101
|
Andrade-Oliva MDLA, Aztatzi-Aguilar OG, García-Sierra F, De Vizcaya-Ruiz A, Arias-Montaño JA. Effect of in vivo exposure to ambient fine particles (PM 2.5) on the density of dopamine D 2-like receptors and dopamine-induced [ 35S]-GTPγS binding in rat prefrontal cortex and striatum membranes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:58-65. [PMID: 29660611 DOI: 10.1016/j.etap.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Male Sprague-Dawley rats (8-9 weeks-old) were exposed for three days (acute exposure) or eight weeks (subchronic exposure) to purified air or concentrated ambient fine particles, PM2.5 (≤2.5 μm; 15 to 18-fold of ambient air; 370-445 μg/m3). In membranes from rat prefrontal cortex (PFC) or striatum, the density and function of dopamine D2-like receptors (D2Rs) were assessed by [3H]-spiperone binding and dopamine-stimulated [35S]-GTPγS binding, respectively. Glial activation was evaluated by immunoperoxidase labeling of the glial fibrillary acidic protein (GFAP). In the PFC, no significant changes in D2R density or signaling were observed after the acute and subchronic exposure to PM2.5. In the striatum, acute exposure to PM2.5 decreased D2R density, with no effect on signaling efficacy, whereas subchronic exposure did not affect D2R density but reduced signaling efficacy. Both acute and subchronic exposure to PM2.5 induced reactive gliosis in the striatum but not in the PFC. These results indicate that exposure to PM2.5 induces astrocyte activation and alters striatal dopaminergic transmission.
Collapse
Affiliation(s)
- María-de-Los-Angeles Andrade-Oliva
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México; Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México
| | - Octavio-Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México
| | - Francisco García-Sierra
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México.
| |
Collapse
|
102
|
Naderi M, Salahinejad A, Ferrari MCO, Niyogi S, Chivers DP. Dopaminergic dysregulation and impaired associative learning behavior in zebrafish during chronic dietary exposure to selenium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:174-185. [PMID: 29482023 DOI: 10.1016/j.envpol.2018.02.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
A growing body of evidence indicates that exposure to selenium (Se) can cause neurotoxicity, and this can occur because of its interference with several neurotransmitter systems in humans and animals. Dopamine is a critical modulator of a variety of brain functions and a prime target for environmental neurotoxicants. However, effects of environmentally relevant concentrations of Se on dopaminergic system and its neurobehavioral effects are still largely unknown. For this purpose, we exposed zebrafish, a model organism, to different concentrations of dietary l-selenomethionine (control, 3.5, 11.1, 27.4, and 63.4 μg Se/g dry weight) for a period of 60 days. Cognitive performance of fish was evaluated using a plus maze associative learning paradigm. Oxidative stress, as the main driver of Se neurotoxicity, was assessed by measuring the ratio of reduced to oxidized glutathione (GSH:GSSG), lipid peroxidation (LPO) levels, and mRNA expression of several antioxidant enzymes in the zebrafish brain. Dopamine levels in the brain and the expression of genes involved in dopamine synthesis, storage, reuptake, metabolism, and receptor activation were examined. Moreover, transcription of several synaptic plasticity-related immediate-early and late response genes was determined. Overall, fish fed with the two highest concentrations of dietary Se displayed impaired associative learning. Se exposure also induced oxidative stress in the zebrafish brain, as indicated by a reduction in GSH:GSSG ratio, increased LPO levels, and up-regulation of antioxidant genes in fish treated with the two highest concentrations of Se. An increase in brain dopamine levels associated with altered expression of dopaminergic cell markers was evident in different treatment groups. Moreover, Se exposure led to the down-regulation of immediate-early and late response genes in fish that exhibiting learning impairment. Taken together, the results of this study imply that the induction of oxidative stress and dysregulation of dopaminergic neurotransmission may underlie Se-induced impairment of associative learning in zebrafish.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
103
|
Shin S, Kim S, Seo S, Lee JS, Howes OD, Kim E, Kwon JS. The relationship between dopamine receptor blockade and cognitive performance in schizophrenia: a [ 11C]-raclopride PET study with aripiprazole. Transl Psychiatry 2018; 8:87. [PMID: 29686254 PMCID: PMC5913226 DOI: 10.1038/s41398-018-0134-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/02/2022] Open
Abstract
Aripiprazole's effects on cognitive function in patients with schizophrenia are unclear because of the difficulty in disentangling specific effects on cognitive function from secondary effects due to the improvement in other schizophrenic symptoms. One approach to address this is to use an intermediate biomarker to investigate the relationship between the drug's effect on the brain and change in cognitive function. This study aims to investigate aripiprazole's effect on working memory by determining the correlation between dopamine D2/3 (D2/3) receptor occupancy and working memory of patients with schizophrenia. Seven patients with schizophrenia participated in the study. Serial positron emission tomography (PET) scans with [11C]raclopride were conducted at 2, 26, and 74 h after the administration of aripiprazole. The subjects performed the N-back task just after finishing the [11C]raclopride PET scan. The mean (±SD) D2/3 receptor occupancies were 66.9 ± 6.7% at 2 h, 65.0 ± 8.6% at 26, and 57.7 ± 11.2% at 74 h after administering aripiprazole. Compared with performance on the zero-back condition, performance in memory-loaded conditions (one-, two-, and three-back conditions) was significantly related to D2/3 receptor occupancy by aripiprazole (error rate: ß = -2.236, t = -6.631, df = 53.947, and p = 0.001; reaction time: ß = -9.567, t = -2.808, df = 29.967, and p = 0.009). Although the sample size was relatively small, these results suggest that aripiprazole as a dopamine-partial agonist could improve cognitive function in patients with schizophrenia.
Collapse
Affiliation(s)
- Sangho Shin
- 0000 0004 0647 3378grid.412480.bDepartment of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, 13620 Republic of Korea
| | - Seoyoung Kim
- 0000 0004 0647 3378grid.412480.bDepartment of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, 13620 Republic of Korea
| | - Seongho Seo
- 0000 0004 0470 5905grid.31501.36Department of Brain and Cognitive Sciences, College of Natural Science, Seoul National University, Seoul, 08826 Republic of Korea ,0000 0004 0470 5905grid.31501.36Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Jae Sung Lee
- 0000 0004 0470 5905grid.31501.36Department of Brain and Cognitive Sciences, College of Natural Science, Seoul National University, Seoul, 08826 Republic of Korea ,0000 0004 0470 5905grid.31501.36Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Oliver D. Howes
- 0000 0001 2322 6764grid.13097.3cInstitute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF UK ,0000000122478951grid.14105.31Medical Research Council Clinical Sciences Centre, London, W12 0NN UK ,0000 0001 0705 4923grid.413629.bImperial College London, Hammersmith Hospital Campus, London, W12 0NN UK
| | - Euitae Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, 13620, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Jun Soo Kwon
- 0000 0004 0470 5905grid.31501.36Department of Brain and Cognitive Sciences, College of Natural Science, Seoul National University, Seoul, 08826 Republic of Korea ,0000 0004 0470 5905grid.31501.36Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea ,0000 0001 0302 820Xgrid.412484.fDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080 Republic of Korea ,0000 0004 0470 5905grid.31501.36Institute of Human Behavioral Medicine, SNU-MRC, Seoul, 03080 Republic of Korea
| |
Collapse
|
104
|
Kupferschmidt DA, Gordon JA. The dynamics of disordered dialogue: Prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain Neurosci Adv 2018; 2. [PMID: 31058245 PMCID: PMC6497416 DOI: 10.1177/2398212818771821] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex is central to the orchestrated brain network communication that gives rise to working memory and other cognitive functions. Accordingly, working memory deficits in schizophrenia are increasingly thought to derive from prefrontal cortex dysfunction coupled with broader network disconnectivity. How the prefrontal cortex dynamically communicates with its distal network partners to support working memory and how this communication is disrupted in individuals with schizophrenia remain unclear. Here we review recent evidence that prefrontal cortex communication with the hippocampus and thalamus is essential for normal spatial working memory, and that miscommunication between these structures underlies spatial working memory deficits in schizophrenia. We focus on studies using normal rodents and rodent models designed to probe schizophrenia-related pathology to assess the dynamics of neural interaction between these brain regions. We also highlight recent preclinical work parsing roles for long-range prefrontal cortex connections with the hippocampus and thalamus in normal and disordered spatial working memory. Finally, we discuss how emerging rodent endophenotypes of hippocampal- and thalamo-prefrontal cortex dynamics in spatial working memory could translate into richer understanding of the neural bases of cognitive function and dysfunction in humans.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joshua A Gordon
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
105
|
Parnaudeau S, Bolkan SS, Kellendonk C. The Mediodorsal Thalamus: An Essential Partner of the Prefrontal Cortex for Cognition. Biol Psychiatry 2018; 83:648-656. [PMID: 29275841 PMCID: PMC5862748 DOI: 10.1016/j.biopsych.2017.11.008] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023]
Abstract
Deficits in cognition are a core feature of many psychiatric conditions, including schizophrenia, where the severity of such deficits is a strong predictor of long-term outcome. Impairment in cognitive domains such as working memory and behavioral flexibility has typically been associated with prefrontal cortex (PFC) dysfunction. However, there is increasing evidence that the PFC cannot be dissociated from its main thalamic counterpart, the mediodorsal thalamus (MD). Since the causal relationships between MD-PFC abnormalities and cognitive impairment, as well as the neuronal mechanisms underlying them, are difficult to address in humans, animal models have been employed for mechanistic insight. In this review, we discuss anatomical, behavioral, and electrophysiological findings from animal studies that provide a new understanding on how MD-PFC circuits support higher-order cognitive function. We argue that the MD may be required for amplifying and sustaining cortical representations under different behavioral conditions. These findings advance a new framework for the broader involvement of distributed thalamo-frontal circuits in cognition and point to the MD as a potential therapeutic target for improving cognitive deficits in schizophrenia and other disorders.
