101
|
Merida I, Andrada E, Gharbi SI, Avila-Flores A. Redundant and specialized roles for diacylglycerol kinases and in the control of T cell functions. Sci Signal 2015; 8:re6. [DOI: 10.1126/scisignal.aaa0974] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
102
|
Liu C, Zhao X, Xu L, Yi J, Shaheen S, Han W, Wang F, Zheng W, Xu C, Liu W. A negative-feedback function of PKC β in the formation and accumulation of signaling-active B cell receptor microclusters within B cell immunological synapse. J Leukoc Biol 2015; 97:887-900. [PMID: 25740961 DOI: 10.1189/jlb.2a0714-320r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/08/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022] Open
Abstract
Advanced live cell imaging studies suggested that B cell activation is initiated by the formation of BCR microclusters and subsequent B cell IS upon BCR and antigen recognition. PKC family member PKCβ is highly expressed in B cells and plays an important role in the initiation of B cell activation. Here, we reported an inhibitory function of PKCβ through a negative-feedback manner in B cell activation. Compared with WT (PKCβ-WT) or the constitutively active (PKCβ-ΔNPS) form of PKCβ, DN PKCβ (PKCβ-DN) unexpectedly enhanced the accumulation of BCR microclusters into the B cell IS, leading to the recruitment of an excessive amount of pSyk, pPLC-γ2, and pBLNK signaling molecules into the membrane-proximal BCR signalosome. Enhanced calcium mobilization responses in the decay phase were also observed in B cells expressing PKCβ-DN. Mechanistic studies showed that this negative-feedback function of PKCβ works through the induction of an inhibitory form of pBtk at S180 (pBtk-S180). Indeed, the capability of inducing the formation of an inhibitory pBtk-S180 is in the order of PKCβ-ΔNPS > PKCβ-WT > PKCβ-DN. Thus, these results improve our comprehensive understanding on the positive and negative function of PKCβ in the fine tune of B cell activation.
Collapse
Affiliation(s)
- Ce Liu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - XingWang Zhao
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - LiLing Xu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - JunYang Yi
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Samina Shaheen
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weidong Han
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Wang
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Zheng
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanli Liu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
103
|
Reversat A, Yuseff MI, Lankar D, Malbec O, Obino D, Maurin M, Penmatcha NVG, Amoroso A, Sengmanivong L, Gundersen GG, Mellman I, Darchen F, Desnos C, Pierobon P, Lennon-Duménil AM. Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse. Mol Biol Cell 2015; 26:1273-85. [PMID: 25631815 PMCID: PMC4454175 DOI: 10.1091/mbc.e14-09-1373] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
B-cell receptor (BCR) engagement with surface-tethered antigens leads to the formation of an immune synapse, which facilitates antigen uptake for presentation to T-lymphocytes. Antigen internalization and processing rely on the early dynein-dependent transport of BCR-antigen microclusters to the synapse center, as well as on the later polarization of the microtubule-organizing center (MTOC). MTOC repositioning allows the release of proteases and the delivery of MHC class II molecules at the synapse. Whether and how these events are coordinated have not been addressed. Here we show that the ancestral polarity protein Par3 promotes BCR-antigen microcluster gathering, as well as MTOC polarization and lysosome exocytosis, at the synapse by facilitating local dynein recruitment. Par3 is also required for antigen presentation to T-lymphocytes. Par3 therefore emerges as a key molecule in the coupling of the early and late events needed for efficient extraction and processing of immobilized antigen by B-cells.
Collapse
Affiliation(s)
- Anne Reversat
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Maria-Isabel Yuseff
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France Departamento de Biologia Celular y Molecular, Pontificia Universidad Catolica de Chile, 6513677 Santiago, Chile
| | - Danielle Lankar
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Odile Malbec
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Dorian Obino
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Mathieu Maurin
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | | | - Alejandro Amoroso
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France Facultad de Ciencias de la Salud, Universidad San Sebastián, 7510157 Santiago, Chile
| | - Lucie Sengmanivong
- Cell and Tissue Imaging Core Facility (PICT-IBiSA) and Nikon Imaging Centre, Institut Curie, UMR144, Centre de Recherche, 75005 Paris, France
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | | | - François Darchen
- Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR8250, 75270 Paris Cedex 06, France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR8250, 75270 Paris Cedex 06, France
| | - Paolo Pierobon
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | | |
Collapse
|
104
|
Wei SY, Lin TE, Wang WL, Lee PL, Tsai MC, Chiu JJ. Protein kinase C-δ and -β coordinate flow-induced directionality and deformation of migratory human blood T-lymphocytes. J Mol Cell Biol 2014; 6:458-72. [PMID: 25548371 DOI: 10.1093/jmcb/mju050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
T-lymphocyte migration under flow is critical for immune responses, but the mechanisms by which flow modulates the migratory behaviors of T-lymphocytes remain unclear. Human peripheral blood T-lymphocytes (PBTLs), when stimulated with phorbol 12-myristate 13-acetate (PMA), stretched their cell bodies dramatically and moved along the flow direction. In contrast, stromal cell-derived factor-1α-stimulated PBTLs deformed and migrated in a random manner. Here we elucidated the molecular mechanisms underlying flow-induced directionality and deformation of PMA-stimulated PBTLs. PMA primed PBTLs for polarization under flow, with protein kinase C (PKC)-δ enriched in the leading edge, PKC-βI in the microtubule organizing center, and PKC-βII in the uropod and peripheral region. PKC-δ regulated cell protrusions in the leading edge through Tiam1/Rac1/calmodulin, whereas PKC-β regulated RhoA/Rho-associated kinase activity and microtubule stability to modulate uropod contractility and detachment. Our findings indicate that PKC-δ and -β coordinate in the cell leading edge and uropod, respectively, to modulate the directionality and deformability of migratory T-lymphocytes under flow.
Collapse
Affiliation(s)
- Shu-Yi Wei
- Institute of Cellular and System Medicine, 'National' Health Research Institutes, Miaoli 350
| | - Ting-Er Lin
- Institute of Cellular and System Medicine, 'National' Health Research Institutes, Miaoli 350
| | - Wei-Li Wang
- Institute of Cellular and System Medicine, 'National' Health Research Institutes, Miaoli 350
| | - Pei-Ling Lee
- Institute of Cellular and System Medicine, 'National' Health Research Institutes, Miaoli 350
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, 'National' Defense Medical Center, Taipei 114
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, 'National' Health Research Institutes, Miaoli 350 Institute of Biomedical Engineering, 'National' Tsing Hua University, Hsinchu 300 Institute of Biomedical Engineering, 'National' Cheng Kung University, Tainan 701
| |
Collapse
|
105
|
Serine-threonine kinases in TCR signaling. Nat Immunol 2014; 15:808-14. [PMID: 25137455 DOI: 10.1038/ni.2941] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022]
Abstract
T lymphocyte proliferation and differentiation are controlled by signaling pathways initiated by the T cell antigen receptor. Here we explore how key serine-threonine kinases and their substrates mediate T cell signaling and coordinate T cell metabolism to meet the metabolic demands of participating in an immune response.
