studied for mRNAs, while the microRNA signature following caloric restriction remains unexplored. Here, we characterize the microRNA expression in mouse breast tissue before and after caloric restriction, reporting several changes in the microRNA expression profile. In particular, miR-203 is found to be highly induced by caloric restriction, and we demonstrate that caveolin-1 as well as p63 are direct targets of miR-203 in vivo during caloric restriction. Using tissue culture models, we suggest that this regulation is important in both mouse and human. In conclusion, we show that the microRNA response induced by caloric restriction can regulate important factors in processes such as longevity and aging and is an integral and important component of the cellular response to caloric restriction.
Collapse
Affiliation(s)
- Ulf Andersson Ørom
- Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Kimmel Cancer Center, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Marchal J, Blanc S, Epelbaum J, Aujard F, Pifferi F. Effects of chronic calorie restriction or dietary resveratrol supplementation on insulin sensitivity markers in a primate, Microcebus murinus. PLoS One 2012; 7:e34289. [PMID: 22479589 PMCID: PMC3316613 DOI: 10.1371/journal.pone.0034289] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/27/2012] [Indexed: 11/18/2022] Open
Abstract
The prevalence of diabetes and hyperinsulinemia increases with age, inducing metabolic failure and limiting lifespan. Calorie restriction (CR) without malnutrition delays the aging process, but its long-term application to humans seems difficult. Resveratrol (RSV), a dietary polyphenol, appears to be a promising CR mimetic that can be easily administered in humans. In this work, we hypothesized that both CR and RSV impact insulin sensitivity in a non-human primate compared to standard-fed control (CTL) animals. Four- to five-year-old male grey mouse lemurs (Microcebus murinus) were assigned to three dietary groups: a CTL group, a CR group receiving 30% fewer calories than the CTL and a RSV group receiving the CTL diet supplemented with RSV (200 mg·day(-1)·kg(-1)). Insulin sensitivity and glycemia were assessed using an oral glucose tolerance test (OGTT) and the homeostasis model assessment of insulin resistance (HOMA-IR index) evaluation after 21 or 33 months of chronic treatment. Resting metabolic rate was also measured to assess the potential relationships between this energy expenditure parameter and insulin sensitivity markers. No differences were found after a 21-month period of treatment, except for lower glucose levels 30 min after glucose loading in CR animals. After 33 months, CR and RSV decreased glycemia after the oral glucose loading without decreasing fasting blood insulin. A general effect of treatment was observed on the HOMA-IR index, with an 81% reduction in CR animals and 53% in RSV animals after 33 months of treatment compared to CTL. Chronic CR and dietary supplementation with RSV affected insulin sensitivity by improving the glucose tolerance of animals without disturbing their baseline insulin secretion. These results suggest that both CR and RSV have beneficial effects on metabolic alterations, although these effects are different in amplitude between the two anti-aging treatments and potentially rely on different metabolic changes.
Collapse
Affiliation(s)
- Julia Marchal
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Stéphane Blanc
- Institut Pluridisciplinaire Hubert Curien, Département d'Ecologie, Physiologie, Ethologie UMR 7178 CNRS Université Louis Pasteur, Strasbourg, France
| | - Jacques Epelbaum
- Centre de Psychiatrie et Neuroscience, UMR 894 Inserm, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Fabienne Aujard
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
- * E-mail:
| | - Fabien Pifferi
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| |
Collapse
|
119
|
Starr ME, Saito H. Age-related increase in food spilling by laboratory mice may lead to significant overestimation of actual food consumption: implications for studies on dietary restriction, metabolism, and dose calculations. J Gerontol A Biol Sci Med Sci 2012; 67:1043-8. [PMID: 22451471 PMCID: PMC3437968 DOI: 10.1093/gerona/gls009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is widely accepted that food consumption in humans declines with advanced age;
however, data from mice remain controversial. Based on our previous observation that mice
spill a considerable amount of food while eating, we hypothesized that increased food
spillage in old mice masks actual food intake. To investigate whether mice exhibit
age-associated declines in food consumption, we evaluated the actual food consumption of
C57BL/6 mice at various ages by measuring both the amount of food in the food receptacle
and the amount dropped to the cage bottom during feeding. We found that old mice dropped
significantly more food (36% ± 8%) than young mice (18% ± 5%), which led to
overestimations of food consumption, particularly in old mice. Although actual food
consumption decreased in very old mice, food intake per body weight did not significantly
change. These findings suggest that caution should be taken to accurately quantify food
consumption by aged animals.