Collapse
Affiliation(s)
- Sébastien Parnaudeau
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut de Biologie Paris Seine UM119, Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Scott S Bolkan
- Graduate Program in Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Christoph Kellendonk
- Departments of Pharmacology and Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
106
|
Electroacupuncture Ameliorates Cognitive Deficit and Improves Hippocampal Synaptic Plasticity in Adult Rat with Neonatal Maternal Separation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2468105. [PMID: 29785188 PMCID: PMC5896274 DOI: 10.1155/2018/2468105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/25/2018] [Indexed: 12/02/2022]
Abstract
Exposure to adverse early-life events is thought to be the risk factors for the development of psychiatric and altered cognitive function in adulthood. The purpose of this study was to investigate whether electroacupuncture (EA) treatment in young adult rat would improve impaired cognitive function and synaptic plasticity in adult rat with neonatal maternal separation (MS). Wistar rats were randomly divided into four groups: control group, MS group, MS with EA treatment (MS + EA) group, and MS with Sham-EA treatment (MS + Sham-EA) group. We evaluated the cognitive function by using Morris water maze and fear conditioning tests. Electrophysiology experiment used in vivo long-term potentiation (LTP) at Schaffer Collateral-CA1 synapses was detected to assess extent of synaptic plasticity. Repeated EA stimulation at Baihui (GV 20) and Yintang (GV 29) during postnatal 9 to 11 weeks was identified to significantly ameliorate poor performance in behavior tests and improve the impaired LTP induction detected at Schaffer Collateral-CA1 synapse in hippocampus. Collectively, the findings suggested that early-life stress due to MS may induce adult cognitive deficit associated with hippocampus, and EA in young adult demonstrated that its therapeutic efficacy may be via ameliorating deficit of hippocampal synaptic plasticity.
Collapse
|
107
|
Wass C, Sauce B, Pizzo A, Matzel LD. Dopamine D1 receptor density in the mPFC responds to cognitive demands and receptor turnover contributes to general cognitive ability in mice. Sci Rep 2018; 8:4533. [PMID: 29540721 PMCID: PMC5852043 DOI: 10.1038/s41598-018-22668-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 01/11/2023] Open
Abstract
In both humans and mice, performance on tests of intelligence or general cognitive ability (GCA) is related to dopamine D1 receptor-mediated activity in the prelimbic cortex, and levels of DRD1 mRNA predict the GCA of mice. Here we assessed the turnover rate of D1 receptors as well as the expression level of the D1 chaperone protein (DRiP78) in the medial PPC (mPFC) of mice to determine whether rate of receptor turnover was associated with variations in the GCA of genetically heterogeneous mice. Following assessment of GCA (aggregate performance on four diverse learning tests) mice were administered an irreversible dopamine receptor antagonist (EEDQ), after which the density of new D1 receptors were quantified. GCA was positively correlated with both the rate of D1 receptor recovery and levels of DRiP78. Additionally, the density of D1 receptors was observed to increase within 60 min (or less) in response to intense demands on working memory, suggesting that a pool of immature receptors was available to accommodate high cognitive loads. These results provide evidence that innate general cognitive abilities are related to D1 receptor turnover rates in the prefrontal cortex, and that an intracellular pool of immature D1 receptors are available to accommodate cognitive demands.
Collapse
Affiliation(s)
- Christopher Wass
- Department of Psychology, Program in Behavioral and Systems Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Bruno Sauce
- Department of Psychology, Program in Behavioral and Systems Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Alessandro Pizzo
- Department of Psychology, Program in Behavioral and Systems Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Louis D Matzel
- Department of Psychology, Program in Behavioral and Systems Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
108
|
Gupta I, Young AMJ. Metabotropic glutamate receptor modulation of dopamine release in the nucleus accumbens shell is unaffected by phencyclidine pretreatment: In vitro assessment using fast-scan cyclic voltammetry rat brain slices. Brain Res 2018. [PMID: 29524437 DOI: 10.1016/j.brainres.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The non-competitive glutamate antagonist, phencyclidine is used in rodents to model behavioural deficits see in schizophrenia. Importantly, these deficits endure long after the cessation of short-term chronic treatment (sub-chronic), indicating that the drug treatment causes long-term changes in the physiology and/or chemistry of the brain. There is evidence that this may occur through glutamatergic modulation of mesolimbic dopamine release, perhaps involving metabotropic glutamate receptors (mGluR). This study sought to investigate the effect of sub-chronic phencyclidine pretreatment on modulation of dopamine neurotransmission by metabotropic glutamate receptors 2 and 5 (mGluR2 and mGluR5) in the nucleus accumbens shell in vitro, with the hypothesis that phencyclidine pretreatment would disrupt the mGluR-mediated modulation of dopamine release. We showed that the orthosteric mGluR2 agonist LY379268 (0.1 µM, 1 µM and 10 µM) and mGluR5 positive allosteric modulator CDPPB (1 µM and 10 µM) both attenuated potassium-evoked dopamine release, underscoring their role in modulating dopamine neurotransmission in the nucleus accumbens. Sub-chronic PCP treatment, which caused cognitive deficits measured by performance in the novel object recognition task, modelling aspects of behavioral deficits seen in schizophrenia, induced neurobiological changes that enhanced dopamine release in the nucleus accumbens, but had no effect on mGluR2 or mGluR5 mediated changes in dopamine release. Therefore it is unlikely that schizophrenia-related behavioural changes seen after sub-chronic phencyclidine pre-treatment are mediated through mGluR modulation of dopamine release.
Collapse
Affiliation(s)
- Ishan Gupta
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
109
|
Barnes SA, Young JW, Markou A, Adham N, Gyertyán I, Kiss B. The Effects of Cariprazine and Aripiprazole on PCP-Induced Deficits on Attention Assessed in the 5-Choice Serial Reaction Time Task. Psychopharmacology (Berl) 2018; 235:1403-1414. [PMID: 29473089 PMCID: PMC5920008 DOI: 10.1007/s00213-018-4857-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 02/01/2018] [Indexed: 01/29/2023]
Abstract
RATIONALE Attentional processing deficits are a core feature of schizophrenia, likely contributing to the persistent functional and occupational disability observed in patients with schizophrenia. The pathophysiology of schizophrenia is hypothesized to involve dysregulation of NMDA receptor-mediated glutamate transmission, contributing to disruptions in normal dopamine transmission. Preclinical investigations often use NMDA receptor antagonists, such as phencyclidine (PCP), to induce cognitive disruptions relevant to schizophrenia. We sought to test the ability of partial dopamine D2/D3 agonists, cariprazine and aripiprazole, to attenuate PCP-induced deficits in attentional performance. OBJECTIVES The objective of this study is to determine whether systemic administration of cariprazine or aripiprazole attenuated 5-choice serial reaction time task (5-CSRTT) deficits induced by repeated exposure to PCP. METHODS We utilized a repeated PCP-treatment regimen (2 mg/kg, subcutaneous [s.c.], once daily for 5 days) in rats to induce deficits in the 5-CSRTT. Rats were pre-treated with cariprazine (0.03, 0.1, or 0.3 mg/kg, oral [p.o.]) or aripiprazole (1, 3, or 10 mg/kg, p.o.) to determine whether they prevented PCP-induced deficits in the 5-CSRTT performance. RESULTS PCP treatment increased inappropriate responding in the 5-CSRTT, elevating incorrect, premature, and timeout responses. Cariprazine treatment reduced PCP-induced increases in inappropriate responding. However, at higher doses, cariprazine produced non-specific response suppression, confounding interpretation of the attenuated PCP-induced deficits. Aripiprazole treatment also attenuated PCP-induced deficits; however, unlike cariprazine treatment, aripiprazole reduced correct responding and increased omissions. CONCLUSIONS Cariprazine and aripiprazole both demonstrated potential in attenuating PCP-induced deficits in the 5-CSRTT performance. While both compounds produced non-specific response suppression, these effects were absent when 0.03 mg/kg cariprazine was administered.
Collapse
Affiliation(s)
- Samuel A. Barnes
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, M/C 0603, Room BSB2202, La Jolla, CA 92093 USA
| | - Jared W. Young
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, M/C 0603, Room BSB2202, La Jolla, CA 92093 USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, M/C 0603, Room BSB2202, La Jolla, CA 92093 USA
| | | | - István Gyertyán
- MTA-SE NAP B Cognitive Translational Behavioral Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary ,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, MTA, Budapest, Hungary
| | - Béla Kiss
- Gedeon Richter Plc, Budapest, Hungary
| |
Collapse
|
110
|
Okada K, Nishizawa K, Setogawa S, Hashimoto K, Kobayashi K. Task-dependent function of striatal cholinergic interneurons in behavioural flexibility. Eur J Neurosci 2017; 47:1174-1183. [PMID: 29119611 DOI: 10.1111/ejn.13768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/31/2017] [Indexed: 01/16/2023]
Abstract
Flexible switching of behaviours depends on integrative functioning through the neural circuit connecting the prefrontal cortex and the dorsomedial striatum (DMS). Although cholinergic interneurons modulate striatal outputs by diverse synaptic mechanisms, the roles of cholinergic interneurons in the DMS appear to vary among different models used to validate behavioural flexibility. Here, we conducted immunotoxin-mediated cell targeting of DMS cholinergic interneurons and examined the functions of these interneurons in behavioural flexibility, with the learning conditions differing in trial spacing and discrimination type in a modified T-maze. Elimination of the DMS cholinergic cell group normally spared reversal learning in place discrimination with an intertrial interval (ITI) of 15 s, but it impaired the reversal performance in response discrimination with the same ITI. In contrast, DMS cholinergic elimination resulted in enhanced reversal performance in both place and response discrimination tasks with a 10-min ITI and accelerated the reversal of response discrimination with a 20-min ITI. Our previous study also showed an enhanced influence of cholinergic targeting on place reversal learning with a 20-min ITI, and the present results demonstrate that DMS cholinergic interneurons act to inhibit both place and response reversal performance with a relatively longer ITI, whereas their functions differ between types of reversal performance in the tasks with a shorter ITI. These findings suggest distinct roles of the DMS cholinergic cell group in behavioural flexibility dependent on the trial spacing and discrimination type constituting the learning tasks.