Collapse
|
106
|
Molecular mechanisms and functional implications of polarized actin remodeling at the T cell immunological synapse. Cell Mol Life Sci 2014; 72:537-556. [PMID: 25355055 DOI: 10.1007/s00018-014-1760-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 02/05/2023]
Abstract
Transient,specialized cell-cell interactions play a central role in leukocyte function by enabling specific intercellular communication in the context of a highly dynamic systems level response. The dramatic structural changes required for the formation of these contacts are driven by rapid and precise cytoskeletal remodeling events. In recent years, the immunological synapse that forms between a T lymphocyte and its antigen-presenting target cell has emerged as an important model system for understanding immune cell interactions. In this review, we discuss how regulators of the cortical actin cytoskeleton control synaptic architecture and in this way specify T cell function.
Collapse
|
107
|
Chauveau A, Le Floc'h A, Bantilan NS, Koretzky GA, Huse M. Diacylglycerol kinase α establishes T cell polarity by shaping diacylglycerol accumulation at the immunological synapse. Sci Signal 2014; 7:ra82. [PMID: 25161317 DOI: 10.1126/scisignal.2005287] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polarization of the T cell microtubule-organizing center (MTOC) to the immunological synapse between the T cell and an antigen-presenting cell (APC) maintains the specificity of T cell effector responses by enabling directional secretion toward the APC. The reorientation of the MTOC is guided by a sharp gradient of the second messenger diacylglycerol (DAG), which is centered at the immunological synapse. We used a single-cell photoactivation approach to demonstrate that diacylglycerol kinase α (DGK-α), which catalyzes the conversion of DAG to phosphatidic acid, determined T cell polarity by limiting the diffusion of DAG. DGK-α-deficient T cells exhibited enlarged accumulations of DAG at the immunological synapse, as well as impaired reorientation of the MTOC. In contrast, T cells lacking the related isoform DGK-ζ did not display polarization defects. We also found that DGK-α localized preferentially to the periphery of the immunological synapse, suggesting that it constrained the area over which DAG accumulated. Phosphoinositide 3-kinase activity was required for the peripheral localization pattern of DGK-α, which suggests a link between DAG and phosphatidylinositol signaling during T cell activation. These results reveal a previously unappreciated function of DGK-α and provide insight into the mechanisms that determine lymphocyte polarity.
Collapse
Affiliation(s)
- Anne Chauveau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Audrey Le Floc'h
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Niels S Bantilan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gary A Koretzky
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
108
|
Lagrue K, Carisey A, Oszmiana A, Kennedy PR, Williamson DJ, Cartwright A, Barthen C, Davis DM. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunol Rev 2014; 256:203-21. [PMID: 24117823 DOI: 10.1111/imr.12107] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells discriminate between healthy and unhealthy target cells through a balance of activating and inhibitory signals at direct intercellular contacts called immune synapses. Rearrangements in the cellular cytoskeleton have long been known to be critical in assembly of immune synapses. Here, through bringing together the vast literature on this subject, the number of different ways in which the cytoskeleton is important becomes evident. The dynamics of filamentous actin are critical in (i) creating the nanometer-scale organization of NK cell receptors, (ii) establishing cellular polarity, (iii) coordinating immune receptor and integrin-mediated signaling, and (iv) directing secretion of lytic granules and cytokines. The microtubule network also is important in the delivery of lytic granules and vesicles containing cytokines to the immune synapse. Together, these data establish that the cytoskeleton acts as a central regulator of this complex and dynamic process - and an enormous amount of NK cell biology is controlled through the cytoskeleton.
Collapse
Affiliation(s)
- Kathryn Lagrue
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK; Division of Cell and Molecular Biology, Imperial College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Soares H, Lasserre R, Alcover A. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses. Immunol Rev 2014; 256:118-32. [PMID: 24117817 DOI: 10.1111/imr.12110] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function.
Collapse
Affiliation(s)
- Helena Soares
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, Paris, France; CNRS, URA-1961, Paris, France
| | | | | |
Collapse
|
110
|
Babich A, Burkhardt JK. Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. Immunol Rev 2014; 256:80-94. [PMID: 24117814 DOI: 10.1111/imr.12123] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) mobilization and cytoskeletal reorganization are key hallmarks of T-cell activation, and their interdependence has long been recognized. Recent advances in the field have elucidated the molecular pathways that underlie these events and have revealed several points of intersection. Ca(2+) signaling can be divided into two phases: initial events leading to release of Ca(2+) from endoplasmic reticulum stores, and a second phase involving STIM 1 (stromal interaction molecule 1) clustering and CRAC (calcium release activated calcium) channel activation. Cytoskeletal dynamics promote both phases. During the first phase, the actin cytoskeleton promotes mechanotransduction and serves as a dynamic scaffold for microcluster assembly. Proteins that drive actin polymerization such as WASp (Wiskott-Aldrich syndrome protein) and HS1 (hematopoietic lineage cell-specific protein 1) promote signaling through PLCγ1 (phospholipase Cγ1) and release of Ca(2+) from endoplasmic reticulum stores. During the second phase, the WAVE (WASP-family verprolin homologous protein) complex and the microtubule cytoskeleton promote STIM 1 clustering at sites of plasma membrane apposition, opening Orai channels. In addition, gross cell shape changes and organelle movements buffer local Ca(2+) levels, leading to sustained Ca(2+) mobilization. Conversely, elevated intracellular Ca(2+) activates cytoskeletal remodeling. This can occur indirectly, via calpain activity, and directly, via Ca(2+) -dependent cytoskeletal regulatory proteins such as myosin II and L-plastin. While it is true that the cytoskeleton regulates Ca(2+) responses and vice versa, interdependence between Ca(2+) and the cytoskeleton also encompasses signaling events that occur in parallel, downstream of shared intermediates. Inositol cleavage by PLCγ1 simultaneously triggers both endoplasmic reticulum store release and diacylglycerol-dependent microtubule organizing center reorientation, while depleting the pool of phosphatidylinositol-4,5-bisphosphate, an activator of multiple actin-regulatory proteins. The close interdependence of Ca(2+) signaling and cytoskeletal dynamics in T cells provides positive feedback mechanisms for T-cell activation and allows for finely tuned responses to extracellular cues.