Collapse
Affiliation(s)
- Marlene E Starr
- Department of Surgery, Physiology, and Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
120
|
Streeper RS, Grueter CA, Salomonis N, Cases S, Levin MC, Koliwad SK, Zhou P, Hirschey MD, Verdin E, Farese RV. Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice. Aging (Albany NY) 2012; 4:13-27. [PMID: 22291164 PMCID: PMC3292902 DOI: 10.18632/aging.100424] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 01/28/2012] [Indexed: 12/17/2022]
Abstract
Calorie restriction results in leanness, which is linked to metabolic conditions that favor longevity. We show here that deficiency of the triglyceride synthesis enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), which promotes leanness, also extends longevity without limiting food intake. Female DGAT1-deficient mice were protected from age-related increases in body fat, tissue triglycerides, and inflammation in white adipose tissue. This protection was accompanied by increased mean and maximal life spans of ~25% and ~10%, respectively. Middle-agedDgat1-/- mice exhibited several features associated with longevity, including decreased levels of circulating insulin growth factor 1 (IGF1) and reduced fecundity. Thus, deletion of DGAT1 in mice provides a model of leanness and extended lifespan that is independent of calorie restriction.
Collapse
Affiliation(s)
- Ryan S. Streeper
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
- Cardiovascular Research Institute, San Francisco, California, USA
| | - Carrie A. Grueter
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Nathan Salomonis
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Sylvaine Cases
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Malin C. Levin
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Suneil K. Koliwad
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
- Cardiovascular Research Institute, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Ping Zhou
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Matthew D. Hirschey
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Robert V. Farese
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
- Cardiovascular Research Institute, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
- Departments of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| |
Collapse
|
121
|
Yamazaki M, Tomita J, Takahama K, Ueno T, Mitsuyoshi M, Sakamoto E, Kume S, Kume K. High calorie diet augments age-associats sleep impairment in Drosophila. Biochem Biophys Res Commun 2012; 417:812-6. [DOI: 10.1016/j.bbrc.2011.12.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/24/2022]
|
122
|
Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, Chan HYE, Huang Y, Yu H, Chen ZY. Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol 2011; 47:170-8. [PMID: 22197903 DOI: 10.1016/j.exger.2011.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/08/2011] [Accepted: 12/08/2011] [Indexed: 01/19/2023]
Abstract
Blueberry possesses greater antioxidant capacity than most other fruits and vegetables. The present study investigated the lifespan-prolonging activity of blueberry extracts in fruit flies and explored its underlying mechanism. Results revealed that blueberry extracts at 5mg/ml in diet could significantly extend the mean lifespan of fruit flies by 10%, accompanied by up-regulating gene expression of superoxide dismutase (SOD), catalase (CAT) and Rpn11 and down-regulating Methuselah (MTH) gene. Intensive H(2)O(2) and Paraquat challenge tests showed that lifespan was only extended in Oregon-R wild type flies but not in SOD(n108) or Cat(n1) mutant strains. Chronic Paraquat exposure shortened the maximum survival time from 73 to 35days and decreased the climbing ability by 60% while blueberry extracts at 5mg/ml in diet could significantly increase the survival rate and partially restore the climbing ability with up-regulating SOD, CAT, and Rpn11. Furthermore, gustatory assay demonstrated that those changes were not due to the variation of food intake between the control and the experimental diet containing 5mg/ml blueberry extracts. It was therefore concluded that the lifespan-prolonging activity of blueberry extracts was at least partially associated with its interactions with MTH, Rpn11, and endogenous antioxidant enzymes SOD and CAT.
Collapse
Affiliation(s)
- Cheng Peng
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Heusch G. Obesity and inflammatory vasculopathy: a surgical solution as ultima ratio? Arterioscler Thromb Vasc Biol 2011; 31:1953-4. [PMID: 21849703 DOI: 10.1161/atvbaha.111.232264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
124
|
Dietary restriction and aging: a unifying perspective. Cell Metab 2011; 14:154-60. [PMID: 21803286 PMCID: PMC4445606 DOI: 10.1016/j.cmet.2011.06.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/14/2011] [Accepted: 06/22/2011] [Indexed: 10/17/2022]
Abstract
Dietary restriction (DR) and mutations in nutrient signaling pathways can extend healthy life span in diverse organisms. Studying the interaction between these interventions should reveal mechanisms of aging, but has yielded some apparently contradictory results. A multidimensional representation of nutrition, called the geometric framework, can better describe the responses of life span and other traits, including metabolism, and can reconcile these apparent contradictions. We provide examples showing that it is more informative to analyze DR in terms of dietary balance and that dietary optimization for life span is critical for studies examining the biology of aging and other traits.