Collapse
Affiliation(s)
- Kana Okada
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Susumu Setogawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| |
Collapse
|
111
|
Yadav M, Parle M, Sharma N, Dhingra S, Raina N, Jindal DK. Brain targeted oral delivery of doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles against ketamine induced psychosis: behavioral, biochemical, neurochemical and histological alterations in mice. Drug Deliv 2017; 24:1429-1440. [PMID: 28942680 PMCID: PMC8241001 DOI: 10.1080/10717544.2017.1377315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
To develop statistically optimized brain targeted Tween 80 coated chitosan nanoparticulate formulation for oral delivery of doxycycline hydrochloride for the treatment of psychosis and to evaluate its protective effect on ketamine induced behavioral, biochemical, neurochemical and histological alterations in mice. 32 full factorial design was used to optimize the nanoparticulate formulation to minimize particle size and maximize entrapment efficiency, while independent variables chosen were concentration of chitosan and Tween 80. The optimized formulation was characterized by particle size, drug entrapment efficiency, Fourier transform infrared, Transmission electron microscopy analysis and drug release behavior. Pure doxycycline hydrochloride (25 and 50 mg/kg, p.o.) and optimized doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles (DCNPopt) (equivalent to 25 mg/kg doxycycline hydrochloride, p.o.) were explored against ketamine induced psychosis in mice. The experimental studies for DCNPopt, with mean particle size 237 nm and entrapment efficiency 78.16%, elucidated that the formulation successfully passed through blood brain barrier and exhibited significant antipsychotic activity. The underlying mechanism of action was further confirmed by behavioral, biochemical, neurochemical estimations and histopathological study. Significantly enhanced GABA and GSH level and diminished MDA, TNF-α and dopamine levels were observed after administration of DCNPopt at just half the dose of pure doxycycline hydrochloride, showing better penetration of doxycyline hydrochloride in the form of Tween 80 coated nanoparticles through blood brain barrier. This study demonstrates the hydrophilic drug doxycycline hydrochloride, loaded in Tween 80 coated chitosan nanoparticles, can be effectively brain targeted through oral delivery and therefore represents a suitable approach for the treatment of psychotic symptoms.
Collapse
Affiliation(s)
- Monu Yadav
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Milind Parle
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Nidhi Sharma
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Sameer Dhingra
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Neha Raina
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Deepak Kumar Jindal
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| |
Collapse
|
112
|
Elvir L, Duclot F, Wang Z, Kabbaj M. Epigenetic regulation of motivated behaviors by histone deacetylase inhibitors. Neurosci Biobehav Rev 2017; 105:305-317. [PMID: 29020607 DOI: 10.1016/j.neubiorev.2017.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
Growing evidence has begun to elucidate the contribution of epigenetic mechanisms in the modulation and maintenance of gene expression and behavior. Histone acetylation is one such epigenetic mechanism, which has been shown to profoundly alter gene expression and behaviors. In this review, we begin with an overview of the major epigenetic mechanisms including histones acetylation. We next focus on recent evidence about the influence of environmental stimuli on various motivated behaviors through histone acetylation and highlight how histone deacetylase inhibitors can correct some of the pathologies linked to motivated behaviors including substance abuse, feeding and social attachments. Particularly, we emphasize that the effects of histone deacetylase inhibitors on motivated behaviors are time and context-dependent.
Collapse
Affiliation(s)
- Lindsay Elvir
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Florian Duclot
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Zuoxin Wang
- Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA.
| |
Collapse
|
113
|
Carr GV, Maltese F, Sibley DR, Weinberger DR, Papaleo F. The Dopamine D5 Receptor Is Involved in Working Memory. Front Pharmacol 2017; 8:666. [PMID: 29056909 PMCID: PMC5635435 DOI: 10.3389/fphar.2017.00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022] Open
Abstract
Pharmacological studies indicate that dopamine D1-like receptors (D1 and D5) are critically involved in cognitive function. However, the lack of pharmacological ligands selective for either the D1 or D5 receptors has made it difficult to determine the unique contributions of the D1-like family members. To circumvent these pharmacological limitations, we used D5 receptor homozygous (-/-) and heterozygous (+/-) knockout mice, to identify the specific role of this receptor in higher order cognitive functions. We identified a novel role for D5 receptors in the regulation of spatial working memory and temporal order memory function. The D5 mutant mice acquired a discrete paired-trial variable-delay T-maze task at normal rates. However, both [Formula: see text] and [Formula: see text] mice exhibited impaired performance compared to [Formula: see text] littermates when a higher burden on working memory faculties was imposed. In a temporal order object recognition task, [Formula: see text] exhibited significant memory deficits. No D5-dependent differences in locomotor functions and interest in exploring objects were evident. Molecular biomarkers of dopaminergic functions within the prefrontal cortex (PFC) revealed a selective gene-dose effect on Akt phosphorylation at Ser473 with increased levels in [Formula: see text] knockout mice. A trend toward reduced levels in CaMKKbeta brain-specific band (64 kDa) in [Formula: see text] compared to [Formula: see text] was also evident. These findings highlight a previously unidentified role for D5 receptors in working memory function and associated molecular signatures within the PFC.
Collapse
Affiliation(s)
- Gregory V Carr
- Lieber Institute for Brain Development, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Federica Maltese
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, United States.,Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Departments of Psychiatry and Behavioral Sciences, Neurology, and Neuroscience, The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Francesco Papaleo
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
114
|
Clark AM, Leroy F, Martyniuk KM, Feng W, McManus E, Bailey MR, Javitch JA, Balsam PD, Kellendonk C. Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization. eNeuro 2017; 4:ENEURO.0227-17.2017. [PMID: 29071300 PMCID: PMC5654238 DOI: 10.1523/eneuro.0227-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Alterations in thalamic dopamine (DA) or DA D2 receptors (D2Rs) have been measured in drug addiction and schizophrenia, but the relevance of thalamic D2Rs for behavior is largely unknown. Using in situ hybridization and mice expressing green fluorescent protein (GFP) under the Drd2 promoter, we found that D2R expression within the thalamus is enriched in the paraventricular nucleus (PVT) as well as in more ventral midline thalamic nuclei. Within the PVT, D2Rs are inhibitory as their activation inhibits neuronal action potentials in brain slices. Using Cre-dependent anterograde and retrograde viral tracers, we further determined that PVT neurons are reciprocally interconnected with multiple areas of the limbic system including the amygdala and the nucleus accumbens (NAc). Based on these anatomical findings, we analyzed the role of D2Rs in the PVT in behaviors that are supported by these areas and that also have relevance for schizophrenia and drug addiction. Male and female mice with selective overexpression of D2Rs in the PVT showed attenuated cocaine locomotor sensitization, whereas anxiety levels, fear conditioning, sensorimotor gating, and food-motivated behaviors were not affected. These findings suggest the importance of PVT inhibition by D2Rs in modulating the sensitivity to cocaine, a finding that may have novel implications for human drug use.
Collapse
Affiliation(s)
- Abigail M. Clark
- Graduate Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Felix Leroy
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Kelly M. Martyniuk
- Graduate Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Wendy Feng
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Erika McManus
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Matthew R. Bailey
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Peter D. Balsam
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Psychology, Barnard College Columbia University, New York, NY 10027
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| |
Collapse
|
115
|
Lim CS, Nam HJ, Lee J, Kim D, Choi JE, Kang SJ, Kim S, Kim H, Kwak C, Shim KW, Kim S, Ko HG, Lee RU, Jang EH, Yoo J, Shim J, Islam MA, Lee YS, Lee JH, Baek SH, Kaang BK. PKCα-mediated phosphorylation of LSD1 is required for presynaptic plasticity and hippocampal learning and memory. Sci Rep 2017; 7:4912. [PMID: 28687800 PMCID: PMC5501860 DOI: 10.1038/s41598-017-05239-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/24/2017] [Indexed: 01/08/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone demethylase that participates in transcriptional repression or activation. Recent studies reported that LSD1 is involved in learning and memory. Although LSD1 phosphorylation by PKCα was implicated in circadian rhythmicity, the importance of LSD1 phosphorylation in learning and memory is unknown. In this study, we examined the roles of LSD1 in synaptic plasticity and memory using Lsd1 SA/SA knock-in (KI) mice, in which a PKCα phosphorylation site is mutated. Interestingly, short-term and long-term contextual fear memory as well as spatial memory were impaired in Lsd1 KI mice. In addition, short-term synaptic plasticity, such as paired pulse ratio and post-tetanic potentiation was impaired, whereas long-term synaptic plasticity, including long-term potentiation and long-term depression, was normal. Moreover, the frequency of miniature excitatory postsynaptic current was significantly increased, suggesting presynaptic dysfunction in Lsd1 KI mice. Consistent with this, RNA-seq analysis using the hippocampus of Lsd1 KI mice showed significant alterations in the expressions of presynaptic function-related genes. Intriguingly, LSD1n-SA mutant showed diminished binding to histone deacetylase 1 (HDAC1) compared to LSD1n-WT in SH-SY5Y cells. These results suggest that LSD1 is involved in the regulation of presynaptic gene expression and subsequently regulates the hippocampus-dependent memory in phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Chae-Seok Lim
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hye Jin Nam
- Laboratory of Molecular and Cellular Genetics, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jaehyun Lee
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Dongha Kim
- Laboratory of Molecular and Cellular Genetics, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ja Eun Choi
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - SukJae Joshua Kang
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Somi Kim
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyopil Kim
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chuljung Kwak
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kyu-Won Shim
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Siyong Kim
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyoung-Gon Ko
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ro Un Lee
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Eun-Hae Jang
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Juyoun Yoo
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jaehoon Shim
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Md Ariful Islam
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yong-Seok Lee
- Department of Physiology, Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jae-Hyung Lee
- Department of Life and Nanopharmaceutical Sciences, Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, 02447, Korea
| | - Sung Hee Baek
- Laboratory of Molecular and Cellular Genetics, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Bong-Kiun Kaang
- Laboratory of Neurobiology, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
116
|
Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of Goal-Directed Action. J Neurosci 2017; 36:5988-6001. [PMID: 27251620 DOI: 10.1523/jneurosci.0444-16.2016] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Altered dopamine D2 receptor (D2R) binding in the striatum has been associated with abnormal motivation in neuropsychiatric disorders, including schizophrenia. Here, we tested whether motivational deficits observed in mice with upregulated D2Rs (D2R-OEdev mice) are reversed by decreasing function of the striatopallidal "no-go" pathway. To this end, we expressed the Gαi-coupled designer receptor hM4D in adult striatopallidal neurons and activated the receptor with clozapine-N-oxide (CNO). Using a head-mounted miniature microscope we confirmed with calcium imaging in awake mice that hM4D activation by CNO inhibits striatopallidal function measured as disinhibited downstream activity in the globus pallidus. Mice were then tested in three operant tasks that address motivated behavior, the progressive ratio task, the progressive hold-down task, and outcome devaluation. Decreasing striatopallidal function in the dorsomedial striatum or nucleus accumbens core enhanced motivation in D2R-OEdev mice and control littermates. This effect was due to increased response initiation but came at the cost of goal-directed efficiency. Moreover, response vigor and the sensitivity to changes in reward value were not altered. Chronic activation of hM4D by administering CNO for 2 weeks in drinking water did not affect motivation due to a tolerance effect. However, the acute effect of CNO on motivation was reinstated after discontinuing chronic treatment for 48 h. Used as a therapeutic approach, striatopallidal inhibition should consider the risk of impairing goal-directed efficiency and behavioral desensitization. SIGNIFICANCE STATEMENT Motivation involves a directional component that allows subjects to efficiently select the behavior that will lead to an optimal outcome and an activational component that initiates and maintains the vigor and persistence of actions. Striatal output pathways modulate motivated behavior, but it remains unknown how these pathways regulate specific components of motivation. Here, we found that the indirect pathway controls response initiation without affecting response vigor or the sensitivity to changes in the reward outcome. A specific enhancement in the activational component of motivation, however, can come at the cost of goal-directed efficiency when a sustained response is required to obtain the goal. These data should inform treatment strategies for brain disorders with impaired motivation such as schizophrenia and Parkinson's disease.