Collapse
Affiliation(s)
- Alexander Babich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
111
|
González-Granado JM, Silvestre-Roig C, Rocha-Perugini V, Trigueros-Motos L, Cibrián D, Morlino G, Blanco-Berrocal M, Osorio FG, Freije JMP, López-Otín C, Sánchez-Madrid F, Andrés V. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal 2014; 7:ra37. [PMID: 24757177 DOI: 10.1126/scisignal.2004872] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In many cell types, nuclear A-type lamins regulate multiple cellular functions, including higher-order genome organization, DNA replication and repair, gene transcription, and signal transduction; however, their role in specialized immune cells remains largely unexplored. We showed that the abundance of A-type lamins was almost negligible in resting naïve T lymphocytes, but was increased upon activation of the T cell receptor (TCR). The increase in lamin-A was an early event that accelerated formation of the immunological synapse between T cells and antigen-presenting cells. Polymerization of F-actin in T cells is a critical step for immunological synapse formation, and lamin-A interacted with the linker of nucleoskeleton and cytoskeleton (LINC) complex to promote F-actin polymerization. We also showed that lamin-A expression accelerated TCR clustering and led to enhanced downstream signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, as well as increased target gene expression. Pharmacological inhibition of the ERK pathway reduced lamin-A-dependent T cell activation. Moreover, mice lacking lamin-A in immune cells exhibited impaired T cell responses in vivo. These findings underscore the importance of A-type lamins for TCR activation and identify lamin-A as a previously unappreciated regulator of the immune response.
Collapse
Affiliation(s)
- José María González-Granado
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Silvestre-Roig
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Vera Rocha-Perugini
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Laia Trigueros-Motos
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Danay Cibrián
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Giulia Morlino
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Marta Blanco-Berrocal
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fernando Garcia Osorio
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo-IUOPA, Oviedo, Spain
| | | | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo-IUOPA, Oviedo, Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Vicente Andrés
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
112
|
Basu R, Chen Y, Quann EJ, Huse M. The variable hinge region of novel PKCs determines localization to distinct regions of the immunological synapse. PLoS One 2014; 9:e95531. [PMID: 24751783 PMCID: PMC3994095 DOI: 10.1371/journal.pone.0095531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022] Open
Abstract
The immunological synapse (IS) formed between a T cell and its cognate antigen-presenting cell (APC) enables the directional secretion of cytolytic and inflammatory molecules. Synaptic architecture is established in part by a two-step cascade of novel protein kinase C (nPKC) isozymes. PKCε and PKCη arrive at the IS first, and occupy the entire synaptic membrane. Then, PKCθ accumulates in a smaller zone at the center of the contact. We investigated the molecular basis for this differential recruitment behavior using chimeric nPKC constructs and total internal reflection fluorescence microscopy. Our studies revealed that the V3 linker just N-terminal to the kinase domain plays a crucial role in specifying nPKC localization. Substitution of this linker switched the scope and the kinetics of PKCθ accumulation to that of PKCε and PKCη, and vice versa. Although the V3 was necessary for synaptic compartmentalization, it was not sufficient, as the tandem C1 domains were also required to mediate membrane association. Together, these results suggest a model whereby the V3 linker controls nPKC sub-compartmentalization after initial C1 domain-mediated accumulation at the IS.
Collapse
Affiliation(s)
- Roshni Basu
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yuedan Chen
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Emily J. Quann
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
113
|
Höglinger D, Nadler A, Schultz C. Caged lipids as tools for investigating cellular signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1085-96. [PMID: 24713581 DOI: 10.1016/j.bbalip.2014.03.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
Abstract
Lipid derivatives that can be activated by light, often referred to as 'caged' lipids, are useful tools to manipulate intact cells non-invasively. Here we focus on experimental approaches that have made use of caged lipids. Apart from summarizing the recent advances and available tools in the field, we strive to highlight the experimental challenges that arise from lipid-specific biophysical properties and the abundance of an enormous diversity of distinct molecular lipid species in cells. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Doris Höglinger
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - André Nadler
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| |
Collapse
|
114
|
Tobinaga K, Li C, Takeo M, Matsuda M, Nagai H, Niidome T, Yamamoto T, Kishimura A, Mori T, Katayama Y. Rapid and serum-insensitive endocytotic delivery of proteins using biotinylated polymers attached via multivalent hydrophobic anchors. J Control Release 2014; 177:27-33. [DOI: 10.1016/j.jconrel.2013.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 01/31/2023]
|
115
|
A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat Cell Biol 2014; 16:133-44. [PMID: 24463606 PMCID: PMC3953390 DOI: 10.1038/ncb2906] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022]
Abstract
Ca(2+) signals control cell migration by regulating forward movement and cell adhesion. However, it is not well understood how Ca(2+)-regulatory proteins and second messengers are spatially organized in migrating cells. Here we show that receptor tyrosine kinase and phospholipase C signalling are restricted to the front of migrating endothelial leader cells, triggering local Ca(2+) pulses, local depletion of Ca(2+) in the endoplasmic reticulum and local activation of STIM1, supporting pulsatile front retraction and adhesion. At the same time, the mediator of store-operated Ca(2+) influx, STIM1, is transported by microtubule plus ends to the front. Furthermore, higher Ca(2+) pump rates in the front relative to the back of the plasma membrane enable effective local Ca(2+) signalling by locally decreasing basal Ca(2+). Finally, polarized phospholipase C signalling generates a diacylglycerol gradient towards the front that promotes persistent forward migration. Thus, cells employ an integrated Ca(2+) control system with polarized Ca(2+) signalling proteins and second messengers to synergistically promote directed cell migration.