Collapse
|
125
|
Miller DI, Taler V, Davidson PSR, Messier C. Measuring the impact of exercise on cognitive aging: methodological issues. Neurobiol Aging 2011; 33:622.e29-43. [PMID: 21514694 DOI: 10.1016/j.neurobiolaging.2011.02.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/24/2022]
Abstract
Physical exercise and fitness have been proposed as potential factors that promote healthy cognitive aging. Support for this hypothesis has come from cross sectional, longitudinal, and intervention studies. In the present review, we discuss several methodological problems that limit the conclusions of many studies. The lack of consensus on how to retrospectively measure exercise intensity is a major difficulty for all studies that attempt to estimate lifelong impact of exercise on cognitive performance in older adults. Intervention studies have a much better capacity to establish causality, but still suffer from difficulties arising from inadequate control groups and the choice and modality of administration of cognitive measures. We argue that, while the association between exercise and preserved cognition during aging is clearly demonstrated, the specific hypothesis that physical exercise is a cause of healthy cognitive aging has yet to be validated. A number of factors could mediate the exercise-cognition association, including depression, and social or cognitive stimulation. The complex interactions among these 3 factors and the potential impact of exercise on cognition remain to be systematically studied. At this time, the best prescription for lifestyle interventions for healthy cognitive aging would be sustained physical, social, and mental activities. What remains unknown is which type of activity might be most useful, and whether everyone benefits similarly from the same interventions.
Collapse
Affiliation(s)
- Delyana I Miller
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
126
|
Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA. Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 2011; 31:1003-19. [PMID: 21224864 PMCID: PMC3070983 DOI: 10.1038/jcbfm.2010.229] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/11/2010] [Accepted: 12/01/2010] [Indexed: 01/11/2023]
Abstract
Caloric restriction (CR), resveratrol, and ischemic preconditioning (IPC) have been shown to promote protection against ischemic injury in the heart and brain, as well as in other tissues. The activity of sirtuins, which are enzymes that modulate diverse biologic processes, seems to be vital in the ability of these therapeutic modalities to prevent against cellular dysfunction and death. The protective mechanisms of the yeast Sir2 and the mammalian homolog sirtuin 1 have been extensively studied, but the involvement of other sirtuins in ischemic protection is not yet clear. We examine the roles of mammalian sirtuins in modulating protective pathways against oxidative stress, energy depletion, excitotoxicity, inflammation, DNA damage, and apoptosis. Although many of these sirtuins have not been directly implicated in ischemic protection, they may have unique roles in enhancing function and preventing against stress-mediated cellular damage and death. This review will include in-depth analyses of the roles of CR, resveratrol, and IPC in activating sirtuins and in mediating protection against ischemic damage in the heart and brain.
Collapse
Affiliation(s)
- Kahlilia C Morris
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Hung Wen Lin
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - John W Thompson
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
127
|
Wieser D, Papatheodorou I, Ziehm M, Thornton JM. Computational biology for ageing. Philos Trans R Soc Lond B Biol Sci 2011; 366:51-63. [PMID: 21115530 PMCID: PMC3001313 DOI: 10.1098/rstb.2010.0286] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
High-throughput genomic and proteomic technologies have generated a wealth of publicly available data on ageing. Easy access to these data, and their computational analysis, is of great importance in order to pinpoint the causes and effects of ageing. Here, we provide a description of the existing databases and computational tools on ageing that are available for researchers. We also describe the computational approaches to data interpretation in the field of ageing including gene expression, comparative and pathway analyses, and highlight the challenges for future developments. We review recent biological insights gained from applying bioinformatics methods to analyse and interpret ageing data in different organisms, tissues and conditions.
Collapse
Affiliation(s)
- Daniela Wieser
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | | | | |
Collapse
|
128
|
McCormick MA, Tsai SY, Kennedy BK. TOR and ageing: a complex pathway for a complex process. Philos Trans R Soc Lond B Biol Sci 2011; 366:17-27. [PMID: 21115526 DOI: 10.1098/rstb.2010.0198] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies in invertebrate model organisms have led to a wealth of knowledge concerning the ageing process. But which of these discoveries will apply to ageing in humans? Recently, an assessment of the degree of conservation of ageing pathways between two of the leading invertebrate model organisms, Saccharomyces cerevisiae and Caenorhabditis elegans, was completed. The results (i) quantitatively indicated that pathways were conserved between evolutionarily disparate invertebrate species and (ii) emphasized the importance of the TOR kinase pathway in ageing. With recent findings that deletion of the mTOR substrate S6K1 or exposure of mice to the mTOR inhibitor rapamycin result in lifespan extension, mTOR signalling has become a major focus of ageing research. Here, we address downstream targets of mTOR signalling and their possible links to ageing. We also briefly cover other ageing genes identified by comparing worms and yeast, addressing the likelihood that their mammalian counterparts will affect longevity.