Collapse
|
117
|
Bolkan SS, Stujenske JM, Parnaudeau S, Spellman TJ, Rauffenbart C, Abbas AI, Harris AZ, Gordon JA, Kellendonk C. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci 2017; 20:987-996. [PMID: 28481349 PMCID: PMC5501395 DOI: 10.1038/nn.4568] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 04/21/2017] [Indexed: 02/04/2023]
Abstract
The mediodorsal thalamus (MD) shares reciprocal connectivity with the prefrontal cortex (PFC), and decreased MD-PFC connectivity is observed in schizophrenia patients. Patients also display cognitive deficits including impairments in working memory, but a mechanistic link between thalamo-prefrontal circuit function and working memory is missing. Using pathway-specific inhibition, we found directional interactions between mouse MD and medial PFC (mPFC), with MD-to-mPFC supporting working memory maintenance and mPFC-to-MD supporting subsequent choice. We further identify mPFC neurons that display elevated spiking during the delay, a feature that was absent on error trials and required MD inputs for sustained maintenance. Strikingly, delay-tuned neurons had minimal overlap with spatially tuned neurons, and each mPFC population exhibited mutually exclusive dependence on MD and hippocampal inputs. These findings indicate a role for MD in sustaining prefrontal activity during working memory maintenance. Consistent with this idea, we found that enhancing MD excitability was sufficient to enhance task performance.
Collapse
Affiliation(s)
- Scott S Bolkan
- Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Joseph M Stujenske
- Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Sebastien Parnaudeau
- Institut de Biologie Paris Seine, UM119, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Paris, France
| | - Timothy J Spellman
- Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Caroline Rauffenbart
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Department of Pharmacology, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Atheir I Abbas
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA.,National Institute of Mental Health, Office of the Director, Bethesda, Maryland, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Department of Pharmacology, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
118
|
Klaus K, Butler K, Durrant SJ, Ali M, Inglehearn CF, Hodgson TL, Gutierrez H, Pennington K. The effect of COMT Val158Met and DRD2 C957T polymorphisms on executive function and the impact of early life stress. Brain Behav 2017; 7:e00695. [PMID: 28523234 PMCID: PMC5434197 DOI: 10.1002/brb3.695] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Previous research has indicated that variation in genes encoding catechol-O-methyltransferase (COMT) and dopamine receptor D2 (DRD2) may influence cognitive function and that this may confer vulnerability to the development of mental health disorders such as schizophrenia. However, increasing evidence suggests environmental factors such as early life stress may interact with genetic variants in affecting these cognitive outcomes. This study investigated the effect of COMT Val158Met and DRD2 C957T polymorphisms on executive function and the impact of early life stress in healthy adults. METHODS One hundred and twenty-two healthy adult males (mean age 35.2 years, range 21-63) were enrolled in the study. Cognitive function was assessed using Cambridge Neuropsychological Test Automated Battery and early life stress was assessed using the Childhood Traumatic Events Scale (Pennebaker & Susman, 1988). RESULTS DRD2 C957T was significantly associated with executive function, with CC homozygotes having significantly reduced performance in spatial working memory and spatial planning. A significant genotype-trauma interaction was found in Rapid Visual Information Processing test, a measure of sustained attention, with CC carriers who had experienced early life stress exhibiting impaired performance compared to the CC carriers without early life stressful experiences. There were no significant findings for COMT Val158Met. CONCLUSIONS This study supports previous findings that DRD2 C957T significantly affects performance on executive function related tasks in healthy individuals and shows for the first time that some of these effects may be mediated through the impact of childhood traumatic events. Future work should aim to clarify further the effect of stress on neuronal systems that are known to be vulnerable in mental health disorders and more specifically what the impact of this might be on cognitive function.
Collapse
Affiliation(s)
- Kristel Klaus
- School of Psychology University of Lincoln Lincoln UK
| | - Kevin Butler
- School of Psychology University of Lincoln Lincoln UK
| | | | - Manir Ali
- Section of Ophthalmology & Neuroscience Leeds Institute of Biomedical Sciences St James' Hospital University of Leeds Leeds UK
| | - Chris F Inglehearn
- Section of Ophthalmology & Neuroscience Leeds Institute of Biomedical Sciences St James' Hospital University of Leeds Leeds UK
| | | | | | | |
Collapse
|
119
|
Boot N, Baas M, van Gaal S, Cools R, De Dreu CKW. Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda. Neurosci Biobehav Rev 2017; 78:13-23. [PMID: 28419830 DOI: 10.1016/j.neubiorev.2017.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 03/28/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Creative cognition is key to human functioning yet the underlying neurobiological mechanisms are sparsely addressed and poorly understood. Here we address the possibility that creative cognition is a function of dopaminergic modulation in fronto-striatal brain circuitries. It is proposed that (i) creative cognition benefits from both flexible and persistent processing, (ii) striatal dopamine and the integrity of the nigrostriatal dopaminergic pathway is associated with flexible processing, while (iii) prefrontal dopamine and the integrity of the mesocortical dopaminergic pathway is associated with persistent processing. We examine this possibility in light of studies linking creative ideation, divergent thinking, and creative problem-solving to polymorphisms in dopamine receptor genes, indirect markers and manipulations of the dopaminergic system, and clinical populations with dysregulated dopaminergic activity. Combined, studies suggest a functional differentiation between striatal and prefrontal dopamine: moderate (but not low or high) levels of striatal dopamine benefit creative cognition by facilitating flexible processes, and moderate (but not low or high) levels of prefrontal dopamine enable persistence-driven creativity.
Collapse
Affiliation(s)
- Nathalie Boot
- Department of Psychology, University of Amsterdam, The Netherlands.
| | - Matthijs Baas
- Department of Psychology, University of Amsterdam, The Netherlands
| | - Simon van Gaal
- Department of Psychology, University of Amsterdam, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Centre for Cognitive Neuroimaging, The Netherlands
| | - Roshan Cools
- Donders Institute for Brain, Cognition, and Behavior, Centre for Cognitive Neuroimaging, The Netherlands; Department of Psychiatry, Radboud University Medical Center, The Netherlands
| | - Carsten K W De Dreu
- Department of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands; Center for Experimental Economics and Political Decision Making (CREED), University of Amsterdam, The Netherlands
| |
Collapse
|
120
|
Perkovic MN, Erjavec GN, Strac DS, Uzun S, Kozumplik O, Pivac N. Theranostic Biomarkers for Schizophrenia. Int J Mol Sci 2017; 18:E733. [PMID: 28358316 PMCID: PMC5412319 DOI: 10.3390/ijms18040733] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a highly heritable, chronic, severe, disabling neurodevelopmental brain disorder with a heterogeneous genetic and neurobiological background, which is still poorly understood. To allow better diagnostic procedures and therapeutic strategies in schizophrenia patients, use of easy accessible biomarkers is suggested. The most frequently used biomarkers in schizophrenia are those associated with the neuroimmune and neuroendocrine system, metabolism, different neurotransmitter systems and neurotrophic factors. However, there are still no validated and reliable biomarkers in clinical use for schizophrenia. This review will address potential biomarkers in schizophrenia. It will discuss biomarkers in schizophrenia and propose the use of specific blood-based panels that will include a set of markers associated with immune processes, metabolic disorders, and neuroendocrine/neurotrophin/neurotransmitter alterations. The combination of different markers, or complex multi-marker panels, might help in the discrimination of patients with different underlying pathologies and in the better classification of the more homogenous groups. Therefore, the development of the diagnostic, prognostic and theranostic biomarkers is an urgent and an unmet need in psychiatry, with the aim of improving diagnosis, therapy monitoring, prediction of treatment outcome and focus on the personal medicine approach in order to improve the quality of life in patients with schizophrenia and decrease health costs worldwide.