Collapse
|
116
|
Kloc M, Kubiak JZ, Li XC, Ghobrial RM. The newly found functions of MTOC in immunological response. J Leukoc Biol 2013; 95:417-30. [DOI: 10.1189/jlb.0813468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
117
|
Joshi RP, Schmidt AM, Das J, Pytel D, Riese MJ, Lester M, Diehl JA, Behrens EM, Kambayashi T, Koretzky GA. The ζ isoform of diacylglycerol kinase plays a predominant role in regulatory T cell development and TCR-mediated ras signaling. Sci Signal 2013; 6:ra102. [PMID: 24280043 DOI: 10.1126/scisignal.2004373] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diacylglycerol (DAG) is a critical second messenger that mediates T cell receptor (TCR)-stimulated signaling. The abundance of DAG is reduced by the diacylglycerol kinases (DGKs), which catalyze the conversion of DAG to phosphatidic acid (PA) and thus inhibit DAG-mediated signaling. In T cells, the predominant DGK isoforms are DGKα and DGKζ, and deletion of the genes encoding either isoform enhances DAG-mediated signaling. We found that DGKζ, but not DGKα, suppressed the development of natural regulatory T (T(reg)) cells and predominantly mediated Ras and Akt signaling downstream of the TCR. The differential functions of DGKα and DGKζ were not attributable to differences in protein abundance in T cells or in their localization to the contact sites between T cells and antigen-presenting cells. RasGRP1, a key DAG-mediated activator of Ras signaling, associated to a greater extent with DGKζ than with DGKα; however, in silico modeling of TCR-stimulated Ras activation suggested that a difference in RasGRP1 binding affinity was not sufficient to cause differences in the functions of each DGK isoform. Rather, the model suggested that a greater catalytic rate for DGKζ than for DGKα might lead to DGKζ exhibiting increased suppression of Ras-mediated signals compared to DGKα. Consistent with this notion, experimental studies demonstrated that DGKζ was more effective than DGKα at catalyzing the metabolism of DAG to PA after TCR stimulation. The enhanced effective enzymatic production of PA by DGKζ is therefore one possible mechanism underlying the dominant functions of DGKζ in modulating T(reg) cell development.
Collapse
Affiliation(s)
- Rohan P Joshi
- 1Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Galandrini R, Capuano C, Santoni A. Activation of Lymphocyte Cytolytic Machinery: Where are We? Front Immunol 2013; 4:390. [PMID: 24312097 PMCID: PMC3832890 DOI: 10.3389/fimmu.2013.00390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/06/2013] [Indexed: 11/13/2022] Open
Abstract
Target cell recognition by cytotoxic lymphocytes implies the simultaneous engagement and clustering of adhesion and activating receptors followed by the activation of an array of signal transduction pathways. The cytotoxic immune synapse represents the highly specialized dynamic interface formed between the cytolytic effector and its target that allows temporal and spatial integration of signals responsible for a defined sequence of processes culminating with the polarized secretion of lytic granules. Over the last decades, much attention has been given to the molecular signals coupling receptor ligation to the activation of cytolytic machinery. Moreover, in the last 10 years the discovery of genetic defects affecting cytotoxic responses greatly boosted our knowledge on the molecular effectors involved in the regulation of discrete phases of cytotoxic process at post-receptor levels. More recently, the use of super resolution and total internal reflection fluorescence imaging technologies added new insights on the dynamic reorganization of receptor and signaling molecules at lytic synapse as well as on the relationship between granule dynamics and cytoskeleton remodeling. To date we have a solid knowledge of the molecular mechanisms governing granule movement and secretion, being not yet fully unraveled the machinery that couples early receptor signaling to the late stage of synapse remodeling and granule dynamics. Here we highlight recent advances in our understanding of the molecular mechanisms acting in the activation of cytolytic machinery, also discussing similarities and differences between Natural killer cells and cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Ricciarda Galandrini
- Department of Experimental Medicine, Istituto Pasteur-Fondazione Cenci-Bolognetti, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University , Rome , Italy
| | | | | |
Collapse
|
119
|
Le Floc'h A, Tanaka Y, Bantilan NS, Voisinne G, Altan-Bonnet G, Fukui Y, Huse M. Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse. ACTA ACUST UNITED AC 2013; 210:2721-37. [PMID: 24190432 PMCID: PMC3832928 DOI: 10.1084/jem.20131324] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In T cells, PI3K activation in the periphery of the immune synapse leads to PIP3 accumulation that promotes actin polymerization in a pathway important for cytotoxic function. The immunological synapse formed by a T lymphocyte on the surface of a target cell contains a peripheral ring of filamentous actin (F-actin) that promotes adhesion and facilitates the directional secretion of cytokines and cytolytic factors. We show that growth and maintenance of this F-actin ring is dictated by the annular accumulation of phosphatidylinositol trisphosphate (PIP3) in the synaptic membrane. PIP3 functions in this context by recruiting the exchange factor Dock2 to the periphery of the synapse, where it drives actin polymerization through the Rho-family GTPase Rac. We also show that synaptic PIP3 is generated by class IA phosphoinositide 3-kinases that associate with T cell receptor microclusters and are activated by the GTPase Ras. Perturbations that inhibit or promote PIP3-dependent F-actin remodeling dramatically affect T cell cytotoxicity, demonstrating the functional importance of this pathway. These results reveal how T cells use lipid-based signaling to control synaptic architecture and modulate effector responses.
Collapse
Affiliation(s)
- Audrey Le Floc'h
- Immunology Program, 2 Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | | | | | | | | | | | | |
Collapse
|
120
|
Huse M, Le Floc'h A, Liu X. From lipid second messengers to molecular motors: microtubule-organizing center reorientation in T cells. Immunol Rev 2013; 256:95-106. [PMID: 24117815 PMCID: PMC4595039 DOI: 10.1111/imr.12116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In T lymphocytes, polarization of the microtubule-organizing center (MTOC) to the immunological synapse enables the directional secretion of cytokines, cytolytic factors, and other soluble molecules toward the antigen-presenting cell. This is likely to be crucial for maintaining the specificity of T-cell effector responses. Here, we review recent advances in our understanding of MTOC reorientation in T cells, focusing first on the importance of diacylglycerol and protein kinase C isozymes and then on the molecular motor proteins that function downstream to drive MTOC movement.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Audrey Le Floc'h
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Xin Liu
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
121
|
Abstract
It has been over 30 years since the reorganization of both the microtubule network and a 'peculiar actin polarization' was reported at the contact area of cytotoxic T lymphocytes interacting with target cells. Since that time, hundreds of studies have been published in an effort to elucidate the structure and function of the microtubule network and the actin cytoskeleton in T-cell activation, migration, and effector function at the interface between a T cell and its cognate antigen-presenting cell or target cell. This interface has become known as the immunological synapse, and this review examines some of the roles played by the cytoskeleton at the synapse.