Collapse
Affiliation(s)
- Mark A McCormick
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
129
|
Peng C, Chan HYE, Huang Y, Yu H, Chen ZY. Apple polyphenols extend the mean lifespan of Drosophila melanogaster. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2097-106. [PMID: 21319854 DOI: 10.1021/jf1046267] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Apple polyphenols (AP) are an excellent source of dietary antioxidants. The present study investigated the effect of AP on the lifespan of fruit flies and their interaction with gene expressions of superoxide dismutase (SOD), catalase (CAT), methuselah (MTH), Rpn11, and cytochrome c oxidase (CcO) subunits III and VIb. Results showed the mean lifespan was significantly extended by 10% in fruit flies fed the AP diet. This was accompanied by up-regulation of genes SOD1, SOD2, and CAT and down-regulation of MTH in the aged fruit flies. Paraquat and H(2)O(2) challenge tests demonstrated that AP prolonged the survival time only for Oregon R wild type flies but not for SOD(n108) or Cat(n1) mutants, in which either SOD or CAT was knocked out. Chronic paraquat exposure could shorten the maximum lifespan from 68 to 31 days and reduce the climbing ability by 60%, whereas AP could partially reverse the paraquat-induced mortality and decline in climbing ability. AP could up-regulate Rpn11 at day 30, whereas it appeared to have no significant effect on gene expression of ubiquitinated protein, CcO subunits III and VIb. These AP-induced changes were unlikely associated with caloric restriction as the gustatory assay found no difference in average body weight and stomach redness index between the control and AP fruit flies. It was therefore concluded that the antiaging activity of AP was, at least in part, mediated by its interaction with genes SOD, CAT, MTH, and Rpn11.
Collapse
Affiliation(s)
- Cheng Peng
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong , Hong Kong, China
| | | | | | | | | |
Collapse
|
130
|
The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans. Biochem Biophys Res Commun 2011; 406:478-82. [DOI: 10.1016/j.bbrc.2011.02.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 01/24/2023]
|
131
|
Puig O, Mattila J. Understanding Forkhead box class O function: lessons from Drosophila melanogaster. Antioxid Redox Signal 2011; 14:635-47. [PMID: 20618068 DOI: 10.1089/ars.2010.3407] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Drosophila melanogaster is one of the most widely used model organisms. About 77% of known human disease genes have an ortholog in Drosophila, and many of the cellular signaling pathways are common between fruit flies and mammals. For example, a key signaling pathway in the regulation of growth and metabolism, the insulin/insulin-like growth factor 1 signaling pathway, is well conserved between flies and humans. Downstream effectors of this pathway are the Forkhead box class O (FOXO) family of transcription factors, with four members in mammals and a single FOXO protein in Drosophila, dFOXO. Research in Drosophila has been critical to elucidate the molecular mechanisms by which FOXO transcription factors regulate insulin signaling. In this review, we summarize the studies leading to dFOXO identification and its characterization as a central regulator of metabolism, life span, cell cycle, growth, and stress resistance.
Collapse
Affiliation(s)
- Oscar Puig
- Molecular Profiling Research Informatics, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | |
Collapse
|
132
|
Guan KL, Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 2011; 36:108-16. [PMID: 20934340 PMCID: PMC3038179 DOI: 10.1016/j.tibs.2010.09.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 02/09/2023]
Abstract
Extensive studies during the past four decades have identified important roles for lysine acetylation in the regulation of nuclear transcription. Recent proteomic analyses on protein acetylation uncovered a large number of acetylated proteins in the cytoplasm and mitochondria, including most enzymes involved in intermediate metabolism. Acetylation regulates metabolic enzymes by multiple mechanisms, including via enzymatic activation or inhibition, and by influencing protein stability. Conversely, non-nuclear NAD(+)-dependent sirtuin deacetylases can regulate cellular and organismal metabolism, possibly through direct deacetylation of metabolic enzymes. Furthermore, acetylation of metabolic enzymes is highly conserved from prokaryotes to eukaryotes. Given the frequent occurrence of metabolic dysregulation in diabetes, obesity and cancer, enzymes modulating acetylation could provide attractive targets for therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Kun-Liang Guan
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Fudan University, Shanghai 20032, China.
| | | |
Collapse
|
133
|
Aris JP, Fishwick LK, Marraffini ML, Seo AY, Leeuwenburgh C, Dunn WA. Amino acid homeostasis and chronological longevity in Saccharomyces cerevisiae. Subcell Biochem 2011; 57:161-86. [PMID: 22094422 DOI: 10.1007/978-94-007-2561-4_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding how non-dividing cells remain viable over long periods of time, which may be decades in humans, is of central importance in understanding mechanisms of aging and longevity. The long-term viability of non-dividing cells, known as chronological longevity, relies on cellular processes that degrade old components and replace them with new ones. Key among these processes is amino acid homeostasis. Amino acid homeostasis requires three principal functions: amino acid uptake, de novo synthesis, and recycling. Autophagy plays a key role in recycling amino acids and other metabolic building blocks, while at the same time removing damaged cellular components such as mitochondria and other organelles. Regulation of amino acid homeostasis and autophagy is accomplished by a complex web of pathways that interact because of the functional overlap at the level of recycling. It is becoming increasingly clear that amino acid homeostasis and autophagy play important roles in chronological longevity in yeast and higher organisms. Our goal in this chapter is to focus on mechanisms and pathways that link amino acid homeostasis, autophagy, and chronological longevity in yeast, and explore their relevance to aging and longevity in higher eukaryotes.