Collapse
Affiliation(s)
| | | | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| | - Suzana Uzun
- Clinic for Psychiatry Vrapce, 10090 Zagreb, Croatia.
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| |
Collapse
|
121
|
Passow S, Thurm F, Li SC. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age. Front Aging Neurosci 2017; 9:33. [PMID: 28280465 PMCID: PMC5322263 DOI: 10.3389/fnagi.2017.00033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/08/2017] [Indexed: 01/06/2023] Open
Abstract
Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate short- and long-term cognitive and brain plasticity in old age.
Collapse
Affiliation(s)
- Susanne Passow
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| | - Franka Thurm
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| |
Collapse
|
122
|
Dopamine, fronto-striato-thalamic circuits and risk for psychosis. Schizophr Res 2017; 180:48-57. [PMID: 27595552 DOI: 10.1016/j.schres.2016.08.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
Abstract
A series of parallel, integrated circuits link distinct regions of prefrontal cortex with specific nuclei of the striatum and thalamus. Dysfunction of these fronto-striato-thalamic systems is thought to play a major role in the pathogenesis of psychosis. In this review, we examine evidence from human and animal investigations that dysfunction of a specific dorsal fronto-striato-thalamic circuit, linking the dorsolateral prefrontal cortex, dorsal (associative) striatum, and mediodorsal nucleus of the thalamus, is apparent across different stages of psychosis, including prior to the onset of a first episode, suggesting that it represents a candidate risk biomarker. We consider how abnormalities at distinct points in the circuit may give rise to the pattern of findings seen in patient populations, and how these changes relate to disruptions in dopamine, glutamate and GABA signaling.
Collapse
|
123
|
Pergola G, Di Carlo P, D'Ambrosio E, Gelao B, Fazio L, Papalino M, Monda A, Scozia G, Pietrangelo B, Attrotto M, Apud JA, Chen Q, Mattay VS, Rampino A, Caforio G, Weinberger DR, Blasi G, Bertolino A. DRD2 co-expression network and a related polygenic index predict imaging, behavioral and clinical phenotypes linked to schizophrenia. Transl Psychiatry 2017; 7:e1006. [PMID: 28094815 PMCID: PMC5545721 DOI: 10.1038/tp.2016.253] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/28/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Genetic risk for schizophrenia (SCZ) is determined by many genetic loci whose compound biological effects are difficult to determine. We hypothesized that co-expression pathways of SCZ risk genes are associated with system-level brain function and clinical phenotypes of SCZ. We examined genetic variants related to the dopamine D2 receptor gene DRD2 co-expression pathway and associated them with working memory (WM) behavior, the related brain activity and treatment response. Using two independent post-mortem prefrontal messenger RNA (mRNA) data sets (total N=249), we identified a DRD2 co-expression pathway enriched for SCZ risk genes. Next, we identified non-coding single-nucleotide polymorphisms (SNPs) associated with co-expression of this pathway. These SNPs were associated with regulatory genetic loci in the dorsolateral prefrontal cortex (P<0.05). We summarized their compound effect on co-expression into a Polygenic Co-expression Index (PCI), which predicted DRD2 pathway co-expression in both mRNA data sets (all P<0.05). We associated the PCI with brain activity during WM performance in two independent samples of healthy individuals (total N=368) and 29 patients with SCZ who performed the n-back task. Greater predicted DRD2 pathway prefrontal co-expression was associated with greater prefrontal activity and longer WM reaction times (all corrected P<0.05), thus indicating inefficient WM processing. Blind prediction of treatment response to antipsychotics in two independent samples of patients with SCZ suggested better clinical course of patientswith greater PCI (total N=87; P<0.05). The findings on this DRD2 co-expression pathway are a proof of concept that gene co-expression can parse SCZ risk genes into biological pathways associated with intermediate phenotypes as well as with clinically meaningful information.
Collapse
Affiliation(s)
- G Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - P Di Carlo
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - E D'Ambrosio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - B Gelao
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - L Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - M Papalino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - A Monda
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - G Scozia
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - B Pietrangelo
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - M Attrotto
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - J A Apud
- National Institutes of Health, National Institute of Mental Health, Clinical and Translational Neuroscience Branch, NIMH, Bethesda, MD, USA
| | - Q Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - V S Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Departments of Neurology and Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - G Caforio
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - D R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Departments of Psychiatry, Neurology, Neuroscience and The Mckusick-Nathans Institute of Genomic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - G Blasi
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - A Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| |
Collapse
|
124
|
Pokinko M, Grant A, Shahabi F, Dumont Y, Manitt C, Flores C. Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan. Neuroscience 2017; 346:182-189. [PMID: 28108253 DOI: 10.1016/j.neuroscience.2017.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
Adolescence is a period during which the medial prefrontal cortex (mPFC) undergoes significant remodeling. The netrin-1 receptor, deleted in colorectal cancer (DCC), controls the extent and organization of mPFC dopamine connectivity during adolescence and in turn directs mPFC functional and structural maturation. Dcc haploinsufficiency leads to increased mPFC dopamine input, which causes improved cognitive processing and resilience to behavioral effects of stimulant drugs of abuse. Here we examine the effects of Dcc haploinsufficiency on the dynamic expression of dopamine receptors in forebrain targets of C57BL6 mice. We conducted quantitative receptor autoradiography experiments with [3H]SCH-23390 or [3H]raclopride to characterize D1 and D2 receptor expression in mPFC and striatal regions in male Dcc haploinsufficient and wild-type mice. We generated autoradiograms at early adolescence (PND21±1), mid-adolescence (PND35±2), and adulthood (PND75±15). C57BL6 mice exhibit overexpression and pruning of D1, but not D2, receptors in striatal regions, and a lack of dopamine receptor pruning in the mPFC. We observed age- and region-specific differences in D1 and D2 receptor density between Dcc haploinsufficient and wild-type mice. Notably, neither group shows the typical pattern of mPFC dopamine receptor pruning in adolescence, but adult haploinsufficient mice show increased D2 receptor density in the mPFC. These results show that DCC receptors contribute to the dynamic refinement of D1 and D2 receptor expression in striatal regions across adolescence. The age-dependent expression of dopamine receptor in C57BL6 mice shows marked differences from previous characterizations in rats.
Collapse
Affiliation(s)
- Matthew Pokinko
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| | - Alanna Grant
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| | - Florence Shahabi
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| | - Yvan Dumont
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| | - Colleen Manitt
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| | - Cecilia Flores
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada; Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montréal, Québec H3A 1A1, Canada.
| |
Collapse
|
125
|
Deserno L, Schlagenhauf F, Heinz A. Striatal dopamine, reward, and decision making in schizophrenia. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27069382 PMCID: PMC4826774 DOI: 10.31887/dcns.2016.18.1/ldeserno] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated striatal dopamine function is one of the best-established findings in schizophrenia. In this review, we discuss causes and consequences of this striata! dopamine alteration. We first summarize earlier findings regarding striatal reward processing and anticipation using functional neuroimaging. Secondly, we present a series of recent studies that are exemplary for a particular research approach: a combination of theory-driven reinforcement learning and decision-making tasks in combination with computational modeling and functional neuroimaging. We discuss why this approach represents a promising tool to understand underlying mechanisms of symptom dimensions by dissecting the contribution of multiple behavioral control systems working in parallel. We also discuss how it can advance our understanding of the neurobiological implementation of such functions. Thirdly, we review evidence regarding the topography of dopamine dysfunction within the striatum. Finally, we present conclusions and outline important aspects to be considered in future studies.
Collapse
Affiliation(s)
- Lorenz Deserno
- Max Planck Fellow Group "Cognitive and Affective Control of Behavioral Adaptation," Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Charite - Universitatsmedizin Berlin, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Florian Schlagenhauf
- Max Planck Fellow Group "Cognitive and Affective Control of Behavioral Adaptation," Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Charite - Universitatsmedizin Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Charite - Universitatsmedizin Berlin, Germany
| |
Collapse
|
126
|
Simpson EH, Kellendonk C. Insights About Striatal Circuit Function and Schizophrenia From a Mouse Model of Dopamine D 2 Receptor Upregulation. Biol Psychiatry 2017; 81:21-30. [PMID: 27720388 PMCID: PMC5121031 DOI: 10.1016/j.biopsych.2016.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
Abstract
The dopamine hypothesis of schizophrenia is supported by a large number of imaging studies that have identified an increase in dopamine binding at the D2 receptor selectively in the striatum. We review a decade of work using a regionally restricted and temporally regulated transgenic mouse model to investigate the behavioral, molecular, electrophysiological, and anatomical consequences of selective D2 receptor upregulation in the striatum. These studies have identified new and potentially important biomarkers at the circuit and molecular level that can now be explored in patients with schizophrenia. They provide an example of how animal models and their detailed level of neurobiological analysis allow a deepening of our understanding of the relationship between neuronal circuit function and symptoms of schizophrenia, and as a consequence generate new hypotheses that are testable in patients.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Department of Psychiatry, Columbia University,Neurobiology and Behavior, New York State Psychiatric Institute,Corresponding author: Eleanor H. Simpson, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 87, New York, New York 10032, , +1-646-774-6835
| | - Christoph Kellendonk
- Department of Pharmacology, Columbia University,Molecular Therapeutics, New York State Psychiatric Institute
| |
Collapse
|
127
|
Crossley NA, Marques TR, Taylor H, Chaddock C, Dell'Acqua F, Reinders AATS, Mondelli V, DiForti M, Simmons A, David AS, Kapur S, Pariante CM, Murray RM, Dazzan P. Connectomic correlates of response to treatment in first-episode psychosis. Brain 2016; 140:487-496. [PMID: 28007987 DOI: 10.1093/brain/aww297] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 11/14/2022] Open
Abstract
Connectomic approaches using diffusion tensor imaging have contributed to our understanding of brain changes in psychosis, and could provide further insights into the neural mechanisms underlying response to antipsychotic treatment. We here studied the brain network organization in patients at their first episode of psychosis, evaluating whether connectome-based descriptions of brain networks predict response to treatment, and whether they change after treatment. Seventy-six patients with a first episode of psychosis and 74 healthy controls were included. Thirty-three patients were classified as responders after 12 weeks of antipsychotic treatment. Baseline brain structural networks were built using whole-brain diffusion tensor imaging tractography, and analysed using graph analysis and network-based statistics to explore baseline characteristics of patients who subsequently responded to treatment. A subgroup of 43 patients was rescanned at the 12-week follow-up, to study connectomic changes over time in relation to treatment response. At baseline, those subjects who subsequently responded to treatment, compared to those that did not, showed higher global efficiency in their structural connectomes, a network configuration that theoretically facilitates the flow of information. We did not find specific connectomic changes related to treatment response after 12 weeks of treatment. Our data suggest that patients who have an efficiently-wired connectome at first onset of psychosis show a better subsequent response to antipsychotics. However, response is not accompanied by specific structural changes over time detectable with this method.