Collapse
Affiliation(s)
- Alex T Ritter
- Cambridge Institute for Medical Research, University of Cambridge Biomedical CampusCambridge, UK
| | - Karen L Angus
- Cambridge Institute for Medical Research, University of Cambridge Biomedical CampusCambridge, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge Biomedical CampusCambridge, UK
| |
Collapse
|
122
|
Martín-Cófreces NB, Baixauli F, Sánchez-Madrid F. Immune synapse: conductor of orchestrated organelle movement. Trends Cell Biol 2013; 24:61-72. [PMID: 24119664 DOI: 10.1016/j.tcb.2013.09.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 02/07/2023]
Abstract
To ensure proper cell function, intracellular organelles are not randomly distributed within the cell, but polarized and highly constrained by the cytoskeleton and associated adaptor proteins. This relationship between distribution and function was originally found in neurons and epithelial cells; however, recent evidence suggests that it is a general phenomenon occurring in many highly specialized cells including T lymphocytes. Recent studies reveal that the orchestrated redistribution of organelles is dependent on antigen-specific activation of and immune synapse (IS) formation by T cells. This review highlights the functional implications of organelle polarization in early T cell activation and examines recent findings on how the IS sets the rhythm of organelle motion and the spread of the activation signal to the nucleus.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain; Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - Francesc Baixauli
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain; Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain; Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain.
| |
Collapse
|
123
|
Abstract
Diacylglycerol (DAG), a second messenger generated by phospholipase Cγ1 activity upon engagement of a T-cell receptor, triggers several signaling cascades that play important roles in T cell development and function. A family of enzymes called DAG kinases (DGKs) catalyzes the phosphorylation of DAG to phosphatidic acid, acting as a braking mechanism that terminates DAG-mediated signals. Two DGK isoforms, α and ζ, are expressed predominantly in T cells and synergistically regulate the development of both conventional αβ T cells and invariant natural killer T cells in the thymus. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T-cell hyperactivation upon T cell receptor stimulation and by promoting T-cell anergy. In CD8 cells, reduced DGK activity is associated with enhanced primary responses against viruses and tumors. Recent work also has established an important role for DGK activity at the immune synapse and identified partners that modulate DGK function. In addition, emerging evidence points to previously unappreciated roles for DGK function in directional secretion and T-cell adhesion. This review describes the multitude of roles played by DGKs in T cell development and function and emphasizes recent advances in the field.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology and Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
124
|
Waite JC, Vardhana S, Shaw PJ, Jang JE, McCarl CA, Cameron TO, Feske S, Dustin ML. Interference with Ca(2+) release activated Ca(2+) (CRAC) channel function delays T-cell arrest in vivo. Eur J Immunol 2013; 43:3343-54. [PMID: 23939929 DOI: 10.1002/eji.201243255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 07/20/2013] [Accepted: 08/08/2013] [Indexed: 11/05/2022]
Abstract
Entry of lymphocytes into secondary lymphoid organs (SLOs) involves intravascular arrest and intracellular calcium ion ([Ca(2+)]i) elevation. TCR activation triggers increased [Ca(2+)]i and can arrest T-cell motility in vitro. However, the requirement for [Ca(2+)]i elevation in arresting T cells in vivo has not been tested. Here, we have manipulated the Ca(2+) release-activated Ca(2+) (CRAC) channel pathway required for [Ca(2+)]i elevation in T cells through genetic deletion of stromal interaction molecule (STIM) 1 or by expression of a dominant-negative ORAI1 channel subunit (ORAI1-DN). Interestingly, the absence of CRAC did not interfere with homing of naïve CD4(+) T cells to SLOs and only moderately reduced crawling speeds in vivo. T cells expressing ORAI1-DN lacked TCR activation induced [Ca(2+)]i elevation, yet arrested motility similar to control T cells in vitro. In contrast, antigen-specific ORAI1-DN T cells had a twofold delayed onset of arrest following injection of OVA peptide in vivo. CRAC channel function is not required for homing to SLOs, but enhances spatiotemporal coordination of TCR signaling and motility arrest.
Collapse
Affiliation(s)
- Janelle C Waite
- Program in Molecular Pathogenesis, Helen L. and Martin S. Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol 2013; 4:239. [PMID: 24027568 PMCID: PMC3762125 DOI: 10.3389/fimmu.2013.00239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California San Francisco , San Francisco, CA , USA
| | | | | |
Collapse
|
126
|
Yi J, Wu X, Chung AH, Chen JK, Kapoor TM, Hammer JA. Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. ACTA ACUST UNITED AC 2013; 202:779-92. [PMID: 23979719 PMCID: PMC3760611 DOI: 10.1083/jcb.201301004] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T cells rapidly reposition their centrosome to the center of the immunological synapse (IS) to drive polarized secretion in the direction of the bound target cell. Using an optical trap for spatial and temporal control over target presentation, we show that centrosome repositioning in Jurkat T cells exhibited kinetically distinct polarization and docking phases and required calcium flux and signaling through both the T cell receptor and integrin to be robust. In "frustrated" conjugates where the centrosome is stuck behind the nucleus, the center of the IS invaginated dramatically to approach the centrosome. Consistently, imaging of microtubules during normal repositioning revealed a microtubule end-on capture-shrinkage mechanism operating at the center of the IS. In agreement with this mechanism, centrosome repositioning was impaired by inhibiting microtubule depolymerization or dynein. We conclude that dynein drives centrosome repositioning in T cells via microtubule end-on capture-shrinkage operating at the center of the IS and not cortical sliding at the IS periphery, as previously thought.
Collapse
Affiliation(s)
- Jason Yi
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute NHLBI, National Institutes of Health, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
127
|
Andrés-Delgado L, Antón OM, Alonso MA. Centrosome polarization in T cells: a task for formins. Front Immunol 2013; 4:191. [PMID: 23874337 PMCID: PMC3708132 DOI: 10.3389/fimmu.2013.00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/27/2013] [Indexed: 11/16/2022] Open
Abstract
T-cell antigen receptor (TCR) engagement triggers the rapid reorientation of the centrosome, which is associated with the secretory machinery, toward the immunological synapse (IS) for polarized protein trafficking. Recent evidence indicates that upon TCR triggering the INF2 formin, together with the formins DIA1 and FMNL1, promotes the formation of a specialized array of stable detyrosinated MTs that breaks the symmetrical organization of the T-cell microtubule (MT) cytoskeleton. The detyrosinated MT array and TCR-induced tyrosine phosphorylation should coincide for centrosome polarization. We propose that the pushing forces produced by the detyrosinated MT array, which modify the position of the centrosome, in concert with Src kinase dependent TCR signaling, which provide the reference frame with respect to which the centrosome reorients, result in the repositioning of the centrosome to the IS.