Collapse
Affiliation(s)
- John P Aris
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610-0235, USA,
| | | | | | | | | | | |
Collapse
|
134
|
Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 2010; 285:39597-608. [PMID: 20940294 PMCID: PMC3000941 DOI: 10.1074/jbc.m110.129718] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 09/13/2010] [Indexed: 12/19/2022] Open
Abstract
Among the hallmarks of aged organisms are an accumulation of misfolded proteins and a reduction in skeletal muscle mass ("sarcopenia"). We have examined the effects of aging and dietary restriction (which retards many age-related changes) on components of the ubiquitin proteasome system (UPS) in muscle. The hindlimb muscles of aged (30 months old) rats showed a marked loss of muscle mass and contained 2-3-fold higher levels of 26S proteasomes than those of adult (4 months old) controls. 26S proteasomes purified from muscles of aged and adult rats showed a similar capacity to degrade peptides, proteins, and an ubiquitylated substrate, but differed in levels of proteasome-associated proteins (e.g. the ubiquitin ligase E6AP and deubiquitylating enzyme USP14). Also, the activities of many other deubiquitylating enzymes were greatly enhanced in the aged muscles. Nevertheless, their content of polyubiquitylated proteins was higher than in adult animals. The aged muscles contained higher levels of the ubiquitin ligase CHIP, involved in eliminating misfolded proteins, and MuRF1, which ubiquitylates myofibrillar proteins. These muscles differed from ones rapidly atrophying due to disease, fasting, or disuse in that Atrogin-1/MAFbx expression was low and not inducible by glucocorticoids. Thus, the muscles of aged rats showed many adaptations indicating enhanced proteolysis by the UPS, which may enhance their capacity to eliminate misfolded proteins and seems to contribute to the sarcopenia. Accordingly, dietary restriction decreased or prevented the aging-associated increases in proteasomes and other UPS components and reduced muscle wasting.
Collapse
Affiliation(s)
- Mikael Altun
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Ratajczak MZ, Shin DM, Ratajczak J, Kucia M, Bartke A. A novel insight into aging: are there pluripotent very small embryonic-like stem cells (VSELs) in adult tissues overtime depleted in an Igf-1-dependent manner? Aging (Albany NY) 2010; 2:875-883. [PMID: 21084728 PMCID: PMC3006029 DOI: 10.18632/aging.100231] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 11/11/2010] [Indexed: 12/15/2022]
Abstract
Tissue and organ rejuvenation and senescence/aging are closely related to the function of stem cells. Recently, we demonstrated that a population of pluripotent Oct-4+ SSEA-1+Sca-1+Lin-CD45- very small embryonic-like stem cells (VSELs) resides in the adult murine bone marrow (BM) and other murine tissues. We hypothesize that these pluripotent stem cells play an important role in tissue/organ rejuvenation, and have demonstrated that their proliferation and potentially premature depletion is negatively controlled by epigenetic changes of some imprinted genes that regulate insulin factor signaling (Igf2-H19 locus, Igf2R and RasGRF1). Since the attenuation of insulin/insulin growth factor (Ins/Igf) signaling positively correlates with longevity, we propose, based on our experimental data, that gradual decrease in the number of VSELs deposited in adult tissues, which occurs throughout life in an Ins/Igf signaling-dependent manner is an important mechanism of aging. In contrast, a decrease in Ins/Igf stimulation of VSELs that extends the half life of these cells in adult organs would have a beneficial effect on life span. Our preliminary data in long-living Igf-1-signaling-deficient mice show that these animals possess a 3-4 times higher number of VSELs deposited in adult BM, lending support to this novel hypothesis.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
136
|
Andrews ZB. The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci 2010; 34:31-40. [PMID: 21035199 DOI: 10.1016/j.tins.2010.10.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 12/20/2022]
Abstract
Ghrelin is a peptide hormone produced and secreted in the stomach. Numerous studies over the past decade demonstrate its importance in food intake, body-weight regulation and glucose homeostasis. These effects are driven largely by the high expression of the ghrelin receptor (GHSR1a) in the hypothalamus. However, GHSR1a is also expressed in numerous extra-hypothalamic neuronal populations, suggesting that ghrelin has physiological functions besides those involved in metabolic functions. In this review, I focus on increasing evidence that ghrelin has important roles in extra-hypothalamic functions, including learning and memory, reward and motivation, anxiety and depression, and neuroprotection. Furthermore, I discuss how the recently demonstrated role of ghrelin in promoting survival during periods of caloric restriction could contribute to its inherent neuroprotective and neuromodulatory properties.