Collapse
Affiliation(s)
- Nicolas A Crossley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK .,Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago 8330077, Chile
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK .,MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Heather Taylor
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Chris Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Flavio Dell'Acqua
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Antje A T S Reinders
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Marta DiForti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Andrew Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Anthony S David
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.,National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
128
|
Orendain-Jaime EN, Ortega-Ibarra JM, López-Pérez SJ. Evidence of sexual dimorphism in D1 and D2 dopaminergic receptors expression in frontal cortex and striatum of young rats. Neurochem Int 2016; 100:62-66. [DOI: 10.1016/j.neuint.2016.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023]
|
129
|
KCNH2-3.1 expression impairs cognition and alters neuronal function in a model of molecular pathology associated with schizophrenia. Mol Psychiatry 2016; 21:1517-1526. [PMID: 26857598 PMCID: PMC4980295 DOI: 10.1038/mp.2015.219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/16/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Overexpression in humans of KCNH2-3.1, which encodes a primate-specific and brain-selective isoform of the human ether-a-go-go-related potassium channel, is associated with impaired cognition, inefficient neural processing and schizophrenia. Here, we describe a new mouse model that incorporates the KCNH2-3.1 molecular phenotype. KCNH2-3.1 transgenic mice are viable and display normal sensorimotor behaviors. However, they show alterations in neuronal structure and microcircuit function in the hippocampus and prefrontal cortex, areas affected in schizophrenia. Specifically, in slice preparations from the CA1 region of the hippocampus, KCNH2-3.1 transgenic mice have fewer mature dendrites and impaired theta burst stimulation long-term potentiation. Abnormal neuronal firing patterns characteristic of the fast deactivation kinetics of the KCNH2-3.1 isoform were also observed in prefrontal cortex. Transgenic mice showed significant deficits in a hippocampal-dependent object location task and a prefrontal cortex-dependent T-maze working memory task. Interestingly, the hippocampal-dependent alterations were not present in juvenile transgenic mice, suggesting a developmental trajectory to the phenotype. Suppressing KCNH2-3.1 expression in adult mice rescues both the behavioral and physiological phenotypes. These data provide insight into the mechanism of association of KCNH2-3.1 with variation in human cognition and neuronal physiology and may explain its role in schizophrenia.
Collapse
|
130
|
Fallon SJ, van der Schaaf ME, Ter Huurne N, Cools R. The Neurocognitive Cost of Enhancing Cognition with Methylphenidate: Improved Distractor Resistance but Impaired Updating. J Cogn Neurosci 2016; 29:652-663. [PMID: 27779907 DOI: 10.1162/jocn_a_01065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A balance has to be struck between supporting distractor-resistant representations in working memory and allowing those representations to be updated. Catecholamine, particularly dopamine, transmission has been proposed to modulate the balance between the stability and flexibility of working memory representations. However, it is unclear whether drugs that increase catecholamine transmission, such as methylphenidate, optimize this balance in a task-dependent manner or bias the system toward stability at the expense of flexibility (or vice versa). Here we demonstrate, using pharmacological fMRI, that methylphenidate improves the ability to resist distraction (cognitive stability) but impairs the ability to flexibly update items currently held in working memory (cognitive flexibility). These behavioral effects were accompanied by task-general effects in the striatum and opposite and task-specific effects on neural signal in the pFC. This suggests that methylphenidate exerts its cognitive enhancing and impairing effects through acting on the pFC, an effect likely associated with methylphenidate's action on the striatum. These findings highlight that methylphenidate acts as a double-edged sword, improving one cognitive function at the expense of another, while also elucidating the neurocognitive mechanisms underlying these paradoxical effects.
Collapse
Affiliation(s)
- Sean James Fallon
- Radboud University Donders Institute of Brain, Cognition, and Behavior.,University of Oxford
| | - Marieke E van der Schaaf
- Radboud University Donders Institute of Brain, Cognition, and Behavior.,Radboud University Nijmegen Medical Centre
| | | | - Roshan Cools
- Radboud University Donders Institute of Brain, Cognition, and Behavior.,Radboud University Nijmegen Medical Centre
| |
Collapse
|
131
|
Bailey MR, Simpson EH, Balsam PD. Neural substrates underlying effort, time, and risk-based decision making in motivated behavior. Neurobiol Learn Mem 2016; 133:233-256. [PMID: 27427327 PMCID: PMC5007005 DOI: 10.1016/j.nlm.2016.07.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/16/2022]
Abstract
All mobile organisms rely on adaptive motivated behavior to overcome the challenges of living in an environment in which essential resources may be limited. A variety of influences ranging from an organism's environment, experiential history, and physiological state all influence a cost-benefit analysis which allows motivation to energize behavior and direct it toward specific goals. Here we review the substantial amount of research aimed at discovering the interconnected neural circuits which allow organisms to carry-out the cost-benefit computations which allow them to behave in adaptive ways. We specifically focus on how the brain deals with different types of costs, including effort requirements, delays to reward and payoff riskiness. An examination of this broad literature highlights the importance of the extended neural circuits which enable organisms to make decisions about these different types of costs. This involves Cortical Structures, including the Anterior Cingulate Cortex (ACC), the Orbital Frontal Cortex (OFC), the Infralimbic Cortex (IL), and prelimbic Cortex (PL), as well as the Baso-Lateral Amygdala (BLA), the Nucleus Accumbens (NAcc), the Ventral Pallidal (VP), the Sub Thalamic Nucleus (STN) among others. Some regions are involved in multiple aspects of cost-benefit computations while the involvement of other regions is restricted to information relating to specific types of costs.
Collapse
Affiliation(s)
- Matthew R Bailey
- Department of Psychology, Columbia University, New York, NY, USA.
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA; Barnard College, Columbia University, New York, NY, USA
| |
Collapse
|
132
|
Palmer D, Creighton S, Prado VF, Prado MA, Choleris E, Winters BD. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory. Behav Brain Res 2016; 311:267-278. [DOI: 10.1016/j.bbr.2016.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
133
|
Maitra S, Sarkar K, Sinha S, Mukhopadhyay K. The Dopamine Receptor D5 May Influence Age of Onset: An Exploratory Study on Indo-Caucasoid ADHD Subjects. J Child Neurol 2016; 31:1250-6. [PMID: 27250208 DOI: 10.1177/0883073816652233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/25/2016] [Indexed: 12/15/2022]
Abstract
The objective was to investigate contribution of the dopamine receptor 5 (DRD5) gene variants in the symptoms of attention-deficit/hyperactivity disorder (ADHD) probands since brain regions identified to be affected in these group of patients have higher expression of the DRD5 receptor. Out of 22 exonic variants, 19 were monomorphic in the Indo-Caucasoid individuals. rs6283 "C" and rs113828117 "A" exhibited significant higher occurrence in families with ADHD probands. Several haplotypes showed biased occurrence in the probands. Early and late onset groups exhibited significantly different genotypic frequencies. A new G>A substitution was observed in the control samples only. The late onset group exhibited higher scores for hyperactivity as compared to the early onset group. The authors infer that the age of onset of ADHD may at least partially be affected by DRD5 variants warranting further investigation on the role of DRD5 in the disease etiology.
Collapse
Affiliation(s)
- Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India
| | - Kanyakumarika Sarkar
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India Department of Biotechnology, DOABA College, Jalandhar, Panjab, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India
| | | |
Collapse
|
134
|
Managò F, Mereu M, Mastwal S, Mastrogiacomo R, Scheggia D, Emanuele M, De Luca MA, Weinberger DR, Wang KH, Papaleo F. Genetic Disruption of Arc/Arg3.1 in Mice Causes Alterations in Dopamine and Neurobehavioral Phenotypes Related to Schizophrenia. Cell Rep 2016; 16:2116-2128. [PMID: 27524619 DOI: 10.1016/j.celrep.2016.07.044] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 06/29/2016] [Accepted: 07/16/2016] [Indexed: 01/08/2023] Open
Abstract
Human genetic studies have recently suggested that the postsynaptic activity-regulated cytoskeleton-associated protein (Arc) complex is a convergence signal for several genes implicated in schizophrenia. However, the functional significance of Arc in schizophrenia-related neurobehavioral phenotypes and brain circuits is unclear. Here, we find that, consistent with schizophrenia-related phenotypes, disruption of Arc in mice produces deficits in sensorimotor gating, cognitive functions, social behaviors, and amphetamine-induced psychomotor responses. Furthermore, genetic disruption of Arc leads to concomitant hypoactive mesocortical and hyperactive mesostriatal dopamine pathways. Application of a D1 agonist to the prefrontal cortex or a D2 antagonist in the ventral striatum rescues Arc-dependent cognitive or psychomotor abnormalities, respectively. Our findings demonstrate a role for Arc in the regulation of dopaminergic neurotransmission and related behaviors. The results also provide initial biological support implicating Arc in dopaminergic and behavioral abnormalities related to schizophrenia.