Collapse
Affiliation(s)
- Laura Andrés-Delgado
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid , Madrid , Spain
| | | | | |
Collapse
|
128
|
Krishna S, Zhong XP. Regulation of Lipid Signaling by Diacylglycerol Kinases during T Cell Development and Function. Front Immunol 2013; 4:178. [PMID: 23847619 PMCID: PMC3701226 DOI: 10.3389/fimmu.2013.00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/19/2013] [Indexed: 01/14/2023] Open
Abstract
Diacylglycerol (DAG) and phosphatidic acid (PA) are bioactive lipids synthesized when the T cell receptor binds to a cognate peptide-MHC complex. DAG triggers signaling by recruiting Ras guanyl-releasing protein 1, PKCθ, and other effectors, whereas PA binds to effector molecules that include mechanistic target of rapamycin, Src homology region 2 domain-containing phosphatase 1, and Raf1. While DAG-mediated pathways have been shown to play vital roles in T cell development and function, the importance of PA-mediated signals remains less clear. The diacylglycerol kinase (DGK) family of enzymes phosphorylates DAG to produce PA, serving as a molecular switch that regulates the relative levels of these critical second messengers. Two DGK isoforms, α and ζ, are predominantly expressed in T lineage cells and play an important role in conventional αβ T cell development. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T cell hyper-activation and promoting T cell anergy. In this review, we discuss the roles of DAG-mediated pathways, PA-effectors, and DGKs in T cell development and function. We also highlight recent work that has uncovered previously unappreciated roles for DGK activity, for instance in invariant NKT cell development, anti-tumor and anti-viral CD8 responses, and the directional secretion of soluble effectors.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center , Durham, NC , USA ; Department of Immunology, Duke University Medical Center , Durham, NC , USA
| | | |
Collapse
|
129
|
Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II. Proc Natl Acad Sci U S A 2013; 110:11976-81. [PMID: 23818610 DOI: 10.1073/pnas.1306180110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrosome reorientation to the immunological synapse maintains the specificity of T-cell effector function by facilitating the directional release of cytokines and cytolytic factors toward the antigen-presenting cell. This polarization response is driven by the localized accumulation of diacylglycerol, which recruits multiple protein kinase (PK)C isozymes to the synaptic membrane. Here, we used T-cell receptor (TCR) photoactivation and imaging methodology to demonstrate that PKCs control centrosome dynamics through the reciprocal localization of two motor complexes, dynein and nonmuscle myosin (NM)II. Dynein accumulated in the region of TCR stimulation, whereas NMII clustered in the back of the cell, behind the polarizing centrosome. PKC activity, which shaped both dynein and NMII accumulation within this framework, controlled NMII localization directly by phosphorylating inhibitory sites within the myosin regulatory light chain, thereby suppressing NMII clustering in the region of TCR stimulation. Concurrently, phosphorylation of distinct sites within myosin regulatory light chain by Rho kinase drove NMII clustering in areas behind the centrosome. These results reveal a role for NMII in T-cell polarity and demonstrate how it is regulated by upstream signals.
Collapse
|
130
|
Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F. Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev 2013; 251:125-42. [PMID: 23278745 DOI: 10.1111/imr.12013] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transfer of molecules between cells during cognate immune cell interactions has been reported, and recently a novel mechanism of transfer of proteins and genetic material such as small RNA between T cells and antigen-presenting cells (APCs) has been described, involving exchange of extracellular vesicles (EVs) during the formation of the immunological synapse (IS). EVs, a term that encompasses exosomes and microvesicles, has been implicated in cell-cell communication during immune responses associated with tumors, pathogens, allergies, and autoimmune diseases. This review focuses on EV transfer as a mechanism for the exchange of molecules during immune cell-cell interactions.
Collapse
|
131
|
Nadler A, Reither G, Feng S, Stein F, Reither S, Müller R, Schultz C. The Fatty Acid Composition of Diacylglycerols Determines Local Signaling Patterns. Angew Chem Int Ed Engl 2013; 52:6330-4. [DOI: 10.1002/anie.201301716] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Indexed: 11/09/2022]
|
132
|
Nadler A, Reither G, Feng S, Stein F, Reither S, Müller R, Schultz C. Die Fettsäurezusammensetzung von Diacylglycerinen bestimmt lokale Signalmuster. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
133
|
Joshi RP, Koretzky GA. Diacylglycerol kinases: regulated controllers of T cell activation, function, and development. Int J Mol Sci 2013; 14:6649-73. [PMID: 23531532 PMCID: PMC3645659 DOI: 10.3390/ijms14046649] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 01/22/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are a diverse family of enzymes that catalyze the conversion of diacylglycerol (DAG), a crucial second messenger of receptor-mediated signaling, to phosphatidic acid (PA). Both DAG and PA are bioactive molecules that regulate a wide set of intracellular signaling proteins involved in innate and adaptive immunity. Clear evidence points to a critical role for DGKs in modulating T cell activation, function, and development. More recently, studies have elucidated factors that control DGK function, suggesting an added complexity to how DGKs act during signaling. This review summarizes the available knowledge of the function and regulation of DGK isoforms in signal transduction with a particular focus on T lymphocytes.
Collapse
Affiliation(s)
- Rohan P. Joshi
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
| | - Gary A. Koretzky
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-215-746-5522; Fax: +1-215-746-5525
| |
Collapse
|
134
|
Kong KF, Altman A. In and out of the bull's eye: protein kinase Cs in the immunological synapse. Trends Immunol 2013; 34:234-42. [PMID: 23428395 DOI: 10.1016/j.it.2013.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/29/2012] [Accepted: 01/02/2013] [Indexed: 01/24/2023]
Abstract
The immunological synapse (IS) formed between immune cells and antigen-presenting cells (APCs) provides a platform for signaling. Protein kinase C (PKC)θ localizes in the T cell IS within the central supramolecular activation cluster (cSMAC), where it associates with CD28 and mediates T cell receptor (TCR)/CD28 signals leading to effector T (Teff) cell activation. In regulatory T (Treg) cells, PKCθ is sequestered away from the IS, and inhibits suppressive function. Other PKCs localizing in the IS mediate additional functions in various immune cells. Further work is needed to identify mechanisms underlying PKC recruitment or exclusion at the IS, potential redundancy among IS-localized PKCs, and the relevance of PKC localization for IS dynamics and lymphocyte activation.