Collapse
Affiliation(s)
- Zane B Andrews
- Department of Physiology, Monash University, Clayton, VIC 3183, Australia.
| |
Collapse
|
137
|
Abstract
Sirtuins (silent information regulator 2 [Sir2] proteins) belong to an ancient family of evolutionary conserved nicotinamide adenine dinucleotide (NAD)(+)-dependent enzymes with deacetylase and/or mono-ADP-ribosyltransferase activity. They regulate DNA repair and recombination, chromosomal stability, and gene transcription, and most importantly mediate the health-promoting effects of caloric restriction (CR), which includes the retardation of aging. At least seven Sir2 homologs, sirtuins (SIRT) 1 to 7 have been identified in mammals. Mammalian SIRT1, the most extensively studied family member, couples protein deacetylation with NAD(+) hydrolysis and links cellular energy and redox state to multiple signaling and survival pathways. Cell-type and context-specific activation of sirtuins increases resistance to metabolic, oxidative, and hypoxic stress in different tissues. In particular, SIRT1 plays a central role in mediating the beneficial effects of CR, and its activation associates with longevity and the attenuation of metabolic disorders. SIRT1 in the kidney is cytoprotective and participates in the regulation of BP and sodium balance. Here, we review sirtuin biology and discuss how CR-triggered sirtuin-dependent pathways affect renal physiology and the pathogenesis of kidney diseases and related disorders.
Collapse
Affiliation(s)
- Chuan-Ming Hao
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
138
|
Roux AE, Arseneault G, Chartrand P, Ferbeyre G, Rokeach LA. A screen for genes involved in respiration control and longevity in Schizosaccharomyces pombe. Ann N Y Acad Sci 2010; 1197:19-27. [PMID: 20536828 DOI: 10.1111/j.1749-6632.2010.05198.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present results showing that glucose signaling has proaging effects in the yeast Schizosaccharomyces pombe. Deletion of the receptor that senses extracellular glucose (Git3) increases the life span of S. pombe, while constitutive activation of the Galpha subunit acting downstream of this receptor (Gpa2) shortens its life span. The latter mutant is also impaired for growth under respiration conditions. We have used this phenotype in a selection strategy to identify genes that when overexpressed can rescue the respiratory defect of constitutively active Galpha subunit mutants. Here, we report an extended version of the work we presented at the IABG meeting and the results of this screen. This strategy allowed us to isolate four genes: psp1(+)/moc1(+), cka1(+), adh1(+), and rpb10(+). Interestingly, the overexpression of these genes was also capable of increasing the chronological life span of wild-type yeast cells.
Collapse
Affiliation(s)
- Antoine E Roux
- Department of Biochemistry, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
139
|
Burger JMS, Buechel SD, Kawecki TJ. Dietary restriction affects lifespan but not cognitive aging in Drosophila melanogaster. Aging Cell 2010; 9:327-35. [PMID: 20156204 DOI: 10.1111/j.1474-9726.2010.00560.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dietary restriction extends lifespan in a wide variety of animals, including Drosophila, but its relationship to functional and cognitive aging is unclear. Here, we study the effects of dietary yeast content on fly performance in an aversive learning task (association between odor and mechanical shock). Learning performance declined at old age, but 50-day-old dietary-restricted flies learned as poorly as equal-aged flies maintained on yeast-rich diet, even though the former lived on average 9 days (14%) longer. Furthermore, at the middle age of 21 days, flies on low-yeast diets showed poorer short-term (5 min) memory than flies on rich diet. In contrast, dietary restriction enhanced 60-min memory of young (5 days old) flies. Thus, while dietary restriction had complex effects on learning performance in young to middle-aged flies, it did not attenuate aging-related decline of aversive learning performance. These results are consistent with the hypothesis that, in Drosophila, dietary restriction reduces mortality and thus leads to lifespan extension, but does not affect the rate with which somatic damage relevant for cognitive performance accumulates with age.