Collapse
Affiliation(s)
- Francesca Managò
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Maddalena Mereu
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Largo Meneghetti 2, 35131 Padova, Italy
| | - Surjeet Mastwal
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Rosa Mastrogiacomo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Diego Scheggia
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Marco Emanuele
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Maria A De Luca
- Department of Biomedical Sciences, Università di Cagliari, 09124 Cagliari, Italy
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD 21205, USA; Departments of Psychiatry, Neurology, and Neuroscience and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
135
|
Canetta S, Bolkan S, Padilla-Coreano N, Song L, Sahn R, Harrison N, Gordon JA, Brown A, Kellendonk C. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry 2016; 21:956-68. [PMID: 26830140 PMCID: PMC4914410 DOI: 10.1038/mp.2015.222] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 12/26/2022]
Abstract
Abnormalities in prefrontal gamma aminobutyric acid (GABA)ergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders, including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, resulted from a decrease in release probability and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to MIA, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Sarah Canetta
- Department of Psychiatry, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | - Scott Bolkan
- Department of Psychiatry, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | - Nancy Padilla-Coreano
- Department of Psychiatry, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - LouJin Song
- Department of Pharmacology, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Neil Harrison
- Department of Pharmacology, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA,Department of Anesthesiology, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | - Joshua A. Gordon
- Department of Psychiatry, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Alan Brown
- Department of Psychiatry, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA,Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA,Divison of Epidemiology, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA,Department of Pharmacology, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
136
|
Jenkins PO, Mehta MA, Sharp DJ. Catecholamines and cognition after traumatic brain injury. Brain 2016; 139:2345-71. [PMID: 27256296 PMCID: PMC4995357 DOI: 10.1093/brain/aww128] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/20/2016] [Indexed: 01/11/2023] Open
Abstract
Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner.
Collapse
Affiliation(s)
- Peter O Jenkins
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| | - Mitul A Mehta
- 2 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - David J Sharp
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| |
Collapse
|
137
|
Srour M, Caron V, Pearson T, Nielsen SB, Lévesque S, Delrue MA, Becker TA, Hamdan FF, Kibar Z, Sattler SG, Schneider MC, Bitoun P, Chassaing N, Rosenfeld JA, Xia F, Desai S, Roeder E, Kimonis V, Schneider A, Littlejohn RO, Douzgou S, Tremblay A, Michaud JL. Gain-of-Function Mutations inRARBCause Intellectual Disability with Progressive Motor Impairment. Hum Mutat 2016; 37:786-93. [DOI: 10.1002/humu.23004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Myriam Srour
- CHU Sainte-Justine Research Center; Montréal H3T 1C5 Canada
- Department of Pediatrics; Neurology and Neurosurgery; McGill University; Montreal H3A 1A4 Canada
| | | | - Toni Pearson
- Department of Neurology; Icahn School of Medicine at Mount Sinai; New York New York 10029
| | | | - Sébastien Lévesque
- Division of Medical Genetics; Department of Pediatrics; Centre Hospitalier Universitaire de Sherbrooke; Sherbrooke J1H 5N4 Canada
| | - Marie-Ange Delrue
- Department of Pediatrics; Université de Montréal; Montreal H3T 1J4 Canada
| | - Troy A. Becker
- Division of Genetics and Metabolism; All Children's Hospital; St-Petersburg Florida 33701
| | - Fadi F. Hamdan
- CHU Sainte-Justine Research Center; Montréal H3T 1C5 Canada
| | - Zoha Kibar
- CHU Sainte-Justine Research Center; Montréal H3T 1C5 Canada
- Department of Neurosciences; Université de Montréal; Montreal H3T 1J4 Canada
| | | | | | - Pierre Bitoun
- Génétique Médicale; Hôpital Jean Verdier AP-HP; C.H.U. Paris Nord Bondy 93140 France
| | - Nicolas Chassaing
- Service de Génétique Médicale; Hôpital Purpan; CHU Toulouse Toulouse 31059 France
- Université Paul-Sabatier; Toulouse III, EA-4555 and Inserm U1056 Toulouse 31000 France
| | | | - Fan Xia
- Baylor College of Medicine; Houston Texas 77030
| | - Sonal Desai
- Department of Neurogenetics; Kennedy Krieger Institute; Baltimore Maryland 21205
| | | | - Virginia Kimonis
- Division of Genetics and Genomic Medicine; Univerity of California-Irvine Medical Center; Orange California 92868
| | - Adele Schneider
- Division of Genetics and Genomic Medicine; Univerity of California-Irvine Medical Center; Orange California 92868
| | | | - Sofia Douzgou
- Manchester Centre for Genomic Medicine; Central Manchester University Hospitals NHS Foundation Trust; MAHSC; Saint Mary's Hospital; Manchester M13 9WL UK
| | - André Tremblay
- CHU Sainte-Justine Research Center; Montréal H3T 1C5 Canada
- Department of Obstetrics and Gynecology; Université de Montréal; Montreal H3T 1J4 Canada
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montreal H3T 1J4 Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine Research Center; Montréal H3T 1C5 Canada
- Department of Pediatrics; Université de Montréal; Montreal H3T 1J4 Canada
- Department of Neurosciences; Université de Montréal; Montreal H3T 1J4 Canada
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montreal H3T 1J4 Canada
| |
Collapse
|
138
|
Bolkan SS, Carvalho Poyraz F, Kellendonk C. Using human brain imaging studies as a guide toward animal models of schizophrenia. Neuroscience 2016; 321:77-98. [PMID: 26037801 PMCID: PMC4664583 DOI: 10.1016/j.neuroscience.2015.05.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/15/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points toward the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients.
Collapse
Affiliation(s)
- S S Bolkan
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - F Carvalho Poyraz
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - C Kellendonk
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
139
|
Sigurdsson T. Neural circuit dysfunction in schizophrenia: Insights from animal models. Neuroscience 2016; 321:42-65. [DOI: 10.1016/j.neuroscience.2015.06.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 12/17/2022]
|
140
|
Jadi MP, Behrens MM, Sejnowski TJ. Abnormal Gamma Oscillations in N-Methyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia. Biol Psychiatry 2016; 79:716-726. [PMID: 26281716 PMCID: PMC4720598 DOI: 10.1016/j.biopsych.2015.07.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/03/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022]
Abstract
N-methyl-D-aspartate receptor (NMDAR) hypofunction in parvalbumin-expressing (PV+) inhibitory neurons (INs) may contribute to symptoms in patients with schizophrenia (SZ). This hypothesis was inspired by studies in humans involving NMDAR antagonists that trigger SZ symptoms. Animal models of SZ using neuropharmacology and genetic knockouts have successfully replicated some of the key observations in human subjects involving alteration of gamma band oscillations (GBO) observed in electroencephalography and magnetoencephalography signals. However, it remains to be seen if NMDAR hypofunction in PV+ neurons is fundamental to the phenotype observed in these models. In this review, we discuss some of the key computational models of GBO and their predictions in the context of NMDAR hypofunction in INs. While PV+ INs have been the main focus of SZ studies in animal models, we also discuss the implications of NMDAR hypofunction in other types of INs using computational models for GBO modulation in the visual cortex.
Collapse
Affiliation(s)
- Monika P Jadi
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California; Division of Biological Sciences, University of California at San Diego, La Jolla, California.
| | - M Margarita Behrens
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California; Division of Biological Sciences, University of California at San Diego, La Jolla, California
| |
Collapse
|
141
|
Leung C, Jia Z. Mouse Genetic Models of Human Brain Disorders. Front Genet 2016; 7:40. [PMID: 27047540 PMCID: PMC4803727 DOI: 10.3389/fgene.2016.00040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/08/2016] [Indexed: 01/29/2023] Open
Abstract
Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases.
Collapse
Affiliation(s)
- Celeste Leung
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| |
Collapse
|
142
|
Bailey MR, Jensen G, Taylor K, Mezias C, Williamson C, Silver R, Simpson EH, Balsam PD. A novel strategy for dissecting goal-directed action and arousal components of motivated behavior with a progressive hold-down task. Behav Neurosci 2016; 129:269-80. [PMID: 26030428 DOI: 10.1037/bne0000060] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Motivation serves 2 important functions: It guides actions to be goal-directed, and it provides the energy and vigor required to perform the work necessary to meet those goals. Dissociating these 2 processes with existing behavioral assays has been a challenge. In this article, we report a novel experimental strategy to distinguish the 2 processes in mice. First, we characterize a novel motivation assay in which animals must hold down a lever for progressively longer intervals to earn each subsequent reward; we call this the progressive hold-down (PHD) task. We find that performance on the PHD task is sensitive to both food deprivation level and reward value. Next, we use a dose of methamphetamine (METH) 1.0 mg/kg, to evaluate behavior in both the progressive ratio (PR) and PHD tasks. Treatment with METH leads to more persistent lever pressing for food rewards in the PR. In the PHD task, we found that METH increased arousal, which leads to numerous bouts of hyperactive responding but neither increases nor impairs goal-directed action. The results demonstrate that these tools enable a more precise understanding of the underlying processes being altered in manipulations that alter motivated behavior.
Collapse
Affiliation(s)
| | - Greg Jensen
- Department of Psychology, Columbia University
| | | | | | | | - Rae Silver
- Department of Psychology, Barnard College
| | | | | |
Collapse
|
143
|
Smith CJ, Xiong G, Elkind JA, Putnam B, Cohen AS. Brain Injury Impairs Working Memory and Prefrontal Circuit Function. Front Neurol 2015; 6:240. [PMID: 26617569 PMCID: PMC4643141 DOI: 10.3389/fneur.2015.00240] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
More than 2.5 million Americans suffer a traumatic brain injury (TBI) each year. Even mild to moderate TBI causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI), the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice, while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.