Collapse
Affiliation(s)
- Kok-Fai Kong
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
135
|
Affiliation(s)
- Facundo D Batista
- Lymphocyte Interaction Group, London Research Institute, Cancer Research UK, London, UK
| | | |
Collapse
|
136
|
Curado S, Kumari S, Dustin ML. "Cell biology meets physiology: functional organization of vertebrate plasma membranes"--the immunological synapse. CURRENT TOPICS IN MEMBRANES 2013; 72:313-46. [PMID: 24210434 PMCID: PMC4878826 DOI: 10.1016/b978-0-12-417027-8.00009-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunological synapse (IS) is an excellent example of cell-cell communication, where signals are exchanged between two cells, resulting in a well-structured line of defense during adaptive immune response. This process has been the focus of several studies that aimed at understanding its formation and subsequent events and has led to the realization that it relies on a well-orchestrated molecular program that only occurs when specific requirements are met. The development of more precise and controllable T cell activation systems has led to new insights including the role of mechanotransduction in the process of formation of the IS and T cell activation. Continuous advances in our understanding of the IS formation, particularly in the context of T cell activation and differentiation, as well the development of new T cell activation systems are being applied to the establishment and improvement of immune therapeutical approaches.
Collapse
Affiliation(s)
- Silvia Curado
- Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, NY 10016, USA and Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxfordshire, OX3 7FY, UK
| | - Sudha Kumari
- Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, NY 10016, USA and Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxfordshire, OX3 7FY, UK
| | - Michael L. Dustin
- Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, NY 10016, USA and Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxfordshire, OX3 7FY, UK
| |
Collapse
|
137
|
Abstract
Using an elaborately evolved language of cytokines and chemokines as well as cell-cell interactions, the different components of the immune system communicate with each other and orchestrate a response (or wind one down). Immunological synapses are a key feature of the system in the ways in which they can facilitate and direct these responses. Studies analyzing the structure of an immune synapse as it forms between two cells have provided insight into how the stability and kinetics of this interaction ultimately affect the sensitivity, potency, and magnitude of a given response. Furthermore, we have gained an appreciation of how the immunological synapse provides directionality and contextual cues for downstream signaling and cellular decision-making. In this review, we discuss how using a variety of techniques, developed over the last decade, have allowed us to visualize and quantify key aspects of the dynamic synaptic interface and have furthered our understanding of their function. We describe some of the many characteristics of the immunological synapse that make it a vital part of intercellular communication and some of the questions that remain to be answered.
Collapse
Affiliation(s)
- Jianming Xie
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina M. Tato
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
138
|
Purbhoo MA. The function of sub-synaptic vesicles during T-cell activation. Immunol Rev 2012; 251:36-48. [DOI: 10.1111/imr.12012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marco A. Purbhoo
- Section of Hepatology & Gastroenterology; Department of Medicine; Imperial College London; London; UK
| |
Collapse
|
139
|
Michalczyk I, Sikorski AF, Kotula L, Junghans RP, Dubielecka PM. The emerging role of protein kinase Cθ in cytoskeletal signaling. J Leukoc Biol 2012. [PMID: 23192428 DOI: 10.1189/jlb.0812371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytoskeletal rearrangements often occur as the result of transduction of signals from the extracellular environment. Efficient awakening of this powerful machinery requires multiple activation and deactivation steps, which usually involve phosphorylation or dephosphorylation of different signaling units by kinases and phosphatases, respectively. In this review, we discuss the signaling characteristics of one of the nPKC isoforms, PKCθ, focusing on PKCθ-mediated signal transduction to cytoskeletal elements, which results in cellular rearrangements critical for cell type-specific responses to stimuli. PKCθ is the major PKC isoform present in hematopoietic and skeletal muscle cells. PKCθ plays roles in T cell signaling through the IS, survival responses in adult T cells, and T cell FasL-mediated apoptosis, all of which involve cytoskeletal rearrangements and relocation of this enzyme. PKCθ has been linked to the regulation of cell migration, lymphoid cell motility, and insulin signaling and resistance in skeletal muscle cells. Additional roles were suggested for PKCθ in mitosis and cell-cycle regulation. Comprehensive understanding of cytoskeletal regulation and the cellular "modus operandi" of PKCθ holds promise for improving current therapeutic applications aimed at autoimmune diseases.
Collapse
Affiliation(s)
- Izabela Michalczyk
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
140
|
Merino E, Abeyweera TP, Firth MA, Zawislak CL, Basu R, Liu X, Sun JC, Huse M. Protein Kinase C-θ Clustering at Immunological Synapses Amplifies Effector Responses in NK Cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4859-69. [DOI: 10.4049/jimmunol.1200825] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
141
|
Pageon SV, Rudnicka D, Davis DM. Illuminating the dynamics of signal integration in Natural Killer cells. Front Immunol 2012; 3:308. [PMID: 23060886 PMCID: PMC3463929 DOI: 10.3389/fimmu.2012.00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/17/2012] [Indexed: 11/13/2022] Open
Abstract
Natural Killer (NK) cell responses are shaped by the integration of signals transduced from multiple activating and inhibitory receptors at their surface. Biochemical and genetic approaches have identified most of the key proteins involved in signal integration but a major challenge remains in understanding how the spatial and temporal dynamics of their interactions lead to NK cells responding appropriately when encountering ligands on target cells. Well over a decade of research using fluorescence microscopy has revealed much about the architecture of the NK cell immune synapse - the structured interface between NK cells and target cells - and how it varies when inhibition or activation is the outcome of signal integration. However, key questions - such as the proximity of individual activating and inhibitory receptors - have remained unanswered because the resolution of optical microscopy has been insufficient, being limited by diffraction. Recent developments in fluorescence microscopy have broken this limit, seeding new opportunities for studying the nanometer-scale organization of the NK cell immune synapse. Here, we discuss how these new technologies, super-resolution imaging and other novel light-based methods, can illuminate our understanding of NK cell biology.