Collapse
Affiliation(s)
- Joep M S Burger
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | | | | |
Collapse
|
140
|
|
141
|
Vigne P, Frelin C. Hypoxia modifies the feeding preferences of Drosophila. Consequences for diet dependent hypoxic survival. BMC PHYSIOLOGY 2010; 10:8. [PMID: 20465825 PMCID: PMC2877658 DOI: 10.1186/1472-6793-10-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 05/13/2010] [Indexed: 11/18/2022]
Abstract
Background Recent attention has been given to the relationships between diet, longevity, aging and resistance to various forms of stress. Flies do not simply ingest calories. They sense different concentrations of carbohydrate and protein macronutrients and they modify their feeding behavior in response to changes in dietary conditions. Chronic hypoxia is a major consequence of cardiovascular diseases. Dietary proteins have recently been shown to decrease the survival of chronically hypoxic Drosophila. Whether flies modify their feeding behavior in response to hypoxia is not currently known. This study uses the recently developed capillary feeding assay to analyze the feeding behavior of normoxic and chronically hypoxic Drosophila melanogaster. Results The intakes rates of sucrose and yeast by normoxic or chronically hypoxic flies (5% O2) were analyzed under self selecting and "no choice" conditions. Chronically hypoxic flies fed on pure yeast diets or mixed diets under self selection conditions stopped feeding on yeast. Flies fed on mixed diets under "no choice" conditions reduced their food intakes. Hypoxia did not modify the adaptation of flies to diluted diets or to imbalanced diets. Mortality was assessed in parallel experiments. Dietary yeast had two distinct effects on hypoxic flies (i) a repellent action which eventually led to starvation and which was best observed in the absence of dietary sucrose and (ii) a toxic action which led to premature death. Finally we determined that hypoxic survivals were correlated to the intakes of sucrose, which suggested that dietary yeast killed flies by reducing their intake of sucrose. The feeding preferences of adult Drosophila were insensitive to NO scavengers, NO donor molecules and inhibitors of phosphodiesterases which are active on Drosophila larvae. Conclusion Chronically hypoxic flies modify their feeding behavior. They avoid dietary yeast which appears to be toxic. Hypoxic survival is dependent on a source of exogenous sucrose. Ultimately, dietary yeast reduces hypoxic survival by reducing the intake of sucrose. The results highlight the importance of behavioral mechanisms in the responses of Drosophila to chronic hypoxic conditions.
Collapse
Affiliation(s)
- Paul Vigne
- CNRS UMR 6543, Univ Nice Sophia Antipolis, Nice, F-06108 France
| | | |
Collapse
|
142
|
Saul N, Pietsch K, Menzel R, Stürzenbaum SR, Steinberg CEW. The Longevity Effect of Tannic Acid in Caenorhabditis elegans: Disposable Soma Meets Hormesis. ACTA ACUST UNITED AC 2010; 65:626-35. [DOI: 10.1093/gerona/glq051] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
143
|
Abstract
The growing population of elderly with chronic kidney disease (CKD) is at greater risk for cardiovascular disease given an independent risk of CKD, as well as from added dyslipidemia of aging and renal dysfunction. Changes in lipid metabolism with more isodense and high-dense, triglyceride-rich particles, low high-density lipoprotein cholesterol, and increased triglyceride levels occur with CKD and aging, which are noted to have significant atherogenic potential. In addition, lipid abnormalities may lead to the progression of CKD. Cardiovascular mortality in the end-stage renal disease population is more than 10 times higher than the general population. Treatment of dyslipidemia in the general population suggests important benefits both in reducing cardiovascular risk and in the prevention of cardiovascular disease. Secondary analyses of elderly subgroups of various large prospective studies with statins suggest treatment benefit with statin use in the elderly. Similarly limited data from secondary analyses of CKD subgroups of larger prospective trials using statins also suggest a possible benefit in cardiovascular outcomes and the progression of kidney disease. However, randomized trials have yet to confirm similar benefits and targets of treatment for dyslipidemia in the elderly with CKD and end-stage renal disease. Treatment in the elderly with CKD should be individualized and outweigh risks of side effects and drug-drug interactions. There is a need for further specific investigation of dyslipidemia of CKD in the aging population in relation to renal disease progression and cardiovascular outcome.