Collapse
Affiliation(s)
- Colin J. Smith
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Guoxiang Xiong
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jaclynn A. Elkind
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brendan Putnam
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Akiva S. Cohen
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
144
|
Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neurosci Biobehav Rev 2015; 58:19-35. [DOI: 10.1016/j.neubiorev.2015.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/03/2023]
|
145
|
Mikell CB, Sinha S, Sheth SA. Neurosurgery for schizophrenia: an update on pathophysiology and a novel therapeutic target. J Neurosurg 2015; 124:917-28. [PMID: 26517767 DOI: 10.3171/2015.4.jns15120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The main objectives of this review were to provide an update on the progress made in understanding specific circuit abnormalities leading to psychotic symptoms in schizophrenia and to propose rational targets for therapeutic deep brain stimulation (DBS). Refractory schizophrenia remains a major unsolved clinical problem, with 10%-30% of patients not responding to standard treatment options. Progress made over the last decade was analyzed through reviewing structural and functional neuroimaging studies in humans, along with studies of animal models of schizophrenia. The authors reviewed theories implicating dysfunction in dopaminergic and glutamatergic signaling in the pathophysiology of the disorder, paying particular attention to neurosurgically relevant nodes in the circuit. In this context, the authors focused on an important pathological circuit involving the associative striatum, anterior hippocampus, and ventral striatum, and discuss the possibility of targeting these nodes for therapeutic neuromodulation with DBS. Finally, the authors examined ethical considerations in the treatment of these vulnerable patients. The functional anatomy of neural circuits relevant to schizophrenia remains of great interest to neurosurgeons and psychiatrists and lends itself to the development of specific targets for neuromodulation. Ongoing progress in the understanding of these structures will be critical to the development of potential neurosurgical treatments of schizophrenia.
Collapse
Affiliation(s)
- Charles B Mikell
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York; and
| | - Saurabh Sinha
- Division of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Sameer A Sheth
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
146
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
147
|
Raij TT, Mäntylä T, Kieseppä T, Suvisaari J. Aberrant functioning of the putamen links delusions, antipsychotic drug dose, and compromised connectivity in first episode psychosis--Preliminary fMRI findings. Psychiatry Res 2015; 233:201-11. [PMID: 26184459 DOI: 10.1016/j.pscychresns.2015.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/24/2015] [Accepted: 06/25/2015] [Indexed: 01/26/2023]
Abstract
The dopamine theory proposes the relationship of delusions to aberrant signaling in striatal circuitries that can be normalized with dopamine D2 receptor-blocking drugs. Localization of such circuitries, as well as their upstream and downstream signaling, remains poorly known. We collected functional magnetic resonance images from first-episode psychosis patients and controls during an audiovisual movie. Final analyses included 20 patients and 20 controls; another sample of 10 patients and 10 controls was used to calculate a comparison signal-time course. We identified putamen circuitry in which the signal aberrance (poor correlation with the comparison signal time course) was predicted by the dopamine theory, being greater in patients than controls; correlating positively with delusion scores; and correlating negatively with antipsychotic-equivalent dosage. In Granger causality analysis, patients showed a compromised contribution of the cortical salience network to the putamen and compromised contribution of the putamen to the default mode network. Results were corrected for multiple comparisons at the cluster level with primary voxel-wise threshold p < 0.005 for the salience network contribution, but liberal primary threshold p < 0.05 was used in other group comparisons. If replicated in larger studies, these findings may help unify and extend current hypotheses on dopaminergic dysfunction, salience processing and pathogenesis of delusions.
Collapse
Affiliation(s)
- Tuukka T Raij
- Department of Psychiatry, Helsinki University and Helsinki University Central Hospital, Välskärinkatu 12, P.O Box 590, 00029 HUS, Finland; Department of Neuroscience and Biomedical engineering and Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University School of Science, P.O Box 13000, 00076 AALTO, Finland.
| | - Teemu Mäntylä
- Department of Neuroscience and Biomedical engineering and Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University School of Science, P.O Box 13000, 00076 AALTO, Finland; Department of Health, Mental Health Unit, National Institute for Health and Welfare, Helsinki, P.O. Box 30, 00271 Helsinki, Finland; Institute of Behavioural Sciences, Siltavuorenpenger 1-5, P.O. Box 9, 00014 University of Helsinki, Helsinki, Finland
| | - Tuula Kieseppä
- Department of Psychiatry, Helsinki University and Helsinki University Central Hospital, Välskärinkatu 12, P.O Box 590, 00029 HUS, Finland; Department of Health, Mental Health Unit, National Institute for Health and Welfare, Helsinki, P.O. Box 30, 00271 Helsinki, Finland
| | - Jaana Suvisaari
- Department of Health, Mental Health Unit, National Institute for Health and Welfare, Helsinki, P.O. Box 30, 00271 Helsinki, Finland
| |
Collapse
|
148
|
Kabitzke PA, Simpson EH, Kandel ER, Balsam PD. Social behavior in a genetic model of dopamine dysfunction at different neurodevelopmental time points. GENES BRAIN AND BEHAVIOR 2015; 14:503-15. [PMID: 26176662 DOI: 10.1111/gbb.12233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 01/05/2023]
Abstract
Impairments in social behavior characterize many neurodevelopmental psychiatric disorders. In fact, the temporal emergence and trajectory of these deficits can define the disorder, specify their treatment and signal their prognosis. The sophistication of mouse models with neurobiological endophenotypes of many aspects of psychiatric diseases has increased in recent years, with the necessity to evaluate social behavior in these models. We adapted an assay for the multimodal characterization of social behavior at different development time points (juvenile, adolescent and adult) in control mice in different social contexts (specifically, different sex pairings). Although social context did not affect social behavior in juvenile mice, it did have an effect on the quantity and type of social interaction as well as ultrasonic vocalizations in both adolescence and adulthood. We compared social development in control mice to a transgenic mouse model of the increase in postsynaptic striatal D2R activity observed in patients with schizophrenia (D2R-OE mice). Genotypic differences in social interactions emerged in adolescence and appeared to become more pronounced in adulthood. That vocalizations emitted from dyads with a D2R-OE subject were negatively correlated with active social behavior while vocalizations from control dyads were positively correlated with both active and passive social behavior also suggest social deficits. These data show that striatal dopamine dysfunction plays an important role in the development of social behavior and mouse models such as the one studied here provide an opportunity for screening potential therapeutics at different developmental time points.
Collapse
Affiliation(s)
- P A Kabitzke
- Department of Psychiatry, Columbia University.,New York State Psychiatric Institute
| | - E H Simpson
- Department of Psychiatry, Columbia University.,New York State Psychiatric Institute
| | - E R Kandel
- Department of Neuroscience, Columbia University.,Kavli Institute for Brain Science.,Howard Hughes Medical Institute
| | - P D Balsam
- Department of Psychiatry, Columbia University.,New York State Psychiatric Institute.,Department of Psychology, Barnard College, Columbia University, New York, NY, USA
| |
Collapse
|
149
|
Avlar B, Kahn JB, Jensen G, Kandel ER, Simpson EH, Balsam PD. Improving temporal cognition by enhancing motivation. Behav Neurosci 2015; 129:576-88. [PMID: 26371378 DOI: 10.1037/bne0000083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increasing motivation can positively impact cognitive performance. Here we employed a cognitive timing task that allows us to detect changes in cognitive performance that are not influenced by general activity or arousal factors such as the speed or persistence of responding. This approach allowed us to manipulate motivation using three different methods; molecular/genetic, behavioral and pharmacological. Increased striatal D2Rs resulted in deficits in temporal discrimination. Switching off the transgene improved motivation in earlier studies, and here partially rescued the temporal discrimination deficit. To manipulate motivation behaviorally, we altered reward magnitude and found that increasing reward magnitude improved timing in control mice and partially rescued timing in the transgenic mice. Lastly, we manipulated motivation pharmacologically using a functionally selective 5-HT2C receptor ligand, SB242084, which we previously found to increase incentive motivation. SB242084 improved temporal discrimination in both control and transgenic mice. Thus, while there is a general intuitive belief that motivation can affect cognition, we here provide a direct demonstration that enhancing motivation, in a variety of ways, can be an effective strategy for enhancing temporal cognition. Understanding the interaction of motivation and cognition is of clinical significance since many psychiatric disorders are characterized by deficits in both domains.
Collapse
Affiliation(s)
| | | | - Greg Jensen
- Department of Psychology, Columbia University
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, Howard Hughes Medical Institute
| | | | - Peter D Balsam
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute
| |
Collapse
|
150
|
Local inactivation of Gpr88 in the nucleus accumbens attenuates behavioral deficits elicited by the neonatal administration of phencyclidine in rats. Mol Psychiatry 2015; 20:951-8. [PMID: 25155879 DOI: 10.1038/mp.2014.92] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 06/20/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
Gpr88, an orphan G-protein-coupled receptor, is highly and almost exclusively expressed in the medium spiny projection neurons of the striatum, and may thus participate in the control of motor functions and cognitive processing that are impaired in neuropsychiatric disorders such as Parkinson's disease or schizophrenia (SZ). This study investigated the relevance of Gpr88 to SZ-associated behavior by knocking down Gpr88 gene expression in the ventral striatum (nucleus accumbens) in a neurodevelopmental rat model of SZ, generated by neonatal treatment with phencyclidine (PCP). In this model, we compared the effects of the local inactivation in the adult animal of the expression of Gpr88 and of Drd2, a gene strongly implicated in the etiology of SZ and coding for the dopamine receptor type 2 (D2). To inactivate specifically Gpr88 and D2 expression, we used the lentiviral vector-mediated microRNA silencing strategy. The neonatal PCP treatment induced in the adult rat hyperlocomotion in response to amphetamine (Amph) and social novelty discrimination (SND) deficits. The inactivation of D2 did not modify the locomotor response to Amph or the cognitive deficits induced by PCP, whereas the silencing of Gpr88 inhibited the Amph-induced hyperlocomotion and reduced the impairment of SND elicited by neonatal exposure to PCP. These observations suggest a role for Gpr88 in the regulation of cognitive and motor functions, and support its relevance to the pathophysiology and treatment of SZ and other disorders involving dysfunction of the accumbens-striatal complex.
Collapse
|