Collapse
Affiliation(s)
- Sophie V Pageon
- Division of Cell and Molecular Biology, Imperial College London London, UK
| | | | | |
Collapse
|
142
|
Cell polarisation and the immunological synapse. Curr Opin Cell Biol 2012; 25:85-91. [PMID: 22990072 PMCID: PMC3712171 DOI: 10.1016/j.ceb.2012.08.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/06/2012] [Accepted: 08/27/2012] [Indexed: 12/16/2022]
Abstract
Directed secretion by immune cells requires formation of the immunological synapse at the site of cell-cell contact, concomitant with a dramatic induction of cell polarity. Recent findings provide us with insights into the various steps that are required for these processes: for example, the first identification of a protein at the centrosome that regulates its relocation to the plasma membrane; the use of super-resolution imaging techniques to reveal a residual actin network at the immunological synapse that may permit secretory granule exocytosis; and the drawing of parallels between primary cilia and IS architecture. Here we discuss these and other novel findings that have advanced our understanding of the complex process of immunological synapse formation and subsequent induced cell polarity in immune cells.
Collapse
|
143
|
Abstract
The virological synapse (VS) is a tight adhesive junction between an HIV-infected cell and an uninfected target cell, across which virus can be efficiently transferred from cell to cell in the absence of cell-cell fusion. The VS has been postulated to resemble, in its morphology, the well-studied immunological synapse (IS). This review article discusses the structural similarities between IS and VS and the shared T cell receptor (TCR) signaling components that are found in the VS. However, the IS and the VS display distinct kinetics in disassembly and intracellular signaling events, possibly leading to different biological outcomes. Hence, HIV-1 exploits molecular components of IS and TCR signaling machinery to trigger unique changes in cellular morphology, migration, and activation that facilitate its transmission and cell-to-cell spread.
Collapse
|
144
|
Becherer U, Medart MR, Schirra C, Krause E, Stevens D, Rettig J. Regulated exocytosis in chromaffin cells and cytotoxic T lymphocytes: How similar are they? Cell Calcium 2012; 52:303-12. [DOI: 10.1016/j.ceca.2012.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
145
|
Huse M. Microtubule-organizing center polarity and the immunological synapse: protein kinase C and beyond. Front Immunol 2012; 3:235. [PMID: 23060874 PMCID: PMC3459186 DOI: 10.3389/fimmu.2012.00235] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/15/2012] [Indexed: 11/24/2022] Open
Abstract
Cytoskeletal polarization is crucial for many aspects of immune function, ranging from neutrophil migration to the sampling of gut flora by intestinal dendritic cells. It also plays a key role during lymphocyte cell–cell interactions, the most conspicuous of which is perhaps the immunological synapse (IS) formed between a T cell and an antigen-presenting cell (APC). IS formation is associated with the reorientation of the T cell’s microtubule-organizing center (MTOC) to a position just beneath the cell–cell interface. This cytoskeletal remodeling event aligns secretory organelles inside the T cell with the IS, enabling the directional release of cytokines and cytolytic factors toward the APC. MTOC polarization is therefore crucial for maintaining the specificity of a T cell’s secretory and cytotoxic responses. It has been known for some time that T cell receptor (TCR) stimulation activates the MTOC polarization response. It has been difficult, however, to identify the machinery that couples early TCR signaling to cytoskeletal remodeling. Over the past few years, considerable progress has been made in this area. This review will present an overview of recent advances, touching on both the mechanisms that drive MTOC polarization and the effector responses that require it. Particular attention will be paid to both novel and atypical members of the protein kinase C family, which are now known to play important roles in both the establishment and the maintenance of the polarized state.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| |
Collapse
|
146
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed Engl 2012; 51:8446-76. [PMID: 22829531 DOI: 10.1002/anie.201202134] [Citation(s) in RCA: 750] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 12/21/2022]
Abstract
Spatial and temporal control over chemical and biological processes plays a key role in life, where the whole is often much more than the sum of its parts. Quite trivially, the molecules of a cell do not form a living system if they are only arranged in a random fashion. If we want to understand these relationships and especially the problems arising from malfunction, tools are necessary that allow us to design sophisticated experiments that address these questions. Highly valuable in this respect are external triggers that enable us to precisely determine where, when, and to what extent a process is started or stopped. Light is an ideal external trigger: It is highly selective and if applied correctly also harmless. It can be generated and manipulated with well-established techniques, and many ways exist to apply light to living systems--from cells to higher organisms. This Review will focus on developments over the last six years and includes discussions on the underlying technologies as well as their applications.
Collapse
Affiliation(s)
- Clara Brieke
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
147
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Lichtgesteuerte Werkzeuge. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202134] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara Brieke
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| | - Falk Rohrbach
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Gottschalk
- Buchmann‐Institut für Molekulare Lebenswissenschaften, Institut für Biochemie, Max‐von‐Laue‐Straße 15, 60438 Frankfurt/Main (Deutschland)
| | - Günter Mayer
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Heckel
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| |
Collapse
|
148
|
Thompson AD, Makley LN, McMenimen K, Gestwicki JE. The three cornerstones of chemical biology: innovative probes, new discoveries, and enabling tools. ACS Chem Biol 2012; 7:791-6. [PMID: 22594530 DOI: 10.1021/cb3001827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea D. Thompson
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Leah N. Makley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kathryn McMenimen
- Department of Chemistry, Mt. Holyoke College, South Hadley, Massachusetts 01075, United States
| | - Jason E. Gestwicki
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
149
|
Prinz PU, Mendler AN, Masouris I, Durner L, Oberneder R, Noessner E. High DGK-α and Disabled MAPK Pathways Cause Dysfunction of Human Tumor-Infiltrating CD8+ T Cells That Is Reversible by Pharmacologic Intervention. THE JOURNAL OF IMMUNOLOGY 2012; 188:5990-6000. [DOI: 10.4049/jimmunol.1103028] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
150
|
Abstract
Linker for activation of T cells (LAT) is a transmembrane adaptor protein that is essential to bridge T cell receptor (TCR) engagement to downstream signaling events. The indispensable role of LAT in thymocyte development and T cell activation has been well characterized; however, the function of LAT in cytotoxic-T-lymphocyte (CTL) cytotoxicity remains unknown. We show here that LAT-deficient CTLs failed to upregulate FasL and produce gamma interferon after engagement with target cells and had impaired granule-mediated killing. We further dissected the effect of the LAT deletion on each step of granule exocytosis. LAT deficiency led to altered synapse formation, subsequently causing unstable T cell-antigen-presenting cell (APC) conjugates. Microtubule organizing center polarization and granule reorientation were also impaired by LAT deficiency, leading to reduced granule delivery. Despite these defects, granule release was still observed in LAT-deficient CTLs due to residual calcium flux and phospholipase C (PLC) activity. Our data demonstrated that LAT-mediated signaling intricately regulates CTL cytotoxicity at multiple steps.
Collapse
|