Collapse
|
144
|
Affiliation(s)
- Wen-Hsing Cheng
- Department of Nutrition and Food Science, University of Maryland, 3107B Skinner Building, College Park, MD 21029, United States
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, IRP, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, United States
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, NIH, IRP, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, United States
| |
Collapse
|
145
|
How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 2010; 45:410-8. [PMID: 20350594 DOI: 10.1016/j.exger.2010.03.014] [Citation(s) in RCA: 565] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 03/09/2010] [Accepted: 03/19/2010] [Indexed: 12/23/2022]
Abstract
Recent evidence suggests that calorie restriction and specifically reduced glucose metabolism induces mitochondrial metabolism to extend life span in various model organisms, including Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans and possibly mice. In conflict with Harman's free radical theory of aging (FRTA), these effects may be due to increased formation of reactive oxygen species (ROS) within the mitochondria causing an adaptive response that culminates in subsequently increased stress resistance assumed to ultimately cause a long-term reduction of oxidative stress. This type of retrograde response has been named mitochondrial hormesis or mitohormesis, and may in addition be applicable to the health-promoting effects of physical exercise in humans and, hypothetically, impaired insulin/IGF-1-signaling in model organisms. Consistently, abrogation of this mitochondrial ROS signal by antioxidants impairs the lifespan-extending and health-promoting capabilities of glucose restriction and physical exercise, respectively. In summary, the findings discussed in this review indicate that ROS are essential signaling molecules which are required to promote health and longevity. Hence, the concept of mitohormesis provides a common mechanistic denominator for the physiological effects of physical exercise, reduced calorie uptake, glucose restriction, and possibly beyond.
Collapse
|
146
|
Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki SI, Sugimoto T, Haneda M, Kashiwagi A, Koya D. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 2010; 120:1043-55. [PMID: 20335657 DOI: 10.1172/jci41376] [Citation(s) in RCA: 492] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 01/20/2010] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial oxidative damage is a basic mechanism of aging, and multiple studies demonstrate that this process is attenuated by calorie restriction (CR). However, the molecular mechanism that underlies the beneficial effect of CR on mitochondrial dysfunction is unclear. Here, we investigated in mice the mechanisms underlying CR-mediated protection against hypoxia in aged kidney, with a special focus on the role of the NAD-dependent deacetylase sirtuin 1 (Sirt1), which is linked to CR-related longevity in model organisms, on mitochondrial autophagy. Adult-onset and long-term CR in mice promoted increased Sirt1 expression in aged kidney and attenuated hypoxia-associated mitochondrial and renal damage by enhancing BCL2/adenovirus E1B 19-kDa interacting protein 3-dependent (Bnip3-dependent) autophagy. Culture of primary renal proximal tubular cells (PTCs) in serum from CR mice promoted Sirt1-mediated forkhead box O3 (Foxo3) deacetylation. This activity was essential for expression of Bnip3 and p27Kip1 and for subsequent autophagy and cell survival of PTCs under hypoxia. Furthermore, the kidneys of aged Sirt1+/- mice were resistant to CR-mediated improvement in the accumulation of damaged mitochondria under hypoxia. These data highlight the role of the Sirt1-Foxo3 axis in cellular adaptation to hypoxia, delineate a molecular mechanism of the CR-mediated antiaging effect, and could potentially direct the design of new therapies for age- and hypoxia-related tissue damage.
Collapse
Affiliation(s)
- Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Affiliation(s)
- Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | | |
Collapse
|
148
|
Drosophila as a lipotoxicity model organism — more than a promise? Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:215-21. [DOI: 10.1016/j.bbalip.2009.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/04/2009] [Accepted: 09/13/2009] [Indexed: 12/13/2022]
|
149
|
Anderson RM, Weindruch R. Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab 2010; 21:134-41. [PMID: 20004110 PMCID: PMC2831168 DOI: 10.1016/j.tem.2009.11.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/06/2009] [Accepted: 11/17/2009] [Indexed: 12/31/2022]
Abstract
Caloric restriction (CR) without malnutrition slows the aging process and extends lifespan in diverse species by unknown mechanisms. The inverse linear relationship between calorie intake and lifespan suggests that regulators of energy metabolism are important in the actions of CR. Studies in several species reveal tissue-specific changes in energy metabolism with CR and suggest that metabolic reprogramming plays a critical role in its mechanism of aging retardation. We herein describe common signatures of CR and suggest how they can slow aging. We discuss recent advances in understanding the function of key metabolic regulators that probably coordinate the response to altered nutrient availability with CR and how the pathways they regulate can retard the aging process.
Collapse
Affiliation(s)
- Rozalyn M Anderson
- Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | |
Collapse
|
150
|
Ni Z, Lee SS. RNAi screens to identify components of gene networks that modulate aging in Caenorhabditis elegans. Brief Funct Genomics 2010; 9:53-64. [PMID: 20053814 DOI: 10.1093/bfgp/elp051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Our understanding of the genetic mechanisms of organismal aging has advanced dramatically during the past two decades. With the development of large-scale RNAi screens, the last few years saw the remarkable identifications of hundreds of new longevity genes in the roundworm Caenorhabditis elegans. The various RNAi screens revealed many biological pathways previously unknown to be related to aging. In this review, we focus on findings from the recent large-scale RNAi longevity screens, and discuss insights they have provided into the complex biological process of aging and considerations of the RNAi technology will continue to have on the future development of the aging field.
Collapse
Affiliation(s)
- Zhuoyu Ni
- Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|